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ABSTRACT

Lean operation of a spark ignition (SI) internal combustion engine (ICE) offers attractive
performance incentives. Lowered combustion temperatures inhibit formation of nitrogen oxides
(NOx), while reduced intake manifold throttling minimizes pumping losses leading to higher
efficiency. These benefits are offset by the reduced combustion speed of lean mixtures, which
can lead to high cycle-to-cycle variation and unacceptable engine behavior characteristics.

Hydrogen-enhancement can suppress the undesirable consequences of lean operation by
accelerating the combustion process, thereby extending the "lean limit." Hydrogen would be
produced on-board the vehicle with a fuel reforming device. Since operating an engine in the
lean regime requires a significant amount of air, boosting is required. Hydrogen is also an octane
enhancer, enabling operation at higher compression ratios, which results in a further
improvement in engine efficiency.

The focus of this thesis is on the modeling aspect of the lean boosted engine concept.
Modeling provides a useful tool for investigating different lean boosted concepts and comparing
them based on their emissions and fuel economy. An existing architectural concept has been
tailored for boosted, hydrogen-enhanced, lean-bum SI engine. The simulation consists of a set of
Matlab models, part physical and part empirical, that have been developed to simulate
performance of a real ICE.

The model was calibrated with experimental data for combustion and emissions in
regards to changes in air/fuel ratio, load and speed, and different reformate fractions. The outputs
of the model are NOx emissions and brake specific fuel consumption (BSFC) maps along with
the cumulative NOx emissions and fuel economy for the urban and highway drive cycles.

Thesis Advisor: John B. Heywood
Title: Sun Jae Professor of Mechanical Engineering
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NOMENCLATURE

Symbol Units Description

m g/s mass flow rate

P C kW compressor work

, kW turbine work
ratio of specific heats

Ya ratio of specific heats for air

Ye ratio of specific heats for exhaust gas
p kg/(m*s) kinematic viscosity

qc compressor efficiency
Tc combustion efficiency

mechanical to electrical conversion efficiency
nlfb brake fuel conversion efficiency

To~g gross indicated fuel conversion efficiency

'Ifs fuel system efficiency

IT1oss heat loss fraction

Tlm mechanical efficiency
Ap kPa pressure drop in the exhaust system after the turbine

APturbine kPa pressure drop across the turbine in the exhaust manifold

Tivol volumetric efficiency

Ilvol,ideal ideal volumetric efficiency

Pa,i kg/m3  manifold charge mixture density
Pe kg/m3  exhaust gas density
A/F air-fuel ratio

amep kPa auxiliary component mean effective pressure

B mm bore

bmep kPa brake mean effective pressure
bsfc g/kWh brake specific fuel consumption
BSNOx g/kWh brake specific NOx emissions
cfmep kPa crankshaft rubbing friction mean effective pressure

CP kJ/kgK constant pressure specific heat

Cr piston roughness constant

Db mm bearing diameter
EGR percent of recycled exhaust gas

emep kPa plasmatron electric consumption mean effective pressure

F piston ring tension ratio

fn(N) speed correction for volumetric efficiency

imepg kPa gross indicated mean effective pressure

L m characteristic length

Lb mm bearing length

Lv mm maximum valve lift
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M lean or EGR multiplier for NOx emissions
MT temperature multiplier for NOx emissions
N rpm engine speed
nb number of bearings
nc number of cylinders
NOxindex NOx emissions index (% mass flow of fuel mass flow)
ne number of exhaust valves
n, number of intake valves
nr number of crank revolutions per power stroke per cylinder
nv number of valves
O/C oxygen to carbon ratio in plasmatron gas
Pa kPa atmospheric pressure
Pb kW brake power
Pe kPa exhaust back pressure
p kPa intake manifold pressure
pmep kPa pumping friction mean effective pressure

pmepv kPa pumping friction mean effective pressure across the valves
Pr Prandtl number
R kJ/kgK universal gas constant
rc compression ratio

Q kW heat loss to coolant and oil
qE,H2 MJ/kg H2  plasmatron power consumption
qE,H2,C kW plasmatron constant power consumption
QLHV MJ/kg lower heating value of the fuel
rcfmep kPa reciprocating rubbing friction mean effective pressure
re exhaust valve diameter / bore
Re Reynolds number
rfnep kPa rubbing friction mean effective pressure
r, intake valve diameter / bore
Rp percent plasmatron fraction
S mm stroke
scmep kPa mean effective pressure required to drive the supercharger
SP M/s mean piston speed
T1 K temperature at compressor inlet
T2 K temperature at compressor exit
T3 K same as Texhaust
T4 K temperature after turbine
Tcharge K cylinder charge temperature
TDP thermal dilution parameter
Texhaust K exhaust gas temperature at exit port before turbine
tfmep kPa total friction mean effective pressure
Tmanifold K charge temperature after compressor and intercooler
Tpiasmatron K plasmatron gas temperature
Tq Nm torque output of the engine
Vd din 3  cylinder displacement
vfmep kPa valvetrain rubbing friction mean effective pressure
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CHAPTER 1 INTRODUCTION

1.1 Current Engine Technologies

Internal combustion engine (ICE) combines high power density, with low relative cost,

and widely available fuel that has a high energy density. These attributes have helped the ICE

remain the best source for automotive propulsion for over a century. The increasing concern

about its impact on the environment has resulted in automobile emission regulations. Another set

of regulations, Corporate Average Fuel Economy (CAFE), has been introduced to curb the

petroleum consumption of the light duty vehicles in US. With emission regulations becoming

tighter and CAFE regulations becoming more aggressive, automobile manufacturers must

produce automobiles that deliver both good fuel economy and low toxic emission levels.

Current gasoline engines operate with low hydrocarbon (HC) and NOx emissions at the

expense of fuel efficiency and carbon dioxide (C0 2) emissions. A three-way catalyst is used to

reduce the exhaust emissions (NOx, CO, and HC) to meet the current emission regulations. It

works most efficiently when the exhaust gas composition alternates between slightly rich and

slightly lean, restricting the gasoline engines to an average stoichiometric mixture. A

stoichiometric mixture, as a working fluid, does not have optimal properties due to a relatively

low ratio of specific heats. Combusting a stoichiometric mixture causes very high burned gas

temperatures resulting in high heat losses that lower engine efficiency.

Another downside of gasoline engines is that at part load the incoming mixture of air and

fuel is throttled resulting in lowered density of the mixture in the cylinder. The pressure drop in

the intake, caused by throttling, results in pumping losses over the exhaust and intake strokes,

decreasing part load efficiency.

Diesel engines perform favorably over gasoline engines in the areas mentioned above but

face different problems. In diesel engines, regulating the amount of fuel that is injected in the

cylinder, while the cylinder is always filled with air, controls the power without the need for

throttling. Burning lean mixtures results in higher ratio of specific heats and lower burned gas

temperatures, both increasing efficiency. Diesel engines are not limited by knock because

burning involves a diffusion flame instead of flame propagation. This allows for use of higher

compression ratios thereby increasing efficiency.
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Injecting the fuel directly in the cylinder causes inhomogeneous mixtures resulting in

high levels of NOx and particulates in the exhaust. Good diesel engine aftertreatment is not yet

available and because of that, diesel engines represent an insignificant part in the U.S. light duty

vehicle market.

The lean burn engine concept combines the attractive features of gasoline and diesel

engine technologies. This concept involves lean operation along with stoichiometric air-fuel

mixture for high efficiency and low NOx emissions. The advantages of a lean burn concept

increase as more air is used. To achieve comparable emission levels to current gasoline engines

with a three-way catalyst, very lean mixtures, close to air/fuel ratio of two, must be used.

Lean burn engines are not widely used due to poor combustion that occurs with

increasingly leaner mixtures. Poor combustion is a result of loss of flame speed and can be

observed in combustion variation from one cycle to the next. Non-optimal combustion phasing,

partial burns and misfires cause cycle-to-cycle variation. Combustion phasing means that the

spark timing is not properly adjusted to achieve maximum brake torque; partial burns occur

when the flame speed is quenched before the whole mixture is ignited; misfires occur when the

mixture is too diluted to be ignited by a spark plug. As the combustion stability becomes worse,

engine output and efficiency decrease. The lean limit occurs where the mixture's burning

properties are unacceptable. The lean-burn gasoline engines encounter the lean limit of operation

before significant benefits of lean operation can be reached.

Adding a small amount of hydrogen can extend the lean limit and greater benefits of lean

operation can be achieved. This project examines the possible emission and fuel economy

benefits of different gasoline engine concepts that are highly diluted with air or recycled exhaust

and enhanced with hydrogen.

1.2 Lean Burn Operation with Hydrogen Addition

Hydrogen enhanced lean operation is an attractive alternative to stoichiometric operation.

The benefits are higher engine efficiency and lower engine out NOx emissions. There is a

possibility of an additional efficiency improvement when a small amount of hydrogen is added to

the mixture. Since hydrogen is known to suppress engine knock, higher compression ratios could

be utilized.
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Higher efficiencies of lean operation, compared to stoichiometric, are a result of

increased ratio of specific heats, which increases because more air is present in the air/fuel

mixture in the cylinder. Another factor contributing to the efficiency increase is reduced

throttling, since higher intake pressures are required to allow more air to flow into the cylinder.

NOx emissions are significantly reduced in a homogeneous lean charge mixture because

the peak combustion temperatures are lower than in diesel or SI engines. Lower peak

temperatures are a result of the air/fuel mixture in the cylinder being more diluted. Since the

NOx emission levels of lean operation with no hydrogen are higher than the levels of

stoichiometric operation with a three-way catalyst, most engines operate with stoichiometric

mixtures. As hydrogen rich gas is added to the mixture, the lean limit of combustion is extended

and the engine can operate even leaner where the NOx emissions may be low enough to

eliminate the need for aftertreatment.

Hydrogen has a very high flame speed when compared to other conventional fuels (Table

1-1). When added to the mixture, mixture's overall flame speed increases, due to diffusion

properties of hydrogen, and flame stability is maintained beyond the lean limit of operation

without hydrogen addition. Hydrogen's high spontaneous ignition temperature suggests that it is

a knock-resistant fuel. Due to these properties, hydrogen is an optimal additive to extend the lean

limit of a SI engine.

Table 1-1 Combustion characteristics for hydrocarbon fuels, H2, and CO [1]

Flame Speed at 100 0C and I atm. Spontaneous Ignition
Temperature in Air

Fuel [cm/s] [0C]

Stoichiometric Maximum

Isooctane 57.8 58.2 447

Normal-heptane 63.8 63.8 247

Hydrogen 170.0 325.0 572

Carbon monoxide 28.5 52.0 609

15



Ongoing research at MIT confirmed that hydrogen is very effective in extending the lean

limit of gasoline SI engine. The results show that by adding small amounts of hydrogen rich gas,
the lean limit can be extended close to air/fuel ratio of two where engine out NOx emissions are

reduced up to 99% and net engine fuel conversion efficiency is increased by 12% [2].

Data from the literature seemed to suggest that when the engine operates lean of

stoichiometric the compression ratio could be increased due to the lean mixtures being more

resistant to knock [3]. Recent results from research at MIT have shown that this is true for

constant intake pressures, but for constant load the octane number requirement (ONR), tendency

to knock, does not decrease with lean operation but slightly increases. However, the same

research has shown that by adding small amounts of hydrogen rich gas the ONR decreases at

constant load [4]. A liner trend was observed with a decrease of around 10 octane numbers (ON)

with 15 percent plasmatron addition and close to 20 ON with 30 percent plasmatron addition. SI

engine operation is constrained by the knock limit at low speeds. A decrease in the ONR would

allow for use of higher compression ratios. Typical compression ratio of a conventional SI

engine operating at stoichiometry is around 10. Based on previous research relating a change in

compression ratio to octane requirements (e.g. Kalghatgi [5] and Russ [6]), the ONR increases

by around 5 numbers per compression ratio increase in the 10-15 compression ratio range.

1.3 The Plasmatron Engine System

1.3.1 Description

Figure 1-1 illustrates the generalized engine concept. A fraction of the fuel goes to the

plasmatron and the rest of the fuel mixes with air in the intake port like in a normal port fuel

injected engine. In this concept, gasoline and air enter the reformer and the mixture is partially

oxidized to H2, N2, and CO mixture, with small amounts of water and carbon dioxide. This

hydrogen rich gas is cooled if needed and combined with air/fuel mixture just before it enters the

cylinder to form a homogenous mixture prior to combustion.

The main advantage of the reformer engine concept is that current engine technology can

be used. The disadvantages are: electrical power requirement of the reformer, fuel conversion

efficiency of the reformer, and added complexity.
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20% (typ)

100% fuel mass

Air to
Plasmatron

Plasmatron
(Fuel Reformer)

80% (typ.)

I

Hydrocarbon Fuel Air to
Engine

Figure 1-1 Set-up of plasmatron engine system

1.3.2 The Plasmatron

While hydrogen for this application could come from numerous sources, the particular

technology used in this concept is an on board Plasmatron fuel reformer (Figure 1-2). Invented at

the MIT Plasma Science and Fusion Center, the Plasmatron is a partial oxidation fuel reformer.

Several studies have shown that the use of an on board fuel reformer can significantly reduce

NOx emissions and increase efficiency [7,8]. Ignition of the rich mixture is provided by a high-

energy, non-thermal plasma discharge. After ignition, the mixture completes a partial oxidation

reaction within the reactor volume downstream of the electrodes. The ideal chemical reaction is

shown in equation (1).

CHn + M-(02 + 3.773 N2 )-mCO + H2 + M- * 3.773 N2
2 2 2

The majority of the reactants participate in the ideal reaction but a small portion

undergoes complete oxidation, producing carbon dioxide and water. The ideal and typical

product compositions are shown in Table 1-2.

(1)
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Table 1-2 Plasmatron product composition and efficiency

Plasmatron Products Ideal Plasmatron Typical Plasmatron

H2  25% 20%

CO 26% 22%

N2  49% 51%

CO 2  0 2%

H20 0 4%

Small hydrocarbons 0 Less than 1%

Fuel conversion efficiency 84% 76.5%

The power requirement of the Plasmatron is around 4-5 MJ/kg H2 . In addition to this, the

partial oxidation reaction is exothermic, indicating that some energy is lost as waste heat. The

fuel conversion efficiency of the Plasmatron is defined as the chemical energy of the products

divided by the chemical energy of the reactants (equation (2)).

'1 Plasmatron =

M H 2 Q LHV H2 +M CO QLHV _CO

M Gasoline * QLHV _Gasoline

where m is the mass flow rate [kg/s] and LHV is the lower heating value[MJ/kg].

18
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* I

Figure 1-2 Plasmatron Schematic (Courtesy of PSFC)

Air fuel ratio or lambda does not represent true dilution when plasmatron is added to the

charge mixture. Other diluents (CO, CO2, N2) besides air are present and their heat capacities

must be accounted for when comparing data with and without plasmatron gas in the charge

mixture. A thermal dilution parameter (TDP) was proposed by Professor Heywood to normalize

data with different diluents and compare them on a common basis. TDP is also useful when

comparing dilutions of recycled exhaust gas and air. Most of experimental data are plotted versus

TDP and it is also used in the model for emissions and efficiency calculations.

1.4 Previous Work

A model for evaluation of system-level vehicle architectural concepts was recently

developed by Smaling at MIT [9]. This model encompasses the entire vehicle. The main focus is

placed on the modeling of the fuel supply system, the engine, and the electrical system that

supplies the power to the fuel reformer. An existing vehicle simulation called ADVISOR is used

to model all other powertrain and vehicle systems. The objective of Smaling's work was to

identify the most promising architecture of hydrogen enhanced, high efficiency, low emissions,

homogeneous charge, highly diluted SI engine. After identifying high level architecture
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attributes, Smaling focused on the three most attractive concepts. The methodology used in his

analysis was derived from multi-variable, multi-objective optimization, known as multi-

disciplinary system design optimization.

The most attractive concept, according to the analysis, is a boosted high compression

ratio downsized lean SI engine. This model proved very valuable when assessing a wide range of

possible concepts. However, to better asses the fuel economy and emissions benefits of this

particular concept, the model needed improvement.

1.5 Objectives

The intent of this work is to improve the existing Smaling model to allow for more

accurate evaluation of fuel economy and emissions of a lean-bum hydrogen-enhanced boosted SI

engine concept. The existing model requires improvements in the following areas:

- engine friction

- boosting

- knock limitation on compression ratio

- brake specific fuel consumption (BSFC)

- SI engine emissions and performance maps

- integration of experimental combustion and emissions data

1.6 Methodology

Engine data from a modem 2.0 liter engine is used in this project. Given the engine

geometry, net indicated engine efficiency can be extracted from the BSFC map using a friction

model. Net indicated efficiency is then adjusted for lean operation and compression ratio changes

due to presence of reformate gas. Empirical correlation is used to determine the air/fuel ratio at

which the engine has the highest efficiency and stable combustion, based on the amount of

reformate. Once this air/fuel ratio is calculated, it is used to determine the efficiency according to

a correlation from the literature. Mechanical efficiency, obtained from the friction model using

boosted intake pressures if required, together with the new indicated efficiency give the brake

fuel efficiency.

20



Similarly, a correlation obtained from the experimental data is used to adjust the baseline

engine brake specific NOx (BSNOx) emissions for a given engine concept. Experimental NOx

emissions as a function of air/fuel ratio and EGR are used to correct stoichiometric NOx

emissions for lean or EGR operation.

A 12 by 12 matrix, with load on one axis and speed on the other, is used to construct

BSFC and BSNOx emissions maps. Each load and speed point is run through the model

separately to calculate the fuel consumption and NOx emissions for a particular concept. These

maps serve as an input to ADVISOR where the vehicle is configured and run through a specified

drive cycle. Fuel economy and emissions are calculated and serve as a basis for comparison

among the concepts of interest.

The first step in the process of improving the existing model was to obtain more

combustion and emissions data. Data were collected for experiments run at three different load

and speed points. After analysis, correlations were developed to incorporate experimental results

into the BSFC and NOx emissions models.

The next step was to evaluate each sub-model and try to improve it by incorporating

experimental data and theoretical correlations from the literature. By doing so, the architecture of

the model itself needed reevaluation and large parts of Smaling's model needed rewriting.

Detailed descriptions of sub-models are included in chapter three. Once the model was

completed, a conventional, naturally aspirated stoichiometric SI engine concept was evaluated as

a baseline for comparison.
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EXPERIMENTAL METHOD

2.1 Overview

A large portion of the model is based on well-established physical models for given

engine parameters. NOx emissions and engine efficiency are the two most important parameters

in this study, therefore, experimental data is used to calibrate the physical efficiency model and

develop an empirical model for engine out NOx emissions. Data were collected from

experiments conducted at operating conditions that were representative of the engine operation

during the chosen drive cycles.

This chapter describes the experimental apparatus and procedure. The results for

efficiency, NOx emissions and exhaust temperature are presented at the end of this chapter. All

other experimental data are in the appendix. The efficiency, NOx emissions, and exhaust

temperature models, based on this experimental data, are presented in Chapter 3.

2.2 Operating Conditions

Shaded region in Figure 2-1 represents most common area of engine operation during

highway and urban drive cycles, which are introduced in more detail in Chapter 3. Three

operating points were chosen to represent this whole region. Two different loads and two

different speeds were chosen to allow for straightforward interpolation between these points, if

the data were a lot different. For EGR dilution, two test points were taken in the same region.

Air dilution experimental operating conditions:

- 350 kPa NIMEP at 1500 rpm

- 750 kPa NIMEP at 1500 rpm

- 750 kPa NIMEP at 2500 rpm

EGR dilution experimental operating conditions:

- 350 kPa NIMEP at 1500 rpm

- 520 kPa NIMEP at 1500 rpm
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Figure 2-1 Typical engine operating regime

2.3 Experimental Procedure

At each of the three operating conditions, experiments were performed with three

different fuel combinations: indolene only, indolene and 15 percent plasmatron gas addition, and

indolene and 30 percent plasmatron addition. For each of the three different fuel supplies, data

was recorded at constant load and speed for a number of points, starting from stoichiometric and

adding diluent until the misfire limit was reached.

The source of plasmatron gas for the experiments was bottled gas mixed to represent

ideal plasmatron gas with composition as defined in Table 1-2. The actual Plasmatron reformer

is still being developed at the Plasma Science and Fusion Center and for the purpose of this

study, it was much simpler to use bottled gas that simulates the ideal output gas of the reformer

instead of dealing with added complexity of controlling the Plasmatron.
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2.4 Engine Setup

2.4.1 Engine Specifications

The engine used in this study is a single-cylinder Ricardo Hydra MK III. The original

engine head was replaced with a B5254 Volvo head that has a modem combustion chamber. The

spark plug is located in the center of the pentroof combustion chamber with two intake and two

exhaust valves on opposite sides. The valves are actuated with belt-driven dual overhead

camshafts. Turbulence, mainly tumble, is increased with a charge motion control plate that was

added in the intake manifold as described by Tully [2]. Table 2-1 shows detailed engine

specifications.

Table 2-1 Engine Specifications for Volvo-Ricardo Research Engine

Displaced Volume (cm 3) 487
Clearance Volume (cm 3) 54

Bore (mm) 83
Stroke (mm) 90

Connecting Rod Length (mm) 158
Compression Ratio 10.1

IVC 60' ABDC; IVO 0' ATDC
Valve Timing EVO 80 ATDC; EVO 68' BBDC

EGR Pipe Diameter (mm) 19.1
Exhaust Manifold Diameter (mm) 28.6

The operator controls the engine by adjusting the fuel injector pulse width (IPW) and

spark timing with a MoTeC M4 engine controller. Other important parameters specified by the

engine controller are injection timing (end of injection set to 385 CA degrees BTDC) and coil

dwell time (4 ms).

2.4.2 Air Intake System

A stationary Atlas Copco air compressor was added to the intake air system to allow for

intake pressures higher than one atmosphere. The compressor supplies air at 60 psi that is

regulated to a desired maximum boost in the damping tank upstream the throttle. The air

supplied to the engine is controlled in a conventional way by the throttle. There is a valve that

can switch between boosted and atmospheric air supply and is shown in Figure 2-2.
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Figure 2-3 Picture of the Engine Setup
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2.4.3 Hydrocarbon Fuel

Indolene, Phillips Chevron UTG-96 [10], was used as a reference fuel in the experiments.

Table 2-2 lists important fuel properties of UTG-96.

Table 2-2 Fuel Properties of UTG-96

PROPERTY

Research Octane Number 96.1

Motoring Octane Number 87.0

Lower Heating Value (MJ/kg) 43.1

Carbon Content (%) 86.5

Hydrogen Content (%) 13.5

Antiknock index 92

H/C molar ratio 1.93

2.4.4 Exhaust Gas Recirculation System (EGR)

An external EGR system was added to the experimental engine setup (Figure 2-4) to

investigate the-effect of very high levels of dilution with exhaust gas and compare this data to air

dilution data. A pipe, with a diameter larger than fifty percent of the exhaust pipe diameter

(Table 2-2), was attached to the exhaust manifold about three inches away from the exhaust port.

On the intake side, the EGR pipe was connected through a tee into the intake manifold in the

same location, where the reformate gas was added, downstream of the throttle and before the fuel

injector.

A high temperature gate valve was connected to the EGR pipe along with an orifice. The

valve and the orifice were used to adequately control the EGR flow. Based on the EGR flow and

operating conditions, a range of orifices was used with diameters ranging from 4 to 18 mm. The

EGR line was not heated since the EGR temperature remained sufficiently high to prevent

condensation. The recycled exhaust gas was not cooled either and temperatures depended on the

operating conditions and flow rate.
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2.5 Engine Control and Measurements

2.5.1 Intake Air (volume, pressure, temperature)

A butterfly valve controlled by a stepper motor regulates the flow of air. Omega pressure

sensor (PX 176, 0-50 psi range) is used to measure the manifold air pressure. The volume of air

entering into the engine is measured by a Ricardo Viscous Flow Meter (laminar flow element).

Omega differential pressure sensor (PX 140, 0-20 psi gage) measures the differential pressure

across the meter. The mass flow rate of air is calculated from the volume flow rate using the

temperature (after the damping tank) and the pressure (after the throttle) of air, to calculate its

density.

2.5.2 Engine Fluids Temperature

For all experiments, the coolant temperature was held constant at warmed-up conditions

(85-90'C). An inline heater is used to raise the coolant temperature and cold water is used to cool

the coolant through a heat exchanger when the temperature of the coolant exceeds 90 degrees

Celsius. The oil temperature is not controlled, but it was around 60 degrees Celsius throughout

the tests.

2.5.3 Gasoline Flow Rate

A production Volvo fuel injector is used in the engine. This is a single hole injector

whose fuel flow rate is determined by the injector pulse width since the pressure drop across the

injector is held constant. The pulse width is characterized by the duration of injector orifice being

open. The injector was calibrated by measuring the mass of fuel injected into a chilled graduated

cylinder for a specified number of cycles at a specified injection pulse width. Engine controller

provides an injector calibration option where the pulse width and number of injection cycles are

controlled. The mass flow was linearly related to the IPW. The constant of linearity was used

along with the IPW to measure the fuel flow rate in the experiments.

2.5.4 Gaseous Fuel Flow Rate

A calibrated critical orifice was used to measure the flow of plasmatron gas into the

engine. High-pressure bottled gas was used to simulate the plasmatron gas from the reformer.
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The mass flow rate of the gas is proportional to the upstream pressure only, when the flow is

chocked. A regulator on the high-pressure gas bottle was used to control the upstream pressure.

The range of pressures was kept well above twice the downstream pressure of the orifice (intake

manifold pressure) to ensure chocked flow. The manufacturer of the orifices provided calibration

tables from which the mass flow of plasmatron gas was determined as a function of upstream

pressure.

2.5.5 Lambda Measurement

A wideband Horiba MEXA- 110 X Universal Exhaust Gas Oxygen (UEGO) meter was

used to measure the relative air/fuel equivalence ratio in the exhaust. This measurement was

checked with the mass ratio of fuel to air entering the engine and agreement within three percent

was reached for all experiments.

2.5.6 In-Cylinder Pressure Measurement

In-cylinder pressure was measured with a side-mounted Kistler Model 6125B

piezoelectric pressure transducer. The transducer was calibrated with a dead weight test to verify

the linearity and establish the scaling factor. Since the piezoelectric transducers do not measure

absolute pressure but only the changes in pressures, the pressure signal was pegged by

processing data with an MIT Cycle Analysis program [11] [12]. The voltage at bottom dead

center (start of compression) was set equal to the intake manifold pressure (absolute pressure). A

flame arrestor was used on the pressure transducer to prevent thermal shock. The output of the

pressure transducer was converted from current to voltage by a Kistler charge amplifier using

calibration and sensitivity constants of the transducer. This signal was then sampled once per

crank angle by a PC based data acquisition system running LabVIEW and processed to calculate

indicated engine performance, such as: engine load, combustion characteristics and pressure

statistics.

2.5.7 Emissions Measurement

Both NOx and HC emissions were sampled by analyzers from California Analytical

Instruments. Chemiluminescent NO/NOx analyzer, model number 400 HCLD, utilizes the

chemiluminescence principle for analyzing the NO or NOx concentration in a gaseous sample.
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Heated total hydrocarbon gas analyzer, model 300 HFID, uses the Flame Ionization Detection

method to determine the total hydrocarbon concentration within a gaseous sample. Horiba

Automotive Emission Analyzer, MEXA-554JU was used to measure the CO 2 concentration in

the intake and exhaust. A vacuum pump, Varian 949-9451, was used to provide sufficient

suction when measuring the CO 2 concentration in the intake.

2.5.8 Exhaust Gas Recirculation Measurement

To determine the concentration of recycled exhaust gas, the mixture of air, plasmatron

gas and EGR in the inlet manifold was sampled and CO 2 emissions were measured. This reading

was divided by the measured engine-out CO 2 reading, equation (3), to give the fraction of

exhaust gas that is recycled from the exhaust manifold back into the intake manifold. This is a

commonly used procedure in the automotive industry.

%EGR= 2ine 100 (3)
C2 exhaust

Knowing the fraction of the recycled exhaust gas, the mass flow rate of EGR was

calculated according to equation (4).

MEGR oEGR (mair+ mPlasmatron+ mfiiez) (4)
1-%EGR

2.6 Experimental Results

This section presents experimental results that are of importance for calibration of the

model. All other supporting data such as bum angles, spark timings and peak pressures are

included in the appendix. As mentioned in the description of plasmatron-engine concept, TDP is

the main independent variable for presentation of experimental data. It is used instead of lambda

or EGR to compare data for experiments with various fractions of plasmatron gas. TDP also

allows for correlation of an equivalent dilution with air and EGR.

TDP =- '"oich"etric (5)
AT
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where AT is defined as the chemical energy released during combustion per constant volume

heat capacity of the unburned cylinder charge and thus represents thermal dilution of the

mixture:

9

MXi * QLHV,Xi

AT = (6)

j=1

with

i E(C 7H 14 ,H 2 ,CO,CH4,C 2H 2)
X{ G(H 20,H2 CO, CO2 ,N 2 , C7 H14 , C2H 2 ,0 2 ,CH4 )

Since the change in specific heat of gases was ignored, AT only approximates adiabatic

constant volume temperature difference between the burned and unburned gas. In the analysis of

experimental data and in the model, specific heats of all species were evaluated at a temperature

of 600 degrees Kelvin, approximately the temperature at the time of spark. ATstoichiometric was

determined, experimentally and by the model, to be around 3040 degrees Kelvin for a baseline

configuration with no plasmatron operating at stoichiometric air-fuel ratio. Many of the

combustion related parameters scale well with TDP since the flame speed is largely determined

by the temperature rise across the flame [2].

2.6.1 In-Cylinder Combustion Data

2.6.1.1 Air Dilution

Net indicated fuel conversion efficiency data are presented in Figures 2-6 through 2-8 for

three different operating points. All three graphs show a similar trend: as stoichiometric charge

mixture is diluted with increasing amount of air, efficiency increases rapidly at first, reaches a

peak and starts decreasing until it significantly drops off at the onset of partial burns and

misfires. Efficiency increases due to higher ratio of specific heats, smaller heat losses, and less

pumping work. As expected, efficiency increases with load and does not change with speed

when comparing data for the three operating points. This trend is also seen on efficiency maps in

Chapter 4. Peak efficiency in the experiments is around 12-14 % higher than at stoichiometry.

For low load-low speed point, plasmatron addition seems to have a positive effect on efficiency
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whereas for the other two points there does not seem to be a clear trend. Regardless of the

amount of plasmatron used, data differs by less than 3% absolute, which is within the

experimental error. However, 15% plasmatron data for all three operating points has a higher

efficiency than indolene only and 30% plasmatron. It is important to keep in mind that this data

is net indicated engine efficiency and not the system efficiency that includes plasmatron losses.

The later is presented in appendix.

TDP at which peak efficiency occurs does not vary much for the three operating points.

The same is true for the lean limit that is defined here as 3% COV of NIMEP presented in

Figures 2-9 through 2-11. Peak efficiency and lean limit TDP move together and TDP of lean

limit is about 7% higher than TDP of peak efficiency regardless of operating conditions. COV of

NIMEP, which represents stability of combustion, remains relatively low for all experiments

until first partial burns occur causing stability to rapidly deteriorate. Increasing the load extends

the lean limit as can be observed when comparing Figures 2-9 and 2-10. On the other hand,

increasing engine speed decreases TDP where lean limit occurs (Figures 2-9 and 2-11). As

expected, a linear trend is observed between the amount of plasmatron addition and extension of

lean limit. 15 % plasmatron addition extends the limit by about 7% while 30% plasmatron

addition extends it by around 15%.

2.6.1.2 EGR Dilution

Efficiency does not increase as much with exhaust gas dilution as it does with air.

Smaller pumping work due to higher intake pressures and lower heat losses contribute to

efficiency gain, which is initially large but it levels off relatively quickly. However, up to 9%

efficiency improvement was observed with plasmatron addition at high dilution levels when

compared to zero dilution point. Peak efficiency is reached just before combustion becomes

unstable and when compared to air dilution the efficiency curves in Figures 2-12 and 2-13 have

much flatter peaks. Same trend is observed here as in air dilution plots, which is that at low load-

low speed plasmatron addition has increasingly positive effect on net engine efficiency, whereas

at higher load plasmatron addition does improve efficiency but as plasmatron fraction is

increased from 15 to 30 percent there is not an evident gain. Again, the differences in efficiencies

for a given TDP are very small and within experimental error.
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At low load-low speed point, EGR dilution does not extend the limit as far as air dilution

does (Figures 2-9 and 2-14). The lean limit is extended by 10% with 15% plasmatron and 20%

with 30% plasmatron addition (Figure 2-14). Plasmatron addition seems to have a more

significant effect on extending the EGR dilution levels when compared to air dilution. However,

higher absolute levels of dilution are reached with air as a diluent.

Figure 2-24 shows all air dilution data from three different operating points for 0, 15, and

30 percent plasmatron addition on the same graph and a linear relation between lambda and TDP

is evident. EGR dilution levels are not linearly related to TDP but when equivalence ratio is

plotted versus TDP, the straight line from Figure 2-24 shown as parabola in Figure 2-25, a good

match is established with EGR dilution data plotted versus TDP. Figure 2-25, with EGR data for

both operating points, represents the correlation between amounts of EGR and air required for

equivalent dilution levels. Plasmatron addition results in higher TDPs but this difference is

relatively small when all air dilution data is plotted together in Figure 2-24. The same is true for

dilution with exhaust gas.

2.6.2 NOx Emissions

Regardless of the fact whether air or exhaust gas is used as a diluent, NOx emissions

decrease substantially with high dilution levels. NOx emissions are very closely related to the

peak in-cylinder temperature. EGR dilution at part load is a common strategy that automotive

manufacturers use in their production engines to meet emission regulations. This section also

graphically portrays the value of thermal dilution parameter.

2.6.2.1 Air Dilution

Figure 2-16 shows NOx engine out emissions in grams per kilowatt-hour versus lambda.

It is clear that all three curves have the same shape but they are horizontally offset, with larger

plasmatron addition curve being the furthest to the left, showing the lowest dilution levels.

Accounting for the contribution of additional diluents present in plasmatron gas, same data is

plotted versus TDP in Figure 2-17. In this case all the data collapses into a single curve and TDP

is clearly a better choice than lambda for presenting data with plasmatron addition. All three

Figures, 2-16, 2-17, and 2-18 show the expected peak in NOx emissions slightly lean of

stoichiometric point and then emissions linearly decrease with almost identical slopes on the
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semi-logarithmic graph as more air is added to the charge mixture. Reductions of up to 99% are

observed at the lean limit when compared to stoichiometric levels. Actual levels of NOx

emissions vary with operating conditions, with higher NOx at higher load due to higher in-

cylinder temperatures, but the shapes of the curves past TDP of 1.2 are almost identical.

2.6.2.2 EGR Dilution

Figures 2-20 and 2-21 show similar trends as air dilution data with a linear decrease in

emissions from TDP of 1.2 onwards on a semi-logarithmic graph. Comparable levels of NOx

emissions are achieved with EGR when compared to air dilution data except that with EGR,

equivalent NOx emissions are reached with lower dilution.

2.6.3 Exhaust Temperature

Exhaust temperature is another parameter that is used in this modeling study. It is used in

the NOx model and also when the concept involves a turbocharger. Figure 2-22 displays all air

dilution data normalized to stoichiometric values for the three operating points plotted as a

function of lambda. Lambda is used here instead of TDP since there is a linear relationship

between the two parameters. Exhaust temperature is plotted in the same way for EGR dilution in

Figure 2-23. The relationship is not quite linear but a cubic formula correlates the two parameters

well.
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CHAPTER 3 SIMULATION

3.1 Overview

This simulation is a tool for investigating different alternatives to reduce engine

emissions and fuel consumption. The performance of the vehicle is constant to allow for a fair

comparison of different concepts. When using this model for evaluation of a particular engine

concept, the user defines the concept by specifying a few key parameters that provide sufficient

input to run the model. The driving parameters for evaluation of different concepts are:

* Cylinder Charging; naturally aspirated, turbocharged or supercharged. Boosting is

necessary in lean operation to maintain the baseline torque of naturally aspirated engine with

stoichiometric mixture. Whenever an engine is boosted, turbocharged or supercharged, the

power output of the engine increases if displaced volume remains constant. Due to higher

density of air, larger mass of air can be inducted into the cylinder. For a stoichiometric

mixture this allows for extra fuel, resulting in more useful work per cycle. For equal

performance, boosting provides an opportunity to downsize the engine. Boosted engine has

higher fuel efficiency due to reduced pumping work.

* Exhaust Gas Recirculation; percentage of recycled exhaust gas with stoichiometric charge

mixture. Presence of recycled exhaust gas in the charge mixture significantly reduces engine

out NOx emissions and slightly increases engine fuel conversion efficiency. Efficiency

increases due to slightly higher combustion efficiency and reduced pumping work since

higher intake pressures are required.

* Engine Operation; three options are given: specified fuel/air equivalence ratio,

stoichiometric operation with EGR, and operating lean for maximum efficiency based on the

amount of plasmatron gas.

* Cylinder Displacement Downsizing; total engine displacement is reduced by a user

specified percentage. Bore and stroke ratio remains the same as new values for both are

calculated. Smaller bore and stroke reduce rubbing friction.

* Plasmatron Fraction; the fraction of the total fuel that passes through the Plasmatron and is

reformed into hydrogen rich gas. It determines how lean the engine can operate and how

much can the compression ratio be raised.
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The following two primary objectives have been selected as outputs from this model:

" Fuel Economy; this objective is expressed as miles per gallon over the two combined drive

cycles used in this modeling study.

" NOx Emissions; this is expressed as engine out NOx emissions in grams per mile driven

over a drive cycle. The model does not include any emission aftertreatment, although the use

of a three-way catalyst for stoichiometric operation reduces the NOx emissions by close to

two orders of magnitude. On the other hand, there are very few aftertreatment solutions for

NOx under lean conditions and are quite costly.

Ford Motor Company provided engine data from one of their recent production engines,

2.0 liter Zetec, used in Ford Contour for the purpose of this modeling study. Main parameters are

listed in table 3-1. Beside the engine geometry, motoring friction data and emissions were made

available to the author and are used in this study. All emissions data were taken with no EGR.

These data are used along with a number of models to construct engine maps of various

parameters that are of interest in this study. The engine maps are presented in Chapter 4.

Table 3-1 Engine Specifications Used in the Model
Number of cylinders 4 inline

Valves per cylinder 4

Compression ratio 9.5

Combustion chamber Pentroof

Cylinder displaced volume 1.99 L

Maximum rated torque 176 Nm @ 4750 rpm

Maximum rated power 93 kW @ 5000 rpm

Two different drive cycles are used for evaluation of a given concept. Federal test

procedure (FTP) represents urban driving conditions while highway fuel economy test (HWFET)

is representative of highway driving. NOx emissions are based on FTP only, while the fuel

economy number is a combination of FTP and HWFET. Drive cycles are explained in more

detail in section 3.3.1.
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3.2 Model Architecture

Figure 3-1 shows the schematic of the plasmatron engine concept. A turbocharger is

added to provide above atmospheric intake pressures that are required when an engine operates

with lean mixtures. One intercooler is used to cool the compressed air after the compressor and

another intercooler is used to cool the plasmatron gas at the exit of the reformer. Plasmatron gas

is combined with air in the intake manifold while the fuel is injected in the intake port. All of the

components in Figure 3-1 are modeled in this study. Important components are modeled in

greater detail while simple relationships are developed for less important ones. The model

maintains the performance characteristics of the engine, torque and power, while all other

parameters are adjusted based on the user input. The model follows the required mass flow of air

to produce a given output from the atmosphere through the intake system (compressor, throttle,

plasmatron addition and intake port) to the cylinder. Simultaneously the fuel flow is followed to

the intake port where it is combined with plasmatron and air mixture. As the burned mixture

exits from the cylinder, it is followed through the exhaust system (turbine, catalytic converter,

muffler) out to the atmosphere. The simulation does not include an in-cylinder combustion

model, which could prove to be valuable for a more detailed study.

FFgf Adt

Engine Turbocharger

Figure 3-1 Schematic of the engine system encompassed by the model
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3.3 Model Subroutines

3.3.1 ADVISOR

ADVISOR, Advanced VehIcle SimulatOR [13] is a freely available program developed

by the National Renewable Energy Laboratory (NREL). It is a set of model, data, and script text

files for use with Matlab and Simulink. It is designed for rapid analysis of the performance and

fuel economy of conventional, electric, and hybrid vehicles. ADVISOR also provides a

backbone for detailed simulation and analysis of user defined drivetrain components, a starting

point of verified vehicle data and algorithms from which to take full advantage of the modeling

flexibility of Simulink and analytic power of MATLAB. As an analysis tool, ADVISOR takes

the required speed as an input, and determines what drivetrain torques, speeds, and powers

would be required to meet that vehicle speed. Because of this flow of information back through

the drivetrain, from tire to axle to gearbox and so on, ADVISOR is what is called a backward-

facing vehicle simulation. ADVISOR makes extensive use of maps based on empirical data to

define various components of a vehicle drivetrain. Examples are BSFC or engine out emissions

as a function of engine torque and speed.

Clodk To Wokpace total fuel used (gal)

csdo> conv v>cn

rND e, ',l

drive c~yle vehicle <veh> head nldi < > gearbox <gb > uch<l converterH ,

exhaustsys NOx, PM (gis)

Figure 3-2 Conventional vehicle drivetrain in ADVISOR

The above figure represents a conventional vehicle's drivetrain using components from

ADVISOR. The drive cycle requests or requires a given speed. Each block between the driving

cycle and the torque provider, in this case the ICE, then computes its required input given its

required output. It does this by applying losses, speed reductions or multiplications, and its

performance limits.
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For the purpose of this project, Highway Fuel Economy Test (HWFET) and Federal Test

Procedure (FTP) driving cycles are used. US EPA uses the HWFET driving cycle for Corporate

Average Fuel Economy (CAFE) certification and the FTP driving cycle for emissions

certification of passenger vehicles in the US.

Figure 3-3 shows the operating points of the HWFET driving cycle, which is used to

simulate highway driving and estimate typical highway fuel economy. The official test consists

of a warm-up phase followed by a test phase. The driver follows the same driving trace in both

the warm-up and the test phase. In ADVISOR the warm up phase is replaced by starting the

vehicle with hot initial conditions. A top speed of 59.9 mph is reached with an average speed of

47.6 mph.

3i -

Figure 3-3 HWFET drive cycle

Figure 3-4 shows the operating points of FTP-75, the standard federal exhaust emissions

driving cycle, on a torque and speed engine map. This cycle has three separate phases: a cold-

start (505- second) phase, a hot-transient (870-second) phase, and a hot-start (505 second) phase.

During a 10-minute cool-down between the second and third phase, the engine is turned off. The

505-second driving trace for the first and third phase are identical. The total test time is 2457
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seconds with the top speed of 56.7 mph and the average speed of 21.4 mph. The distance driven

is approximately 11 miles.

eCoverter Operation -Satumr V$. (9kW"DOHC S1 Engine

I W'

x - max torque curve
xoutput shaft
Sop. pts(includes inertia & accessories)

100 
I

0 1000 2000 3000 40006
Speed (rpm)

Figure 3-4 FTP drive cycle

The fuel economy number that is used from here on is a combined fuel economy of the

two drive cycles according to equation (7). This equation is used by the EPA for fuel economy

certification' of passenger vehicles in the U.S.

FEconbined = 1 (7)
(0.55 / FEFTP - 75 + 0.45 / FEHWFET

A compact vehicle representative of a Ford Contour 4-door sedan is assembled in

ADVISOR. It is modeled with a 5-speed manual transmission and a curb weight of 2800 lbs.

EPA fuel economy for this vehicle is reported to be 24 miles per gallon (mpg) for city driving

and 34 mpg for highway driving. Very similar fuel economy numbers resulted when a baseline

concept was simulated. However, the numbers presented in Chapter 4 are a combined fuel

economy of the two drive cycles as shown in (7).

FEFTP-75 and FEHWFET do not include 0.9 and 0.78 correction factors respectively which are often used.
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3.3.2 Friction model

Engine friction losses are divided into three main categories [14]: mechanical or rubbing

losses, pumping losses and auxiliary component losses. These are all expressed as mean effective

pressures: ie., the mechanical friction, auxiliary drive and pumping work per cycle, per unit of

displaced volume. Mechanical losses result from the relative motion between solid surfaces in

the engine. Pumping losses are the work done by the piston as gases are pulled into or pushed out

of the cylinder during intake and exhaust strokes. Auxiliary component losses are the work

required to drive the essential engine accessories. Rubbing friction, auxiliary component and

pumping work models were taken from Sandoval [15]. All the symbols are defined in the

nomenclature section. Sandoval breaks down the rubbing friction into three component groups:

* Crankshaft

SD, 4 ND L n 10, D'N'n,
cfmepr=.22xD1 h +3.03xl0 b h +1.35 x h (8)

l B2Sn) B2 Snc n)

* Reciprocating

S F -C 500 3( LNn
rcfmep=1294 P + 40600. 1+- + +S3.03x 1

(B 2 2 ) B 2 N ( B 2Sn(9

+1. 3 5 x 10- D hN 2 nb + 6.89 0.088rc + 0.1 82F - r(I.33-0.056Se)]

n. Pa

* Valvetrain

vfmep=244 Nn +C. 1+500 )'n + Crf Nnv
B 2Sn / N Snc Sn(1

+ Co, N0 n + Com I+ 501) +4.12
BSnc N Sne 10

The constants for the valvetrain terms (Cif, Cr, Coh, Corn) depend on the valvetrain

configuration being modeled and can be found in reference 15. Since the engine modeled has a

double overhead cam valvetrain, coefficients for this configuration were used. Total rubbing

friction is then equal to:
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rfmep = cfmrep + rcfmep + vfmep (11)

Pumping work depends on intake manifold and exhaust back pressure, and losses across

intake and exhaust valves. The exhaust pressure depends upon the pressure drop through exhaust

system to ambient conditions. According to Shyler [16], this is given to a good approximation

by:

2

Ap =c * (12)
Pe

and

Pe =Pa +Ap (13)

in which c is the resistance coefficient and Pe is the density of the exhaust gas at inlet to the

system. In case a turbocharger is used, APurine, pressure drop across the turbine, is added to the

exhaust pressure in (13). The resistance coefficient for a 2.0 liter engine with an underbody

catalyst was determined to be 1.49x 106 M 4 [16]. Assuming ideal gas behavior and substituting

for density in (12), (13) can be rearranged to give exhaust gas pressure:

Pe= " 1 + 1+4-c-R-T e (14)e 2 ep

The valve pumping work for intake and exhaust in Sandoval's model is equal to:

pmep, = 0.003. S2. P+ I (15)
Pa n r ne re

The pumping mean effective pressure is:

pmep = (Pe - pi)+ pnep, (16)

where p, is the intake manifold pressure in kPa. The auxiliary friction component is modeled as:

afmnep'= 6.23+ 5.22x 10 3 N - 1.79*10-'N 2 (17)
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Since the plasmatron fuel reformer requires some electrical energy for its operation,

Smaling [9] developed the following model that is added to the auxiliary friction component:

=(t qe,H2 'mH 2 + qe,H2,c ) 2000-60
(18)

Vd lc - N -17e

In case a supercharger is used, an additional component is added to the auxiliary friction

and it comes from the Boost model described later in this chapter. It is the mean effective

pressure that is required to provide mechanical work to drive the supercharger. The total

auxiliary friction is then:

(19)afmep = afmep'+emep + scmep

Heywood [14] defines the total friction mean effective pressure as:

tfmep = pmep + rfmep + amep (20)

All the quantities in equation (20) are positive, except for pmep when pi> pe at lower

engine speeds. While this model requires numerous inputs, the output of this model is the total

friction mean effective pressure. Figure 3-5 shows the real motoring friction of the Ford engine

compared to the total friction mean effective pressure predicted by the friction model. The

breakdown of the total friction from the model is shown in Figure 3-6.
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Figure 3-5 Friction model validation: fmep versus engine speed
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Figure 3-6 Breakdown of friction components in the model

3.3.3 Indicated Fuel Conversion Efficiency

Indicated efficiency is a base parameter used in the BSFC model for the calculation of the

BSFC map for a given concept. According to the ideal gas cycle [14], the indicated efficiency is

calculated as:

1 =1- 1
r

(21)

where rc is the compression ratio of the engine and y is the ratio of specific heats. This formula

has been used in publications related to engine modeling and represents air as a working fluid

inside the engine cylinder. A more accurate model is the air-fuel cycle where the unburned

mixture is frozen in composition and the burned gas mixture is in equilibrium. In the ideal gas

cycle the indicated efficiency is multiplied by a factor between 0.8 and 0.9 according to Shyler

[16]. Heywood [14] suggests that roughly a factor of 0.8 should be used to adjust air-fuel cycle

data to account for real engine effects.

A different approach is used here to get a more accurate value for the indicated efficiency

throughout the entire engine operating regime. The following equations describe how real engine

data was used to obtain values for indicated efficiency.

Brake fuel conversion efficiency is defined as:
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flf,, = 1 (22)
17 .bsfc . QLHV

where Tic is the combustion efficiency, bsfc is the bake specific fuel consumption in g/kWh and

QLHV is the lower heating value of the hydrocarbon fuel in MJ/kg. Combustion efficiency is

strongly dependent on the equivalence ratio as shown by Heywood [14]. For stoichiometric

operation it is around 92 to 96 percent. Brake fuel efficiency can also be expressed as:

= 71 ./a 'r,7, (23)

where rIm is mechanical efficiency and Tfig is gross indicated fuel conversion efficiency.

Mechanical efficiency is defined as:

bmep
17 ,n = impg(24)

imep g

where bmep is brake mean effective pressure and imepg is gross indicated mean effective

pressure, respectively defined as:

6.28 -n, -T
bmep = 6 q (25)

Vd -n.

and

imepg =bmep + tfmep (26)

where Tq is the torque output of the engine in Nm, nr is the number of crank revolutions for each

power stroke per cylinder (2 for four-stroke cycles), Vd is the cylinder displacement and nc is the

number of cylinders.

Keeping the torque output of the engine constant, which is one of the requirements in the

model, bmep can be calculated from (25) and along with imepg from (26) gives the mechanical

efficiency of the engine according to (24). The tfmep in (26) is an output of the friction model

discussed earlier in this chapter. Since brake specific fuel consumption for the 2.0 liter engine is

known, using (22) with indolene as a fuel (lower heating value of 43.1 MJ/kg) brake fuel
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conversion efficiency can be calculated. Knowing mechanical efficiency and brake fuel

conversion efficiency, gross indicated efficiency is calculated from (23). The bsfc data for the

engine includes enrichment at wide-open throttle (WOT) and gross indicated efficiency must be

corrected in that regime for stoichiometric mixture. A correction form the fuel-air cycle data [14]

is used to adjust the indicated efficiency for rich operation as shown in Figure 3-7.

1.4
* Fuel-air cycle

.2 1.3 -A- 350kPa (NIMEP)@ 1500 rpm
vv- 750kPa @ 1500 rpm

01.2 750kPa @ 2500 rpm

Lean
y = 0.0069x2 - 0.2633x + 1.2574 Rich

3 0.9
y =-0.8047x + 1.8047

0.8- 1

0.2 0.4 0.6 0.8 1 1.2 1.4

Phi (fuel/air ratio)

Figure 3-7 Fuel-air cycle efficiency correction for equivalence ratio

3.3.4 Brake Specific Fuel Consumption Model

This model takes indicated efficiency for a baseline engine with stoichiometric mixture

and adjusts it for equivalence ratio changes using the correlation shown in Figure 3-7. This

correction is based on the fuel-air cycle data and matches well with experimental data presented

at the end of Chapter 2, some of which are plotted in Figure 3-7. Fuel-air cycle data are also used

to adjust indicated efficiency for changes in compression ratio based on correlation shown in

Figure 3-8. Both corrections are relative to the compression ratio of the 2.0 liter engine and

stoichiometric equivalence ratio. Two driving parameters presented at the start of this chapter

determine indicated efficiency for a new concept. The plasmatron fraction determines

compression ratio increase (Section 1.2) and equivalence ratio if engine operation is lean for

maximum efficiency (Section 3.3.4.3).
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Figure 3-8 Fuel-air cycle efficiency correction for changes in compression ratio.

In the next step, mechanical efficiency is calculated from (24) and used with indicated

efficiency in (23) to determine the brake fuel conversion efficiency. Brake mean effective

pressure used in (24) is calculated in (25) based on torque and displaced volume. Maximum

torque is held constant for a given speed to maintain a constant performance of the vehicle. Vd is

the displaced volume of the baseline engine adjusted by the user if the engine concept involves

downsizing. Gross indicated mean effective pressure is defined in (26) and total friction is

calculated in the friction model in (20).

This new brake fuel conversion efficiency is used in a modified (22) to calculate the

BSFC for a given load and speed:

1
bsfc = (27)

7c ff,b fls tQLHV

where irsf is the efficiency of the fuel system, introduced by Smaling [9] that accounts for the

plasmatron conversion efficiency:

n 1A = R, (I R,) +1.1458 -0.3134. (0/C) (28)
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This equation is a weighted average of plasmatron efficiency and 100%, representing the

rest of the system, based on the plasmatron fraction. Plasmatron efficiency comes from (2) with

mass flow rates of reactants and products from (1) expressed in terms of oxygen to carbon ratio

(O/C). Product mass flow rates for plasmatron are calculated from atom balance equations based

on the one-step chemical reaction shown in (1). For the purpose of this modeling study, an O/C

ratio of 1.1 is used which corresponds to 80% plasmatron conversion efficiency.

After bsfc is calculated for all of the points on the 12 by 12 load and speed matrix, this

matrix becomes the new BSFC map. In this process most of the calculations are straightforward

with the exception of pumping friction calculation. This calculation requires intake pressure,

which is calculated using volumetric efficiency.

3.3.4.1 Volumetric Efficiency Correction

Volumetric efficiency is an important parameter in the BSFC model since it is used to

calculate the intake pressure required to produce the desired torque. Knowing the brake specific

fuel consumption on the WOT torque line for the baseline engine, volumetric efficiency

correction can be calculated. Brake power, Pb, in kW is related to the torque as:

4 . Tq -N
Pa = (29)2000-60

where N is engine speed in revolutions per minute. Mass flow rate of fuel required to produce

this torque is:

' P
mel = h (30)

71 f,b QLHV U7c

Brake fuel efficiency is calculated in (22) knowing brake specific fuel consumption for a

given torque and speed. Combustion efficiency increases with air and EGR dilution. For lean

operation combustion efficiency is increased to around 98 percent [14]. The mass flow rate of air

is calculated as:

MarM, =mge -(A / F) -(31)
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where A/F is the air-fuel ratio of the charge mixture. Enrichment of 10 to 20 percent is common

on the WOT torque curve for maximum output. Volumetric efficiency [14] is defined as:

1lvo = 2 .- air (32)
Vd -N -pa,

where pa,i is the manifold air density. Taylor [17] defines ideal volumetric efficiency:

1+y(r - 1 )Pe

Ti ol ideal y(r -) (33)

and

10l = )volideal - fn(N) (34)

where pe is the exhaust back pressure in kPa. Using torque data at WOT, brake power is

calculated in (29). (30) and (31) are used to calculate mass flow rate of air, which is used to

obtain volumetric efficiency from (32). The speed correction function is obtained by combining

(32) and (34). It is used along with (33) for calculation of volumetric efficiency for the entire

engine map of a concept that is being evaluated according to (34). Volumetric efficiency data for

different concepts is presented in Chapter 4 along with other important engine parameters.

3.3.4.2 Manifold Air Pressure

Using equation 32 and adjusting it for EGR:

- - Vol * V1 -N - pai
m air + m egr = (35)

2

Treating this as an ideal gas mixture:

mair =(1 - EGR). P " - V N (36)
2 R - Tmanibld

or
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2- M air - R -T~an
Pi - (-EGR) ri1  V1N (37)

(1 -EGR -01 -V, N

where mti, is the total mass air flow consumption of the engine. According to Shyler [16], who

uses the same formula for calculation of manifold intake pressures in his model, when compared

to experimental data the intake pressures calculated from (37) are in very good agreement for a

range of different EGR settings, loads and speeds. Since p is used to calculate 1ivol in (33) and

(34), and also in (32) to calculate mair , the BSFC model includes a number of iterations that

converge into a final p value for a given load and speed. This value is used to calculate the

pumping work in the friction model, required for calculation of the new bsfc.

3.3.4.3 Empirical Relationships from Experimental Data

Experimental data presented in Chapter 2 were used to determine the dilution point where

peak efficiency and lean limit occur. If the engine operation variable is set for lean operation at

maximum efficiency, TDP value is determined where peak efficiency occurs. This variable can

also be set for a particular equivalence ratio at which the engine operates. In this case, TDP is

calculated based on equivalence ratio only, whereas otherwise equivalence ratio is adjusted to

match the TDP determined by the relationship in (38) or (39). The following relationships were

derived from efficiency and combustion stability data and are presented in Figure 3-9:

0.1
TDPeak -_efficiency =1.5 +. R, (38)

15

0.107
TDPiean-imit =1.605 + RP (39)

15

The two relationships are presented as independent of load and speed since TDP of peak

efficiency and lean limit did not change more than 3 percent for different load or speed operating

conditions. TDP where peak efficiency occurs was determined by curve fitting experimental data

and the lean limit was determined by 3 percent COV of NIMEP.
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Figure 3-9 Data derived TDP - plasmatron fraction correlation

3.3.5 Boost

If the intake pressure that is required for a given load and speed, as calculated in the

BSFC model, is higher than the maximum obtainable from a naturally aspirated operation,

boosting is required. There are two options that user can specify under the cylinder charging

parameter that can provide the required boost: turbocharger and mechanical supercharger. In

both cases a heat exchanger or intercooler is used to cool the charge after compression prior to

entry to the cylinder to further increase air density.

3.3.5.1 Turbocharging

Energy available in the engine's exhaust stream is used to drive the turbine, which drives

the compressor, which raises the inlet fluid density prior to entry to each engine cylinder. A

single shaft connects the compressor and the turbine. Performance maps were supplied by

BorgWarner Turbo Systems and are shown in Figure 3-10 and 3-11. The compressor map

covers a large range of pressure ratios, which is necessary since downsizing is one of the options

in this engine simulation. The smaller the engine displacement, for equivalent performance, the

higher the intake pressures will be. In Figure 3-10, the pressure ratio is plotted versus the

corrected volume flow rate based on a reference temperature.
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Figure 3-11 shows the performance for a variable geometry turbine (VGT). Variable

geometry allows the turbine to cover a broader range of operation. For example: the same

pressure ratios can be achieved for quite a range of mass flows across the turbine. However, the

turbine efficiency is lower in the extreme blade positions. Efficiency plotted in this figure is the

combined turbine and mechanical shaft efficiency. A number of different curves are plotted with

each curve representing a different blade angle.

Once the required intake pressure is calculated in the BSFC model it is used along with

the charge temperature and mass flow rate of air to calculate the pressure drop across the turbine.

Pressure drop across the turbine is used in the friction model along with the intake pressure.

Power required to run the compressor based on the first law of thermodynamics is:

- W Compressor = m air . C, a(T 2 - T ) (40)

where T, is the compressor inlet temperature and T2 is the outlet temperature. The second law is

used to determine compressor isentropic efficiency and when substituted into previous equation

we get:

-M air -CP -i TP
W compresso = -1 (41)

where Ya is the specific heat ratio of air and im is the isentropic efficiency of the compressor. 7a

and cp_air are functions of compressor inlet temperature but since this is atmospheric Ya and cpair

are constant. Isentropic efficiency for the compressor comes from the map in Figure 3-10 and

depends on the pressure ratio and the volume flow rate. Similarly, for the turbine:

W turbine = M exh - C, eh .(T3 - T 4 ) (42)

where T3 is the exhaust gas temperature at the exit of the exhaust port, just before the turbine

inlet, and T4 is the exhaust temperature at the turbine exit. Using the turbine isentropic

efficiency:
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0 P4(e0y

Wturhine = rnCexh -CPexTh 3 -J 1 - )(43)

(P3 )

where P3 is the pressure at the turbine inlet and P4 is the pressure at the exit. P4 is calculated in

the friction model as a function of the exhaust mass flow rate and temperature and represents the

atmospheric pressure plus the pressure drop in the rest of the exhaust system. cp-exh and ye are

temperature dependent, while the turbine isentropic efficiency is determined by the mass flow

rate of exhaust and the turbine pressure ratio. Since the turbine provides the work required to

drive the compressor:

- W compressor = U rurhine (44)

Calculation of P3 from this equation would require a number of iterations, not included in

this model, since the speed at which the turbocharger shaft rotates is also used to obtain turbine

and compressor efficiencies. Once P3 is calculated the pressure drop across the turbine is known.

This is used in the friction model, output of which drives mechanical efficiency, which

determines the new brake fuel conversion efficiency. This efficiency is then used to calculate the

new intake pressure and the process continues until the model converges.

Exhaust temperature is needed in (43) to calculate P3. For the purpose of this work

exhaust temperature is determined from the energy balance on the engine:

ffiel' QLHV = 71 ', ' e QLHV +loss miel* QLHV + exh CPexh xh - Mair CP air chargej (45)

where floss accounts for heat losses to the coolant and oil and can be defined as:

0,S = (46)
m fi- QLHV

with, Q related to speed as

' ' 2Q = Q dt c Q. (47)
N
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The rate of heat loss can be expressed with Prandtl and Reynolds numbers as:

= C -Re- Pr0.4 Re 0.8 p -u.L 48)

where

u oc N and p Oc m jel , BMEP (49) (50)

Combining all these relationships into one simple correlation we get:

r = ____ (BMEPN) 0 8 = (BMEP -N) 0 2  (51)
BMEP .N

Mtiuei - QLHV

Constants were determined by matching this correlation to the Ford engine data.

Stoichiometric exhaust temperature is determined from (45) and corrected for lean or

EGR operation if required. The correlations for lean and EGR adjustments of exhaust

temperature were presented in the results section of Chapter 2 in Figures 2-22 and 2-23

respectively. The correlation equations are displayed in the two figures.

Charge temperature model developed by Smaling [9] is used to calculate Tcharge in (45).

The resulting temperature takes into account the hot plasmatron gas that is mixed with air before

it enters into the engine. The only adjustment made to that model was that the incoming air

temperature was changed from ambient to the temperature after the intercooler if boosting is

required:

7 2

X* ,i*plasmatron +' IM PX- maniold~mx -cp .T,,,, + m1 - Tnnio
T =i!=I52ch arg e 7 2 (52)

mX, -C + p 1  mx,
1=1 1=1

with

XI (N 2 ,0 2 )

xi e (H 20, H 2 , CO, C 2 , 2 , CH 4 , C2H 2, 0 2 , CH4)
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3.3.5.2 Mechanical Supercharging

A compressor driven by power taken from the engine provides the compressed air.

Based on the required pressure from the BSFC model, the work required to supply this pressure

is calculated and added to the auxiliary mean effective pressure in the friction model. The same

formula for the work done by the compressor (41) applies here to determine the work required to

supply the desired intake pressure:

W comprnessor
scmep =

Figure 3-12 shows the performance map for a compressor used in this simulation.

(47)

Figure 3-12 Supercharger performance map from Wave
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3.3.6 NOx model

A model was developed to generate NOx emissions index map based on load and speed.

NOx emissions index represents NOx mass flow rate in exhaust as a percentage of the fuel mass

flow rate. It is a common parameter for presentation of emissions data in the automotive

industry. The model is calibrated with data from the 2.0 liter engine and adjusted for air or EGR

dilution accordingly. Additionally, a temperature correction factor, introduced by Smaling [9] is

used to correct emissions for higher inlet charge temperatures:

M = 0.00445* T -0.341 (48)

3.3.6.1 Engine data

Ford data at part load with no EGR were analyzed and correlations were developed to

model NOx emissions index based on load and speed. Figure 3-13 shows the NOx emissions

index trends with load and speed. This data is adjusted to match the actual engine data and

extrapolations are used for speeds higher than 4000 rpm. The actual correlation used in the

model is presented at the bottom of Figure 3-13. Figure 3-14 shows the NOx emissions index

map for the baseline concept.

14 -

NOx Emissions Index -+- 1 bar

12 BMEP-

82 bar

0

-6 10

42l 
2 bar0

0 1000 2000 3000 4000 5000 6000 7000 8000

Speed (rpm)
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Figure 3-13 NOx emissions index model as a function of load and speed



Figure 3-14 NOx emissions index map for baseline engine

3.3.6.2 Dilution correction

Figure 3-15 shows the NOx emissions index correction factors for EGR and air dilution.

These two correlations are based on experimental data presented in Chapter 2. The actual

emissions do vary with load and speed as seen in experimental results, but when normalized to

stoichiometric operation for a particular load and speed with no EGR, the curves look similar.

When plotted on a semi-logarithmic scale versus TDP there is a linear decrease in NOx

emissions after a certain TDP value. For air dilution this value is around 1.25 and for EGR it is

around 1.18. Due to this phenomenon, the correction factors for EGR and air are composed of

two curves each, to better match the experimental results. All the correlations are presented in

Figure 3-15. BSNOx emissions are calculated as:

BSNOx = NOxndex -BSFC = (NOindxC basline * M * MT) -BSFC (49)

where BSFC in g/kWh is calculated in (27), NOxindexbaseline in percent is calculated from formula

in Figure 3-13 based on load and speed, and M and MT are dimensionless dilution and

temperature correction factors shown in Figure 3-15 and equation (48) respectively.
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Figure 3-15 Dilution correction factors for NOx emissions

3.4 Concepts of Interest

The objective of this thesis is to develop a model for evaluation of fuel economy benefits

and NOx engine out emissions for a lean boosted plasmatron-engine concept. To evaluate the

benefits, a baseline case is simulated first for comparison purposes. This entails naturally

aspirated operation with a stoichiometric mixture without any plasmatron addition or EGR.

Then, lean boost concept with a turbocharger and constant 20 percent plasmatron gas addition

throughout the entire operating range is investigated. Since the production version of the baseline

engine uses some EGR for NOx emission control, a third case is evaluated with 10% EGR at

part load. This model allows for different amounts of plasmatron for different operating points,

but for simplicity plasmatron fractions are held constant since it is not clear what amounts should

be used in what operating regime.

A downsizing study is also performed for lean boost concept. The cylinder displacement

is downsized in 10% increments until a max BMEP of 19 bar is reached which is the limit of

modem turbocharged engines (Subaru WRX-STi). Typical maximum value of bmep for

turbocharged production engines is around 16 bar.

71

Dilution Correction Factors



(This page was intentionally left blank.)

72



CHAPTER 4 DISCUSSION OF RESULTS

Three different concepts are evaluated and engine maps of the following parameters are

presented:

- mechanical efficiency

- gross indicated efficiency

- brake fuel efficiency

- BSFC

- manifold air pressure (MAP)

- BSNOx

- volumetric efficiency

- exhaust pressure

- exhaust temperature

4.1 Introduction of Concepts

Baseline Concept

This concept involves naturally aspirated engine operating at stoichiometry with no EGR

dilution. This is a concept that others are compared to for evaluation of fuel economy

improvement and NOx emissions reduction.

10% EGR Concept

This concept is identical to the baseline concept except that it operates with 10 percent

EGR dilution at part load. This concept more accurately portrays the actual vehicle modeled in

this study because the 2.0 liter Ford Zetec engine does use some EGR at part load for NOx

emission control but detailed data were not available.

Lean Boost Concept

This concept involves lean operation for maximum efficiency with constant 20 percent

plasmatron addition. The engine is downsized by 20 percent and turbocharged.
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Figure 4-4 Baseline: BSFC

75



I I I II

16,- -L - -

120 ---- I--

140 I 1
I I I-7 d

100 I I

* ,- aa a a0

12t1 I I I I I G -

80 
- - :7 0: --

*O 0010 002M 3bo 3 50-0 L0 450 Ibos~o

Baseline: MAP

Baseline: BSNOx

zo
m~

Figure 4-5

Figure 4-6

76



~4VhretrvemffCI JCy .

* -A - - - -

-4-* - 4 - 4 - - - I

CI I Ijr

-I -- -

-- - -- - - - - - - - - --- I---

Baseline: Volumetric Efficiency

Baseline: Exhaust Pressure

77

Figure 4-7

Figure 4-8



Figure 4-9 Baseline: Exhaust Temperature

Figure 4-10 Baseline: Stoichiometric Gross Indicated Efficiency
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Figure 4-11 10% EGR: Mechanical Efficiency

Figure 4-12 10% EGR: BSFC
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Figure 4-13 10% EGR: BSNOx

Figure 4-14 10% EGR: Exhaust Temperature
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Figure 4-16 Lean Boost: Mechanical Efficiency
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Figure 4-17 Lean Boost: Gross Indicated Efficiency

Figure 4-18 Lean Boost: Brake Fuel Efficiency
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Figure 4-19 Lean Boost: BSFC

Figure 4-20 Lean Boost: MAP
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Figure 4-23 Lean Boost: BSNOx

There is not a significant variation in parameters between the Baseline and 10% EGR

concepts. The major difference is in the BSNOx due to EGR dilution at part load for emission

control. This difference can be seen when comparing Figures 4-13 and 4-6. EGR presence also

influences MAP (Figure 4-15) and exhaust temperature (Figure 4-14).

Most of the parameters change when comparing Baseline concept to Lean Boost.

Mechanical efficiency in Figure 4-16 is higher due to turbocharging. MAP and exhaust pressures

are raised substantially (Figures 4-20 and 4-22). Indicated efficiency (Figure 4-17) is increased

due to the presence of plasmatron gas that allows for compression ratio increase and very lean

operation. Combined benefits of mechanical and indicated efficiency are seen in brake fuel

efficiency improvement in Figure 4-18. Very high dilution causes a dramatic decrease in

BSNOx (Figure 4-23).
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4.2 Comparison of Concepts

Lean Boost concept is compared to Baseline and 10% EGR concepts to evaluate the fuel

economy improvement and reduction in engine out NOx emissions. When compared to the

Baseline concept there is a 24.4 percent fuel economy improvement (Figure 4-24) and 91 percent

reduction in NOx emissions (Figure 4-25). A comparison between Lean Boost and 10% EGR

concept shows a fuel economy improvement of 22.7 percent and 82.6 percent reduction in NOx

emissions (Figure 4-26).

Figure 4-24

Figure 4-25

Fuel economy comparison of all three concepts

NOx emissions comparison of all three concepts
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Figure 4-26 Benefits of Lean Boost vs 10% EGR

4.3 Downsizing Effect on Fuel Economy

Lean Boost engine concept is downsized in 10 percent increments until a maximum

BMEP of 19 bar is reached which is the limit of a good turbocharged production engine. Fuel

economy improvement for different percent reduction in engine displacement is presented in

Figure 4-27. A linear increase in fuel economy improvement is observed when engine

displacement is reduced while performance is kept constant. Fuel economy improvement around

3.33 percent is observed for every 10 percent reduction in engine size.
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Figure 4-27 Impact of downsizing on fuel economy
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CHAPTER 5 CONCLUSIONS

A set of models, part physical and part empirical, have been combined to develop this

engine simulation. Experimental data along with production engine data were used to

calibrate this model. For a stoichiometric naturally aspirated operation with no hydrogen

addition the simulation matches the production engine data very well. Experimental data

were used to develop correlations for lean operation with various amounts of hydrogen

addition. Turbocharger model was incorporated to allow high boost pressures that are

required for very lean operation. This model was used for evaluation of fuel economy

benefits and NOx emissions reduction of lean boosted operation with hydrogen addition.

* Lean boosted operation with 20 percent reformate gas addition and 20 percent reduced

engine displacement has significant fuel economy increase (24 percent), while the NOx

engine out emissions are reduced by 91 percent when compared to a naturally aspirated

stoichiometric concept with no downsizing and no EGR dilution or plasmatron addition.

There are still significant fuel economy benefits, approximately 23%, when 20 percent

downsized, lean boosted operation with 20 percent reformate gas addition is compared to

a naturally aspirated stoichiometric concept with 10 percent EGR dilution at part load for

NOx emissions control, which is more representative of the production vehicle. In this

comparison NOx emissions are reduced by 83%.

* There are still a number of issues that this model does not address in enough detail and

thus the results might be optimistic. Knock constraint at low speed and maximum BMEP

must be modeled in greater detail before this concept can be optimized. The model could

also be improved by backing up the empirical correlations with theoretical models such

as in-cylinder combustion model for efficiency and emissions. The next step would be to

optimize the amount of plasmatron to be used for particular operating conditions to

provide feedback for optimization of plasmatron design and operation. If EGR is used

instead of, or along with, air for dilution, the relative amounts of EGR or air need to be

determined to adequately reduce NOx emissions for different operating conditions.
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APPENDIX A: Experimental data for 350 kPa NIMEP @ 1500 rpm

45

40

35

30

25

20

15

10

5

0

0.8 1.0 1.2 1.4

Lambda

92

1.6 1.8 2.0 2.2

U

350 kPa @ 1500 rpm

Air dilution

-- 30% Plas

-+-- 15% Plas

-U- Indoline only

35- 20

Air dilution 350 kPa @ 1500 rpm

30- 18

25 H
16 <

20 U

14 c

15
-+- 15% Plas Pmax

Indo Pmax -12 z
10 --- 30% Plas Pmax

-- 15% Plas loc Pmax
Indo loc Pmax 10

-*- 30% Plas loc Pmax

0 ! I 8

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Lambda



600

350 kPa @ 1500 rpm
Air dilution

550 -

o 500

450

-I-- 15% Plas

400 -- -- Indolene

-a-30% Plas

350 1 1

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Lambda

4.0
350 kPa @ 1500 rpm

3.5
-- 30% Plas Air dilution

3.0 --- 15% Plas

-- Indoline only
2.5

2.0

1.5

0.0 -

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Lambda

93



35
350 kPa @ 1500 rpm

30 -

Air dilution

~25-
U

20 -

-~15 -
15 --- 30% Plas

10 -+ 15% Plas

-- Indoline only

5-

0--

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

TDP

35

30

25

20

15

10

5

0

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

TDP

350 kPa @ 1500 rpm

Air dilution

-- 30% Plas

t15% Plas

-- Indoline only

U

0,

94



65

60

55

50

45

40

35

30

25

20

).8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

TDP

-- 30% Plas

-- 15% Plas

-- Indoline only

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Lambda

95

350 kPa @ 1500 rpm

Air dilution

misfires

peak efficiency

-- 30% Plas

-+- 15% Plas

-U- Indoline only

I I- -

Air dilution

350 kPa @ 1500 rpm

6000

5500

5000

4500

4000

3500

3000

2500

2000

1500

1000

U



APPENDIX B: Experimental data for 750 kPa NIMEP @ 1500 rpm
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APPENDIX C: Experimental data for 750 kPa NIMEP @ 2500 rpm
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APPENDIX D: EGR data for 520 kPa NIMEP @ 1500 rpm
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APPENDIX E: EGR data for 350 kPa NIMEP @ 1500 rpm
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