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Chapter 1

Introduction

Alice is a consultant for the major company ConsultCo. Her primary computer is a
laptop, which she uses at the ConsultCo office, the office of their client, Bob Inc., and
to work from home. Bob Inc is concerned about information security, and allows Alice
access only when her computer is physically connected to their network. ConsultCo’s
administrators have a policy stating that Alice’s computer must be protected by the
ConsultCo firewall at all times, and that her connections to company machines must
be encrypted when traveling over public links (such as from when working from home,
or on site).

Current solutions to this problem are inelegant at both an access and authenti-
cation level. In order to get connected to the network, Alice must re-configure her
computer’s IP settings at every location. She must set up a VPN connection into
ConsultCo to fulfill the encrypted link requirement. In order to use the ConsultCo
firewalls, this must be the only link that she uses. At home, she must either use
this to surf the web, or have her company’s administrators set up and maintain a
personal firewall on her machine. BobInc network administrators must have similar
intense involvement with Alice — providing her with an IP address to use while in
the building, and remembering to revoke it when the contract has finished. Finding
a way of authenticating Alice is even more problematic. Solutions range from simple
passwords on telnet connections, to windows domain logins, to web certificates, and

huge ranges of solutions in between.



One of the major problems with these solutions stems from the different levels of
abstraction, from policy statement to policy enforcement. The stated security goals
are fairly simple - anyone with a basic computing background can understand the
idea that connections from A to C must be kept private — third parties must not
be able to eavesdrop. This statement is a simple expression of the complex notions
of actual connection technology (the encrypted transport), and those of identity and
authentication (the idea of Alice and ConsultCo). However, our current network
models and technologies operate on a much lower level of abstraction. Network pro-
tocols deal with the basic connections, a higher layer piece or pieces of software deal
with authentication issues. Consequently, there is intentional separation of the two.
A network architecture that bridged this gulf between low level protocols and high
level network descriptions could be used to form a single, simple solution to Alice’s
problem.

Now imagine that Alice is traveling on the day of a local election. The election
officials, having unveiled electronic voting in the polling place, want to allow electronic
absentee balloting. They require not only a secure, authenticated connection to Alice’s
computer, but also assurances that she is running the election software they certified,
and that no other programs are interfering with or controlling the software. This new
requirement has greatly expanded the scope of the problem.

Software currently exists that can guarantee isolation and separation of programs.
Software and hardware exists that can remotely attest to the state of an operating
system and running programs. As previously mentioned, there are many solutions to
assure data integrity and secrecy in communications. While a user could theoretically
use all of this technology, the amount of configuration and user intervention necessary
is so extensive and unwieldy so as to be impossible for an average user[34].

A technological solution for this scenario must encapsulate the requirements of
network security, local machine security, and remote authentication and verification.
In order to be useful, it must be much simpler than simply combining these existing
solutions.

This thesis proposes a solution in the form of the Regions Security Policy (RSP)
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framework. RSP is a security framework based loosely on the thoughts and constructs
of the Regions network architecture (section 3.1). I begin in Chapter 2 by introducing
the motivation behind RSP. The chapter continues with an outline of the goals and
philosophies of this framework.

These goals are: simplicity, customizability, transparency, and legacy system sup-
port. Simplicity stems from an ease of use requirement; security that is easy to use
increases the chances of security systems being used at all, and being used correctly.
Customizability recognizes that there are no one-size fits all solutions, and that each
implementation has unique requirements. Transparency acknowledges the need for
security measures to work correctly, and have independent experts audit and confirm
the correctness. Finally, legacy system support allows this framework to build on
tried-and-true technologies, and to draw from an installed base.

The philosophies are: use of positive-match, positive-action lists, defaulting to
passive denial, and the correct abstraction level. A positive-match, positive-action
system is one in which an entity must be explicitly enumerated in order to receive
privileges on the system. The notion of default denial is related; any entity not ex-
plicitly granted access to the system will be completely denied access. By establishing
a common abstraction level, the terms that apply to network oriented security are
standardized, simplifying descriptions and comparisons of like technologies.

Having established guidelines for building the RSP framework, Chapter 3 evalu-
ates existing technologies against these guidelines. Many of the these current tech-
nologies meet the goal of legacy system support by default, in being mature tech-
nologies. However, all have different strengths and weaknesses when compared to the
RSP goals. Whenever possible, these strengths are adopted by RSP.

The related works in Chapter 3 form the backdrop for the RSP framework, which
is presented in Chapter 4. This chapter first gives a high level overview of the frame-
work, and then explains each construct in detail. Rationale is provided not only
for every structure present, but also for the exclusion of several seemingly logical
structures. The formal design of the RSP framework allows Chapter 5 to detail the

construction of a proof of concept program. This program was built using the Linux
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IPSec implementation, the use of which is explained in some depth. This concrete
implementation allows a practical analysis of the RSP framework. We find that there
are several outstanding issues that arise, largely with respect to integration of legacy
systems. This chapter argues that these issues, while vital for some implementations,
exist outside of the RSP framework, and affect the framework in a modular way such
that they may be replaced. We then conclude this thesis in Chapter 6 with a summary

of the thesis, and a discussion of future work.
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Chapter 2

Regions Security Policy Design
Philosophy

The Regions Security Policy (RSP) results from investigation into using the Regions
framework as a security system, allowing analysis of the benefits and drawbacks.
RSP is the product of setting several design goals that guide which features the RSP
framework should provide, how these features should be provided, and the extent of
the features. These goals are both basic constraints on simple constructs, and broader
philosophy regarding the overall framework. The basic driving goals are; simplicity,
customizability, transparency, and legacy system support.

The requirement for a simple system stems from practical experience with tradi-
tional software systems. The greater the complexity of a system, the more likely the
occurrence of implementation errors. In any security system, a single implementation
error can be disastrous. Once data has been compromised a single time, there is no
way of controlling its spread. Thus the simpler the design, the lower the likelihood of
an error, either in implementation of software or in the construction of the actual poli-
cies. This distinction arises from experience reading and writing [PTables[24] policies.
[PTables is a popular firewalling program for unix based systems. The configuration
is very low level with policies specifying lists of IP addresses and port numbers. Even
authors who are considered authoritative on the subject warn that in anything other

than a simple policy, it is difficult to track the true behavior of a policy, and it is
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difficult for the policy writer to assure that the policy meets intentions[9]. By making
simplicity a primary design goal, I hope to avoid such problems with Regions.!

Despite the goal of simplicity, any security framework must also thoroughly cover
the problem domain space. This completeness guarantee assures that a system de-
livers the promised security. This goal may also be thought of as emphasizing the
choice of abstraction level. Once the scope of the RSP framework is determined,
the structure of the framework should accurately reflect this level. In organizational
discussions, abstraction is usually compared to altitude - a 30,000 foot view covers
the same area as a 1,000 ft view, but with less detail. Similarly, importance must be
paid to the abstraction level so that it provides all of the detail needed, at the correct
level of specificity.

The goal of customize-ability is both a corollary of the completeness goal and a
result of the philosophy regarding the scope of coverage (as explained in section 2.3).
There is no way to predict all of the situations in which RSP will be used®, and this
reality must be reflected in the framework. This goal serves to set the abstraction
level - anything too detailed risks limiting the usefulness of RSPs.

The usefulness of this framework is also limited by the adoption of Regions as a
network paradigm. The internet and large scale networks are in general at a point
where technologies and standards evolve slowly. Massive, flag day style changeovers
are very rare?, so new technologies should be able to build on, interact with, and evolve
from current and legacy systems. There are currently many different network and
security technologies, running on heterogeneous equipment. To assure deployment,
RSP should support as many of these as possible.

Incorporating existing technology into the RSP framework also serves to improve
security. Many security technologies, especially those involving cryptography, are

complicated, and difficult to implement correctly. Incorrect implementations easily

1This design goal is best summarized by inventor Antoine de Saint-Exupéry, who commented:
“A designer knows he has achieved perfection not when there is nothing left to add, but when there
is nothing left to take away”.? [29]

3More generally, we hope that the Regions framework and the generalized RSP framework en-
courages innovation in this field.

4See IPv6 for example.
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compromise information; as former NSA cryptographer Robert H Morris famously
noted, the first rule of cryptanalysis is to check for plaintext[12]. By incorporating
proven designs and implementations, RSP provides greater assurances of correctly
operating security. This inclusion also lowers implementation costs and effort, by
allowing legacy software to be used within the RSP framework.

The desire for correct operation that drives the inclusion of existing technology
also influences the final goal, which is transparency. Conventional thinking about
cryptography systems holds that implementations should be independently verified
by experts to ensure security. Likewise, the RSP framework and its implementations
should lend themselves to verification. While this goal of transparency is closely
related to the goal of simplicity, the inclusion of many cryptographic systems elevates
the importance so as to be listed separately.

The formulation of security design goals provided a general guideline for framework
construction, but these goals were in turn answers to more fundamental questions. To
maintain a consistency in design, it was necessary to take broad positions, resulting in
the underlying philosophy of RSP. Explained below, these positions cover approaches

to general permissiveness and the use of major design constructs.

2.1 Default to Passive Denial

In any scenario, the default system action has a great effect on the security of the
entire system. In any rule based system, it is very difficult to predict and write a rule
for every possible situation that will be covered. In reaction to this reality, the RSP
framework is based on a default negative-action. The term negative-action is intended
in a passive sense - an event or action that does not have an appropriate rule results
in the RSP system doing nothing, as opposed to triggering an action. In the IPtables
domain, this is equivalent to having a default deny on all incoming connections, so
that an incoming connection that doesn’t match any rule-set is dropped.

This policy of passive negative-action is the most secure. As discussed at the

beginning of this chapter, a single instance of information release fully compromises
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that information. Allowing information transfer both intra- and inter- regionally
requires an active rule-set, thus requiring a policy writer to explicitly authorize the
transfer. The policy maker is thus forced to consider the implications of every rule,
and have a firmer grasp of the ramifications of the policy.

The passive negative-action policy shows additional benefits when analyzing typ-
ical attack vectors. Denial of Service attacks (DoS) occur when a target host is
overwhelmed with false requests, which consume resources needed by legitimate re-
quests. The fewer false requests processed, the less overhead consumed. The passive
negative-action default in RSP facilitates this. By encouraging moving preliminary
authentication to a lower level in the communication stack, fewer false requests get
through to the target application. Another recent widespread class of attack has been
worms which exploit vulnerabilities in unneeded server programs. These server pro-
grams are often running unbeknownst to users and are often unnecessary.> A system
in which connections are disallowed by default would severely reduce the impact of

such attacks.

2.2 Positive-Match, Negative-Action lists

Positive-match, negative-action lists are ubiquitous both in life and computing. Fire-
wall deny rules, spam blacklists, and the local store’s list of bad check passers all
serve the same purpose — upon positively identifying an entity against a set list, they
deny that entity the ability to continue the requested transaction. This paper uses
the term positive-match, negative-action to highlight the workings of the system, and
draw distinctions between alternatives. In the firewall and check payment examples,
whenever an entity requests a resource from a verifier, the entity must present iden-
tification. Upon positively-matching an entity against a list, the verifier then denies
the requested resource. Semantically, this system operates in a manner equivalent to

negative-match, positive-action lists - if an entity’s identification does not match any

>The Blaster[18] worm is a classic example. Most users do not need RPC running, and many were
unaware that it even was running. Those systems that have a legitimate need for this vulnerable
service are more likely to have patched it.
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on the list, the requested resource is granted. This system gives the appearance of
providing a level of security - by stopping potentially problematic transactions before
they take place. In reality, positive-match negative-action lists represent at most a
convenience, and at worst a lessening of actual security by giving a false sense of the
protection they provide.

The illusion of security is greatest in firewalls. Many have argued that firewalls
may reduce overall security by lulling internal administrators into a false sense of
confidence, letting them delay patching systems. A similar argument can be made
for positive-match negative-action lists. These lists are often devised to deal with
nuisance adversaries — one colleague of mine blocks all SMTP traffic originating from
Asia — but do very little to stem a dedicated attack. Adding a deny rule may prevent
an unskilled adversary from connecting to a target host, but these adversaries are not
a threat - any adversary stopped by this will likely be using out of date or simple
attacks that should be ineffective against patched systems. The skilled, dangerous
adversaries can subvert the deny lists using two general methods. For simple non
interactive attacks, a spoofed source address will easily avoid deny lists (in order to
be easily maintained, deny lists cover a small subset of the address space — if an
accept list were smaller, most administrators would use one). Interactive attacks
require slightly more work for the attacker. There are currently over 23.5 million
home machines on high speed connections (cable modems or DSL) in the US alone,
and that number is growing at 18% each year.[14] These hosts are largely poorly
administered by users with limited knowledge of security practices. [7] Connectivity
with these networks must be maintained, as many valuable customers, telecommuting
employees, or others with a valid reason for communication use these networks®.
However, these same machines are easy targets for viruses, worms, and trojan horses.
An attacker can easily build up an entire network of zombie machines — compromised
hosts that are fully, remotely controllable by the attacker.[21] These machines can be
used to circumvent deny lists, and provide a nearly untraceable platform from which

to launch attacks.

5 Arbitrarily blocking out large sections of the address space also violates the end-to-end principle.
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Spam blacklists present a similar problem. One common way of blocking spam
is by use of a Domain Name Service Real-time Block List (DNSRBL). When a mail
server running specialized software receives mail, it checks the sender’s domain name
or IP address against a list of suspected spammers - if a match is found, the mail
is either rejected, or marked as suspected spam. [32] Several organizations provide
these lists, as people have varying views on what constitutes spam, and there is an
extreme degree of difficulty involved in keeping the lists up to date. It is very easy for
a spammer to change hosts, sending from new IP addresses (including using zombie
networks), and registering new low cost domains.[16] [36] The basic problem is that

DNSRBLs attempt to block email based on a credential that is easily changed.

The Regions network is similar to the domain system, in that it is an abstraction
built at a layer higher than network addresses. An individual node may sit in multiple
regions simultaneously. In addition, the cost associated with region creation is very
low. This combination makes positive-match negative-actions lists ineffective. Much
like the spam problem, an adversary who has been put on a negative action list
merely has to switch regions. However, when dealing with spam, this can be solved
with constant vigilance to discover and block the new source: in that problem domain,
a solution is successful if it allows ten thousand spam emails to get through, while
then blocking ten million. In the security realm, one attack getting through can be
one too many. As an example, we’ll postulate the existence of two regions: FOO and
BAR. The creator of region FOO doesn’t trust region BAR, and tries to set a policy
forbidding communication with the region. An adversary can create a third region,
QUUX. QUUX has a security policy that allows it to communicate with any region,
both via the network and on the same node. Thus, an adversary can have one node,
in regions QUUX and BAR, that bridges BAR to FOO. This attack can easily be
extended to span multiple nodes and regions.

While positive-match negative-action lists do not provide adequate security in
general, they may be used in conjunction with a positive-match positive-action list,

or for purposes of convenience, when no security is required.

The weakness of these lists as a security tool stems from the ease of changing
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regions. However, if the region that is to be blocked can be trusted to always report
the same region credential, it may safely be blocked. For example, my organization
may wish to block connections to major-company.com for philosophical reasons. As
major-company.com is not an active adversary, they have no incentive to mis-represent
themselves. The negative action on the region major-company.com is implementable
using current systems, and may be kept in Regions, with the understanding that it
is only a convenience, not a security feature.

The use of positive-match negative-action lists in conjunction with positive-action
lists is easier to understand when considered in terms of set theory. Ultimately, the
concern is over positive actions - when an entity is allowed to do something. In the
basic case, the set of possible regions is infinite, and an infinite number of regions
can take positive action. The negative-action list is a finite list, resulting in a still
infinite number of regions that can take positive action. When a positive-match
positive-action list is used as a primary verifier, and subsequently checked against a
positive-match negative-action list, the default action is negative, and the number of
regions with positive-action capability is finite. In this scenario, a negative-action list
narrows this finite set. A real world example of this construct is a company policy that
says: ” Allow only connections from regions Authorized by the IS department, with
the exception of the finance region”. This example shows the value of the positive-
action lists. By making the first assertion, new regions are no longer easy to obtain,
so an adversary cannot create a new region that is authorized by the IS department.

In any positive-match negative-action scenario, it is important to consider this
credential creation effort and expense in determining the effectiveness of list based

authorization.

2.3 Scope of RSPs

The RSP framework is ultimately shaped by the scope of coverage. Once it is deter-
mined which scenarios and technologies RSP will and will not cover, each goal must

be evaluated against this standard. Individual features are included, excluded, and
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re-factored to assure that the final product covers exactly what it claims to cover.

Many existing technologies are concerned with low level security implementations.
Specifications from SSL to IPsec provide detailed configuration specifications, and
formal proofs of correctness. These systems do an excellent job solving the limited
low level problems they are designed to address. Regions is a higher level architecture,
and must solve a larger problem, thus the RSP should attempt to aggregate these
solutions. For example, rather than precisely specifying how a TCP connection is
to be encrypted, RSP leaves that low level detail to the implementation, assuming
that the lower level problems have known solutions. Many of these implementations
have fundamental issues that are not addressed. These are specific to the low level
nature of the problem, and thus are below the level of the RSP abstraction. Many of
these outstanding issues (see section 5.4) are difficult problems that are being actively
worked on among specialized communities. The RSP specification must be written

in a scope that encompasses these solutions, but does not rely on them.

The scope of RSPs is limited by the choice of abstraction level, which is partially
set by the desire to combine related low level implementations. In precisely setting a

limit of the scope, existing policy languages were analyzed.

The KeyNote trust management system (explained in detail in section 3.6) is de-
signed to be a generalized security policy language. It is implementation independent,
and extensible to a point where it can be used for non-computer based policies. In
practice this results in a level of coverage that is too broad for the RSP framework.
KeyNote has been used in few actual systems. The expandability of the language
means that either a simple subset must be used, or a complex interpreter is needed.
The desire for simplicity and transparency rule out the use of overly complex inter-
preters for RSP - both because the policies are difficult to read, and the translation to
implementation is difficult to audit. The small subset of the KeyNote language that
is used in practice directly influences the content of the RSP framework. A lighter
weight framework can provide the same de-facto coverage, while being much simpler.
Work with existing low level implementations show that they share a general class

of abstraction concepts, so a policy specification that focuses on identifying these
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common abstractions can be small in size and simple in scope.

The RSP framework can be bounded further by analyzing the threats to security,
and determining the best way to address those threats. Security may be compromised
through several different attack vectors’. An adversary may try to attack a server
via the network, connecting directly to a target application. In a manner further
removed, an adversary can break into a target computer, and then launch an attack
locally. Finally, an authorized user or program may leak information. These first two
scenarios are well tailored to the Regions approach. By making careful distinction
of region boundaries, one can control the information flow across the boundaries. A
network or local attack that traverses regions should clearly be covered by the RSP.
Furthermore, an RSP should provide mechanisms for keeping information secure while
within the region, covering all possible attacks within this scenario realm.

Attacks where the user is an adversary, whether active or an unwitting accomplice,
fall outside the realm of Regions and the RSP framework for several reasons: the
coverage and deployment of existing policy languages, the specificity of desktop user
policy, and the inherent limitations of accomplishing managing human resources using
computers.

There are policy languages already in existence which control a user’s software
experience. Whether NIS (nee YP)[2], Microsoft roaming profiles[1][3][4], or a wide
variety of kiosk applications, the software exists to control a user’s access to local
programs. Unlike network communication, this domain is often a mono-culture, so a
one size fits all solution is workable. The user space software restrictions also overlap
with a solution provided by the RSP framework. If a program has access to data
that should not be user accessible, one may either limit access to the program, or
never allow the program to access that data. Stated differently: one may prevent a
user from writing to disk or the network either by restricting how users may operate
the system interfaces, or by setting local and remote policies in an RSP and relying

on the low level RSP implementation to check. Finally, these policies which closely

"This sense of security is intended to be information integrity - a security compromise is any in
which data is read by anyone other than authorized parties, or modified by any unauthorized party.
Other attacks, such as DDoS attacks, are discussed further in section 5.4.
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restrict the user environment are by necessity tied very closely to the implementation,
and do not abstract well.

A legitimate user that is an active adversary is fully outside the scope of technical
measures. There is no way of determining user intentions once required authentica-
tion has occurred, thus no way of stopping an adversarial user. While such actions
as forbidding out-of-region network connections may hinder data transfer, a truly
motivated adversary could use other means, such as using a camera phone to take a
screenshot of data®. RSPs are merely one piece of a comprehensive security policy,

and can not be used to cover shortfalls in other security measures.

8At high security government installations, the computer networks are isolated, and personal
electronics such as laptops, cell phones, and PDAs are forbidden from the premises.
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Chapter 3

Related Work

The RSP framework was not conceived in a vacuum, it builds on the notion that there
are many positive design features in existing technologies. RSP utilizes these legacy
systems while still evolving in a way consistent with the overall goals and philoso-
phies of the framework. In this section, related technologies are grouped together by
function, in an attempt to determine the conceptual lessons that may be adopted by

Regions, and in many cases implemented by these technologies.

3.1 Regions: Network Architecture Abstraction

Research into security in the Regions architecture, and how Regions will shape com-
puter security in general, was the underlying basis for the RSP framework. Regions
[31] is an architecture that groups nodes by common criteria. Rather than using
network addressing and topology to force a single grouping on a node, each node is
instead granted membership to one or more regions based on common functional-
ity. In the scenario given in the introduction, Alice’s computer may be a member
of the ConsultCo region, the Boblnc contractor region, and her home network re-
gion. These associations persist regardless of the physical network connection. This
network level abstraction sets an abstraction level for the entire RSP framework.
The use of this abstraction allows a security policy written at the Regions level to

be simplified. Conventional network security configurations are complicated because
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they attempt to group access based on role, but are configured via rules specifying
network addresses. By using the Regions model, an RSP author can concern himself
with setting the appropriate level of access, rather than identifying which nodes are

deserving of access.

3.2 General Security

Over the years, a wide range of papers and books have been produced containing
general insight into computer security. These form the security knowledge base upon
which systems are built, the language used to describe problems and solutions. This
knowledge is augmented by works describing a narrower domain, such as a paper on
basic cryptographic protocols which discuss the properties they do and don’t provide.

Voydock and Kent [33] provide one of the early descriptions of how security issues
arise in networks. In addition to the definition of what are now standard terms (such
as what constitutes a passive attack), they outline five goals needed for a secure
network, which are to prevent message contents release, prevent traffic analysis, detect
message modification, detect DoS attacks, and detect invalid initializations. The
paper then suggests that the best way to provide many of these is by using an end to
end security model.

The RSP framework bases its abstraction level on these goals; specifically the
goals of preventing content release and detecting message modification. This is an
appropriate abstraction, as it expresses structure common in network security soft-
ware. These structures are present in software analyzed by Voydock and Kent while
forming their goals. Software authored since the paper was published was influenced

by this paper and by earlier software, and thus also contains these structures.

3.3 Network

The RSP framework works from an abstract viewpoint of networks. However, policies

must still be realized by an implementation, and care must to be taken to assure that
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this implementation is safe from attack. Doing so requires knowledge of attack meth-
ods, of which, there are three major types; passive, active, and analysis. A passive
attack involves reading the data in transit. The most common type of passive attack
is simple eavesdropping. An active attack involves modifying that data. Solutions
[10] [17] exist that can protect data in transit from being easily read, and can de-
tect modification. Staging these two types of attacks requires compromising either
the network that the data is traversing or one of the endpoints. Under the Regions
network model, a security policy which specifies that data within a region must be
fully contained and that the region must maintain integrity eliminates this attack. A
compromised intermediary is no longer a threat, as the policy prohibits any access to
the data. The third type of attack is a traffic analysis attack, whereby an adversary
gains an advantage merely by knowing that data is flowing between two nodes. The
RSP framework does not explicitly address this type of attack, instead relying on low

level network implementations to provide protection.

3.4 Machine

The capabilities provided by Regions force an RSP to protect all connections within
the framework. A side effect of nodes residing in multiple regions is that inter-regional
connections may take place entirely within a single node. The RSP framework must
be able to protect these connections in a manner similar to network data. While sev-
eral operating systems have basic protection and separation mechanisms, often the
network stack is in a shared space and able to compromise the entire system. Several
techniques have been proposed to manage this risk, all of which have different imple-
mentation implications. One such technique that was recently successfully tested in
a real world setting is privilege separation [27], which is used in OpenSSH. A recent
bug in this program provided a root exploit on systems that did not use privilege sep-
aration, however systems utilizing it were vulnerable only to a denial of service attack
[8], which caused significantly less long term damage than full system compromise.

Other projects [20] [26] have looked to limit the calls to network daemons, hoping to
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minimize potential exploits. At a higher level of abstraction, application sandboxing
[13] [25] completely separates processes and even core network daemons. Any of these
technologies could be used as a low level implementation within Regions. As in the

network domain, they share common abstractions due to the problem domain.

A related mechanism embodies the RSP framework philosophy at the level of
program separation. The field of Domain Type Enforcement (DTE) [5] is another
way of separating program privileges. DTE is essentially a fine grained access control
list (ACL), where programs and data are associated with various domains (which is
somewhat analogous to a region). Domains have types associated with them, each
of which is a list of allowable low level actions - reads, writes, network access, areas
of the file system that they can access, etc. The very useful aspect of DTE is a
separation between policy and enforcement. Policies are written at a high level for
easy administrative usability and understanding, and then automatically turned into
the low level rules needed to enforce the policy. In this model, a domain is the
functional equivalent of a region, and the policy translation is the same that must

take place from a specific RSP to implementation-specific configuration files.

3.5 Machine Authentication

The previous implementations provide a means of securing data transfer between re-
gions and nodes, but provide less assurance as to the integrity of the remote node.
Preliminary work has been conducted through the Trusted Computer Platform Al-
liance (TCPA) and Microsoft Next Generation Secure Computing Base (NGSCB)*
projects to provide code attestation. Code attestation gives a provable record of the
exact code stack that is running on a piece of hardware. This allows an administra-
tive entity to have a greater assurance that the software state on a remote node is
as intended [11]. The mechanisms used to verify this can fit easily within the RSP

framework, and can be used for verification and in turn, stronger authentication.

lnee Microsoft Next Generation Trusted Computing Base (NGTCB), nee Palladium.
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3.6 Formal Policies

The final influence on the RSP framework are systems which formally define policies.
Early policy definition work([35] is very abstract, which allows a wide range of policy
types, while requiring more customization for different applications. One of the stan-
dardized security policy languages currently in use is KeyNote[6]. KeyNote provides
formal trust definitions, while leaving underlying implementations open. Unfortu-
nately, existing security products that use KeyNote tend toward proof of concept.[15].

The KeyNote system consists of a policy, a verifier, and a requester. A KeyNote
policy is very free form and flexible. It consists of credentials, actions, conditions
and principals. A principal in the KeyNote system is any entity with privileges to
conduct operations on the system. Credentials are used to identify principals, and to
delegate actions amongst principals. These are implemented using free form strings,
which can contain anything, including cryptographic keys. The conditions of a policy
govern which actions may be performed, and the actions themselves are application
specific tasks. These actions are listed using simple logic expressions.

As an example, the following KeyNote policy is taken from a proof of concept

distributed firewall[15].

Authorizer: ‘‘Policy’’

Licenses: ‘‘rsa-hex:1023abcd’’

Conditions: (local_port == ‘‘23’’ && protocol == ‘‘tcp’’ &&
remote_address > ¢“158.130.006.000°° &&
remote_address < ‘€158.130.007.255°’) -> ‘‘true’’;

local _port == ‘‘22’’ && protocol == ‘‘tcp’’ -> ‘‘true’’;

The operation of a KeyNote system is relatively straightforward. A requester,
which is simply a KeyNote aware program, wants to perform an action. It submits
the action, the values of any parameters relevant to the proposed action, and any
credentials it may possess to the verifier. The verifier takes this information, evaluates
the conditions with respect to the values received from the requestor, and returns a

value of true, meaning the requestor is authorized to execute the action, or false,
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meaning the requestor is not authorized. The requestor then must act according to
the response.

There are a two important features of this system to note. Primarily, the verifier
is completely unaware of the context of the system. It can be used for any KeyNote
policy, and in turn, a KeyNote policy may be written for any situation. The problem
domain specific logic is contained in the conditions of the policy. This is in contrast
to domain specific security system, where the domain logic is intrinsic in the policy
evaluator. Secondly, the requestor must be a trusted application, with knowledge of
the policy nomenclature. This means that existing programs cannot be used without
either being rewritten, or by using a wrapper program that contains this additional
domain specific translation. Furthermore, one cannot run untrusted programs di-
rectly. Implementing KeyNote verification for an untrusted application would require
verifier checks at level below the application - which is likely an operating system or
similar low level program.

The complexity of KeyNote as used in that firewall implementation has caused
other distributed firewall projects to take a different approach.The Smart firewalls
project uses [30] its own policy language which is better tailored for firewall descrip-
tions, and have implemented a more usable system.[19][37]

This chapter reviewed many technologies, both mature and developing, which
provide host and network security. The IP Security Protocols protect network traffic.
Domain Type Enforcement, privilege separation and application sandboxing provide
isolation of processes on a given node. Palladium and TCPA furnish remote process
verification, and KeyNote demonstrates a working formal policy language. Looking
at more theoretical work, the Regions framework affords us a unique way of looking
at network topology, and various papers set the language for this discussion. None of
these technologies individually meets the goals of the RSP framework, but together
they cover the entire problem domain. The next chapter borrows and evolves from

these technologies to specify the RSP framework.
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Chapter 4

Policy Design and Explanation

The Regions Security Policy (RSP) framework is a security policy language that is
based on the Regions architecture. This is a formal policy that describes how data
is processed whenever it enters, leaves, or transits a region. The policies themselves
are hierarchal, with detail increasing with depth. This chapter first provides a quick
overview of the structure of an RSP and the features. The constructs are then fully
explained, giving the reasons behind the construct, the goals it meets, and the ad-

vantages over alternatives.

4.1 Design Overview
e Version: The version of the RSP specification used in the policy.
e Override: A list of any regions that may change this policy

e Credential: The data used to identify regions and control information flow

between them.

— Name: A policy-specific reference for this credential

— System Identifier: The underlying implementation that this credential rep-

resents.
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— System Data: Data specific to the underlying implementation of this cre-

dential.

e Connection: The top level construct containing the inter- and intra- region data

transfer rules.

— Type: The nature of the data transfer.

— Direction: The direction in which data is flowing.

— Endpoint: The other entity involved in the communication.

— Remote: Rules which apply to communications to a different node.
*x Authentication:
* Encryption:
* Transport Path:

* Verification:

— Storage: Rules which apply to data persistence, whether on the local node,

or remotely.

* Expiration:
* Encryption:
* Authentication:
— Local: Rules which apply to data transport between processes on the local

node.

* Verification:

4.2 Version

The RSP specification is designed to be adaptable to new technologies, and new uses
of current technologies. While one can safely predict that advances will occur, it is
impossible to accurately foresee the direction they will take. The Regions Security

Policies must be able to adopt these advances to remain relevant, and useful. In
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order to maintain the same level of security abstraction, it may be necessary to add
fields that have meaning under the new system. Although one can disparage the
speed at which network standards evolve, version increments will be rare, and less
time sensitive. These major changes in security design theory are infrequent, and
when they occur, take some time to be widely adopted, and standardized. Official
additions to RSP can go through the standardization process at the same time as the

new technology, resulting in little lag time between both standardizations.

4.3 Override

An individual node will often sit in many regions, forcing multiple RSPs to share
the same space on a physical node. On some nodes, software and / or hardware
mechanisms will exist to provide this separation. However, these mechanisms will
not always be available nor desired. For example, a region may exist solely to provide
an authentication credential to a website, not to provide connection rules. While this
is an example of a common case, many regions will have further connection rules in
place. These rules may be general guidelines associated with the region which can be
discarded if they conflict with rules from other, co-existing regions on the node.

There four obvious ways of resolving rules conflicts between RSPs: ignoring the
conflict, invoking user intervention, automatically resolving the conflict, and refusing
to install policies with conflicting rules.

Traditional uses for formal policies — to maintain uniformity across an organization
as indicated by a central element — eliminates the possibility of user input on arbitrary
policies. In other words, a policy may exist specifically to limit privilege to a user, so
the policy framework should not allow a user to override this restriction.! Likewise,
the framework can not ignore a conflict. Ignoring problems can leave a region with
a rule set not anticipated by the publisher, breaking the security, and nullifying the

purpose of having a security policy. Automated resolution can suffer similar problems.

'RSP is a connection oriented framework, and itself does nothing to protect the implementation
mechanisms from the user at an OS level. Other policy languages and enforcement mechanisms
provide this protection.
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It is impossible to guess the intentions of the policy without knowing the intentions
of the publisher. Any advanced automatic resolution attempts to do just this, and
can in turn weaken the policy in undesirable ways.

The final option for resolving RSP rules conflicts is to fully fail to install one of
the regions. This solution provides sound security: an RSP provides both identifying
certification and behavioral rules. If these rules can not be realized, the node must
not be able to use the credential, as possession of a credential implies that an entire
RSP is intact on that node.? Because of this behavior, the decision of which RSP to
install may be left to the user, who can not use the conflict to his advantage.

While the fail safe solution assures the integrity of a region, it is very limiting, as it
does not allow refinement of rule sets. This restriction limits the amount of hierarchy
possible in Regions, which in turn limits the scalability. The override modifier (sec-
tion 4.3 implements a simple automated resolution that defaults to fail-safe secure.
This construct allows hierarchal rule refinement by establishing an automatic, deter-
ministic method of resolving rule discrepancies, driven by policy publisher input. Any
region listed under this section (see section 4.4.1 for naming information) can still be
installed, even if the behavioral rules conflict. In these cases, the overriding region’s
policy takes precedence.® In addition, the keywords ALL and NONE (Section 4.3)
may be used in the regions list, and overriding regions may be authoritative (Section

4.3)

The ALL and NONE keywords

In any list of regions, the keywords NONE and ALL may be used. As Regions operate
so as to be restrictive by default (as explained in sections 2.2, 2.1), NONE is a default,
implied keyword that may also be explicitly listed. It signifies that no regions should
be considered under the current section. The NONE keyword supersedes all other
regions that may be listed. This is a result of the RSP philosophy that the principle

of negative action is most secure (as explained in section 2.1).

2The enforcement of this implication may be provided by various implementation mechanisms,
specifically by using Palladium (section 3.5 to enforce verification rules (section 4.5.4).
3When multiple regions have conflicting rules, precedence is granted in order of listing.
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The ALL keyword provides a complimentary function to NONE, specifying any
possible region. However, as granting broad, general access is against the principles
of the RSP (see section 2) the ALL keyword must be the sole modifier in a regions
list. If any other region is listed, the ALL modifier is negated. This is primarily to aid
human comprehension of the final policy; the all modifier could easily be overlooked
in a long list of parameters.* This policy decision also eliminates redundancy in the
RSP - any additional regions are already covered by ALL, and don’t provide any more

information.

The AUTHORITATIVE qualifier

The AUTHORITATIVE qualifier is another feature that stems from the desire to
support hierarchy in Regions. This qualifier may be appended to any region in a list,
and signifies that the region may attest to other regions, which then assume the same
properties under the current policy.

The AUTHORITATIVE qualifier is not transitive. A region may list another as
AUTHORITATIVE, but that region cannot further mark others as AUTHORITA-
TIVE. This limits the scope of the delegation. Preliminary designs allowed for a
greater degree, however, this was limited in the final design for the sake of simplicity
- both in design, and more importantly of the resulting policies. The authoritative
qualifier allows a region to formally express what may be colloquially phrased “I
trust my friends’ friends”. A greater degree would be trusting “My friends’ friends’
friends”. With this degree of indirection, it can become quite difficult to follow the
trust chain, and understand what privileges the policy is granting. The few cases
where it may be desirable to allow greater degrees of delegation are outweighed by
the greater security brought by the simplicity of shorter trust chains. Capping the
AUTHORITATIVE trust chain at the second degree - “Friend of a Friend” (FOAF)

is the best compromise.

As an example, this construct allows a corporate IT dept to distribute one de-

“I anticipate the ALL keyword being used in preliminary testing of RSPs, making its inadvertent
inclusion in final policies a likely scenario.
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partmental credential. Individual workers, after having their personal credential au-
thorized by the department credential, can publish policy updates under their own
credential. This aids in constructing audit trails, and simplifies the policies distributed
to end users.

The AUTHORITATIVE qualifier arises from the concept of delegation in an orga-
nizational hierarchy. This construct allows a more powerful entity to delegate certain
tasks, without relinquishing full power. In addition, one does not have to enumerate
a full list of delegates, or even the complete list at the time of policy creation.

As with every Regions construct, the AUTHORITATIVE qualifier is intended to
be implementation independent; one can easily realize this construct using digital

signatures.

4.4 Credential

RSP uses the notion of credentials to represent region identification, and provide
related functions. Each credential contains three parts: a simple name, a system
identifier, and further data for use within that system.

The name is a small, human readable string that is bound only within the specific
policy. Globally, the region is identified using the implementation specific data within
that implementation system. This construct simplifies the rest of the policy, as cre-
dentials are always referred to by their name, rather than by complex and lengthy
data. This also eliminates the need for a global naming system, which both greatly
simplifies implementation mechanisms and provides greater anonymity.

Anonymity is a key feature of the system. A node will sit in many different
regions, and when initiating communication with a new node, must determine which
region connection behavior rules apply to the session. Users of the system should have
the option not to disclose every region to which they belong, as that is potentially
valuable information to an adversary. One possible implementation involves sending
all communication encrypted using a key tied to the region. If the receiving host has

the corresponding key to decrypt the traffic, the connection may progress further,
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otherwise, no communication is possible using that encryption key.® Thus a receiving
host at most learns what regions it shares in common with the initiating host, and
no information® otherwise.

The credential format also affords the RSP framework great flexibility. The im-
plementation specific data may be anything, including; public key, private key, MAC
input, or plain-text identifier. Thus, one policy construct serves multiple purposes
depending on the implementation and the context. This provides both the desired

abstraction of implementation, and simplicity of policy.

4.4.1 Name

The name of a credential must be unique to this policy, and should be a simple name
to aide comprehension of the policy. The name creates a simple, human followable
reference, the reasons for which are discussed in the previous section. There must be
one region named 'SELF’ to allow easy self reference. The names ’All’ and 'NONE’

are reserved (see section 4.3) as wild cards.

4.4.2 System Identifier

The system identifier serves to specify the format and content of the Certificate Data.
New formats can be added without changing the RSP specification, and implemen-
tations can share common formats. These systems are not limited to cryptographic
protocols - they may be free form, and only require an associated Certificate Data
specification. This allows a system such as “Plaintext” which may only provide a

common use region name.

A similar method is used by IPSec (the details of which, including the use of ESP and SPIs,
is explained in section 5.1). A connection using ESP is encrypted from the beginning, with the
header containing the ESP protocol number, and an SPI. The receiving host must then have the
same key installed with a matching SPI to decrypt the packet, and instantiate communication. A
lightly modified system where the receiving host ignores the SPI and tries decrypting using every
key it has until a match that results in a clean checksum would accomplish a similar goal, but with
increased startup overhead.

®Depending on the implementation used, one can likely substitute the phrase “no information,
with high probability”. This distinction is the result of the fact that many cryptographic systems
make a guarantee of protecting information only with (extremely) high probably, not with certainty.
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4.4.3 Certificate Data

The implementation specific data conforms to the Certificate Data Specification for
the system identifier under which it falls. The rationale for this division is explained
in previous sections. In addition, the thoughts behind the scope of specific implemen-

tations are discussed in Section 2.

4.5 Connection

Each connection, of which there may be several, expresses both the manner in which
data moves from the current region to other regions, and inter-regionally across nodes.
Although there are many different protocols and mechanisms that control data move-
ment, all fall within three domains, which are encapsulated in the three sub-fields of
the connection: Remote, Local, and Storage. The remote section (4.5.4) governs the
handling of data as it leaves the current node including interactions that take place
via a network, and the general issues that apply to the network domain. The Local
section (4.5.6) is responsible for interactions on a given node. The Storage section
(4.5.5) contains policy relevant to the persistence of data, whether stored in RAM,

on a long term archive tape, or all manner of devices in between.

4.5.1 Type

The Connection Type field allows a policy to specify rules for specific kinds of data
movement. The Regions network design is an evolution of modern systems, and must
cooperate and coexist with legacy software. Because of this limitation, a general ab-
straction for data transfer is too coarse. For example, there is a significant difference
between SSH and HTTP traffic. The type field provides the means for this distinc-
tion. As with the Credential System Identifier (4.4.2), this field is both integral to
Regions and defined outside the RSP specification, allowing it to evolve more rapidly
to implementation and outside software changes. However, connection types must

still be general enough to remain implementation independent: the aforementioned
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SSH traffic may be defined as a connection on port 22, or a connection initiated by
sending a TCP packet starting with “SSH-protoversion-softwareversioncomments”.

A connection is fully determined by three components: the Endpoints, the Direc-
tion, and the Type. Once these three are defined, the Remote, Local, and Storage
fields provide the configuration. However, there are multiple ways of determining
the connection three-tuple. Endpoint, Direction and Type can be nested, forming a
hierarchal descriptor. A hierarchal system can be more efficient in certain cases. Con-
sider a policy with the same Endpoints and Direction, but with rules that vary based
on Type. Under a configuration where the tuple components are at the same level,
this rule set requires two different Connections. To alleviate this, one could group
Endpoints and Direction as top level, and make Type a sub-level. This configuration
reduces the number of connections and consequently, overall size of the RSP for the
example given. However, one can imagine a policy situation where the Type is most
important, which would necessitate many top level entries have the same Type field
underneath them. In this situation, a system where the Type field is top level, and
Endpoints and Direction are nested is optimal.

There are thirteen unique groupings and nestings of these three components. It
would require extensive usability and real world testing to further research the optimal
balance, which may not even be possible. In this version of the RSP specification,
Endpoint, Type, and Direction are grouped together at a single level to define a
connection. This is a compromise grouping, as it will never be the most inefficient

for any system.

4.5.2 Endpoint

A connection is a directional communication between regions or nodes. Every con-
nection has a start point of the current region (named SELF) running on the current
node. The termination points are defined by the Endpoint section. An endpoint
may be any region (referenced by its credential name (4.4.1)), including the SELF
region. This self reference allows one to set storage options and intra-regional network

transport options in the same manner as inter-regional transport policies.
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Any region may be additionally modified as either AUTHORITATIVE or EX-
CLUDE. The AUTHORITATIVE modifier was discussed in section 4.3. The EX-
CLUDE modifier is self descriptive; it is used to exclude a specific region credential
from a larger set. The exclude modifier must be carefully used in the RSP archi-
tecture, as it presents unique security challenges, as discussed in detail in section
2.2. The exclude option only excludes a region that identifies itself as such, and
consequently is best used in conjunction with an AUTHORITATIVE qualifier. For
example, the Foo corporation has many regions. In this particular policy, the master
signing key for the region is called FooCorp_Master. The SELF region represents the
development department. Organizationally, the corporation wants every employee
except for tech support personnel to have access to the development server. In this
policy, the support region credential has a name of FooCorp_Support. This particular
RSP would have a rule set in which one connection allows access. This connection
has two endpoints; FooCorp_Master labeled as Authoritative, and FooCorp_Support
labeled as EXCLUDE. A member of the support organization can not obtain a cer-
tificate authorized by FooCorp_Master (this is an offline administrative action), and

thus can not access the development region.

4.5.3 Direction

The direction field is the final field used in characterizing a connection, and refers
to the direction of data flow. A connection may be characterized as INBOUND,
meaning the rule set applies to data moving into the current instance of this re-
gion. An OUTBOUND connection involved data moving out of the current instance,
and BIDIRECTIONAL, the default, encapsulates both these INBOUND and OUT-
BOUND data movement. The direction field has different implications depending on
the style of enforcement mechanism. For example, in a connection terminating at
SELF, with a Storage modifier, an OUTBOUND connection may involve encrypting
contents while writing to disk, and an INBOUND connection the decryption process.

allowing for asymmetrical ciphers to be used while implementing disk storage.
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4.5.4 Remote

An RSP’s behavioral rules are encoded in the Remote, Storage, and Local subfields of
the connection policy. These encapsulate the general classes of inter-region and intra-
region connection. Each contains subfields carrying details needed for the individual

implementations.

The subfields contain Credentials, referenced by local name (section 4.4.1). Each
region may be further modified by AUTHORITATIVE, EXCLUDE, REQUIRED, or
REQUESTED options. The AUTHORITATIVE modifier was described in Section
4.3 and the exclude in Section 4.5.2. A REQUIRED modifier signifies that the imple-
mentation of Regions is required to use the provided credential in the specific capacity
listed. A REQUESTED modifier is similar to, but weaker than, a REQUIRED mod-
ifier. The REQUESTED option causes an implementation to use a credential only if
possible.

The Remote section of an RSP encapsulates rules for transportation of data to
other nodes, whether to the same or to different regions. The actions provided by

each sub-field are implementation dependent.

Authentication

The authentication section lists credentials that may be used to authenticate a session.
This may be either a login style authentication, or a Message Authentication Code

(MAC - e.g., MD5).

Encryption

The encryption section lists credentials used to provide confidential transport. While
these may be actual keys, these credentials could also a class of ciphers that is auto-

negotiated, or other encryption technologies.
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Transport Path

The transport path section lists the credentials used in a region’s underlying routing
system. This is the source routing equivalent for Regions.

Verification

The verification section lists credentials used to verify the software identity / region
integrity of the endpoint. This is different from the authentication field, which is used

to authenticate the actual data in transit.

4.5.5 Storage

The storage policy section specifies policies for data persistence, whether on local or

remote stores, for all lengths of data storage.

Expiration

The expiration field lists credentials used to verify or enforce data expiration.

Encryption

See section 4.5.4

Authentication

See section 4.5.4

4.5.6 Local

The Local policy section governs the inter-regional interactions that occur on the

local node.

Verification

See section 4.5.4
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This chapter combined the RSP goals (simplicity, customizability, transparency,
and legacy system support), the groupings of related (network systems, verification
systems, process separation software, and policy languages), and the high level ab-
stractions provided by security research to build the RSP framework. The framework
itself specifies controls on data movement. These rules are grouped into three cat-
egories: data moving between two nodes, data moving between two regions on the
same node, and data storage. The framework strikes a balance between contradic-
tory forces; one such balance is that a system that is too similar to legacy software is
not easily customized when new applications are invented, but anything that is too
abstract requires a much more complicated implementation. Although many such
trade-offs were identified and dealt with during the design phase, many shortcomings
with systems don’t become apparent until the system is built and an implementation

is used and evaluated.
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Chapter 5

RSP Implementation

As a proof of concept, a basic implementation was constructed which enforces the
remote section of an RSP. This implementation is a check as to whether or not RSP

may feasibly meet some of the basic design goals.

5.1 IPSec Overview

For this proof of concept implementation, I relied on the linux IP Security Protocols
(IPSec) software. The IPSec family of protocols may be used both as an end-to-end
solution, and in a VPN-like manner - both as a pure gateway to gateway tunnel, or a
one to many tunnel. IPSec protects network communications by encrypting packets
using the Encapsulating Security Protocol (ESP), detecting packet modifications (via
a Message Authentication Code) using the Authentication Header (AH) standard, or
by applying both ESP and AH simultaneously. These protocols are inserted into the
middle of the network stack, between the TCP and IP layers. ESP and AH in turn
can use many different cryptographic technologies to assure adequate functionality.
The specific IPSec implementation used in this work consists of the Linux kernel
space support in the 2.6 kernel series, and user-space tools ported from the KAME
project. Network traffic is affected by IPSec in the following manner. Any outgoing
traffic is first queried against the Security Policy Database (SPD). The SPD is a list of

source and destination host ranges, traffic direction, and policy classes. If the traffic
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matches an entry in the SPD, IPSec is applied according to the entry, otherwise, the
packet is processed normally.! The SPD entry specifies whether IPSec protection is
applied, the packet is processed normally, or dropped. If the entry specifies IPSec
management, it specifies the mode, IPSec protocols, and the level. The mode may
be either transport or tunnel, which corresponds to the end-to-end versus VPN style
operation. The IPSec protocols are AH and / or ESP. The level specifies how strictly
the SPD must be followed; as an example, one may set an SPD to use ESP and AH
if they’re available on the remote host, but default to normal transport otherwise.

Network traffic that is marked for IPSec processing by the SPD is then checked
against the Security Association Database (SAD). The SAD entries are much more
detailed, specifying individual hosts, not host ranges. The SAD entries also contain
the specific parameters for AH and ESP protocols - the encryption or Message Au-
thentication Code (MAC) algorithms to use, the keys for these algorithms, and a
Security Parameter Index (SPI). The SPI is a parameter in the ESP and AH headers
that identifies the SAD entry associated with a packet.

Traffic marked by the SPD as needing IPSec, but which lacks a corresponding
SAD entry triggers a daemon (called racoon in this implementation) which performs
Internet Key Exchange (IKE) via Internet Security Association and Key Management
Protocol (ISAKMP). The key exchange daemons coordinate the two ends of a com-
munication, and if communication is allowed per racoon configuration rules (which
are separate from the SPD/SAD), dynamically create SAD entries that use secure,
one time keys®. After matching traffic to a SAD, the IPSec protocols are applied as
specified, and the traffic is sent as normal to the IP layer.

The processing of incoming packets is slightly different, in the interests of opti-
mization. Any incoming packet that uses ESP or AH also contains an SPI. The SPI

is an index into the SAD, where the decryption or message authentication keys may

1This behavior is contrary to the RSP philosophies of default denial and positive-match, positive-
action. This is a linux IPSec implementation decision made in the interests of interoperability with
non-IPSec systems. In a network where every communicating host was running IPSec and using
Regions, a final ’catch-all’ entry that drops all traffic not IPSec protected should be added.

2Static, manually created SAD entries must use pre-shared secret keys, which are more vulnerable
to compromise.
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Table 5.1: Acronyms and their meanings used in this chapter

AH Authentication Header (RFC 2402)

CBC Cipher Block Chaining

DES Data Encryption Standard

ESP Encapsulating Security Protocol (RFC 2406)
HMAC Keyed-Hashing Message Authentication Code
IKE Internet Key Exchange (RFC 2409)

IPSec Security Architecture for IP (RFC 2401)
ISAKMP Internet Security Association
and Key Management Protocol (RFC 2408)

MD5 Message Digest #5 (RFC 1321)

SAD Security Association Database

SHA1 US Secure Hash Algorithm 1 (RFC 3174)
SPD Security Policy Database

SPI Security Parameter Index

be found. Use of the SPI bypasses a more time-intensive lookup in the SPD and the
SAD for all incoming packets.

5.2 Implementation

The actual implementation uses perl to create and manage the IPSec configurations.
Configuration creation is done by a single script. This script reads the node’s RSPs,
figures out the dependencies, and writes the appropriate SAD entries and racoon
configuration file. Then credentials are parsed, converted into a format understood
by racoon, the SAD entries are updated in the kernel, and racoon is signaled to reread
its configuration file. The final component is a script that updates the SADs to have

the correct local IP address when the node changes address.?

5.3 Results

This implementation is only a proof of concept, and is missing some functionality (see

section 5.4.3), however it allows analysis of the underlying framework. The test policy

3These changes of address are more likely to be common in a future where wireless access is
ubiquitous, and a consumer views the network not from an address, but from a Region.
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used is shown in appendix A, and the resulting SPD entries and racoon configuration
files in appendix B.1. The goal of simplicity is clearly met by RSP. The policy and
configurations provide the exact same information, but the RSP presents it in a more
straight forward manner. The guiding philosophy of positive-match, positive-action,
and default passive negative-action are prevalent in the SAD. The SAD requires all
connections to use IPSec. Remote hosts that don’t have a certificate in the racoon
configuration file cannot connect to this host. The goal of legacy system support
is clearly met, as this implementation relies on IPSec, which is an existing security
implementation. The verifiability of this implementation is demonstrated by appendix
C, which shows the program used to translate the RSP into IPSec configuration files.
This is a small program, easily auditable by anyone with some basic programming
experience. Because of this simplicity, it is easily customizable for different IPSec

behavior.

5.4 Outstanding Issues

This particular implementation also demonstrates the areas that Regions doesn’t
address. Section 2.3 discusses the reasons behind this decision, however, these choices

are much more apparent when looking at an actual implementation.

5.4.1 Application level authorization

The Regions Security Policy framework is primarily a network oriented construct,
concerned with handling data movement. A consequence of this focus is that RSP
attempts to separate itself from applications. Although implementations of RSPs
may serve to separate two applications on the same machine, each application sees
the interaction as a simple data transfer. Thus, application needs that don’t directly
address this data movement are not supported by the RSP framework. Application
authorization is one such feature. Although many applications may wish to use cer-
tificates or other cryptographic features for authentication, Regions does not provide

this. RSP credentials provide basic assurances of membership in a region. These
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assurances do not extend to a specific user identity, nor should they. Allowing appli-
cations to piggy-back on network authentication would violate the design principle of
simplicity. Adding interfaces for applications would make an implementation more
complicated. In addition, this removes an additional layer of security that the RSP
framework adds, and makes Regions credential management much more difficult, as
it must coordinate between many applications. Credential management is currently

a difficult problem, without the additional requirements applications impose.

This separation also allows Regions to take a less aggressive policy toward region
membership, which benefits widespread deployment. A Regions credential may be a
communal piece of identification - effectively a widely shared secret key. If the issuer
of an RSP wishes to evict an entity, they may eliminate access at the application level,
and be able to gradually roll out updated credentials and corresponding policies to

legitimate nodes.

5.4.2 Certificate Revocation Lists (CRLs)

Regions credentials are a technology independent identifier. However, they will often
be implemented using certificates. This use of certificates will raise some concerns,
as there are several issues with certificate management in distributed systems, chiefly
the mechanisms used to enforce revocation of certificates. These are not relevant
within the RSP framework for several reasons. Primarily, certificates are not essential
for Regions. Because of the abstraction, other technology can be substituted. A
corollary of this is that work done on certificate revocation, which is an active topic of
research[23](28][22], is immediately applicable to any Regions implementation which
uses certificates. Finally, many of these issues arise when trying to issue certificates
to authenticate many individual users. Regions differs in approach. The difference

between application authorization and Regions membership was explained in Section

5.4.1.
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5.4.3 Implementation Issues

The separation of the RSP framework and individual implementations is critical when
one evaluates these implementations. No one technology is perfect, and may contain
features that are undesirable for the end user or region administrator. Thus, an RSP
solution must take two parts, the actual policy, and the technology used to implement
the policy.

This particular implementation uses IPSec, which provides largely transparent
protection of network traffic. However, it is not fully transparent. When initiating
a connection that doesn’t have an SAD entry, the connection will fail, with an error
that the requested resource is temporarily unavailable. An application that receives
this error must be smart enough to try again. It occurs because in order to fill in the
SAD entry, racoon must be called, to perform IKE and set up an appropriate entry.
After this takes place, the application can then re-initiate the connection, and have
it be protected via IPSec. Unfortunately, this behavior may cause failure in legacy
applications being used within this framework. This failure is not the fault of RSP,
and could be averted with a different implementation of IPSec, or by using a different

transport security layer altogether.
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Chapter 6

Final Remarks

This paper examined the thoughts behind, and the resulting structure of, a new way
of looking at network security. By beginning with a basis in the Regions system, in
Chapter 2 we first formulate design goals of simplicity, customizability, transparency,
and legacy system support. Next we specify overall design philosophies, which include
defining the abstraction level, and the concept of positive-match, positive-action lists
that default to passive denial. Having explained these goals and philosophies, we use
them to evaluate contemporary security systems in Chapter 3. Many of these existing
systems are found to be too narrow in focus to meet the goals of RSP, but may grouped
into several categories. Network security technologies such as IPSec ensure protected
communications between hosts. Palladium and TCPA provide remote attestation of
the software state of a given node. Domain type enforcement, sandboxing, and others
separate processes on a particular node. At the opposite end of the spectrum of detail,
the KeyNote policy language proves to be too general for use. Taking inspiration from
these systems, and guidance from the goals and philosophies, Chapter 4 outlines the
design of the Regions Security Policy (RSP) framework.

RSP is a hierarchal policy language which specifies rules governing the transfer of
data both within and between regions. It applies to data movement across two nodes,
between two separate regions on the same node, and data persistence, whether on an
individual node or as networked storage.

After completing design work on RSP, Chapter 5 discusses a proof of concept im-
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plementation. This implementation contains a policy governing the network behavior
of regions, which is enforced by the Linux IPSec software. This implementation
shows that RSP meets its goals, however, it also highlights the deficiencies of this
implementation, and of the RSP framework in general. Section 5.4 discusses these
shortcomings, and explains why they fall outside of the scope of the problem that
RSP attempts to solve.

6.1 Future Work

There is still much work that may be accomplished with RSP and its related im-
plementations. This thesis contains proof of concept code to enforce remote policy.
This code is not robust nor complete enough to be used in any production environ-
ment. The logical next step would be expanding this code to include support for the
override feature, and complete checks for conflicting policies. Beyond these obvious
features lies a difficult path. Ultimately, regions that must share a node will have
contradictory policies. Demand for secure computing, but also for wide usability will
drive a demand for a solution.

This thesis investigates some technologies that promise to provide separation on a
single machine. These technologies need time to mature, at which time, they may be
better evaluated as a solution. Future work on Regions Security Policies will likely
focus on this problem domain - implementing and evaluating when the technology
becomes better suited to the problem. I suspect that this intra-node separation will
ultimately be provided by a different mechanism not explicitly listed in this thesis -
perhaps virtual machines which are in turn separated by domain-type-enforcement.

The implementation of remote and local enforcement issues will clearly change
given more work in the field. However, the changes I've described can be accom-
modated by the RSP framework described in this thesis. RSP will not be able to
accommodate every new security technology, but is designed to evolve with changes

in technology, so that it may remain useful and relevant as a security tool.
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Appendix A

XML RSP

This appendix contains the XML formatted RSP used in the proof-of-concept imple-
mentation. This policy specifies that connections to the same region are allowed only

via http, and that these connections may be initiated or received by either node.
<policy>

<version>0.99b< /version>

<override EXCLUDE="false" AUTHORITATIVE="false">REMOTE< /override>
<override EXCLUDE="true" AUTHORITATIVE="false">FooCorp_Support< /override>
<override EXCLUDE="false" AUTHORITATIVE="true">FooCorp_-Master</override>

<credential>
<name>SELF< /name>
<system_identifier >x509< /system_identifier>
<system_information>
<public_key>
Certificate:
Data:
Version: 3 (0x2)
Serial Number: 1 (0x1)
Signature Algorithm: md5WithRSAEncryption
Issuer: CN=REGION_test . AUTHORITATIVE
Validity
Not Before: May 3 22:39:26 2004 GMT
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Not After : May 3 22:39:26 2005 GMT
Subject: CN=REGION_test
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:c6:2a:cf:a1:99:72:cd:bc:0f:05:68:d2:21:93:
6d:86:01:52:d6:74:03:05:23:f0:d0:10:32:36:ce:
b7:66:€2:07:d6:63:df:07:a0:{7:bb:89:d5:10:50:
35:92:15:9d:1b:f9:€1:98:67:4:90:4b:9a:6€:39:
64:67:bc:57:cb:ea:cb:2d:76:0a:29:9c:1e:a0:e4:
25:18:95:2f:ca:d3:17:23:08:d5:80:7d:75:cb:1d:
65:fb:7d:b4:2f:79:£8:96:0f:45:f:c5:d7:09:97:
33:d7:79:5¢:99:13:ca:f9:¢3:25:55:b1:a7:3d:18:
b2:03:6f:1d:70:36:f7:11:9b

Exponent: 65537 (0x10001)

X509v3 extensions:

X509v3 Basic Constraints:
CA:FALSE

Netscape Comment:
OpenSSL Generated Certificate

X509v3 Subject Key Identifier:
71:53:46:4C:0B:3C:48:86:7D:89:62:34:3A:96:FF:57:0E:E4:5E:EC

X509v3 Authority Key Identifier:
keyid:20:90:77:2D:28:FB:3D:98:22:49: AC:2D:EC:76:88:0D:BB:28:AC:41
DirName:/CN=REGION_test_ AUTHORITATIVE

serial:00

Signature Algorithm: md5WithRSAEncryption
9d:6f:e4:22:65:0d:7f:bd:90:29:5d:07:80:2b:fd:26:d1:ef:
a4:bb:48:el:e3:6c:d7:€2:03:5d:59:cc:e8:38:ed:14:75:2a:
74:dc:a6:dc:bb:b9:4d:bf:fb:85:37:68:65:14:6f:29:6e:cc:
ba:2c:3a:a4:€2:9f:79:94:3b:b9:0e:86:19:5d:6e:37:4¢:00:
41:85:64:€9:2a:ec:4e:4d:9a:ca:al:52:98:23:d6:29:95:7b:
£8:42:9d:7¢:04:f1:9a:19:df:23:f0:¢c5:ef:b4:14:8a:10:b8:
e1:5c:45:62:bf:55:¢0:5¢:6f:d0:02:3b:fa:dd:06:8b:£8:5d:
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08:34

MIICWjCCAcOgAwIBAgIBATANBgkqhkiGIWOBAQQFADAKMSIWIAYDVQQDFBISRUdJ
T05fdGVzdF9BVVRIT1JJVEFUSVZFMB4XDTAOMDUwMzIyMzkyNloXDTA1IMDUwMzly
MzkyNlowFjEUMBIGA1UEAxQLUkVHSU90X3R1c3QwgZ8wDQYJKoZIhveNAQEBBQAD
gYOAMIGJAoGBAMYqz6GZcs28DwVo0gGTbYYBUtZOAwUj8NAQMjbOt2biB9Zj3weg
97uJ1IRBQNZL1nRv54ZhnT5BLmm45ZGe8V8vqyy12CimcHqDkJRIVL8rT9yMI1YB9
dcv9Zft9tC95+JYPRE/FlwmXM9d5X JkTyvnDJVWxpz34sgNvHX A29xGbAgMBAAG;]
gakwgaYwCQYDVROTBAIwADAsBglghkgBhvhCAQOEHxYdT3BIbINTTCBHZW5SlemE0
ZWQgQ2VydGlmaWNhdGUwHQYDVROOBBYEFHF TRkwLPEIGfYlINDqQW /1cO5F7sMEwG
A1UdIwRFMEOAFCCQdy0o+2z2YTkmsLex2iA27KKxBoSikJjAKkMSIwWIAYDVQQDFBIS
RUdJT05fdGVzdF9BVVRIT1JIVEFUSVZFggEAMAOGCSqGSIb3ADQEBBAUAA4GBAIJ1v
5CpfDX-+9kKedB4Ar/SbR76S7SOHjbNfiA11Zz0g47RR1KnTepty7uU2/4+-4U3aGUU
byluzLosOqTin3mUQO7kOhhldbjdMAEGFZOkq7E5NmsqhUpgjlqmVe/hCnXwE8Zr5
3yPwxe+0FioQuOFcRWK /VcBcb9ACO /rdBov4XQg0

< /public_key>

<private_key>

MIICXgIBAAKBgQDGKs+hmXLNvA8FaNKhk22GAVLWdAMFI/DQEDI2zrdm4gfWY98H
oPe7idUQUDWS9Z0b+eGYZ0+QS5puOWRnvF{L6sstdgopnB6g5CUY1S /K0 /cjCNWA
XXL/WX7bQvefiWD0X /xdcJ1zPXeVyZE8r5wyVVsac9+LIDbx1wNvcRmwIDAQAB
AoGAC2JoPTtoigM0xbX16/IhQGKRFLrjdYckDX/wso9bn/B6TMm+BV0s/jwj3mUN
Pt0XYoUPfcbpnjuJqqlnZEJAtNIVEFA2Se0DvcZljijJv2503Mv6xCheejfZRv9+8
NmmCaGPCY6eVQFIOty7rAOV7un/JWRctTr6fGW73RqGhxfkCQQD1tXsePIHvpr5l
bARehMHK8V3PjNZxe3T8hDN75QHTPmMIm2G8IGv3Y /265Nczal URCXGPu/11vKt1l
2Wp7HNVVAKEAzneVMnAbKxhRWtByQHSi1Z Axeo5W6X6eMIRfiMXaYG7X23BknU63
i2kFTJ2A6+CDjligl Yyd1tk3AfnvgXxLLwJBAMOGv4q4K85BqpGa+38btfuBR126
fYugbtIndHDLNECeEdI9uV2B3S+pVLseDP40KuGEFCJEJF4qghh1KpmmBSGECQQCR
E1HQqRIOBL5Vk5ZUWCB68+DwisfvNbswLBAc6P1zPS+Lz8PDDSbHXLoOhbWrCI0o
0£tid443A4Q1bUuvroidAkEA06k0z74nDsz9GXXYybu/UyB5¢cDHQOBKo01Luiv0Ba
7hc6LZOye8mPGVBxws6Uq7XMx1eXgWIPIJLQwIVCIPGk7Q==

</private_key>
< /system_information>

< /credential >
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<connection>

<type>regions< /type>
<type>http</type>
<direction>BIDIRECTIONAL< /direction>
<endpoint EXCLUDE="false" AUTHORITATIVE="false">SELF</endpoint>
<remote>

<encryption>SELF< /encryption>
<authentication>SELF < /authentication>

< /remote>

<storage>< /storage>

<local></local>

< /connection>

<connection>

<direction>INBOUND< /direction>

< /connection>

< /policy>
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Appendix B

Implemenation Configuration Files

B.1 1IPSec Configuration

The IPSec configuration file generated from the RSP XML. The verbosity comes from
the configuration language in this implementation, which only allows a connection to
list a single port and direction, requiring the repetition of similar data.

spdadd 0.0.0.0/0 18.26.0.15[1025] any —P in ipsec esp/transport//require;

spdadd 18.26.0.15[1025] 0.0.0.0/0 any —P out ipsec esp/transport//require;

spdadd 0.0.0.0/0[1025] 18.26.0.15 any —P in ipsec esp/transport//require;

spdadd 18.26.0.15 0.0.0.0/0[1025] any —P out ipsec esp/transport//require;

spdadd 0.0.0.0/0 18.26.0.15[80] any —P in ipsec esp/transport//require;

spdadd 18.26.0.15[80] 0.0.0.0/0 any —P out ipsec esp/transport//require;

spdadd 0.0.0.0/0(80] 18.26.0.15 any —P in ipsec esp/transport//require;

spdadd 18.26.0.15 0.0.0.0/0[80] any —P out ipsec esp/transport//require;

B.2 Racoon Configuration

The configuration file for the racoon IKE daemon. Note that this file also requires
the indentifying certificates, which are fully contained in the RSP XML, to be saved

into seperate files, increasing the complexity of data management.
path certificate "/etc/rsp/keys/";

remote anonymous {
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exchange_mode aggressive, main;
generate_policy on;
certificate_type x509 "SELF-x509-public.pem" "SELF-x509-private.pem" ;
verify_cert off;
my_identifier asnldn;
peers_identifier asnldn;
proposal {
encryption_algorithm 3des;
hash_algorithm md5;
authentication_method rsasig;

dh_group modp1024;

}

sainfo anonymous {
pfs_group modpl024;
encryption_algorithm 3des;
authentication_algorithm hmac_md5;

compression._algorithm deflate;
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Appendix C

PERL Implementation

This appendix contains the perl code used to translate the RSP into configuration
files for IPSec and racoon. Note that as per Section 5.3, this is not a complete
implemention, but still shows that an RSP implemenation is straightforward. The
many lines of repeated print statements stems from generating configuration files

thathave many lines with small differences, and is not a function of RSP.

#!/usr/local /bin/perl —w

#this MUST be run as root, otherwise, racoon will complain

#about file permissions.

require XML::Simple;

use Data::Dumper;

sub GetIP {
open (INPUT, "/sbin/ifconfig ethO |");
join(’’, (<INPUT>)) =" m/addr:(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})/;
close (INPUT);

return($1);

my $setkey = "/usr/sbin/setkey";
my $racoon = "/usr/sbin/racoon";

my $ipsec_conf = "/etc/rsp/ipsec.conf":
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my $racoon_conf = "/etc/rsp/racoon.conf";
my S$keydir = "/etc/rsp/keys/";
my $poficy_file = "policy.xml";

my $xs = new XML::Simple();

my $policy = $xs—>XMLin("$policy_file",
forcearray=>[qw(override credential connection)],

keyattr=>{override=>"content", credential=>"name" });

my $ip = GetIP();

open (IPSEC, ">$ipsec_conf") or die ("couldn’t open $ipsec_conf");

open (RACOON, ">$racoon_conf") or die ("couldn’t open $racoon_conf");

# add excludes to spd entries.

foreach (@{$policy—>{’connection’}}){
my $connection = $_;

my $port;

foreach (@{$connection—>{’type’}}){
$port = $_;

#Placeholder — do this via getservbyname
#check port, translate to number.

if ($port =~ m/REGIONS/i) { $port = 1025;}
if ($port =~ m/SSH/i) { $port = 22;}

if ($port = m/http/i) { $port = 80;}

if ($port =~ m/ALL/i){ undef $port;}

if ($port){
if ($connection—>{’direction’} =" m/INBOUND/i){
print (IPSEC "spdadd 0.0.0.0\/0 $ip\[$port]",
"any -P in ipsec esp\/transport\/\/require;\n") ;

print (IPSEC "spdadd $ip\[$port] 0.0.0.0\/0",
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" any -P out ipsec esp\/transport\/\/require;\n") ;
telsif ($connection—>{’direction’} =~ m/OUTBOUND/i){
print (IPSEC "spdadd 0.0.0.0\/0[$port] $ip any",
" -P in ipsec esp\/transport\/\/require;\n") ;
print (IPSEC "spdadd $ip 0.0.0.0\/0[$port] any",
" -P out ipsec esp\/transport\/\/require;\n") ;
}elsif ($connection—>{’direction’} =~ m/BIDIRECTIONAL/i){
print (IPSEC "spdadd 0.0.0.0\/0 $ip\[$port] any -P in",
" ipsec esp\/transport\/\/require;\n") ;
print (IPSEC "spdadd $ip\([$port] 0.0.0.0\/0 any -P out",
" ipsec esp\/transport\/\/require;\n") ;
print (IPSEC "spdadd 0.0.0.0\/0[$port] $ip any -P in",
" ipsec esp\/transport\/\/require;\n") ;
print (IPSEC "spdadd $ip 0.0.0.0\/0[$port] any -P out",
" ipsec esp\/transport\/\/require;\n") ;
}
lelse{
print (IPSEC "spdadd 0.0.0.0\/0 $ip any -P in ipsec",
" esp\/transport\/\/require;\n") ;
print (IPSEC "spdadd $ip 0.0.0.0\/0 any -P out ipsec",

" esp\/transport\/\/require;\n") ;

#FIXME: I don’t do the ports in the racoon file yet, add this.

#also, fix the order / deal with overrides

print (RACOON "path certificate \"$keydir\";\n");

foreach (keys %{$policy->{’credential’}}){

my $key = $_;
my $cert = $policy->{’credential’}->{$key};
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die ("only x.509 supported")

unless ($cert->{’system_identifier’} =~ m/x.7509/i);

my ($private_key, $pub_key);

$private_key = $key . "-x509-private.pem”;
#BUG only works with one policy file. .
$pub_key = $key . "-x509-public.pem";

unlink ("$keydir$pub_key") if (-e "$keydir$pub_key");
unlink ("$keydir$private_key") if (-e "$keydir$private_key");

open(PUBLIC_KEY, ">$keydir$pub_key")
or die ("couldn’t open $keydir$pub_key");
open(PRIVATE_KEY, ">S$keydir$private_key") or

die ("couldn’t open $keydir$private_key");

print (PUBLIC_KEY $cert->{’system-_information’}->{’public_key’});
print (PRIVATE_KEY $cert->{’system_information’}->{’private_key’});

close (PUBLIC_KEY) ;
close (PRIVATE_KEY) ;

chmod 0400, "$keydir$pub_key";
chmod 0400, "$keydir$private_key";

print (RACOON "remote anonymous {\n",
" exchange_mode aggressive, main;\n",
" generate_policy on;\n",
" certificate_type x509 \"$pub_key\" \"$private_key\" ;\n",
" verify_cert off;\n",
" my_identifier asnldn;\n",
" peers_identifier asnldn;\n",
" proposal {\n",
" encryption_algorithm 3des;\n",
" hash_algorithm md5;\n",
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" authentication_method rsasig;\n",
" dh_group modp1024;\n",
" HNn",
"} \n",
"sainfo anonymous {\n",
pfs_group modp1024;\n",
" encryption_algorithm 3des;\n",
" authentication_algorithm hmac_md5;\n",
" compression_algorithm deflate;\n",

" Ran);

close (IPSEC);
close (RACOON);

system ("$setkey -f $ipsec_conf") ;# or die ("couldn’t run setkey $!");

system ("$racoon —f $racoon_conf") or die ("couldn’t run racoon $!");
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