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ABSTRACT

Robotany is a system of autonomous robots that act on behalf of houseplants that rest on top of

their chassis. Their duty is to do what plants would if they had the gift of mobility - namely to seek

out sunlight or water when there are insufficient amounts of either at their current location. Despite

the specialized application, the underlying framework of the robots is rather general and can be used

in a variety of situations.

The robots are designed to be easily modifiable for a given application. They are constructed using

rapid-prototyping techniques that allow them to be built quickly and inexpensively. A novel design is

utilized for the vehicle's suspension. This design is far simpler, cheaper, and more easily customized

than traditional systems that perform the same task.

The software controlling Robotany utilizes a behavior-based approach, one that takes its cue from

nature's solutions to problems facing any mobile being. It follows Braitenberg's model for seeking out

light in an implicit manner. A new approach to obstacle avoidance is used, based on reactance to in situ

sensor readings and a simplified internal map of the local environment. Robotany also incorporates

a simple homeostatic system to regulate the quality of its behaviors and to determine when one

behavior should take precedence over another.

Experimental results presented in this thesis show that the robots are successful in finding sources of

light while avoiding obstacles in their path.

Thesis Supervisor: Jean-Jacques E. Slotine
Title: Professor of Mechanical Engineering and Information Sciences

Professor of Brain and Cognititve Sciences
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CHAPTER 1

INTRODUCTION AND MOTIVATION

LI' LwihihM ~N
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Figure 1.1: A dramatization of
theplight of most houseplants

Imagine a scenario where houseplants can take care of themselves. No longer

reliant upon their human caretakers for survival, they roam about their home,

interacting with each other and competing for resources. They cluster around the

windows during the day, and return to their individual decorating locations in the

evening. When the humans come home after work, they are greeted by happy and

healthy green plants.

Robotany is a system of artificially intelligent robots that care for

houseplants by acting as the plants would if they were able. A

plant is situated atop an individual robotic vehicle that is able to

move autonomously about the environment. Each robot is then

programmed with the needs of the particular houseplant on top of

it, such as if the plant requires full sun versus partial shade, and if

it needs to be kept evenly moist or prefers to dry out before being

inundated with water. Various sensors on board the vehicle are used

to monitor the plant's state, allowing the system to know when the

plant needs water or light. If some aspect of the plant's state is not

at the desired level, the system will use principles of homeostasis

to take action to restore balance. For example, if the plant has not

received enough sunlight (based on light-sensor readings), the robot

will actively search for areas of greater brightness. This search will be

more or less aggresive depending on how far the system has strayed

from homeostatic balance.

The motivation for creating Robotany can be found throughout

homes, offices and public indoor spaces. In all of these settings,

plants can often be found clustered near windowsills or placed only

in rooms with abundant natural light. When moved away from such

locations, houseplants slowly wither from lack of light. While a

designer may wish to integrate plants with the d6cor for aesthetic

reasons, they are not able to do so out of consideration for the

plants' health. Robotany was conceived to provide a solution to the
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houseplants' plight. This solution applies to large plants as well, as

Robotany's physical form can be scaled up to accommodate heavy

loads.

Robotany is intended to function as an unobtrusive part of the home

environment. The robots are designed so that a houseplant can be

placed securely on top. An owner can place multiple plants, with

Robotany vehicles underneath, anywhere in the environment without

concern for relative locations of windows. The robots maintain a

timer that can be set to indicate when the owner leaves for work

and when they expect to return. In the meantime, the robots are

free to navigate the environment on their quest for sunlight for their

symbiont plants. Prior to the owner's return, they return to their

origins. (The returning mechanism has not been implemented in this

thesis, although methods to do so are discussed in section 4.2.2.) This

would ensure a seamless operation that minimizes interference with

the owner's daily life, while making the care of the plants automatic.

There are many aspects to Robotany's behavior, and its final makeup

was influenced by a wide variety of topics within the fields of artificial

intelligence, controls, biology, and behavioral psychology. Preferred

methods were those that were most closely modeled after nature. Such

methods are usually highly efficient approaches to solving the task at

hand and require a minimal amount of computational resources.

Included in the preferred methods is Braitenberg's synthetic vehicle

that seeks out light by way of direct connections between sensors and

motors. Breazeal's robot Kismet also influenced the development of

Robotany through its use of homeostasis to regulate its behaviors.

Similarly, Warren's work in developing a dynamic model of steering

in humans served as a guide for what natural navigation in obstacle

avoidance should look like. Each of these subjects, as well as a

number of others, is discussed in detail in Chapter 2, Theoretical

Background.

Robotany's hardware was designed and built specifically for this

application. The hardware was designed to be modular, however, to
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be useful for any number of projects that required a mobile robot.

The details of these modular components can be easily modified for

the particular application at hand, and can be scaled to accomodate

larger loads. Off-the-shelf robotic solutions were considered, but

were either too expensive or had insufficient computation and

interface abilities. The first revision of Robotany was implemented

using a LEGOTM Mindstorms kit, running only a light-following

routine and a simple obstacle avoidance routine using bump sensors.

The Mindstorms kit was sufficient for a proof of concept, but more

computational power and a greater number of sensor inputs were

needed to realize the full potential of the project. Additionally, the

structure of the robot needed to be constructed from something more

robust to time than LEGOTM bricks. More detail on the structure of

the robot is presented in Chapter 3, Implementation.

To satisfy the computational requirements of this project,

each Robotany vehicle takes advantage of the Tower System, a

development of the Grassroots Invention Group at MIT's Media

Lab. This system is designed to enable rapid electronics prototyping

with a set of easily extensible tools. The technology behind the

Tower can be applied to a full range of application and by a range

of users, from novice to expert. A main advantage of using the

Tower System over another electrical and programming architecture

is smooth and straightforward implementation. For example, the

details behind transmitting raw voltages from a sensor to a computer

program for use in calculations is simple and well-defined. Another

advantage lies in the programming language used in the development

environment. RabbitLogo, built upon the Logo language and Rabbit

C, uses a straightforward interface to provide high-end functions to

speed prototyping and reduce the likelihood of assembly-level errors

in the code. For Robotany, this attribute proved particularly useful

as the main focus of the project was to develop a functioning robot,

not to implement serial protocols or memory-managing routines.

The Tower System is discussed in greater depth in Chapter 3. For

complete reference, please see Christopher Lyon's thesis on the topic.

[49]
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The fourth chapter of this thesis, Testing and Analysis, presents

data on the current state of Robotany's functionality, and provides

comparisons between Robotany's behavior and the behavior expected

as the result of some of the approaches presented in the background

section. It also discusses future work necessary to make the project

completely autonomous.
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CHAPTER 2

THEORETICAL BACKGROUND

The following sections provide background information on the

technologies that influenced the creation of Robotany. This is not

meant to be an exhaustive coverage of the information available, but

what was most prevalent and widely accessible.

2.1 Behavior-Based Artificial Intelligence

Behavior-based artificial intelligence (AI) approaches computer

programming in a way that tries to emulate the complex behaviors

exhibited by creatures in nature.[12] Such programs do this by

reacting to the environment directly through raw sensor readings.

They also create starightforward connections among elements

of the program, such as between sensor inputs and motor

outputs.[6] This is in contrast to the classical view of Al where

all actions are explicitly programmed, as much information about

the environment must be known as possible, and extensive rules

are constructed to govern behavior.[12] The computer program

in the classical case plans out actions based on sensor input

and a priori knowledge, such as maps of the environment. The

program then directs the motors to act according to the decision

made. This process can often take some time, depending on the

complexity of the task at hand. For example, Honda's bipedal

robot ASIMO [3] is able to perform complex tasks such as

climbing stairs and turning in place. However, these actions are

highly structured programs that depend strongly on the details

of the environment, which the robot "knows" beforehand. If

the width of one stair step were changed, the robot likely would

be unable to cope and would topple. A behavior-based program,

on the other hand, takes in sensor readings, and relates them to

motor output values to produce an immediate change in behavior.

The latter approach often results in more "realistic" behavior,

and can better respond to dynamic, unstructured environments.

Instead of using predetermined maps, behavior-based programs
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build their knowledge base in real time by exploring and testing

the environment.

Previous research in the field of Al has often focused on computer

simulations of desired behaviors and "evolved" solutions in purely

simulated environments before implementing the programs on

actual robots in the physical world.[70] This led to problems,

however, because the programs relied on "perfect" sensors and

actuators. They were also unable to accurately model the dynamics

of locomotion involved or the effects of noise and interference

in an unstructured environment. One solution that researchers

took was to construct special environments, which allowed the

robots to sense only what their programmers wanted them to.

This approach eliminated many of the problems previously

encountered when moving from simulation to a physical robot,

but solutions that were optimized to these conditions still would

not work in the "real world."

For Robotany, steps were taken to avoid the problems that

crop up when starting with simulations or specially constructed

environments. From the beginning, the robots were tested

with real (sometimes imperfect) sensors and motors, and in real

environments, such as around the Media Lab and my apartment.

In the debugging process some factors would be constrained,

such as using a lamp to simulate sunlight while turning off

obstacle avoidance, but everything was tested in a coherent system

to see what, if any, interference would occur between different

competing behaviors. Below, the work of three influences is

described in further detail, including how they specifically inspired

Robotany.

2.1.1 Machina Speculahtix

W Grey Walter was a research scientist in the mid-20th

century specializing in neurophysiology. His background

in electrical engineering aided advancement of the use of

the electroencephalogram to study the "black box" that the



Figure 2.1: Grey Walter at work on
one of his robots.

Figure 2.2: A reconstruction of Elsie,
one of Walters' original "tortoises."
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human brain presented to researchers in the early days of

study.[74] He countered popular notions of the day that

each piece of knowledge a being had was stored in the brain

in individual units. Walter thought that the sheer number

of units required, even if they were the size of neurons (on

the order of microns in diameter), was far too large to be

contained in the skull. Rather, he postulated that "richness of

interconnection[s]" [74, p118] between neurons, nerves and

the motor system allowed the complex behavior observed in

animals to arise, and that these connections had been honed

by eons of evolution to require minimal resources. From the

humble amoeba, to insects, to reptiles and then mammals,

Walter could see that something more than simple scaling of

quantity of neurological matter was taking place that allowed

these creatures to evolve increasingly complex behaviors

over the millennia. For example, the honeybee (arguably

a very simple creature) is able to convey the location of a

food source that is miles away from its hive to within a few

meters.[23] Not only can the honeybee find such sources

with its limited sensory and processing capabilities, it can

also return to its colony and direct others to the same spot.

Effectively giving directions to another being is not an easy

task, even for humans.

In an experiment to show that simple structures can produce

surprisingly complex behaviors, Walter constructed two

mobile robots, Elmer and Elsie, in 1951 (see Figure 2.2).

These robots were intended to exhibit the simple animalistic

behaviors of goal-seeking and scanning. To prove his theory

that a minimal number of atomic units were necessary, given

sufficient richness of connections between them, Walter used

only two miniature vacuum tubes, two relays, two condensers,

two small motors, and two batteries to construct them. The

robots were also enabled with two "senses": light-sensitivity,

given by a photo-electric cell, and touch, conveyed by a contact

switch that closed when the shell of the robot encountered an

image courte9 [58j, p14
image courteg /75]
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Figure 2.3: Drawing of one of the
tortoises being attracted to the light

source.

Figure 2.4: In the exploratory state in
the darkness. The touch sensor causes
the intricate movements, until the robot

isfinallyfree topursue the light

Figure 2.5: Two tortoises "dancing,
each reacting to the other's headlamp-

images couresey 175]

obstacle.

The circuits of Machina Speculatrix, as Walter named the

species he had created, were designed to initiate exploration in

darkness and to be attracted to areas of moderate brightness.

Overly bright levels, on the other hand, were repulsive, and

obstacles and inclines were unfavorable. With these simple

traits prescribed, Elmer and Elsie were in fact capable of

exploring their environment, shying away from both brilliant

areas of light and corners of darkness, and either pushing

around small obstacles or moving around large ones. M.

Speculatrix was also observed exhibiting self-recognition and

mutual recognition by means of head lamps that turned off

when adequate light levels were reached. When placed in front

of a mirror, or in each other's presence, the lamps would act

as attractors, but would then turn off when the proximity was

too close. Exploration would then be reactivated, at which

point the lamp would turn back on, and the process would be

repeated. See Figures 2.3, 2.4 and 2.5 for evidence.

One other behavior that emerged from the simple circuitry

was that the robots would return to their hutch as their

batteries ran down, in a mechanical analog of going to sleep.

This occurred because as the batteries ran down, the photocell

used to detect light registered lower values than before, so

that very bright areas now fell within the range of attractive

light readings. By design, the charging station for the robots

was lit by a brilliant light bulb. Thus, as the environment was

perceived to have lower light levels than it truly did, the bright

light of the hutch became desirable, and once they entered,

the robots would initiate charging of the batteries.

These robots were the first example of the reaction-

based approach in action, and appeared to be on the right

track to eliciting natural behaviors. There wasn't any

complex "thinking" on the robots' part; rather they were
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built intelligently such that computation was performed

automatically, much the same way that animals seem to do.

For example, when an ant comes across a twig for the first

time, it doesn't have to know what it is, measure its entire size,

and plan a path around it before moving. The ant doesn't

need to know anything beyond approximately where the twig

is relative to himself and needs only to guess which way he

should start heading in order to get around it. The beauty of

such simplicity was a compelling force behind the creation

of Robotany. Unlike in Walter's work, however, a computer

program is used to dictate the behaviors expressed as a

function of the sensor inputs.

2.1.2 Vehicles that Love

Valentino Braitenberg is primarily a brain researcher, as was

Walter, and used his knowledge of this field to write "Vehicles:

Experiments in Synthetic Psychology." Published in 1984, many

years after Walter's M. Speculattix, Braitenberg's monograph

of thought experiments in behavioral psychology gave rise

to an increase in experimentation in behavior-based robotics.

Implementation of his hypothetical self-operating vehicles

used only microchips and small motors, including those

found in the LEGOTM Mindstorms kito. The simplicity of

the physical and computational elements required to bring

forth complex behaviors also inspired larger scale research

efforts at the university level. He put forth the notion that

direct connections between sensor input and motor output

in varying manners can realize increasingly intricate behavior.

When anthropomorphizing the behaviors exhibited by the

machines, analogs of love, hatred, aggression, logic, foresight,

and free will seemed to manifest themselves.

Oa Google search of the terms The first four types of vehicles put forth in Braitenberg's

"Braitenberg" and "Lego" returns over book each have sensors and motors. They vary in how the
800 links representing numerous groups

who have implemented these ideas sensors are connected to the motors, both geographically
themselves.
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and mathematically. For instance, the first vehicle consists of

one temperature sensor directly connected to one motor (See

Figure 2.6). As this vehicle encounters regions of increasing

or decreasing temperatures, it will speed up or slow down,

accordingly. This is not a very interesting behavior in its own

right, but is analogous in a simplistic sense to the thermostasis

used by cold-blooded animals to moderate activity levels.
Figure 2.6: Braitenberg vehicle oj
pe 1, with one sensor connected t

one motor.

50>

/

a

0

Figure 2.7: Braitenberg vehicles of
2a (left) and Type 2b (right)

The next two types of vehicles each have two light sensors

and two motors, located bilaterally and connected in a

excitatory or inhibitory relation (See Figure 2.7). In a vehicle

of type 2, there are two subtypes. Vehicle 2a, which has the

left sensor connected to the left wheel and the right sensor

connected to the right wheel. When these sensors sense more

light, they cause the corresponding motor to spin faster. If

a light source is located ahead of and to the left of center of
the vehicle, the left wheel will rotate faster than the right one,

executing a turn away from the light, where it will then slow

down. If the light approaches again, the vehicle will repeat
ype its escape maneuver, resting only when the light sensed is

below its sensors' threshold. This vehicle has been termed

a "coward" by Braitenberg, demonstrating its dislike of the

light source by running away from it. In Vehicle 2b, however,

the connections are crossed; the left sensor is now connected

to the right wheel and the right sensor to the left wheel. Both

connections are still excitatory, so that the more light sensed,

the faster the motor will spin. Now, if a light is located ahead

and to the left of this vehicle, the right wheel will rotate faster

than the left one, affecting a turn toward the light. As the light
intensity increases with decreasing separation, this vehicle will

approach the light at increasing velocity, eventually smashing

into it headlong. Braitenberg has termed this vehicle

"aggressive," as it dislikes the light as much as its cousin 2a,

but attacks the light, rather than hides from it.

In the type 3 vehicle, there are again two subtypes: Vehicle 3a
images cour/esy 16j, p.4 and 8



Figure 2.8: Braitenberg vehicle of Type
3a (left) and Type 3b (right)
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with the straight connections (left to left, right to right) and

Vehicle 3b with crossed connections between the sensors and

motors (Figure 2.8). However, these vehicles differ from type

2 in that the connections are inhibitory rather than excitatory.

In other words, when more of something is sensed, the

motors will rotate more slowly in response. Again using

light as the item being sensed, for Vehicle 3a, when a light

source is located ahead and to the left of the vehicle, the left

wheel will turn more slowly than the right, resulting in the

vehicle turning toward the light and decreasing in velocity as

it gets closer. The vehicle will initially race toward the light,

eventually slowing to a stop before it in a head-on orientation,

seemingly enraptured by its luminescence. This vehicle is

expressing its "love" for the light source. Vehicle 3b also

slows down in the vicinity of light, but prefers to keep its back

to it. If the light were straight ahead of it, there would be no

differential between the sensors, and it would also remain at

rest facing the light. Any perturbation (such as would occur

with real sensors), however, will cause the leeward motor to

turn, inducing the vehicle to turn away from the light source

until it has its back to it. This vehicle is termed an explorer by

Braitenberg, one who likes the like source, but it always on the

prowl for something better.

Braitenberg's work heavily influenced Robotany's core

behavior, that of seeking out light and staying with it for

the health of the houseplant. Robotany is connected in the

manner of Vehicle 3a, the one that loves the light and comes

to rest in areas of brightness.

2.1.3 Smbsumption Architectre
In the mid 1980s Rodney Brooks brought attention to the

field of behavior-based Al by being a vocal proponent of

its advantages and how it contrasted the classicist approach

(led by Marvin Minsky and Seymour Papert, also of MIT).

He also began experimenting with his own robots using new

image courtesy [6j, p.11
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b. manipulate the world

build maps

explore40, -* * .Wut

avoid hitting things

Figure 2.9: Contro/flow through
classical (a) versus subsumption (b)

architectures

0One example is Shakey, a remote-
controlled mobile robot built at Stanford

Research Institute in 1970. Given
carefully selected input data, it could plan
and execute, in a period of several hours,

paths to move from place top lace and
move objects around. See /107 for more

information.

image courmesy 713t, p.67

discoveries in the fields of cognitive science and biology

as blueprints for the computer programs used to control

them.[12] Stemming from their own dissatisfaction with the

performance and complexity of available Al methods, several

groups in addition to Brooks' set out around 1984 (shortly

after Braitenberg's book was published) to find a different

way to program robots such that they would be able to react

in a timely manner to an unknown and dynamic environment

around them, as creatures in nature would. While others

worked on building Al systems that played videogames like

a human [1] and eliminating the need for symbolism and

representation [61], Brooks led the group that developed

situated and embodied mobile robots. These robots used real

sensors in a real environment without internal world models

or other aprion details.

In his quest for something closer to nature, Brooks is credited

for formalizing the notion of subsumption architecture, which

directly contradicts the classical Al approach to robotics. In

the subsumptive approach to intelligence, programs utilize a

simultaneously computing stack of "layers" that each receive

input from sensors and can affect actuators.[13] This differs

from the classical methodology, which would step through a

series of functions in time, from perception to planning to

execution, a process which could take up to 15 minutes in

some cases. Figure 2.9 graphically depicts the underlying
architectural difference between the two methods of

programming.

One advantage of the subsumption system is that layers can

build upon each other. For example, in the figure above,

the "explore" layer doesn't have to worry about obstacle

avoidance, as this is taken care of by the routines in the

"avoid" layer. In this manner, computation is distributed,

leading to faster response times and thus more "natural"

behavior. These routines were implemented by Brooks



Figure 2.10: Genghis, a robot
developed in the AI Lab of MIT.
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in such robots as Genghis (Figure 2.10) and Atilla by way

of AFSMs (Augmented Finite State Machines).[12] These

AFSMs sent information from one to another in the form

of a string of bits, to be decoded by the particular receiver

for which the information was intended. This system had no

central area of control, although in many cases an arbitration

scheme was incorporated to deal with potential conflicts in

motor output commands. The subsumption architecture

also provided an avenue for redundancy, which improved

robustness of the robots' outputs. If several redundant layers

were processing sensor information in parallel, the resulting

output was thus more reliable and complex goals could be

achieved with relatively little computational power.

2.2 Obstacle Avoidance

Effective obstacle avoidance is critical to the survival of any

mobile system. The ability to navigate an unknown environment

to effectively reach the goal, whatever that may be, without getting

stuck somewhere is the mark of success for a mobile robot. Many

different methods exist to accomplish this task. One set uses

pre-planned routes based on maps, computer vision or optical

flow.[5,14,48] Another uses wall- or landmark-following, and

others use primitive reaction-based methods such as bumping into

a wall to trigger backing up and turning. [18,39,44] Although the

preferred method is to navigate without making physical contact

with the environment, when limited computational resources

dictate strategy, anything that succeeds will suffice.

One of the most prevalent methods used for mobile-robot

navigation, based on potential fields, is outlined below. A study of

how humans navigate around obstacles on their way to reaching

a goal, which provides a model for natural navigation, is also

presented.

image courtes htlp://www..ai.mit.edu/projects/
gengbis/genghis.himl
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2.2.1 Using Potential Fieklds

Applying potential fields to obstacle avoidance is a convenient

technique that makes use of Newtonian dynamics in order to

determine optimal navigation paths. By modeling goals and

obstacles as regions of low and high potentials, respectively,

one is able to determine a path to a goal that minimizes

the work done. Potential fields have been used reliably by

researchers for obstacle avoidance in mobile robots since the

early 1980s.[33,40] The use of potential fields for navigation

presupposes knowledge of the environment, which must

be programmed into a computer that generates the robot's

trajectory. Regardless of whether that computer is onboard

the robot itself, or external to it, the path is commanded to

the robot independent of in situ sensor readings. It is also

possible for the robot to acquire active sensor data to verify

the map. In order to do so, however, the inherently noisy

nature of real sensors and dynamic environments must be

taken into account.

For goal-seeking behaviors, a potential field is created in the

shape of a paraboloid, or bowl, with the starting position of

the robot set to be on the lip of the bowl, and the goal point

set at the bottom. Obstacles are modeled as finitely high hills,

with some gradient, which impart a repulsive force to the

robot when it gets too near. Figure 2.11 depicts an example
-10 -10 of a potential field used for goal-seeking. By simulating the

Figure 2.11: Representation of the physics of a ball rolling down the potential field along the
obstacles asfinite hills, the startingpoint path of least resistance, one is able to determine how theas the top of apotential well, and the

goalpoint as the bottom. robot should navigate its planar environment. Specifically, the

gradient of the potential field at a given point provides a force

vector used to impel the vehicle toward its destination.

The following set of [44,16] provide a more rigorous

mathematical description of potential fields. A goal has

associated with it a potential, Ugoa, given by

image from MA UAB simulation, [16]
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Ugoai ='* p(q)

8 -6 4 .2 0 2 4 6

Figure 2.12: A set of circular
obstacles in thefield.

(1)

where ( is a constant, p(q) is the distance from the goal, and

q is the state vector (xy)T. The goal potential decreases as the

distance between the robot and goal point decreases. As the

robot tries to acheive a lower energy state, the goal therefore

acts an attractor.

Obstacles, however, act to repel the robot with potential

functions that increase with decreases distance. The obstacle's

potential function, Ubt/c, is given by

Uosacie(q)= 17 - 2

17)( - 1 ) 2
2 p(q) o

=0

01

0*

to 8 -6 - 4 2 2 4 6 9

Figure 2.13: Paths tbrough the obstacle
field to thegoalpoint.

for p(q) - th (2)

for th < p(q) po

for p. < p(q)

where q is a constant, po is the radius of the obstacle, modeled

as a circle, and p(q) now represents the distance from the

obstacle. Since the robot is modeled as a point mass, the

parameter th has been added to give the minimum distance

between an obstacle and the robot. This term serves to limit

the range over which the obstacles can affect the path of the

robot and makes the function bounded when p(q) is equal to

zero.

The total potential function for this system is then given by

# obstacles

Uoa = Ug0 , + Uo'sacie (3)

where U.0ai and UobS,,, are defined in (1) and (2) and summed

for all obstacles in the environment. To determine the

trajectory for the robot, one takes the negative gradient of this

energy equation given above to obtain the force exerted by the

potential field on the robot at any given coordinate along the

path q. This field acts to impart a virtual gravitational effect

on the robot, akin to a ball rolling down a hill, which directs it

toward the goal on the most efficient, path.
imagesfrom MA TLA B simulation, [16]
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The path taken by a robot consists of straight sections towards

the goal interrupted by sections which follow the contour of

an obstacle in its way, until a line-of-sight path to the goal is

restored. Figure 2.13 illustrates this behavior. One can see

that, as a ball rolling down this hill would, the robot traces a

straight-line path up to the edge of an obstacle, follows along
its edge, and continues on its way to the goal.

One disadvantage to the potential fields method is that it is
very easy for the robot to become stuck in a convex space.

Figure 2.14 shows an instance of this where two obstacles

are located close together. The gradient surrounding these

obstacles, which acts to keep the robot a safe distance away

from them, creates an overlapping region of high potential

that the robot cannot overcome. If the robot's path brings it
Figure 2.14: Overlappingpotential to this point, it has no recourse to get out of its potential wellfields, which prevent the robotfrom .

passing between these obstacles. and is stuck for perpetuity.

Another disadvantage to the potential fields formulation is

the lack of damping in the system, causing the solution to

be jerky and discontinuous. This can lead to "unnatural"

motions, where the robot has to pause at obstacle boundaries

and change orientation before continuing along. Such sharp

turns may be impossible to execute if the vehicle happens to

be non-holonomic, but there is no recourse in the algorithm

to account for this fact. Also, if the algorithm is used to

determine the robot's speed in addition to the direction of
motion, the robot will move very quickly when it is far from

the goal point, and very slowly as it approaches the goal point.

This fact combined with the absence of damping could

lead the robot to crash into obstacles at high speed. Some

researchers have added damping to the equation to ameliorate

these effects to a degree.[33]

The main disadvantage of this method for any autonomous

robot is that it relies so heavily on maps and calculations
image from MATL.AB simulation, 116J
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performed before the robot can start. If the robot can

accurately map its surroundings, it will have a chance at

succeeding in reaching its goal (barring complications such as

local minima). However, to do this in a "natural" fashion, i.e.

without stopping for long periods of time while it calculates

its next move, or changing direction abruptly, the robot would

require a significant amount of processing resources to plan

and enact the desired path in a timely manner.

Instead of gravitational potential fields, some have tried

creating virtual electrostatic potentials to guide their

robots through two-dimensional environments.[72] In this

method, a virtual resistor network is created to represent the

environment, from which the laws of electrostatic fields are

used to solve for an efficient path through the obstacles to

the goal. Rather than using a map of the environment given

before navigation, the robot builds a map, and therefore its

resistor network, via sonar readings. In this experiment, the

system lays a grid over the environment, and then sensor

readings determine whether a particular cell is occupied

with an obstacle or not. These obstacles are then assigned

resistances, with densely occupied areas assigned higher

resistances. Then using Gauss' laws, a unique solution for a

path of least resistance through the closed resistor network

allows the robot to follow a nearly optimal path through the

environment.

The use of potential field methods, either gravitational or

electrostatic, has resulted in successful navigation in both

simulation and actual tests on a mobile robot. However,

the process is computationally expensive and slower than

"natural" responses to the environment would be. Also, the

tactic of breaking the environment up into regular units or

cells and the creation of a complete map of the environment

before navigation can be attempted seem contrary to nature's

way of working.
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Figure 2.15: Coordinate system used in
the equation of dynamics

2.2.2 BehavioralDynamics of Steering

When thinking about navigation of mobile robots, it is

helpful to take a look at nature's approach to the matter. As

efficient solutions have been evolved over the millenia, they

can provide insight into how robots might be able to use

these techniques as well. In their experiments, Fajen and

Warren model the behavioral dynamics of steering in humans

to show that explicit path planning is not necessary.[24,25]

They accurately simulate natural behavior with an empirically

determined second-order model inspired by measured data of

human navigation. This model is a function of the angles and

distances (relative to the navigator) of goals and obstacles,

which act as attractors and repellors, respectively.

Given one goal and one obstacle, Fajen and Warren's model

is analogous to a spring-mass-damper system and takes the

form

= bo - kg (0 - Xfg)(e-c~d+ C2) + (4)

k.(0 - C( '* - '''")(e-")

where 4 is the heading angle measured in a fixed reference

frame, the y and V/, terms are the angles of the goal and

obstacle (also in the exocentric frame), and the d and d terms

are their radial distances from the navigator. The c terms

are parameter gains that modulate the strength of response

to goals and obstacles and the k terms represent effective

"spring constants") associated with each goal and obstacle.

The first term on the right-hand side of equation 4 acts as

a frictional ("damping") force that opposes angular motion.

Next there is a "spring" term which pulls the navigator

toward a goal. This is modulated by an exponential so that

attractiveness decreases with goal distance, yet is scaled by

c2 so that acceleration never reaches zero. The third term

represents the effect of the obstacle and is also modeled as

a spring force. This time, however, the spring pushes the

image courlesy [24,25]
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navigator away from its desired path and is modulated by

an exponential with an asymptote at zero. This asymptote

serves to push the navigator away from the obstacle in the

proper direction and at a high rate when its approach is nearly

head-on. The effect of the obstacle, like that of the goal,

also decreases with increasing distance from the navigator. It

is interesting to note that the transverse speed of navigation

is not a variable in the steering dynamics, as it was nearly

constant in all of the human navigation data upon which this

model is based.

An interesting fact that arises from this model is that the terms

for goals and obstacles can be combined linearly, suggesting

that it may be a contracting system. The rates of convergence

to a goal are equal for various initial goal angles, as would

be expected from a contracting system. The superposition

also implies that the behavior does not get complicated in

greater than linear fashion with the addition of obstacles to

the environment. Contracting systems are discussed further

in section 2.4.

The salient features of Fajen and Warren's model show that

human navigation is not as complex as previous models have

implied. That the effects of obstacles decay exponentially to

negligible levels indicates that humans only need to sample

the next few objects in their environment pertinent to their

current path, rather than trying to map the entire scene before

starting out. Also, the lingering effects of goals and obstacles

in the model shows that humans (and therefore their simulated

counterparts) remember goal forces. The final route chosen

arises from a natural competition between goal attraction and

obstacle repulsion in the behavioral dynamics. The act of

turning in this model is not a set biomechanical process but

is instead governed by the navigator's movement relative to

the objects in the scene. Perhaps the greatest simplification

found is that nowhere in the model do system dynamics

IN

images courtesy /24,25J
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Figure 2.18: Stabilizing a system
via a negative feedback loop

- or self-knowledge of how the act of turning is carried out

- come into play.

2.3 Homeostasis

Homeostasis is a basic biological process used by all living creatures

to maintain balance and harmony between the internal functions

of the body and the external effects of the environment.[2] For

example, when the weather is warm, humans perspire to aid

cooling. When a meal that is high in sugar has been consumed, the

pancreas produces more insulin to compensate. In most animals,

the endocrine system performs homeostasic functions necessary

for survival on a level far below any conscious control. The fact

that the proper chemical conditions can be maintained without

input from the central nervous system has made homeostasis

has been a critical development in the saga that is evolution.

By decreasing the computational resources required for basic

functions, homeostasis effectively frees up the brain for higher-

level processes, such as art and abstract thought.

A homeostatic system maintains its steady-state values by way of

negative feedback control to stabilize whatever levels are being

measured when they are disturbed. Akin to classical controls

systems, the endocrine system attempts to restore balance by

releasing specific amounts of chemicals into the bloodstream

based on how far monitored levels have deviated from the norm

(see Figure 2.18).[35] In the same respect, homeostatic systems

do not act as switches to begin or halt processes, but more like

dimmer knobs, altering the rates at which these processes occur.

For instance, horomones are constantly emitted by the various

glands of the body, albeit in baseline quantities in periods of low

stress. However, when danger is sensed, before any conscious

thoughts or plans are formed to cope, the body releases hormones

that increase respiratory and heart rates, tenses the muscles in

preparation for physical exertion, halts digestive processes to save

energy resources, and causes the liver to release sugars, fatty acids
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and cholesterol into the bloodstream to provide energy. Similarly,

when the danger has abated, the endocrine system normalizes

the processes that were affected by reinstating pre-attack levels

of the body chemistry. If this weren't an automatic reaction,

and creatures had to mentally prepare to avoid being eaten, for

example, evolution would have likely halted long ago.

For Robotany, homeostasis comes into play by monitoring internal

plant variables, such as amount of light received and humidity

of the soil, and external variables such as ambient temperature.

Depending on these values, the characteristics of its behavior

will change. The homeostasis routine is not a subroutine of

higher-order functions. Rather, the routine updates certain biases

in the system based on its readings, and these biases affect the

strength of response to certain inputs. For instance, if the plant

has been unable to reach sunlight, or naturally has a very strong

desire for light, it will be willing to get closer to obstacles in order

to get more sunlight (to within a hard limit determined by the

physical dimensions of its chassis). On the other hand, exposure

to excessive heat will reduce the plant's desire for sunlight and

increase its sensitivity to light levels, making darker areas more

attractive as a goal placement.

In a similar manner, Grey Walter's Elmer and Elsie exhibited this

same sort of balance between desire for moderate light levels and

aversion to overly bright areas, as discussed in section 2.1.1. In

addition, as their internal measurement of battery levels decreased,

sensitivity to the readings decreased and brightly lit areas fell

within the range of acceptable levels for the robots. This created

the behavior of sleeping, as they would be attracted to their

brilliantly lit charging stations. Simple homeostatic relations were

therefore as essential to the survival of htese robotic creatures as

they are to biological creatures.



Figure 2.19: Walter Cannon

2.3.1 The Grandfather of Homeostasis

Walter Cannon was a neurologist and physiologist in the early

20' century credited with, among other things, the processes

behind homeostasis and how they affected the body. Although

his background was in the biological sciences, and his path to

homeostasis was through study of the human body, he also

applied the principle to politics and society as a whole. The

body's ability to stabilize itself and to prepare for crisis was

such a powerful notion for Cannon that he could see how it

could benefit other complex systems as well.[15]

Cannon drew analogies between external influences on the

internal state of the human body and the tribulations faced by

social groups - such as families, industries, and governments.

He suggested that these social structures could benefit from

applying the tenets of homeostasis to ensure their survival,

just as the human body benefits from its endocrine system.

He drew many parallels between "the body physiologic"

and "the body politic," including comparing blood, which

circulates the hormones necessary for the organs to change

their behavior, to money, which replenishes the depletion of

goods in the market. Just as the brain is freed from drudgery

to perform higher-order functions, such as dance and poetry,

society can similarly be freed and allowed to explore its full

potential.

Although he may not have foreseen the application of

homeostasis to the field of robotics, Cannon could see that

it had a much longer reach than solely the living body. The

underlying principles that maintain stability in the face of

radical circumstances can guide the formation of varied

complex systems into becoming coherent structures capable

of greater things.

image couresy bttp://www.larnardsquarekbray.org/
unitarians/ cannon walter.btm/
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Figure 2.20: Kismet's range of emotion
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2.3.2 The Many Whims of Kismet

The interactive robot Kismet was created by Cynthia

Breazeal, a professor whose research focuses on human-

robot interaction. Kismet was designed to evoke a caretaker-

type behavior from the humans that interacted with it. To

do this, it was programmed to use facial expressions to

convey emotional states that would come up in adult/infant

interactions; emotions such as happiness, sadness, boredom

or sleepiness (see Figure 2.20).

In many ways, Kismet was an experiment in homeostatic

control applied to human-robot interaction. Its fundamental

intelligent capability - being able to transition between

emotions in a natural manner that would keep the interest

of the human participant - was acheived using a homeostatic

scheme. This scheme served to maintain an internal balance

of behavioral drives such as sociability, stimulation, security

and fatigue.[8] Kismet was able to keep track of these drive

levels using a set of internal variables, such as time spent in

interaction, and external variables, such as volume and pitch

of audio input or distance of a human face from its own.

When Kismet sensed that its various drive levels had gone out

of homeostatic range, it displayed signs of anger or boredom.

This encouraged the human participants to help it restore

balance by calming it or engaging it, as one would do with an

infant. If the human failed to do this, or made Kismet more

upset, it put itself to sleep, almost as a defense mechanism, in

an effort to adjust its homeostatic levels itself.

All of Kismet's behaviors were modeled after those observed

in human infants by psychologists and behavioral scientists.

For example, if no one had spent enough time with it

recently, Kismet would start making noises to draw attention

to itself, just as a baby cries to get attention. If, however,

it felt "over-stimulated" (i.e. too much noise or contact), or

irnage courlesy [8]
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Figure 2.21: The controlfiow of
Kismet's program that regulates

behaviors as afunction of external
inputs.

had been interacting with someone for an extended period, it

would withdraw from the interaction and act tired to let the

participant know that it didn't want to play anymore.[7]

Kismet not only reacted to its environment internally, but

also gave information about its current state in an outward

manner. Kismet was able to convey its internal state to

human participant in a familiar visual manner by adjusting

its facial expressions. Several levels of increasingly complex

motor control were required to produce these expressions.

The first is a set of motor primitives that set the range of
motion and how quickly to transition between positions. Next

is a skill level that takes care of moving several motors in a

coordinated fashion, such as raising the eyebrows, or wiggling

the ears. The uppermost level combines the various skills into

cohesive expressions to convey meaning to observers that

accurately reflect Kismet's internal emotional state. Changes

between states are blended by averaging the various emotions

that are being evoked./7]

Kismet is an example of a complex autonomous robot that is

enabled with a rich range of emotion, as well as the ability to

display this range while interacting with human participants.

Unfortunately, to be able to achieve such richness, many

computers were occupied full time with such things as

vision processing, auditory processing, motor control, and

implementation of the homeostatic system that arbitrated

between emotions. The fact that it was able to achieve

such success in its goal was inspiring, however, to note

that homeostasis was an effective method to rouse natural

responses from caretakers who forgot that Kismet was just

a robot.

36
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2.4 Contraction Theory

Contraction theory is an analysis technique used to gather

information about the stability and controllability of nonlinear

systems.[47] This technique uses state space representations

and stems from sliding control theory as introduced in [65]. It

is able to simplify analysis of high-order systems of dynamics by

introducing new variables that give more information about the

controllability of the system at hand.

For a system to be contracting within a certain region means that

any trajectory si starting in that region will converge to some goal

trajectory, s, within the same region. This implies that the final

state of the system is independent of initial conditions. Two

important traits of a contracting system are: a superposition of

contracting systems is in itself contracting, and if a system is

contracting in any point in time, it is contracting for all time. The

latter notion is particularly useful when determining the stability

of following a moving goal point or avoiding moving obstacles.

A system that is contracting in all regions of the state space is said

to be globally contracting.

Contraction analysis has proven to be particularly helpful when

analyzing position control of second-order dynamic systems.[32]

Consider a given second-order system

't = f(x,t) + U(x't) (5)

where t is time, x is the position state vector, k is its second time

derivative,f(xt) governs the dynamics of the system, and u(xt) is

a feedback control signal. The problem of controlling position in

a force field can be transformed into one controlling position in a

velocity field via the introduction of the variable

s = x + T (6)

where x is still the state vector, t is the first time derivative of

this state vector and T can be thought of a damping coefficient

of sorts that modulates how closely s predicts the x trajectory T

seconds later. The second-order equation above, (5), can now be
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tranformed to a first-order system in s,

= f(s, t) (7)

where is the first time derivative of s. The trajectories of this

first-order system can be visualized as stream lines in the velocity

fieldf(s,t).

Using the simplified description of the system given by (7), one

proceeds with the contraction analysis by evaluating the Jacobian,

or partial derivative with respect to s, of the system f(st). If the

eigenvalues of the symmetric part of the Jacobian are strictly less

than zero, then the system is contracting. This can also be written

as

I Tf + - P#I< 0 (8)
2 as as

where 8 is some positive number, I is the identity matrix of the

same dimension as the Jacobian, and T denotes the transpose

operation. The graphical result of this statement is that all stream

lines in the velocity field converge to a single trajectory, like a

laminar fluid flow compressing through a nozzle.

Finding that s is contracting in its velocity field implies that x is

also contracting in its force field. This is due to the definition of

s as a first-order system of x and . in (6). The solution of a first-

order equation implies exponential convergence to a particular

solution. Thus, since s converges to a particular solution of the

velocity field by contraction, x must converge to the particular

trajectory specified by s.

Since the resulting trajectory is unique, regardless of initial state,

any linear combination of such fields can also be shown to be

uniques as well, and therefore contracting. This conclusion

agrees with biological experiments described by Bizzi and Mussa-

Ivaldi regarding motor primitives in frogs.[56] Motor primitives

are unique trajectories of the limb elicited by stimulation of a

particular section of the frog's spinal cord. When two such

sections were stimulated, the resulting motion appeared to be a
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linear combination of the individual trajectories. This finding

supports the mathematics behind contraction theory by showing

that nature perhaps also uses a linear combination of simple

motions to create complex behaviors.

The description of contracting behavior thus far applies only

to attractive points in the trajectory space, such as goals. For

repulsive force fields that may be associated with obstacles in

the terrain for example, there is no singular solution. The same

definition for s is used in this case, as well as the same control

function, but the velocity field associated with the obstacle is on

the order of 1/r, where r is the distance from the robot to the

obstacle, with the zero point (corresponding to infinite repulsive

force) located at the center of the obstacle. As can be seen

intuitively, any given set of initial conditions will result in different

trajectories. In fact, all trajectories radiate away from the obstacle

linearly. When plotted in polar coordinates, however, these

trajectories are straight, parallel lines. They are not converging,

but they are not diverging either. Haag and Slotine supposed that

if this repulsive field were added to a strongly contracting one,

that the result would still be contracting. This did indeed prove

to be the case mathematically, and a new lens to study obstacle

avoidance through was developed.

Using contraction theory for obstacle avoidance does not

necessarily free us from the problem of local minima as found with

potential fields, however. That problem can only be eliminated if

the entire region containing the trajectory is contracting, due to

the fact that by definition a contracting system can have only one

solution in the contracting domain. If the trajectory starts in the

contracting domain within a certain radius tof the attractive point,

it will find its way to that goal. If however, the trajectory leaves

the contracting domain, or starts outside that ball of influence, it

cannot be guaranteed that the trajectory will not become mired at

a local minima point.
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2.4.1 Contraction of Steering Dynamics
Section 2.2.2 described a dynamical model of human steering,

introduced by Fajen and Warren, that is stable and efficient,

as well as modeled on naturally occurring behavior. It is of

interest to examine the properties of this model because

evidence of contraction in a natural system would strengthen

the validity of using the approach in other areanas.

When analyzed with the techniques outlined in the previous

section, however, the dynamics are found not to be globally

contracting. The first step in analysis was to linearize the

equation as it was given in section 2.2.2, and repeated below.

= bo - kg (0 - VJ)( e- c'd+ C2) + (4)

k,(O - yf,)(e-" 10 - "l)(e-"")

Since the distances and angles of goals (dg and V) and

obstacles(d and V) are not constant but vary with time as a

function of heading, the exponential terms make the system

nonlinear. This can be remedied by noting that since the

constants, distance values, and the absolute value of angle

difference are always positive, the exponentials are bound

between zero and one. These terms can then be replaced by

constant that vary in the same range. In this way, the dynamic

equation can be reduced to

q =- bo + (a2 - al)q + C (9)

Where a, is bounded by 3.0 and 10.5 and a 2 is bounded by

0.0 and 198.0. Now that the linear equation is found, the

Jacobian can be computed, giving a square matrix equal to

J= 3  (10)as -b

where a3 is the sum of a, and a 2, resulting in a range of -10.5

to 195. According to the theory put forth in [44], contraction

is determined if the eigenvalues of the symmetric part of the

Jacobian are strictly less than zero. The symmetric part of the

Jacobian of the dynamics is given as
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which results in eigenvalues of

_ -b± b2+ (1 + a3)2

2

Figure 2.22: The effect of the
obstacle vanishes when its angle

relative to the navigator is equal to
zero.

One can see that the pair of eigenvalues will always have one

positive member, regardless the value of a3. This means

that the system is not contracting, at least not in the identity

metric.

The above calculation can also be performed while retaining

the nonlinearities. It becomes necessary to introduce the

composite variable

s = x + T (6)

where xis the state vector of 0 and 0 to produce manageable

results. However, the same Jacobian resulted from the process,

which indicates both that the linearized approximation was

valid and that the system is in fact not contracting. Even if

one analyzes solely the attractive part of the dynamics given

by (4), one of the eigenvalues will still be positive, independent

of the values of the variable terms. This tells us that even

without the addition of a diverging field associated with an

obstacle, the system is not contracting mathematically.

To test the validity of the results produced by Fajen et al.,

a MATLAB simulation was programmed using the full

dynamics as given in the appendix of [25]. These simulations

did indeed give the same results as presented in their paper,

albeit for a narrow range of goal and obstacle angles. Figures

produced by this simulation show that the initial condition

is unimportant within a given region. This holds with the

conclusions of contraction theory, so the fact that the

mathematics don't comply suggests that there may be some

mathematical approximation of the true dynamics that does

contract.
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Figure 2.23: When the obstacle
is moved by even 1/1000th of a

unit, the system dynamics cause the
navigator to avoid it.

Figure 2.24: The goalpoint is
located at a negative angle relative to
the observer, causing the dynamics to

treat it as a repulsive point.

Figure 2.25: Response predicted by
Fajen et al. 's dynamic equation.

One guess at why the system equation doesn't contract is that

since Fajen and Warren's model of steering was determined

empirically rather than from first principles, the mathematical

foundation is not strong enough to explain why paths result

the way that they do. This assumption is strengthened by the

simulation of the case where one obstacle is located directly

ahead of the navigator and one obstacle located directly in

the path between the navigator and its goal. In this situation,

shown in Figure 2.22, the path of the observer approaches

the goal directly, passing straight through the obstacle. This

is because when the angle of the observer is directly in line

with the obstacle, the repelling term vanishes, due to the (p-

V/) factor of (4), which is the angle of hte goal relative to the

navigator. If the obstacle is moved to either side of the y-axis

by 0.001, as seen in Figure 2.23, the path changes and the

obstacle is effectively avoided.

Another example where the simulation doesn't hold is when

the goal angle is negative and the obstacle is out of range of

influence. In this case, the path never approaches the goal

directly. Instead it goes straight ahead and then always veers

away to the right to continue out to infinity. (Figure 2.24) It

would seem from intuition that this asymmetry should not

occur. However, the equation of dynamics shows that as the

sign of the difference between the navigator angle and the

goal angle changes from positive to negative, the resulting

force changes sign as well. It then behaves in the same way as

the repulsive force associated with obstacles. This shift does

not occur, however, when obstacles are located at a negative

relative angle to the observer. Why this dichotomy was not

resolved in the equation is unknown, but it explains why all

the figures in Fajen and Warren's paper have the goals located

ahead or to the right of the observer's start point.
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2.5 Cooperation and Competition

Whenever multiple autonomous agents operate in overlapping

physical regions, they will likely feel the results of each others'

presence. If they need to cooperate on a given task, there must be

some way for them to share information. There are many possible

communiation schemes that could be implemented, ranging from

directed to implicit methods. Directed communication relies on

explicit recognition of agents in the community, either by the

agents themselves or an omniscient agent that can communicate

with all of the others. Implicit communication, on the other

hand, occurs when the robots coexist and happen to cooperate

and/or compete due to having similar goals.[4 ]

Many applications for multi-robot teams exist that require explicit

communication methods. The first of these is minesweeping

applications where many robots work together to ensure complete

coverage of terrain.[30] Minesweeping robots build upon the

technology used in surveillance and reconnaissance robots that

function as distributed systems. By distributing the work with

information-sharing schemes, a team of robots can thoroughly

investigate a given area in much less time that an individual

robot.[57] A set of manufacturing robots, each of which may

have a unique task, often need to communicate information

regarding these individula tasks to each other to ensure a cohesive

result.[29] One of the most common testing grounds of this

research is the annual RoboCup competition. In this contest,

teams from around the world strive to create the most effective

robotic soccer team and often create new techniques in multi-

robot interaction in the process.

While cooperation may often require having multiple robots

ORoboCup competitions have turned work together to fulfill some higher-order goal as in the examples
into effective proving gyrounds for the
projects developed bmany research above, competition can arise in a much simpler situation, in which
groups. At last year's competition,
over 200 teams vied for the title of multiple robots are functioning in a shared physical space and

/waww rocup org fo>r mo info rat o have similar goals.[57] Each robot strives to complete a personal
on the contest. task while constrained by limited resources. Those robots with
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Figure 2.26: Recorded datafrom
Matari*' experiment onflocking.

the more efficient routines will be more likely to complete their

tasks. Examples of this include foraging robots and those that

need to consume resources from the environment. When robotic

systems that exhibit competitive impulses are tested in simulated

environments, individuals can often reach deadlock and can

be immobilized in their efforts. Fortunately, in the real world,

sensor and actuator uncertainty act to prevent the problem of

perfectly equal balances from occurring and most conflicts can

be resolved.

The following section discusses research that deals with

multi-robot interactions that can result from behavior-based

approaches.

2.5.1 Robots that Flock and Forage

It is often found in nature that basic actions of individuals can

produce complex behaviors when observed in an aggregate

form. Similar occurences can be observed in groups of

autonomous agents as well, as seen in the work by Matari6

[50,51] and Arkin [2].

In her Ph.D. thesis[51], Matarik explored different

combinations and configurations of individual robots. With

several basic behaviors enabled on each robot, groups of

individuals acting in the same vicinity can give rise to larger

scale behaviors. For instance, by combining avoidance,

aggregation, and wandering behaviors, flocking was observed

in one group of individuals. Incorporating the homing

behavior further allowed the flock to direct itself towards a

particular goal location as a single entity. Figure 2.26 shows

the results of several of these experiments recorded in the

physical environment. These results were observed in the

simulated implementation as well.

Matari6's robots have also performed cooperative tasks, such
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Figure 2.27: A group of Khepera
robots used in several of Matarii's

experiments, including those onforming
flexible, adaptable robotformalions.
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as foraging, by way of stigmergic interaction.[52] Stigmergy

involves interaction through indirect manipulation of the

environment. One example of this in nature is how animals

mark their territory with urine or musk, to make other animals

aware of their presence and strength. The robots can also

communicate indirectly by broadcasting their current state to

others within range, like elephants trumpeting to declare their

territory.

The foraging test put forth by Matarid for her robots

involved having them seek out metal pucks and bring them

to an unspecified gathering location. This function worked

as planned, both in simulation and in reality. In one trial of

the physical implementation however, an unexpected result

occurred when the researcher put down a plate to act as a

model for a clump of pucks to catalyze the process. Rather

than bringing all the pucks to the plate, the robots were found

to be pushing the plate to be on top of the pile of pucks

that they had made. This is an excellent example of the

inadequacies of simulation when trying to develop solutions

for use on physical robots in the real world. The various

unknowns in effect in the physical implementation can never

be modeled exactly, which means that the future states cannot

be predicted in simulation. Therefore explicit planning is

unrealistic and not feasible as a means of developing complex

behaviors. This fact also makes it more difficult to create

complex behaviors by design, as the end result is never certain

in all circumstances.

Balch and Arkin [4] point out that another benefit of the

behavior-based approach to multi-robot systems is that it

results in a distributed system, without a central planner or

arbiter. This provides a natural immunity to individual robot

failures and inaccuracies, since a centralized system could

interrupt the success of the group as a whole. [4] The robots

acting as individuals could lead to slower times to complete

image co-rfesy 153J



46

group tasks, but sharing information between robots can help

to alleviate this problem.

Later work by Matarid introduced arbitration schemes based

on dominance hierarchy, caste differences, or territorial claims.

These arbitration schemes aimed to reduce the interference that

is inherent in large group of individuals, each with common

goals to achieve. Decisions were usually implemented by way

of direct sensing or else explicit communication. Research by

Arkin et al. shows that such communication of behavior and

goal states to other robots saves time of task completion and

increases efficiency.

2.6 Localization and Mapping
In addition to being able to navigate various environments,

biological creatures are also able to know where they are, where

they're going, and most importantly, where they came from.

To overcome a lack of memory capabilities, many creatures

have devised ingenious methods to find their way home. For

instance, ants leave trails of pheromones leading from the home

to food sources, which can be followed back to return safely.[43]

Honeybees convey locations of pollen to their hive-mates by

means of a dance that corresponds to distances and directions

traveled from the hive and back.[23] Additionally, some creatures

have redundant means for navigating and returning to their origin

point. For instance, homing pigeons have been found to use

as many as four different methods, including vision, magnetic

fields, polarization of sunlight through the atmosphere, and

stellar maps.[77] A robot based on biological systems should also

be able to incorporate several different successful methods for

mapping.

When applied to robots, localization and mapping are heavily

dependant upon the reliability of sensors used. Building rigorous

maps of the surroundings requires the use of not only odometry
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(which is inherently unreliable due to slipping) but also landmark

detection and recognition. This is in addition to being able to

discern information about the robot's location relative to local

objects. The ability to retain these maps in memory can be a

challenge for robots with limited resources, such as the Robotany

vehicles. In such situations, novel approaches must be used to

overcome these limitations. Instead of remembering where it

came from, the robots could simply home in on a beacon at their

origin. If they could switch between following light and using the

beacon at the proper time, building a map would be unnecessary.

In order for a map to be of any use, a robot must know where it

is located in relation to the rest of the environment. This task,

known as localization, is usually performed by corroborating

sensor data with odometry readings verified by the robot's control

system. Localization can be achieved with or without a priori

knowledge, although the latter requires complicated statistical

mechanisms such as Bayesian networks in conjunction with

Kalman filters.[68] While such statistical methods may provide

many advantages in an idealized setting, they have been found

to be susceptible to errors and drift from the sensors. Some of

this error can be ameliorated by having several robots collaborate

and verify data between themselves to arrive at a more robust

approximation of the scenery.

2.6.1 SLAM

Many robots have been programmed with the ability to follow

maps already in their memories, or to localize themselves in

relation to known data points, but truly autonomous robots

must be able to function without any such knowledge. The

technique of Simultaneous Localization and Mapping, also

known as SLAM, is designed to do just this.[20,55,68] When

a robot is turned on in an arbitrary location and orientation,

this scheme allows it to infer its current location and to build

an internal map with reference to its sensor measurements.
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Figure 2.28: The results of a mapping
task using SLAM.

(top) The robot and obstacles.
(bottom) The raw data of perceived
locations of obstacles on the left, and

obstacles localized with SLAM (dots)
and manually (circles) on the right.

As the robot takes in sensor data, it concurrently updates its

perception of the environment as well as its own location

within that setting. These two points of data reinforce then

each other to provide a more accurate representation. As the

robot travels around the available area, it updates its map of

landmarks and self-location with the increasing amount of

data, serving to concretize the burgeoning internal image.

Traditional SLAM techniques, such as that put forth by Thrun

[68] and Williams [78], rely on Kalman filters in conjunction

with sequential Monte Carlo methods (acting as particle

filters), which increase in complexity quadratically with the

addition of more landmarks to the environment. This is

because as new data about any one landmark is acquired,

everything known about all of the other landmarks must be

updated as well. The super linear complexity of traditional

SLAM techniques do not scale well as the number of

landmarks increases to greater than 500 or so. Unfortunately,

the real world can easily contain upwards of one million

landmarks.

This brings us to FastSLAM, developed by Montemerlo and

Thrun [55], which only increases in complexity logarithmically,

allowing for a far greater number of landmarks to be

accounted for in the same amount of computation time. This

function utilizes the Rao-Blackwellized particle filter, rather

than the Monte Carlo method, to improve robustness to

ambiguous data received by the sensors. This method is also

sensitive to errors in measurement, which makes it unclear

which of several nearby obstacles caused a reading, or errors

in motion of the robot, in which it incorrectly estimated its

own orientation relative to the objects that it has measured.

The latter is almost impossible to compensate for, and it is

one of the few downfalls of this method.

One way to reduce error is to employ several robots to

ioage courtesy [55]
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concurrently measure the environment using SLAM or

FastSLAM techniques. When the mobile robots measure

each other, they are able to reduce the noise in their other

measurements. Additionally, data acquired by one robot can

be conveyed to others who have yet to explore that region of

the environment, giving them an advantage when localizing

and updating their own map. This cooperation can effectively

increase the efficiency of the mapping process, by allowing a

much greater area to be covered in a given amount of time

by a group of robots than could be done by a single robot,

and with greater accuracy. Mataric has reported on the

effectiveness of such collaboration, showing the number of

benefits to be reaped by cooperative efforts.

Collaborative use of FastSLAM techniques would be perfect

for Robotany's situation, where multiple robots are deployed

in the environment, each trying to find an optimal goal state

while remembering their origins. This would be especially

helpful when it came to the task of seeking water. When the

first robot found its location, it would be able to convey that

location to all the other robots by means of their common

map created through SLAM.

2.6.2 Locakzation with 802.11 b Signal Strength

When groups of multiple autonomous robots collaborate on

a SLAM-type task, the means of communication available to

them are widely varied. One option that takes advantage of

existing infrastructure is that of Wi-Fi, or wireless Ethernet.

As discussed by Howard [37], this form of communication

can also serve as a means to enable collaborative localization

between these robots by sharing data about relative signal

strength from various sources as the robot moves about the

environment. In one set of tests, known distributions of

wireless signal strengths were used to provide initial maps

of the environment. The robots were able to navigate based

on sensor readings, which were consistent with the a po7ri
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Figure 2.30: Transpiration
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information. This shows that it is possible to use readings of
802.11 b signal strength in conjunction with traditional sensors,
such as laser rangefinders, to perform the SLAM task.

2.7 Plant Care
The selection of behaviors evoked by a Robotany vehicle is
determined by the needs of the houseplant that rests on top of
it. That species' requirements for sunlight and water will affect

the homeostasis system that governs the behavior system, which

in turn determines Robotany's actions minute to minute. To

understand the range of behaviors that will arise, we must first
understand the range of needs of the plants for survival. Preferred

conditions are generally determined by the native environment of
a plant. Although they are highly adaptable to adverse conditions,
many plants will not survive in conditions that are too far different

from those found in their natural habitat. Presented below is a

summary of houseplants' needs adapted from [59].

2.7.1 The Baics: How Plants Work
Plants rely on a process known as photosynthesis to provide

energy for all functions that maintain life and promote growth.

Photosynthesis occurs when sunlight impinges upon the

green leaves of a plant, interacting with the chlorophyll inside

each of the cells, and also requires the presence of carbon

dioxide and water. The plant takes in carbon dioxide from the

air through pores in its leaves, known as stomata, and absorbs

water and minerals from the soil through its roots. It then

uses these elements to manufacture sugars, which are used in

all of its vital processes. Oxygen is released by the plant as a

waste product of this process.

The stomata in a plant's leaves remain wide open during active

hours in order to absorb as much carbon dioxide from the air

as possible. As a side effect, the plant leaves itself open to

lose water to the environment through evaporation. If the
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root system is unable to find sufficient water to compensate,

the plant will begin to wilt as a result. This process of pulling

water from the roots to the stomata to the atmosphere

is called transpiration. To avoid catastrophic effects, it is

recommended to keep the humidity around plants as high

as possible. This can be achieved by placing a dish of water

under the plant or misting its leaves directly.

Finally, a process known as respiration occurs at all times to

aid metabolism of the sugars produced during sunlight hours.

Through the same stomata theat absorb carbon dioxide and

emit oxygen as a part of photosynthesis, the plant takes in

oxygen from the environment and emits carbon dioxide as

waste product during respiration. During daylight hours, the

effect of photosynthesis overpowers that of respiration and

more oxygen is emitted than absorbed. When photosynthesis

stops, however, respiration continues.

2.7.2 The Effects of Light

Most plants prefer very specific amounts of sunlight in

order to flourish indoors, depending on their origins. Some,

such as cacti, prefer direct sunlight and others, such as those

that are naturally found on rainforest floors prefer shade.

When brought indoors, most plants have difficulty receiving

sufficient amounts of sunlight due to the way that intensity of

sunlight coming in through a window drops off and changes

during the day. Figures 2.32 and 2.33 illustrate the variation

in brightness levels of direct and indirect sunlight through a

window.

In a large home, it may be possible to find lighting conditions

to suit all plants. In an apartment with limited windows,

however, this can be more difficult. Additionally, one must

take into account the aesthetic influence of where the plants

are placed around the home. Having all of one's plants



clustered on a windowsill does not necessarily improve the

decorative quality of the room, as many plant owners desire.

Figure 2.34 shows the lighting conditions in various places

around the home, some of which benefit certain species of

plants more than others.
The Moumce of light
MUM LInGHT

Fgure 2.34:Lght levels around the home.

As plants seek out sunlight, a phenomenon known as

phototropism occurs, where the leaves of the plant turn

toward the light source. If the plant is not turned, then all of

its leaves and stems will grow in the same direction, giving an

unbalanced look to the plant. To avoid this, the plants should

be rotated with their pots periodically to ensure even and

balanced growth.

Another problem encountered when bringing plants indoors

is that when exposed to direct sunlight, they can become

scorched. When placed on a sill in front of a closed window

there is not sufficient ventilation and the glass blocks out the

ultraviolet end of the light spectrum. Thus the plants will get

too hot and can be damaged. Conversely, in the winter, the

temperature near a windowpane is much cooler than further

into the room. Thus the plant may be getting enough sunlight,

but is too cold to carry out its metabolic process efficiently.

Great care needs to be taken that plants are located in regions

of comfortable temperature, as well as with adequate light

levels.
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2.7.3 Proper Watering

Perhaps the most crucial aspect of plant care is to give the

appropriate amount of water at the appropriate time. While

plants are somewhat forgiving if they don't receive the proper

amount of sunlight, a plant's health will quickly deteriorate

without water. The amount of water is specified by the plant

species, ambient conditions, and changes with the changing

seasons. For instance, some plants prefer to be kept evenly

moist while others prefer to dry out completely before being

saturated with hydration. Knowing which type of plant is at

hand is most of the battle, but maintaining proper conditions

across several different species can be time consuming for a

single caretaker. For Robotany, keeping track of an individual

plant's needs is embodied in the programming of its support

vehicle, making the caretaker's duties lighter while ensuring

the survival of its plant to the best of its ability.

2.8 Putting it All Together

The seemingly disparate topics discussed in the previous sections

fit together as parts of Robotany's overall makeup when combined

in a natural environment. They combine to complement and

reinforce each other to build up complex behaviors.

In order to seek out sunlight, Robotany must utilize a light-

following routine in conjunction with an obstacle avoidance

routine. One or the other alone does not fulfill the goal of

bringing sunlight to the plant effectively. Rather, they work

in parallel and independantly of one another, like layers in a

subsumption architecture (section 2.1.3), to help the robots safely

arrive at a satisfactory destination.

Using Braitenberg's approach (section 2.1.2) to seek out sources

of light, a vehicle will find the one best solution to any lighting

configuration in an empty room. This is independent of the

initial conditions in the region when only one light source can be
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detected. In the case of multiple light sources, each will have a

sphere of influence, within which that source will dominate the

effect on the navigation of the vehicle. The algorithm can be

shown to be contracting locally for a region of initial conditions.

This can be observed in simulations , and shown mathematically.

The obstacle avoidance tactic implemented for Robotany

combines the simplicity of the binary cell-occupancy methods,

used in potential fields methods (section 2.2.1), with reaction-

based Al, such as that used by Genghis (section 2.1.3), to relate

distance sensor readings directly to heading changes. This results

in a smooth and natural path similar to that described by Fajen et

al., but without explicitly using differential equations. By utilizing

a simple infrared distance sensor to create a rudimentary map

of the obstacles in the environment, a vehicle can steer away

from detected obstacles, as would happen in the potential field

method. Converse to the abrupt changes in heading specified

by the potential fields method however, the parabolic boundary

condition for obstacles used by Robotany, combined with the

non-holonomic steering abilities of the robot, result in a more

gradual turn away from the obstacle. Once the robot has cleared

the obstacle, the light-following behavior resumes. The linear

relation between light sensor reading and motor speed on each

side ensures a smooth transition back to the original heading

value.

The homeostatic system is also tied into the light-following

and obstacle-avoiding behaviors of Robotany. Homeostasis is

integrated into Robotany's programming as a way to arbitrate

between light-seeking and water-seeking behaviors. It is able to

keep track of the amounts of light a water received by the system,

and alter its behavior as the need arises. One way that it alters

its behavior is by changing the size of the boundary at which

obstacles are detected in the obstacle avoidance routine. For

instance, if a dearth of light has been received, the homeostatic

routine will shrink the parabolic boundary, causing the robot to

0Simulations of Braitenberg's vehicles
abound on the internet. They have

been implemented in languages
ranging from ANSI-C to Shockwave.
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get closer to obstacles and perhaps find new routes through the

environment.

From the above discussion, it is easy to see how the individual

fields of behavior-based Al, obstacle avoidance, homeostasis

and modeling can be related in their differing influences on

Robotany's programming. As each varies in rigorousness and

similarity to nature, they complement one another to result in a

unified stance.
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Figure 3.1: One of the robots.

Figure 3.2: A solid model of th
robot, as designed using SolidworA

CHAPTER 3

IMPLEMENTATION

This section covers the design details of Robotany, from the physical

form, to the electronics, to the functions that govern its behavior.

Analogies are made to natural systems by alluding to these as the

body, nervous system and brain, respectively. The current state

of implementation, as well as the functions that would need to

be implemented to ensure complete autonomy of the robots, are

discussed and analyzed.

3.1 The Body

The physical embodiment of Robotany is a system of four-wheel

drive, four-wheel steer vehicles. These vehicles can also be used

in a wide variety of applications, both autonomous and non, per

a researcher's requirements. The strength, ease of manufacture,

flexibility of design and low cost are all factors that make

Robotany an ideal platform for testing and research. Discussed

below are the specific attributes that make this so.

3.1.1 Chassis

The chassis of a Robotany vehicle serves to protect its

electronics while stabilizing the houseplant that rests on top

iof it. It is constructed from sheets of acrylic, also known as

Plexiglas. This material was chosen because of its availability,

cost, relative strength to thickness ratio, and ease of machining.

The entire robot was designed in Solidworks (a solid

modeling CAD computer program) before any construction

e began. By taking advantage of Solidwork's ability to assemble

s. parts, much of the debugging of the physical design can be

taken care of in a digital form, eliminating the need for costly

physical prototypes. Due to the imprecision inherent in most

manufacturing, a little trial and error is an unavoidable step

before coming to the final design.
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Figure 3.3: The top (L) and bottom
(R) plates of Robotany.

Figure 3.4: Componentpieces used in
forming a right-angle joint from planar

parts.

-=m u

Figure 3.5: Two pieces of a robots
chassisjoined at a right-angle using a

tab-and-slot method

The parts designed on the computer were cut using a laser

cutter. This machine uses a highly focused beam that traces

along curves drawn in a computer file to cut material to

the desired shapes. The cut edges are very smooth and

complicated geometries are simple to realize due to the tight

tolerances of the cutting beam. In this way it is quick and

easy to get high quality parts that mate together as designed in

the ideal world of the computer. See Figure 3.3 for a view of

the top and bottom plates of the robots. The ease of using

the laser cutter makes it simple to modify a part for a given

application. Being able to prototype high quality parts rapidly

makes for a swift design process and saves money and time

as well.

The only drawback to the laser cutter, which counters its

speed and ease-of-use, is that it can only make planar parts.

For this reason, the different pieces of Robotany are put

together with a tab-and-slot method, reinforced with nuts and

bolts. See a detailed picture of the mating in Figure 3.5. An

advantage to this method is that it is very secure and robust to

imperfection. Since the tolerance on sheets of cast acrylic can

vary from batch to batch, it is wise to design interfaces that can

accommodate such faults. The tab and slot method does just

this, but letting the nuts and bolts specify final alignment of

the pieces, rather than the cuts in the acrylic alone. Permitting

some inaccuracies and designing for their possible occurrence

allows the body of the robot to be constructed under less

stringent conditions while producing consistent results.

3.1.2 Suspnsion

Many vehicles incorporate suspension of some sort into their

drive system to minimize the effects of uneven terrain and

to cushion the vehicle from shock. As a Robotany vehicle

is expected to operate in a natural (and possibly cluttered)

environment, it is likely to encounter hazards such as electrical



Figure 3.6: A LEGO suspension,
modeled after traditionalpiston-and-

spring styles.

Figure 3.7: Robotanyr suspension

Figure 3.8: The undefected, rest state
of the suspension.
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cordsclothing or other surface irregularities. To mitigate

these hazards, Robotany vehicles also use suspensions at each

of the four wheels.

Whereas most cars, including remote control models, use

some form of a spring and a damped piston to provide

shock absorption (Figure 3.6), Robotany vehicles use a

novel and easy-to-make suspension design. This design was

an adaptation of flexures, which are commonly used in the

field of MEMS (Micro Electrical Mechanical Systems).[64]

While MEMS devices are built typically in dimensions on the

order of microns, Robotany's suspension has been scaled up

to the macro world to provide similar range of motion and

damping as model car suspensions at a fraction of the cost.

These pieces are made from a polycarbonate material called

Lexan, which is very strong, in the materials science sense of

the word. This means that the material is elastic, being able

to deflect and return to its original position, and durable,

being able to endure significant loads while deflecting without

fracturing. This material also has good fatigue performance

through many cycles of loading. Add to these traits the ease of

creating these planar parts on a water jet and low cost of raw

materials, and the result is an ideal part for this application.

The suspension pieces are also planar, cut with a tightly

focused, high-pressure beam of water surrounded by fine

garnet particles. They are used in pairs at each of the

four wheels to increase stability to torsion and stiffness in

deflection. See Figures 3.8 and 3.9 for a detailed view of how

they are incorporated with the rest of the robot, and how

they change from the undeflected to deflected states as needs

arise.

The suspension designed for Robotany is truly unique and

efficient. The miniature shocks traditionally used in remote

control car models cost on the order of five dollars each.
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Robotany's, on the other hand, cost a fraction of a penny.

Given the comparable range and durability of performance of

these parts, the cost savings is tremendous. Thus these parts

would be ideal to incorporate into other vehicle models as well.

3.1.3 Steering

Each Robotany vehicle contains a four-wheel steering

Figure 3.9: The deflectedstate of system, meaning that each of its four wheels can be actuated

the suspension. Note the range of independently. The software controls the angle to which each
displacement, comparable to traditional wheel turns, but the mechanics of the system allow for asuspensions.

range of steering modes.

Each wheel is steered using a high-torque Cirrus BB80 servo

motor. This servo drives a four-bar linkage system that

connects to the hub of the wheel, as seen in Figure 3.10,
causing it to turn. The linkage is designed such that the input

angle commanded by the servo motor is the same as the

output angle seen at the wheel. The design could be altered

to change that relation, allowing for a greater range of motion

at the wheel or finer control of the output angle if desired.

These linkages are custom made on the laser cutter from

acrylic material, and use nuts and bolts at the pivot points.

Drive motors are located at each wheel to provide direct

drive functionality, reducing the need for complicated power

transmissions and improving the efficiency of power use.

Each Portescap 16N28 motor is equipped with a 0.3 Nm

gear head and a 16 count encoder to monitor velocity output.

The drive motors are mounted in to plastic rings by press fit

and a set screw (see Figure 3.11 for detail). These rings are

made of ABS plastic and manufactured on a machine called

a Fused Deposition Modeler (FDM). This machine takes a

file of a solid model, created in Solidworks in this case, and

Figure 3.10: Display of thefour bar builds it up layer by layer. Each layer is 0.012" thick and made
linkag usdt untewel wnglge used to turn the wheels dig of heated strands of plastic. By fusing these layers togethersterring



Figure 3.11: A DC motor in its
support ring.

Figure 3.12: The support ring mated
with one of the linkagesfrom thefour-

bar.

Figure 3.13: Ackerman steering,
where the inner and outer sets of wheels

travel along circles of different radii.
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as they are laid down, very complicated three-dimensional

structures can be constructed, that may be impossible to

make using conventional tools.

There is a post that comes out of the top of each motor ring

and is press fit through a ball bearing mounted in plastic.

This bearing reduces the rotational friction and stabilizes the

ring about the axis of rotation. The bottom of the ring has

another post coming down. The end of the four-bar linkage

then passes through this post, causing the motor and therefore

the wheel to change orientation (see Figure 3.12). Because

of the design of the geometry of the steering system, as the

wheels change direction, several different modes of steering

are available to the robot.

The first mode of steering, which Robotany uses most

often, is the same that automobiles use - Ackerman steering.

Ackerman steering takes into account the width of the driving

vehicle when determining how much to rotate each wheel.

Because each set of wheels - the left side versus the right

side - travels along circles of different radii, they need to be

turned to different values. See Figure 3.13 for an illustration

of this notion. Although Robotany turns all four wheels,

Ackerman steering can also be achieved when only two of

the four wheels are allowed to turn. This allows for another

sub-mode for the case that the robot is made with only two

steering motors rather than four, perhaps to save on cost.

Another mode is turning in place. By turning all of the wheels

so that their transverse directions all lie on the same circle, the

vehicle can negotiate a turn in place. This is a very important

achievement when realizing the difference between holonomic

and non-holonomic steering geometries. Holonomic steering

means that the vehicle is physically able to go in any arbitrary

direction independent of current orientation. Most vehicles

are not holonomic. For example, most automobiles cannot



Figure 3.14: One of the robots using
Ackerman steering.

Figure 3.15: The robot demonstrating
turning in place.

Figure 3.16: One of the robots
travelling in a straight diagonal line.

move directly sideways. Instead, complicated maneuvers such

as parallel parking and three-point turns are needed to achieve

such position changes. The ability to turn in place does not

make Robotany truly holonomic. However, it is able to follow

similar paths as holonomic robts take, and is free to navigate

in much tighter confines as a result.

The third mode of steering is driving in a straight line that

is not collinear with the current heading. This is to say that

the vehicle can travel along a diagonal line while maintaining

heading to the front. See Figure 3.16 for a diagram. This

particular mode is not especially helpful to Robotany's goals,

but is proof of the great flexibility of the steering system as it

was designed. This mode could be used to help the robot fit

between two near obstacles if it didn't have room to make a

proper Ackerman turn.

The last mode of steering doesn't take advantage of servo

motors at all. Instead it utilizes differential steering, the same

as used on tanks for maneuvering. Differential steering,

also called slip steering, occurs when all wheels are pointed

forward, but the wheels on one side rotate more slowly or in

the opposite direction from the wheels of the other side. This

is how Robotany approaches areas of light while following

Braitenberg's conventions. As more light is sensed on the

left sensor, the drive motors on the left side spin more slowly.

The motors on the right side move faster, and in this manner

affect a turn to the left, toward the light. In general, this is not

a very accurate mode of steering. Since the technique moves

the robot by letting the wheels slip, accurate odometry cannot

be achieved. In the absence of feedback control, which is

missing from the light-following routine, it is impossible

to get an accurate picture of the path taken by the robot.

Fortunately, Robotany's navigation methods do not depend

on detailed odometry measurements.
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Figure 3.17: The Tower layers usedfor
Robotany.
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3.2 The Nervous System

The nervous system of Robotany is embodied by the electric

current passing from the microprocessor brain to the muscles

and sensory organs that allow the robot to be situated in its

environment. This setup is controlled by the Tower System,

described in further detail below. It also consists of the myriad

sensors used to gain information about the world around the

robot, and the motors, which allow the robot to interact with its

surroundings proactively.

3.2.1 Tower System

The Tower System' is a modular electrical development

system created by the Grassroots Invention Group (GIG)

at the MIT Media Lab for designing and prototyping

computational devices. Physically, the Tower consists

of a primary foundation layer with a central processor.

Robotany uses a foundation equipped with the RabbitTM

2300 processor from Rabbit SemiconductorTM. Functionality

is then added by placing stock modules on the stack as

needed, and a special prototyping layer allows for simplified

design of new modules for the system. Currently, layers

are being used that allow for sensor readings (including

a custom-built compass layer), servo-motor control, DC

motor control, memory storage, and battery charging.

The Tower is programmed in RabbitLogo, also developed by

GIG, which is designed to be an easy-to-use programming

language that hides the mundane low-level protocols. This

abstraction frees the programmer from getting bogged

down in the details and allows her to explore higher-level

programming concepts sooner, and create a functioning

program in fewer iterations. The Rabbit is capable of running

up to twenty threads simultaneously, allowing several functions

to run independently and concurrently. These functions

may each access global variables or arrays, and modify them
OFor more information on the Tower

System, please see [46]



Figure 3.18: The compass layer.

Figure 3.19: The battery charging
layer.

according to their routines. For example, in Robotany, one

function constantly sweeps the distance sensors over the

path ahead, updating elements in an array. At the same time,

another functions reads the values in this array to determine

if there is an obstacle ahead and where it is relative to the

current heading. Rather than making a full sweep and then

sending the entire array to the detection function, having the

two operate simultaneously allows for a faster refresh rate and

a better chance of noticing the presence of an obstacle in

order to react appropriately.

One layer that was custom-developed for Robotany is

the Compass Layer (see Figure 3.18). This layer uses the

Dinsmore 1655 sensor, an analog compass, to record the

heading of the robot as it navigates through the environment.

This information is only used for performance analysis and

does not affect the robots' behavior. The data supplied by

the compass is accessed by the main program through a

serial communication protocol used throughout the system,

where it is recorded and saved on an EEPROM layer for later

retrieval.

Another layer developed for Robotany was the Battery

Charging Layer (see Figure 3.19). Here a MaximTM MAX72
chip uses AC power from a wall wort to fast-charge the

custom-built 3000mAh, 6V rechargeable battery packs that

provide power for the DC and servo motors. Built from

Maxim's specifications on a prototyping layer of the Tower

System, this circuit is used off-board from the robot. The

eventual plan is to have this layer integrated so that when the

robot returns to its base location, where a charging source

is located, Robotany will be able to charge itself overnight

without assistance.
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Figure 3.20: One of thephotocells used
as light sensors on the robots.

Figure 3.21: A simple humidiy
sensor.

Figure 3.22: A temperature sensor.
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3.2.2 Sensors

Two large photocells are located at the front of the robot,

positioned at ±45 degrees from the centerline, and angled

upwards by 45 degrees from the horizon. This configuration

maximizes the differential in light readings between the two

sides. These sensors drive the main behavior of Robotany,

finding sunlight in the environment. Using Braitenberg's

Vehicle 3a (see Figure 2.8) as the model, the intensity of light

sensed on the left sensor inhibits the speed of the left side

drive motors. A similar relation exist for the right side. This

results in the robot turning toward light sources, and slowing

down as the intensity increases. This provides the ideal

climate for houseplants as they fulfill their need for sunlight

to activate photosynthesis.

The humidity sensor is simply two exposed wires submerged

in the soil of the plant at a fixed distance. When the soil is

moist, the water molecules conduct some of the electricity

across the potential between the two wires. When the soil is

dry, the potential is much higher and the sensor layer of the

Tower registers a different reading. Using this very simple

setup, an accurate indicator of the dampness of the soil can

be fed into the homeostatic system, which then determines

when watering is needed.

A thermocouple is used to sense temperature for Robotany.

This sense comes in handy during the summer, when areas of

bright light could also be too hot for a houseplant to endure

for long periods of time. By monitoring the temperature

to which the plant is exposed, the homeostatic system can

determine when the plant should seek out cooler locations

instead of bright ones.

The Portescap TM DC motors used to drive the robots are

equipped with 16 count encoders. Each of these encoders

puts out a PWM signal proportional to the speed at which
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Figure 3.23: One of the Portescap
DC motors with gearhead and encoder

Figure 3.24: The distance sensors
mounted to a servo motor.

it is rotating. The signal can be read by a sensor layer and

then used in a simple feedback control loop. Controlling

the velocity ensures consistent results in the light-following

behavior if the terrain changes, for instance from hardwood

flooring to carpeting.

Locations of obstacles are sensed with two Sharp TM infrared

sensors. Both are located at the front of the robot, mounted

onto a servo motor that sweeps them from negative 50

degrees to positive 50 degrees across the bow. One sensor

points directly ahead, and is sensitive in the range from ten

centimeters to eighty centimeters. This sensor is used to

determine if there are any obstacles in the forward path of

the robot as it navigates. The other sensor looks upwards by

45 degrees from the horizon and is sensitive in the range of

four to thirty centimeters. This sensor is used to determine if

the robot is attempting to pass underneath any objects under

which the plant would not fit. If this occurs, the robot treats

it as an obstacle, reverses course, and navigates accordinglyt.

The path taken by the robot while roaming its environment

is captured by the compass layer, in conjunction with velocity

readings, and saved on an EEPROM layer on the Tower. These

values are then reconstructed using a MATLAB program for

reporting purposes. The robot itself does not use this data,

as it is not necessary for its own navigation routines. The

compass used is a Dinsmore 1655 analog sensor. It uses

Hall-effect technology to provide a sin-cosine pair with a

voltage swing of 1.3 volts. These voltages can be read by

the Tower, recorded, and passed to the MATLAB program,

where it is compared to a calibrated curve to return a global

heading. Since the time and velocity were also recorded, the

complete path con be constructed and used as a measure of

performance.
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Figure 3.25: Braitenberg's vehicle of

type 3a, on which Robotany is modeled.

3.3 The Brain

This section covers the problems facing the robots as they try

to successfully care for their plant, and the methods used to

overcome them.

3.3.1 Seeking Out Sunshine

There are three main components to the light-seeking

behavior that Robotany vehicles must embody. They are

to detect sunlight, to move toward an area of sufficient

brightness, and to stay there so that the plant may absorb a

maximal amount for photosynthesis.

The simplest solution for finding sunlight is to follow the

guidelines set forth by Braitenberg (Section 2.1.2), involving a

direct connection between sensor readings and motor output.

In this case, Robotany follows the example set by Vehicle

Type 3a (Figure 3.25), where the light reading of the left

sensor is connected to the left motor in an inhibitory manner,

and similarly for the right side. This means that as more

light is sensed, the motors will rotate at a slower rate. This

affects a turn toward a light source at decreasing velocity with

increasing proximity to the source. The raw sensor readings

are scaled down so that the highest intensity light causes a

reading of zero and complete darkness produces a reading

of 255, corresponding to the full range of motor output

commands.

Problems arise, however, if areas of brightness matching the

maximum cannot be found. If this happens, the robot will

continue to roam around and not be satisfied with whatever

amount of light is available at the time. For instance, on a

cloudy day, it would be impossible to find an area of light

bright enough to cause the motors to come to a stop. To

resolve this, the robot needs to be able to adapt to current

light levels and change the output behavior accordingly. One

simple solution is to note if the light levels are falling on both



Figure 3.26: The distance sensors,
which sweep out the path ahead of the

robot.

sensors at the same time. If such a change occurs, then the

robot is likely leaving an area of brightness for a darker region.

If this is noticed by the program, the robot will stop and

stay in the area of brightness. Since this area may be a local

maximum, and not the best that the plant could find, search

of a new bright spot will be reinstated after a given amount

of time. If, however, the decrease in readings is abrupt, then

that likely indicates that the robot is merely passing through a

shadow and should maintain normal light-seeking behaviors.

3.3.2 Avoiding Cluter

Finding light in an empty room with a single light source is a

relatively trivial problem. However, the goal for these robots

is to survive in a complex environment, such as a home.

This means that the robots will have to deal gracefully with

obstacles as they are encountered.

As Braitenberg's vehicles are not concerned with obstacles in

the environment, the routine used for light-following is not

sufficient for optimal functionality. To sense the presence of

any obstacles in the environment, a single infrared distance

sensor is tasked to scan over a given range of angles in

front of the robot by means of a servo motor to which it is

mounted (see Figure 3.26 for details).

These distance sensor readings are gathered into an array in a

separate, constantly running thread on the Rabbit processor.

This array provides a rudimentary map of the surroundings,

and is accessible to another thread that compares it against

a reference array. This reference array corresponds to a

parabolic boundary in front of the robot. This geometry

effectively ignores an obstacle close to the robot but on its

flank, whereas it notices something in front of the robot at a

reasonable distance (-40cm). Once the relative location of

the obstacle is known, the robot switches behaviors from
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Figure 3.27: A demonstration of
how the parabolic bounday is used to

produce avoidance motion.
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light-following to steering toward a virtual goal. This virtual

goal is located in front of the robot at a point diametrically

opposite the location of the obstacle. That is, in the robot's

reference frame (setting 00 to be directly ahead), an obstacle

at -69 produces a virtual goal at +69. Turns are executed at a

constant rolling speed using servos to steer the wheels. In

this scenario the robot is non-holonomic, meaning it cannot

turn in place to immediately produce a change in heading.

These traits act in conjunction with the parabolic reference

boundary to cause the virtual goal angle to increase as the

robot continues in its maneuver to avoid the obstacle. For

example, if an obstacle is initially detected at -5o, the robot

will begin to head toward a virtual goal at +50. However,

its trajectory must still carry it forward toward the obstacle.

Then a flag will be raised, saying that there is an obstacle at

-150, causing the robot to now steer toward +150. In this

manner, the robot's heading will deviate from the original

heading in a quadratic fashion and angular acceleration will

effectively increase as well.

The obstacle-avoidance portion of the navigation system

presented above results in a trajectory which looks very similar

to that observed in humans by Warren and Fajen (section

2.2.2). In their model, angular acceleration is high when head-

on with the obstacle and drops off to zero when away from it.

Although Robotany's function controls heading rather than

angular acceleration, the geometry of the parabolic reference

boundary produces a similar trajectory. Once the obstacle

passes out of the sensing range of the robot, light-following

behavior is resumed. When this transition occurs, the robot's

trajectory deviates from that predicted by the model developed

by Fajen and Warren. This happens because the Braitenberg

model used for light-following is first-order, meaning there is

no overshoot, while their model is second order. Information

about objects behind the navigator is also retained in their

model, so there is no discrete change in behavior, like there is
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in Robotany's case.

b. Model
9

2offset X)
8

7

6

--5
E X

N4 0

3

2

1

0 0 1 2
x (M)

a. Data
2'Offset

8

Xe

6'

4~

0 1 2
x (M)

E
N

Differences arise from Warren's approach, which could be

attributed to the fact that he uses point mass navigators

and obstacles. The dimensions of either object are not

factored into his governing dynamics. In Robotany's case,

the dimensions do in fact affect the resultant path, in that

the robot must compensate for its width and the fact that

the obstacle does not exist at one single point. Rather, each

obstacle is represented by several units in the obstacle array.

Generally, the robot picks the point nearest to 00 to steer away

from, rather than which ever edge triggers first, to achieve

the quickest avoidance. The comparison routine finds the

different chunks of obstacles, treats them as individual objects,

and calculates the space between them. This approach differs

from that of Warren in that his demonstrated paths only deal

with one obstacle and one goal point. The calculation of the

results become much more intensive with the addition of a

greater number of obstacles. His conclusions state that the

algorithm scales linearly with the number of obstacles, and

ignores obstacles that are far from the navigator, but the time

to calculate solutions increases more rapidly that it does in the

routine employed by Robotany.

While this approach to obstacle avoidance certainly seems

repeatable, it is not clear if it is also contracting in the fullest

sense. It acts like it combines linearly with the light-following

behavior; but really, it just turns it off and supercedes control

of the robot's trajectory. Warren and Fajen's model, however,

is truly a linear combination of both goal and obstacle effects,

which is more in line with contraction theory. This may also

prove to be its downfall if a robot navigating based on their

model ever found itself before a concave obstacle. The

force of the goal would continue to pull the robot, while the

obstacle (perceived as multiple point obstacles in a concave

configuration) repels it. If the concavity of the obstacle were

Figure 3.28: Theplots obtained
by Fajen et al. for humans and that

produced by their algorithm.
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deep enough, the robot might never turn away from the goal

to find its way out, and effectively find itself trapped at the

focus of the concavity. Robotany, on the other hand, will

allow the robot to find its way clear of the obstacle before

seeking out sunlight again. The presence of local minima

caused by multiple light sources (e.g. more than one window

or partitions created by shadows) also make it unclear whether

contraction still holds in this approach, as different initial

conditions would lead to different final positions.

In simple environments, the navigation system appears to be

contracting in heading. However, in more complex scenes

with multiple goals and concave obstacles, it does not. This

may be to its advantage however, as a system like Warren

and Fajen's could become trapped in an equilibrium point as

a result of the same features that cause it to appear to be a

contracting system. The simple and organic approach used for

Robotany aims to keep things as simple as possible, inherently

avoiding explicit mathematical functions that would need to

be evaluated at each time step.

In addition to the forward-looking sensor, there is a second

sensor looking upwards at 450. This sensor complements

the core obstacle avoidance behavior by detecting if the

robot is attempting to head underneath any tables or chairs

under which the plant would not fit. If this upward-looking

sensor detects any obstacles, the robot doesn't consistently

have enough notice to steer around it while continuing in the

forward direction. Instead, obstacle detection from above

causes the robot to take its standard evasive maneuver of

backing up and steering to the left. There is also a simple

tilt sensor located on the bottom of the plant's pot, which

provides a greater margin of safety. In case the distance

sensor doesn't give an indication of an obstacle, if the plant

becomes caught on something and begins to tip, the robot

will again stop, back up, and continue on to the left. This
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redundancy guarantees that the plant will be safe and upright

as the robot navigates around the environment.

3.3.3 Balanang Needs

As of yet, the program still needs to track how much light or

water that the individual houseplant really needs. To remedy

this, a simple homeostatic system has been implemented to

track light received and to alter the quality of the behaviors if

necessary.

The homeostatic routine monitors the readings on the light

sensors over time, and through a simple relation, given below,

increments a metric devoted solely to light. In times when the

light reading levels are below a threshold value, the routine

will decrement this metric. In this manner, if a plant is not

receiving sufficient amounts of light, the program will alter

the nature of the basic behaviors to help the robot to fulfill its

strongest desires. The homeostatic control is given by

L = L + p *I* At (13)

where L is the monitored value,p is a constant, I is the intensity

reading, recentered such that a threshold value is equal to zero

and anything below that intensity threshold is negative, while

values above are positive, and Atis the time interval over which

this measurement takes place. The way that the homeostasis

routine affects the behavior of the robot when a strong desire

for light is indicated is by shrinking the shape of the parabolic

boundary in the obstacle avoidance routine. The default value

for the size of the parabola involves a factor of safety equal

to two, where a factor of safety of one would correspond to

a parabola that extends just past the outer dimension of the

robot to the sides, and a distance of 20cm to the front. This

is the bare minimum amount of space that the robot needs to

be able to maneuver around obstacles. Adding the factor of

safety is just that, increasing the amount of cushion that the

robot has to navigate through. As the need for light contracts
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the parabola, new routes that were previously deemed risky

will become available.

Since all plants are not created equal, some basic settings

need to be programmed into the robot for each general

requirement. For instance, the instructions that come with

most plants include vague terms like "partial shade," or

"evenly moist." The programming of Robotany is able to

convert these terms into threshold values for the homeostatic

system. Plants like cacti, which prefer to have their soil dry out

completely before being deluged in recreation of their natural

desert habitat, would have extremely low thresholds for their

water tolerance. Then the homeostatic value associated with

wetness will need time to fall to such a low value, at which

time it will be ready to accept more water. Also, a plant that

needs "full sun" will have a high value relating to sunlight. If

it doesn't get enough to maintain its homeostatic ideal, it will

change its behavior by shrinking its boundary profile, making

new areas that are possibly full of sunlight more accessible.

Sometimes complex behaviors can be derived from simple

rules, as advocated by most natural physiologists. For

instance, competition for sunlight is a result of two plants

with different needs interacting in the same environment. In

this example, assume that one robot is acting on behalf of a

robust, hearty cactus, while another is acting on behalf of a

delicate African violet. The violet will have a very strong desire

for bright, filtered sunlight, such as through a curtain. Direct

sunlight can burn its leaves, however, so it must maintain a

careful balance. The cactus, one the other hand, is relatively

ambivalent towards its lighting levels. Although it also prefers

bright light, it is much more tolerant of adverse circumstances

and decreased lighting than the violet. What happens when

these two robots desire the same area of brightness in a

given room? Assume that it is the beginning of the day, that

the cactus found the bright spot first, and that the violet's
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homeostatic levels have caused its parabolic profile to shrink.

When the violet seeks out the bright spot, it is willing to get

closer to obstacles than the cactus. These robots do not

know each other explicitly as separate entities like themselves;

rather they are merely other obstacles in the environment.

This means that in its quest to attain more sunlight, the violet

will approach the cactus. This advance may impinge upon the

cactus's obstacle boundary, setting up the obstacle flag. This

flag then induces an avoidance maneuver on the cactus's part,

thus relinquishing the area of brightness to the violet. In this

way, the plant with the stronger desire for the resource at hand

pushed the lesser one out of its way. All this without any

complicities or agreement between the two.
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CHAPTER 4

TESTING AND ANALYSIS

This section covers the successes of the robot and how it achieved

its goals. It then discusses features of the robot that have not yet

been implemented, but should be to complete the full functionality

of autonomously caring for a houseplant.

4.1 Results

Robotany is able to successfully navigate complicated environments

and find its way toward sources of light and stay there, as desired.

To show this, several test cases were observed and recorded. Data

was originally intended to be recorded by the Tower system and

saved on an EEPROM layer. However, compass measurement

errors prevented accurate measurement of heading data from

being recorded in this manner and forced a return to more primitive

methods. Instead, Robotany's scenarios were run on a carpet with

a regular grid pattern that permitted a measurement resolution of

approximately one inch. Then, as the robot performed its tasks, it

was followed by the researcher who dropped markers behind the

Fi. robot in one-second intervals. Some amount of human error is
Fgure 4. 1: The tesfing environment.

inherent in this sort of approach, so that the plots for Robotany's

progress are not very precise. The uncertainty in this approach

to recording data was nevertheless found to be less than the

uncertainty in the compass measurements. The general shape of

the trajectory and speed presented are qualitatively accurate, but

not necessarily quantitatively.

In the first test case, a large area (measuring approximately five

feet by seven feet) was illuminated by a single light bulb. The

robot was initialized in the opposite corner of the area, facing the

opposite wall. The original angle of the light source relative to

the robot's initial heading was 30 degrees and the initial distance

to the light source was eight feet. Figure 4.1 shows the path taken

by the Robotany vehicle. This figure also illustrates the model for
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Figure 4.2: The robotspath (stars
compared with that generated by

Fajen et al algorithm (solid line)

steering presented by Fajen and Warren (as discussed in section

2.3.2).[24,25] As seen from these figures, the paths are similar

qualitatively, though they differ in their details. For example, the

real robot takes a much more gradual turn toward the light. This

difference occurs because the Robotany vehicle uses the non-

holonomic method of slip-steering (discussed in section 3.1.3)

to navigate toward the light, whereas Fajen et al.'s model is able

to respond instantly. The difference is exacerbated by the high

rolling friction associated with operating on the carpet. The

vehicle's path in Figure 4.2 stops well before the location of

the light. This is because the sensors are reading values that are

sufficient to cause the robot to come to a halt. Fajen et al.'s model

on the other hand, shows the trajectory of their robot to continue

through the goal point, as it has no constructs to predict what

happens when th goal is finally reached. A similar effect would

occur for Robotany if the brightness of the light source were not

sufficient to bring the vehicle to a halt. As it is modeled after

Braitenberg's Vehicle 3, if the light levels were sensed to be falling,

the robot would increase its velocity. To avoid this consequence,

Robotany was programmed to sense if the intensity readings were

falling on both sensors at the same time. If this happens, the robot

determines that it is leaving an area of brightness and stops in its

place. This is a slight modification on Braitenberg's model, as the

robot now responds to the rate of change of light intensity as well

as the intensity itself. After a set period of time (currently only 30

seconds for testing purposes), the robot initiates exploration again

in search of a light source in case the one that it was resting in was

only a local minima or that lighting conditions had changed.

The first case was run such that the motors could be commanded

to operate at the full range of their capabilities. When the light

levels are low, the resulting speed of the vehicle is too fast for

the distance sensor to update its map and respond to obstacles

in a timely manner. To remedy this, the output of the motors

was limited to only 40 percent of their ability. This means that

although the Tower is capable of sending speed commands as a
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number from 0 to 255, corresponding to stopped and full-speed,

respectively, Robotany was limited to the output range of 0 to 100

instead. The sensors still sense the same amount of light, but the

motors are now prevented from responding, in order to rein in the

speed of the robot.

The first test case was repeated with the new constraints on motor

output in place. The resulting path can be seen in Figure 4.3.

Notice that the path taken deviates further from that generated by

Fajen et al.'s algorithm than in Figure 4.2. This occurs as a result

of the smaller differential between speeds of the left and right

wheels, despite a gradient between the sensor readings. The robot

S2 46 20 travels straight ahead for a longer duration than the previous

Figure 4.3: Same case as Figure case because the light readings from each sensor commanded a

4.2, but it the robot' weel velocity greater than or equal to 100. As the sensor on the right

began to sense more light, it commanded a slower velocity to the

right wheels. The left wheels, however, were still being driven

at a rate corresponding to a command of 100. This difference

still caused the vehicle to turn, but at a slower rate than before.

Finally, both light sensors were causing speeds less than 100 and

the vehicle completed its turn toward the light.

In the second test, the light and the robot are initialized in the

same locations as before. However, this time an obstacle is placed

in the path it had taken previously. This obstacle is a toaster

(represented by blue stars at each of its four corners in the plots),

with a footprint of eleven inches by seven inches, and is placed

at an angle and to the left of the path taken in the preceeding

o 2 4 8 10 12 14 16 I8 20 setup. As Fajen et al.'s equation of dynamics only deals with

Figure 4.4: Robotany avoiding an point obstacles and point robots, it cannot be compared directly

obstacle in its originalpath to the to the results produced by the Robotany vehicle. As the obstacle
light source.

is detected, the robot activates its obstacle avoidance response and

steers away from its perceived location. After it is out of range of

the obstacle's influence, it is able to continue along its goal path

toward the light. As seen in Figure 4.4, after the robot has turned

away from the obstacle, it had overshot the original approach
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2 8 6 8 to 2 8 6

Figure 4.5: Taking an outside route
around an obstacle.

angle to the ligh source. It can then be seen turning back to the

left at the end of its path.

The third test case moves the obstacle to the other side of the

original path presented in Figure 4.3. In this trial, the robot

takes an outside path around the toaster, as seen in Figure 4.5.

Instead of using its obstacle avidance routine, however, the robot

begins turning away from the obstacle before the distance sensors

indicate its presence. This is due to the reaction of the light-

following behavior to how the shadow cast by the obstacle affects

the amount of light impinging on the photocells. After the robot

has passed through the shadow, it begins to turn toward the light

again. This time, the distance sensors do pick up on the obstacle,
turn to the left a bit, and then turns toward the light, coming to

rest as it passes the obstacle on its right.

Figure 4.6: Encountering and
avoiding an obstacle directly betwee)

the robot and its goal.

Figure 4.7: Resultant path of the
robot as it avoids the toaster in its

path.

The fourth test initialized the robot facing the light source, but

with the obstacle directly in its path. In this case, the robot was

unable to turn away from the obstacle in time to avoid it directly,
as shown in Figure 4.6. Instead, the back-up behavior was

invoked, twice, before the robot initiated a turn to the left. As the

robot passes the obstacle, and out of its shadown, it turns right

to approach the light as before. The results of this maneuver

could not be reproduced with a dynamic equation like Fajen and

Warren's, which has no contingency plan if the robot is faced with

an obstacle that it doesn't have time to avoid. In this manner,
Robotany is more flexible with respect to the types of obstacles

it is prepared to face. This also means that the robot will likely

not get stuck in a local minima, such as that caused by a convex

obstacle. Figure 4.7 shows a photograph of the trail left by the

robot as it navigated toward the light.

As a final test, the robot was also let free to roam about the

unstructured environment of an apartment living room during

the daytime. It successfully avoided collisions with furniture and

made its way to the windows. Once there, it oscillated between
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Figure 4.8: Note the area of
darkness below the window in this

schematic of #ght distribution.

Figure 4.9: Calibration curve
createdfrom valuesput out by the
compass as rotated through 3600.

Figure 4.10: Data captured and
plottedfor a U-turnfrom southwes

to northeast

the light following and obstacle avoidance behaviors. This is

because the floor-to-ceiling windows provided sunlight up to the

physical boundary of the wall, which the robot sensed and reacts

to. For windows that do not go all the way to the floor, there is

an area of muted brightness near the wall, as shown in Figure 4.8.

When the robot passes through this area, the drop in light levels

would be recognized and the robot would come to a stop.

Telemetry of the robot's path was intended to be obtained by

recording compass and velocity data on an EEPROM layer

designed for the Tower System, to be used in reconstruction by a

MATLAB script. Noise in the communication, possible a result

of the motors, caused errors in the recorded compass signal, so

the task was moved to a separate Tower foundation.

The MATLAB script recreated the path taken by the robot by

importing the data recorded by the Towers into arrays. The

arrays were compared against a lookup table to determine the

angle measured. This lookup table was created by measuring the

compass output at each of 360 degrees, as measured by a servo

motor. The resulting curves are shown in Figure 4.9. Once the

script generated an array of heading values in degrees, these were

converted to radians and used with the recorded velocities to plot

the path taken in the x-y plane. See Figure 4.10 for an example

path.

Although the data from the compass sensor has a high signal-

to-noise ratio, there was a significant amount of hysteresis,

which also affected results. For example, when the compass was

displaced by 45 degrees counter-clockwise, then returned to its

original heading, the output of the channels returned to a lower

value than originally recorded. Similarly, when the compass was

then rotated by 45 degrees in the clockwise direction and returned,

the output was higher than the original value. Fortunately, both

t channels rise at the same time, causing the entire sin-cosine pair to

shift upwards on the y-axis. This meant that the relative reading
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remained the same and values could still be obtained by the

method described above..

The robots have not yet been tested for several days at a time

to investigate the effectiveness of the homeostatic routine on

the light-following behavior. Additionally, since water-seeking

behavior has not yet been implemented on the robots, the effects

of the homeostasis routine would not prove as interesting at this

time.

The success of the robots in finding sunlight and avoiding

obstacles supports the assumptions made when designing the

physical body of the robot. For instance, using a single infrared

sensor to scan across the bow of the robot rather than an array

of individual sensors proved successful as well as less expensive.

More detailed information about the surroundings was obtained

as a result as well, since it would not be practical to mount 100

sensors on the robot looking in each of 100 degrees. Also,

computational power was saved as the coordination of polling

several sensors was not an issue and complicated methods for

relating their values to each other were not necessary.

The rechargeable battery pack was a crucial component to the

success of the robot. During periods of intensive testing, where

motors were running nearly constantly, the 3300mAh battery

pack lasted roughly two-and-a-half hours before needing to be

recharged. Then, using the fast recharging circuit described in

section 3.2.1 restored the batteries to a powered state in a matter

of hours.

4.2 Future Work

This section discusses features of the robot that have not yet been

implemented, but should be to complete the full functionality of

autonomously caring for a houseplant.
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4.2.1 Sef-Preservafion

An important feature that needs to be implemented for

Robotany's ultimate success is that of knowing when it is in

danger. This danger can come either from external sources,

such as a pet or stairs, or internal sources, such as battery

drain. Although relatively straightforward in nature, each of

these problems can cause complications hindering overall

performance.

If a curious puppy or a vindictive cat decides to investigate

the robot, how will it handle itself? Although it is very low

to the ground and stable on its own right, the pet could easily

tip the plant off of its perch, or push the robot off its course.

The robot can use the tilt sensor located on the bottom of the

plant's pot to tell if it is being disturbed, as it does in normal

navigation to detect an attempt at passing under objects. The

first recourse can be to emit a sound which is unpleasant to an

animal in question. Second would be to back up quickly, and

hope that the sudden burst of movement startled the animal

into leaving it alone. Of course, a determined animal will not

be deterred by these actions, so the robot would then just aim

to be still until the animal got bored. Ideally, any owner would

first acclimate the pet to the robot's presence before letting it

operate without supervision.

As for the presence of stairs in the environment, adding

another short-range distance sensor to the front of the robot

looking downwards would detect changes in elevation well

before the robot was in danger of passing over it. Assuming

that the robot is initialized on a flat surface, it can then

calibrate its own sensor to determine the default value. Then

any deviation can be recognized as an indicator of physical

danger and the avoidance routine instated.

A more complicated matter is how to monitor and conserve

battery levels. There are chips on the market that provide an
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indicator of the voltage output from a battery pack. One in

particular is the MAX832 chip, produced by Maxim, which can

switch between two separate battery packs when necessary.

This chip can also recharge the batteries when is senses the

presence of an AC power source. Recognizing when battery

levels are low is relatively straightforward using this off-the-

shelf microchip. Getting the robot to find an available AC

source on its own, however, is a whole other problem.

4.2.2 Returning to Home Base

Having the robot know where it came from and able to return

to that same location is a very difficult problem. There are

several paths to finding a solution, but determining which

path depends on several philosophical factors. For instance,

the robot could "remember" where it came from, either by

building a map, recording the set of moves that it took to

get where it was, or by leaving breadcrumbs. What these

solutions have in common is that they all require some form

of memory and for meaningful information to be retained

for a significant duration. If the decision is made not to rely

on complex memory structures, an organic approach could

be implemented by installing a beacon of sorts that draws the

robot back to its starting point, also the location of its battery

charger.

In keeping with the simile to nature that is behavior-based

Al, one must first decide if simple creatures use memory or

beacons to find their homes after a long day of exploring.

Whether animals use landmarks in the environment,

remember the movements of their body, or leave signs for

themselves along their path varies from species to species.

The complexity of these techniques also varies, as does the

reliability. For instance, humans are known to navigate by

landmarks, but then, we also have very large brains that can

remember the details of a wide variety of objects and how to
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differentiate them from other, similar objects. Honeybees can

communicate the locations of food sources several miles away

by way of a complicated "dance" that conveys information

about which direction to fly and when to turn. And the

humble ant is able to lead others to food and to find its way

back to its colony by depositing pheromones along its trail.

Although the method used by the ant to modify its environment

in a way only it personally could is the simplest of the three,

it is not acceptable for a robot to alter its surroundings in

a physical, and therefore sense-able, way. A more practical

method might be to install a beacon of sorts at the home

location whose attraction supercedes that of sunlight as the

batteries run down. Grey Walter took this approach when he

was designing his Machina Specualtrix. As described in section

#, the tortoises were attracted to moderate levels of light.

As their batteries ran down however, the photocells became

less sensitive and more brilliant sources became attractive.

By design, the robots' hutches were lit by a bright bare

lightbulb. Thus the hutches became the most attractive area

in the environment, and the robots appeared to know to go

home for sustenance when their energy levels were depleted.

In Robotany's case, an RF beacon could be tuned to each

individual robot to guide each back to its home location based

on signal strength.

Radio frequency or wireless bandwidth could also be used to

transmit data from the robot in the environment to a host

computer for storage and map-building. This computer

could then transmit directions back to the robot. It would

have to know where the robot is through some means of

localization, but this has been done via signal strength fields

in experiment. If this solution were implemented, it could

also transmit information about the weather from the internet

to the robot. Then it would know that if it were a cloudy day,

not to expect bright sunlight and adjust behaviors accordingly.
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This approach is decidedly unnatural, however, and is subject

to many unknowns, including how objects in the environment

affect the RF or wireless fields. However it is useful to

explore technical approaches and then compare them to the

way nature has evolved to tackle the same problems now

facing mobile robots.

4.2.3 Finding the Elixir of life

The next most crucial component to the survival of

houseplants is finding appropriate amounts of water at

appropriate times. There is a slight problem, however, as

sources of water in a home are not as ubiquitous as sunlight,

and must be detected directly and not merely by proximity.

The first idea for solving this problem, and likely the simplest

to enact, is to have the robots carry a reservoir of water

around with them. Unfortunately this adds to the weight that

the robot must carry around significantly, and the sloshing

of water could affect the inertia of the robot as it navigates.

If these problems were to be overcome, it would then be a

simple matter of actuating a pump when the homeostatic

system dictates that would pull water from the reservoir into

the plant's pot. The amount of water would be determined by

the type of plant and the volume of the pot, both of which

would be programmed in when the robot was first used for

that plant.

Barring the above solution, another could be to attach a

beacon of some sort to a low-profile dish on the ground

in the robot's environment. Problems arise though if this

beacon-like signal were to be confused with that leading to

the base station. If two different signal sources were to be

used for the two beacons, then the technology needed would

become more complicated as well. The dish would also have

to be low enough so as not to trigger the robots' obstacle
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avoidance reactions yet hold enough water to be useful to

several plants at once. The robots could then dip a hose off

the front of the chassis into the water, actuate a pump, and

hydrate their symbiont plant. *(Sam) As an alternative to the

watering trough approach, one could also rig a water cooler

to dispense the liquid through a valve when the robot was

sensed to be in the proper position. This idea sounds cool,

and avoids having open dishes of water laying about, but

the act of orienting the robot properly is itself difficult and

pouring water on top of the plant from high above is not an

effective delivery method.

Given all of the above considerations, it appears that carrying

around a reservoir of water, much as a camel carries in its

hump, is the simplest strategy presented thus far. A special

fitting would need to be designed to carry the water without

possibility of leakage, and higher-torque drive motors would

need to specified to carry around the extra load.

4.2.4 Cooperative Navigation

Since it is likely that several robots would be operating in

the same physical space, it would be useful if they could

communicate information to one another. For instance, if

one robot found the water source, it could convey its location

to the others, making their search simpler.

In keeping with the behavior-based approach to solving the

challenges that face Robotany, one way to communicate

this information is to mimic nature's solution used by

honeybees. Honeybees use polarization of sunlight through

the atmosphere to determine heading and integrate constant

velocity measurements to determine distance along their flight

path.[#] When they return to the colony, they communicate

this information to the other bees by means of a complex

dance. The other bees can then use this rudimentary map to
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find the same food source. The robots can't dance, but they

can potentially communicate similar information by other

means.

In order to communicate effectively, the robots need to

have a common reference frame. This could be achieved by

implementing SLAM on each of the robots. Although this is

not an organic solution, the robots would be able to share the

information among themselves to create a communally-built

map of the environ. This would not only help the group as

a whole to find optimal conditions for their plants, but would

also increase the likelihood of each returning to its correct

starting point. Finding their charging stations is an important

aspect of the project, as discussed in section 4.2.2. Several

vertebrates are capable of true navigation, of being able to

return home after being displaced to a foreign location.[#] A

similar ability confined to the space of a house would be of

great value to the robots.

Due to limited memory capabilities, instead of retaining

complete maps of the environment on each robot, they could

also be programmed to send their data to a central computer.

This computer could then convey the necessary information

to the robots as needed. This centralized approach is

inherently in opposition to the natural approach, but may

be the only way to overcome the limitations of the current

computational platform.

Regardless of the arrangement of information, whether

centralized or distributed, the means of communication is still

flexible. The robots could be given individual IP addresses

and use wireless internet (such as the 802.11b protocol) to

talk to each other. The processes for such networks are well

established and can be adapted to the robots needs. Another

method is for each robot to broadcast their information in

radio frequency (RF). Other robots then listen for relevant
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information that they can use in their own quest. Although

this active listening requires significant resources, it may be

worthwhile to save the robot the effort of discovering the

entire environment for itself.
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CHAPTER 5

CONCLUSIONS

Robotany was designed to enable houseplants to seek out ideal

conditions for their survival, within the confines of a household.

This system gives the plants the freedom of mobility and provides

them with a dedicated caretaker to oversee their needs. By doing so,

the system frees the plants' owners from worry and responsibility

and encourages the owners to share their environment with other

living things.

This task was achieved by incorporating a wide range of artificial

intelligence and controls techniques. These disparate topics

combined to reinforce one another and to make the program behind

Robotany more resilient. From Braitenberg's vehicles and Breazeal's

Kismet, to contraction theory and SLAM techniques, all have had

their influence on the development of Robotany's character. While

the implementation of each aspect varied, they all inspired the

development of Robotany's programming.

The robots have been shown to successfully find light and navigate

their environment. It is especially useful that they can deal with

an arbitrary, unstructured environment without becoming stuck or

confused. This flexibility is one of the strengths associated with

a behavior-based approach to artificial intelligence. Also, the fact

that such complex behavior was programmed on and produced

by a relatively low-power computational foundation highlights the

simplicity and elegance off most behavior-based approaches.

It is recommended that the programming expand upon Robotany's

current abilities to include explicit interactions between the robots

and mapping and localization of the environment. Adding these

features will enhance the performance and utility of the robots, and

make them more welcome additions to the home.
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From behavior-based Al to homeostasis to navigation techniques,

nature's solutions were the model behind the desired approaches.

This is in deference to the millennia that nature has used to evolve

beautifully simple solutions to the problems faced by any living

creature.
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