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Abstract

Conventionally, high-speed routers are built using custom hardware, typically dubbed
as network processors. A prominent example of such a network processor is the Intel
IXP1200. Such a network processor typically takes years of effort in the design,
fabrication and refinement of the custom hardware, and, worst, must be frequently
redesigned to meet the oft-changing requirements of emerging network applications.

This thesis presents the design and implementation of a software gigabit network
router on a general-purpose microprocessor using MIT’s Raw microprocessor. The
Raw processor, developed by the Computer Architecture Group at MIT, has six-
teen RISC processors, arranged as a grid, that communicate through programmable
switches and hardware network interconnects with single-cycle latencies. As opposed
to previous high-speed network routers, the Raw router is built without using any
custom hardware, and achieves its performance by carefully programming and orches-
trating, in software, the interconnects within the Raw chip. Our Raw implementation
uses stream-oriented abstractions and differs significantly from that of commercial
network processors, which use memory-oriented semantics. Consequently, the Raw
router is not only flexible in its architecture and easy to upgrade, our results show
that the Raw Router is more than three times faster than a router built using Intel’s
custom-made IXP1200 network processor.
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Chapter 1

Introduction

Rapid advancements in transmission link technologies have increased potential link
capacity to the point that network routers, rather than cables, are the bottlenecks.
To cope with the ever-greater processing demands high-bandwidth links place on
routers, vendors use custom hardware to achieve the required performance. Recently,
several vendors have developed network processors, programmable special-purpose
microprocessors designed to exploit the parallelism inherent in network workloads.
Such a network processor typically takes years of effort in the design, fabrication,
and refinement of the custom hardware, and, worst, must be frequently redesigned to
meet the oft-changing requirements of emerging network applications.

This thesis presents the design and implementation of a software gigabit network
router on a general-purpose microprocessor: MIT’s Raw microprocessor. The Raw
processor, developed by the Computer Architecture Group at MIT, has sixteen RISC
processors, arranged as a grid, that communicate through programmable switches
and hardware network interconnects with single-cycle latencies. As opposed to pre-
vious high-speed network routers, the Raw router is built without using any custom
hardware, and achieves its performance by carefully programming and orchestrating,
in software, the interconnects within the Raw chip. Our Raw implementation uses
stream-oriented abstractions and differs significantly from that of commercial network
processors, which use memory-oriented semantics. Consequently, the Raw router is

flexible in its architecture and easy to upgrade, but achieves these benefits without
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sacrificing performance.

1.1 Thesis Overview

This chapter describes the major contributions of the Raw Router, as well as an
overview of the router and the Raw microprocessor architecture. The remainder of
the thesis is organized as follows. The next chapter discusses the router design in
detail. Chapter 3 describes the implementation of the Raw router and presents the
performance evaluation and analysis. Finally, Chapter 4 proposes future work and

concludes.

1.2 Contributions

The primary contribution of this thesis is the design of a high-performance soft-
ware router for a general-purpose parallel architecture. This design encompasses the
placement of functionality on processing elements and the communication patterns
between them. The careful orchestration of the flow of packets as they are processed
and sent through the router is the key to achieving maximum forwarding rates and
minimal latency. Additionally, the design maximizes the use of the architecture’s
internal bandwidth for the storage and retrieval of packet payloads while the headers

are being processed.

1.3 Raw Router Overview

The Raw Router uses two Raw processors—one for the control-plane and one for the
data-plane—and four linecards. The control-plane handles all aspects of router man-
agement, such as maintaining the forwarding tables, and processes special packets,
such as IP packets with options. The data-plane performs the processing required
by the IPv4 specifications [1] and actually switches the packets to the correct output

ports.
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The basic design of the the Raw Router data-plane is a four stage pipeline, with
four independent forwarding paths. Each forwarding path processes packets for one
linecard. In the 4x4 Raw tile grid, the forwarding paths are columns of tiles, and the
pipeline stages are rows of tiles. All four forwarding columns process packets simul-
taneously and at the maximum possible rate—if one forwarding column is stalled, it
will not effect the other forwarding columns.

The Raw Router has been implemented in C code for the tiles and assembly code

for the switches. It meets all of the requirements specified for an IPv4 router.

1.4 The Raw Microprocessor

This section provides a brief overview of the Raw architecture.! A more detailed

discussion of the architecture is available elsewhere {7, 8, 9].

Tiled Architecture

The Raw architecture supports an ISA that provides a parallel interface to the gate,
pin, and wiring resources of the chip through suitable high level abstractions. As
shown in Figure 1-1 the Raw processor divides the chip into an array of 16 identi-
cal, programmable tiles. A tile contains an 8-stage in-order single-issue MIPS-style
processing pipeline, a 4-stage single-precision pipelined FPU, a 32 KB data cache,
two types of communication routers—-static and dynamic—and 32KB and 64KB of
software-managed instruction caches for the processing pipeline and static router, re-
spectively. Each tile is sized so that the amount of time for a signal to travel through

a small amount of logic and across the tile is one clock cycle.

On-chip Networks

The tiles are interconnected by four 32-bit full-duplex on-chip networks, consisting

of over 12,500 wires. Two of the networks are static (routes are specified at compile

This section borrows heavily from the architecture overview in [10].
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Figure 1-1: The Raw Microprocessor. The Raw microprocessor has 16 tile pro-
cessors (a detailed view of a tile processor is also shown) arranged as a 4x4 grid.

time) and two are dynamic (routes are specified at run time). FEach tile is connected
only to its four neighbors. Every wire is registered at the input to its destination tile.
This means that the longest wire in the system is no greater than the length or width
of a tile. This property ensures high clock speeds, and the continued scalability of

the architecture.

The design of Raw’s on-chip interconnect and its interface with the processing
pipeline are its key innovative features. These on-chip networks are exposed to the
software through the Raw ISA, thereby giving the programmer or compiler the ability
to directly program the wiring resources of the processor, and to carefully orchestrate
the transfer of data values between the computational portions of the tiles — much
like the routing in an ASIC. Effectively, the wire delay is exposed to the user as
network hops. To go from corner to corner of the processor takes 6 hops, which
corresponds to approximately six cycles of wire delay. To minimize the latency of
inter-tile scalar data transport, which is critical for ILP, the on-chip networks are
not only register-mapped but also integrated directly into the bypass paths of the

processor pipeline.
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The static router in each tile contains a 64KB software-managed instruction cache
and a pair of routing crossbars. Compiler generated routing instructions are 64 bits
and encode a small command (e.g., conditional branch with/without decrement) and
several routes — one for each crossbar output. These single-cycle routing instructions
are one example of Raw’s use of specialization. Because the router program memory
is cached, there is no practical architectural limit on the number of simultaneous
communication patterns that can be supported in a computation.

Raw’s two dynamic networks support cache misses, interrupts, dynamic messages,
and other asynchronous events. The two networks use dimension-ordered routing and
are structurally identical. One network, the memory network, follows a deadlock-
avoidance strategy to avoid end-point deadlock. It is used in a restricted manner by
trusted clients such as data caches, DMA and I/O. The second network, the general

network, is used by untrusted clients, and relies on a deadlock recovery strategy [4].
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Chapter 2
Design

This chapter discusses the design and architecture of the Raw Router. Through-
out the design and development, we have evaluated our working design to discover
the bottlenecks, and we have made substantial revisions and improvements. This
chapter presents three major versions: the final optimized design (Version III), the
preliminary design (Version I), and the predecessor to the final version (Version II).
The revisions primarily encompass improvements in the communication patterns and
memory transactions to reduce contention in the Raw on-chip networks and the off-

chip memories.

2.1 Raw Router Overview

The Raw Router uses two Raw processors—one for the control-plane and one for the
data-plane—and four linecards. The control-plane handles all aspects of router man-
agement, such as maintaining the forwarding tables, and processes special packets,
such as IP packets with options. The data-plane actually processes the packets and
switches them to the correct output ports. The input linecards are connected to the
southern edge of the control-plane. All data packets flow through the control-plane
directly to the data-plane, which is connected to the northern edge of the control-
plane. The output linecards are connected to the northern edge of the data-plane.

Figure 2-1 shows this configuration.
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Figure 2-1: Raw Router Overview. The Raw Router is designed to use two Raw
processors, one for the control-plane and one for the data-plane. The design has four
independent forwarding columns, one for each linecard.

2.2 Control-Plane

The control-plane is responsible for all aspects of router management. The Raw
Router uses a dedicated Raw processor for the control-plane. Router management
entails running routing protocols, such as BGP [6] and OSPF [5], to maintain the
forwarding tables. The control-plane must process all packets destined to the router
itself, such as control packets from other routers containing instructions for updating
or maintaining routes. The Raw Router also uses the control-plane to process special

packets prior to forwarding them, such as IP packets with options.

The architecture of the control-plane is divided into four rows, although not all
rows are used to process a packet. Figure 2-2 shows an overview of the stages. The
input linecards are connected to the input ports of tiles 12 through 15, in the bottom
row. As soon as a linecard receives a packet, it writes it to the first static network

for its routing column.
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2.2.1 Demultiplexer

The first row of tiles that the packet passes through is a demultiplexer. The switches
for these tiles route the packet both north and into the processor. The demultiplexer
reads the packet from the static network and stores it in a buffer in the processor
data-cache. The demultiplexer looks at the destination address and port to determine
if the packet is to be forwarded and needs special processing or if it is destined for
the router itself. If either of these conditions is true, then the demultiplexer sends
the packet using the general dynamic network to the appropriate processing tile. The
demultiplexer can determine the correct processing tile based on the destination port
of the packet—for example, BGP listens on port 179. Based on this port, or the IP
header if the packet has options, the demultiplexer consults a table that indicates the
router’s current control configuration and which processing tiles are running which
services. If the packet does not require special processing or is not destined for the

router, then the demultiplexer can discard the packet.

2.2.2 Processing Tiles

The control plane has eight tiles that are able to run different routing protocols and
packet processing routines. The switches on all of these tiles are configured to route all
data to the north. The processes to be run on these tiles are completely customizable.
The tiles register their services with the demultiplexer tiles, and then receive their
appropriate packets over the dynamic network. If a processing tile needs to send
a packet—for instance, a BGP UPDATE or KEEPALIVE message—then the processing
tile can send the new packet to any of the queuing tiles over the general dynamic
network. Similarly, if the processing tile receives a packet that is destined for another
host, such as an IP packet with options, then the processed packet is also sent to a

queuing tile using the dynamic network.

21



2.2.3 Queuing Tiles

The topmost row of tiles queue packets for the data-plane. The packet queue is kept
in the processor data-cache, to ensure fast reads and writes. Each queuing tile receives
every packet sent to its input port on the router. Before enqueuing a packet, the tile
performs the same check as the demultiplexer on the packet header. If the packet is
destined for the router itself or requires further processing, then the tile discards the
packet, since the demultiplexer had already sent it to the appropriate processing tile.
Periodically, the queuing tiles poll the general dynamic network to see if any of the
processing tiles have packets to be sent.

The queuing tiles dequeue packets and send them north over the first static net-
work into the data-plane. They also establish the streaming memory transactions
with the packet payload memory buffers, as described in section 2.3.5.

Figure 2-3 summarizes the communication patterns used by the control-plane.
This diagram illustrates that for the common case—a normal IPv4 packet destined
for another host—the packet is sent straight through the control-plane on the first
static network. Forwarding path ensures that the control-plane adds minimal latency
for common packets and that it does not negatively impact the throughput of the

router.
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0 1 2 3
Queue packets
for data-plane
4 5 6 7
Processing Tiles
(BGP, OSPF, etc)
8 9 10 11
Processing Tiles
(IP with options, etc)
12 13 14 15
Demultiplexer

Input ports to tl tz t3

Figure 2-2: Raw Router Control-Plane Overview. The Raw Router control-
plane is designed with four independent forwarding columns—one for each linecard.
The first row of tiles demultiplexes control packets and sends them to the appropriate
processing tile, in the second or third row. The last row queues packets for the data-
plane.
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Figure 2-3: Raw Router Control-Plane Communication. All packets are for-
warded through the control-plane using the first static network to the queuing tiles.
The queuing tiles decide to queue or discard the packet, based on the destination
address. Queued packets are sent to the data-plane. The demultiplexing tiles send
packets over the dynamic network to processing tiles. If the processing tiles need to
send new or processed packets, they are sent to a queuing tile using the dynamic
network.
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2.3 Data-Plane Version 111

This section presents a detailed discussion of the final version of the router data-plane.
The design is presented in chronological order by the four processing stages that each
packet passes through, followed by the mechanisms handling the packet payload input
and output.

The basic design of the the Raw Router data-plane is a four stage pipeline, with
four independent forwarding paths. Each forwarding path processes packets for one
linecard. In the 4x4 Raw tile grid, the forwarding paths are columns of tiles, and the
pipeline stages are rows of tiles. Figure 2-4 shows the layout of the input and output
ports with respect to the Raw processor.

All four forwarding columns process packets simultaneously and at the maximum
possible rate—if one forwarding column is stalled, it will not effect the other forward-
ing columns. There are only four physical linecards, but they have separate input

and output queues that operate independently.

2.3.1 Stage 1: Table Lookup

The first pipeline stage performs the forwarding table lookup. There are two copies
of the forwarding tables, which are stored in SDRAMs connected to tiles 12 and 15.
One copy of the forwarding table is designated as the current copy, and the other is
the pending copy. The Stage 1 tiles maintain a pointer indicating the current table,
and all lookups are done from this table.

When the router control processor determines that a forwarding table update is
necessary, for example in response to a BGP UPDATE message, it updates the pending
table. Once the update has been written to memory, the control processor notifies
the Stage 1 tiles to change their table pointers to point to the updated table and to
invalidate their caches. As the updated pending table is now the current, the former
current table becomes the new pending table and will receive the next update. How-
ever, the control processor also must propagate the last update to the new pending

table, so that it is synchronized with the new current table.
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Output ports ' 0 ' 1 ' 2 ' 3

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Input ports to tl '2 13

Figure 2-4: Raw Router Data-Plane Overview. The Raw Router data-plane is
designed with four independent forwarding columns—one for each linecard—each of
which has four pipeline stages.

Each Stage 1 tile maintains the address of where the next packet payload for its
forwarding column will be stored in memory. When a Stage 1 tile is ready to receive
the next packet header, it sends the payload memory address to its connected input
queue in the control-plane over the first static network, which signals that the control-
plane queue should begin sending the packet. The control-plane queuing tile then
sends the first sixteen words (64 bytes) of the packet, which is the maximum length
of an IP header, on the first static network. (See Section 2.3.5 for a description of

how the packet payload is handled.) The Stage 1 tile’s switch simultaneously routes
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these words into the processor and north to the next stage. If there are less than
sixteen header words, the header is padded with zero-valued words until it is sixteen
words long. The header has a field that indicates the actual header length, so the
padding words are discarded before the packet is sent to the next hop. By padding
the headers to ensure a length of sixteen words, the switch code is simplified, as the

switches can assume that they always route the same number of header words.

The destination IP address of the packet is the fifth data word of the header. This
destination 1P address is the value used to perform the table lookup.

We use a two-tiered forwarding table layout proposed by Gupta et al. in [2],
specifically, their DIR-24-8-BASIC scheme. This design has two tables, both stored
in SDRAM, and makes a trade-off to use more memory than necessary to store the
routing entries in order to minimize the number of memory accesses for a lookup. The
first table, called TBL24, stores route prefixes that are up to, and including, 24 bits
long. This table has 2?* entries, containing the route prefixes 0.0.0 to 255.255.255.
This table is always indexed by the first 24 bits of the address. If the routing prefix
is less than 24 bits long, then the route is duplicated in the table to span all possible
indexes. For example, if the prefix is 192.168/16, then there will be 256 entries (all
of which have the same destination route), spanning from 192.168.0 to 192.168.255.
Although more compact representations are certainly possible, this implementation
ensures that lookups for routing prefixes up to 24 bits long will take only a single

mMemory access.

The second table, called TBLlong, stores all the route prefixes that are longer
than 24 bits. If a route prefix is longer than 24 bits, then 256 entries are allocated
in TBLlong, and a pointer to this set of entries is stored in TBL24, as well as a flag
indicating that the pointer needs to be dereferenced. The routing lookup result is
found by using the 8 low-order bits of the destination address to index the 256 entries
from TBLlong. Performing a lookup for an entry with a prefix length longer than 24
bits thus takes two memory accesses.

The result from the forwarding table lookup is the output port to which the packet

should be sent. The Stage 1 tile sends the output port result over the dynamic network
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to the Stage 3 tile in same forwarding column. In addition to the output port, the tile
also sends the address of the packet payload. Figure 2-5 shows the communication
for the first pipeline Stage. Finally, the Stage 1 tile updates the memory address for
the next packet payload, and sends it to the control-plane queuing tile, indicating

that it is ready to receive the next packet.

= = — Result, dynamic network Header, static network

Output ports ' 0 ' 1 ' 2 ' 3

0 1 2 3
4 5 6 7
A A A A
T 1 ) .
8 | 9 | 10 11 |
| | | !
| | | !
1 1 1 I
12 13, 14, 15 I Stage 1: Table lookup
| | |
SDRAM SDRAM
Routing table T T f ? Routing table

Input ports 'O tl tz t?»

Figure 2-5: Forwarding Stage 1: Table Lookup. The first pipeline stage tile
performs one or two memory accesses, depending on the route prefix length, in a
forwarding table to determine the output port for the next hop. The output port,
along with the packet payload memory address, is sent to Stage 3.
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2.3.2 Stage 2: Compute Header Checksum

The second pipeline stage computes the IP packet header checksum. A second stage
tile receives the sixteen header words over the first static network from the Stage 1
tile before it. As with the first stage, the second stage switch simultaneously routes
the header words into the processor and onto the next stage.

The checksum is computed by summing the bytes of the header, and then using
carries to compute the 1’s complement sum. The result of the checksum is a boolean
value, indicating whether the checksum was valid. This result is sent over the dynamic
network to the Stage 3 tile in the same forwarding column. Figure 2-6 shows the

communication for the second pipeline stage.
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Figure 2-6: Forwarding Stage 2: Compute Header Checksum. The second
pipeline stage tile computes the header checksum. The result, which is a boolean
value indicating whether the checksum was valid, is sent to Stage 3.
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2.3.3 Stage 3: Decrement TTL, Update Header, and Send

to Output Queue or Discard

The third pipeline stage decides whether to discard or forward the packet and per-
forms the actual routing of the header. The third stage receives the sixteen header
words over the first static network from the second pipeline stage. However, unlike
the first two stages, a third stage tile does not forward the header directly on to the
fourth stage tile in its forwarding column. Additionally, the third stage tile receives
the output port and payload memory address from Stage 1, and the checksum result
from Stage 2, both over the dynamic network. These messages each contain a header
word that allows the Stage 3 tile to correctly identify the results, as they may be

received in an unpredictable order.

The third pipeline stage updates the time-to-live (TTL) of the packet. A Stage
3 tile reads the TTL field, decrements it, and writes the value back to the packet
header. Because it has changed the bits in the header, it must also recompute the

header checksum and update the checksum bits.

Once the TTL has been updated, the packet header is ready to be routed to the
next hop. Before performing the routing, the third pipeline tile stage decides whether
the packet should be discarded. For the packet to be routed, the TTL must be greater
than 1 and the checksum must be valid. Because the checksum result was computed
in the second pipeline stage, and the Stage 3 tile only needs verify that the checksum
passed. If either the checksum is invalid or the T'TL has reached zero, then the tile
discards the packet. Otherwise, the packet is valid and is routed to the fourth pipeline
stage.

The route for the header is determined based on the output port received over
the dynamic network from the first pipeline stage. The Stage 3 tile creates a new
dynamic message destined to the Stage 4 tile output queue connected to the output
port. This message contains the sixteen packet header words and the packet payload
address. Figure 2-7 shows the communication patterns for the third pipeline stage.

The third stage represents the switching component of the router, in which the packet
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is moved from the input forwarding path to the output queue.

32




Output portsjo '1

Header, static network
"""" Header, dynamic network

0 1 2 3
A A A A
4 5 H 6 7 : Stage 3: Decrement TTL,
: Verify TTL & checksum,
AT * --------------- Y b A Update checksum + TTL,
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Figure 2-7: Forwarding Stage 3: Decrement TTL, Update Header, Send to
Output Queue or Discard. The third pipeline stage tile decrements the time-to-
live (TTL) field, recomputes the checksum, and updates the header with the new
TTL and checksum. At this point, the header is ready to be sent to the next hop.
The Stage 3 tile sends the processed packet header, along with the packet payload
memory address, over the general dynamic network to the output queue based on
the lookup result from Stage 1, or it discards the packet if the header checksum was

invalid or the TTL reached 0.
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2.3.4 Stage 4: Queue Header for Output Linecard

The fourth pipeline stage queues packet headers and payload addresses for the output
linecards. When the packet header queue is empty, a stage four tile performs a
blocking read from the dynamic network, waiting to receive a header and payload
address over the dynamic network from any third stage tile. If the packet queue
is neither empty nor full, then the tile will perform a non-blocking read from the
dynamic network, periodically polling the network to see if another packet header
has arrived. If so, this packet header is read from the network and appended to the
queue. If the packet queue is full, then the router is experiencing network congestion
on that output port. The router can be configured to have the tile either discard
subsequent incoming packet headers until there is space in the queue, or to stall the
forwarding column until attempting to send to the output queue.

The output linecard connected to a stage four tile indicates that it is ready to
receive the next packet by sending the tile an interrupt. The interrupt does not cause
the tile to send the next packet immediately, but rather the interrupt handler sets a
flag that indicates that the linecard is ready for the next packet. The stage four tile
periodically checks this flag. If the flag is set, then the tile clears the flag and sends
the first packet header and payload address in the queue over the general dynamic
network to the output linecard. Figure 2-8 shows the communication for the fourth

pipeline stage (the linecard interrupt is not shown).
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Figure 2-8: Queue Header for Output Linecard. The fourth pipeline stage
receives packet headers from the third stage, and buffers them in a queue. When the
corresponding linecard is ready to send the next packet, it interrupts the tile. The
tile then dequeues a header and sends it to the linecard using the general dynamic

network.
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2.3.5 Payload In

The packet payloads are sent directly from the control-plane queuing tiles to SDRAMs.
As described in Section 2.3.1, each tile in the first pipeline stage sends a memory
address for the packet payload to its control queuing tile. The queuing tile then initi-
ates a streaming memory transaction with its dedicated SDRAM using the first static
network. Streaming memory is a memory interface supported by the Raw memory
controllers, in which the processor or a device sets up a transaction with the memory,
indicating that it wishes to write an arbitrary given number of data words to a given
address. The memory controller is then able to write one word of data per cycle for
the transaction. Streaming transactions are used to support efficiently writing large
chunks of data using the static network. The use of streaming memory for the packet
payloads is a distinguishing feature of the Raw Router. Most routers process packets
in flits, or smaller sized blocks of data. While section 2.3.6 describes how Raw uses
these to retrieve the packet payload, the packet does not need to be fragmented into
smaller blocks when it is written to the buffer. Figure 2-9 shows the placement of
these payload SDRAMs and the static routes.

The control queuing tile sends the address given to it by the Stage 1 tile, as well
as the length of the packet payload, aligned to a cache-line boundary. The first static
network is configured so that it will route the payload to the correct memory. As
the payload length passes through each network switch, the switch processor loads
this value into a register. This register is then used to count the payload words—
the switch decrements the value for ever word that it routes, and when the counter
reaches zero, the switch branches to begin routing the next packet header or payload.

Once the streaming transaction has been initiated, the control queuing tile writes
the entire packet payload over the first static network. The static network routes the
payload to the SDRAM, and the memory controller stores the data. The memory is
allocated as a circular buffer, which is large enough to store the maximum number of

packets that router can process simultaneously.
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Figure 2-9: Payload In. The packet payloads are sent directly from the input
control-plane queuing tiles over the first static network to four SDRAMs using the
streaming DRAM interface. These routes are designed so that there is neither network

nor memory-bandwidth contention.
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2.3.6 Payload Out

The output linecards receive packet headers, along with the payload addresses, from
their fourth stage queuing tiles over the general dynamic network. The output
linecards directly retrieve the packet payload from memory using the memory dy-
namic network. The memory controller interface only supports streaming access to
memory when the static network is used. Given that the output linecards cannot
know which SDRAMs will hold the packet payloads until they receive the header,
static routes cannot be pre-configured, as is done for the input payloads. The over-
head of reconfiguring the static network for every packet payload is too expensive, so
the streaming interface is not used. Instead, the output linecards use the standard
memory interface, which supports transactions of eight word (64-byte) cache-line-
sized blocks. Although the amount of memory per request is fixed at 64-bytes, the
memory controllers support pipelined requests, with up to four outstanding memory
requests. The output linecards thus send pipelined requests at the maximum possible
rate. These requests and their responses are sent over the memory dynamic network.

Even with the use of pipelined requests, the retrieval of packet payloads to the
output linecards is the bottleneck step in the router for packets with large payloads.
The delay of this bottleneck is the longest if multiple linecards need to receive their
payloads from the same memory controller simultaneously. Figure 2-10 shows the
communication patterns used by the linecards for loading the payload from memory.
As seen in this figure, the memory network acts as two busses, between the memories

attached to tiles 0 and 3, and tiles 8 and 11.
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Figure 2-10: Payload Out. The output linecards request the packet payloads from
memory using standard memory transactions over the memory dynamic network.
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2.4 Data-Plane Version 1

This section summarizes the design of the initial version of the Raw router data-
plane. The first design also has the same four stage pipeline: lookup, validation,
update, and forwarding. The pipeline stages were organized in wvertical columns of
tiles, with four forwarding rows. That is, the basic design from figure 2-4 is rotated
90 degrees counter-clockwise. The packets are streamed to the first three stages of
the pipeline over the first static network. The first stage performs the route lookup
by cache missing to a forwarding table in an external DRAM located adjacent to the

column. The other stages are essentially the same as in Version III.

The Version I design sends messages with results of the checksum validation and
destination port over the static network. Packet payloads are sent between the third
and fourth stages of the pipeline using the general dynamic network. In this design,
the first eight words of the packets are sent into the pipeline, and the remaining packet
data is sent directly to two external DRAMSs, attached to tiles 1 and 13, for storage
until the packet is ready to be sent by the linecard. The output linecards retrieve the

packet payloads using a DMA protocol.

The orientation for this design was chosen so that we could use the standard Raw

DMA protocol for handling the packet payloads.

There were several problems with the first version of the design. First, there was
contention for the two memory banks that stored the packet payloads. These two
DRAMs did not have enough bandwidth to support reading and writing all of the
packet payloads simultaneously. The memory controllers were half-duplexed, such
that they were limited to performing either a read or a write request, but not both
simultaneously. The second major problem in the Version I design was that two
busses were formed along the general dynamic network in the fourth stage and the
memory dynamic network in the third stage. Raw’s dynamic networks are dimension-
order routed, with the z dimension first. Thus, the fourth stage tiles had contention
trying to send the packet headers to the correct output queue. Similarly, there was

severe contention along the third stage, as both the input and output linecards were
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sending memory requests and attempting to read responses along the memory network

connecting these tiles.

2.5 Data-Plane Version 11

The section summarizes the major differences between Version I and Version II of the
Raw router design. One of the major changes in the second version was rotating the
design 90 degrees, so that it is oriented as shown in figure 2-4. Now, the results from
the third stage are sent across the third stage dynamic network routers, as shown in
figure 2-7, instead of causing contention for the dynamic network in the fourth stage.

The memory contention was addressed with several changes. First, memory was
changed to use SDRAMs, which are full-duplexed, allowing them to read and write a
cache-line simultaneously. Second, the number of memories was doubled, employing
a total of four, connected to the same tiles as in Version III. The placement of these
SDRAMSs eliminates the contention for writing the packet payloads from the input
linecards.

Other changes concern the use of the static network. Instead of using the static
network to send the results from the first two stages, these results are sent using the
general dynamic network. Instead of only sending the first eight words of the packet
into the pipeline, this design sends the first sixteen (64-bytes), which is the maximum
size of an IP header.

The second version of the router is very similar to Version III. The main through-
put bottleneck is the use of the DMA protocol, which limits requests to a single eight
word cache-line at a time. These requests must be completed serially, in that a second

read cannot be issued until the first is satisfied.

2.6 Full Version IIT Router Data-Plane

The major changes between Version IT and Version III were to increase the throughput

for large packets by using more efficient memory transactions. For the input packets,
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Version III uses a streaming memory transaction instead of the DMA protocol. The
throughput for output packets was increased by using pipelined memory requests.
The forwarding rate was also increased by eliminating several unnecessary delays
within the data-plane. For instance, in Version II, Stage 3 would send a notification
word to Stage 1 once it had forwarded the current header. Stage 1 would block until it
received this notification before requesting the next packet from the input port. This
communication is unnecessary, as the static network will simply cause the processors
to stall if Stage 3 is congested.

Figure 2-11 shows all of the communication patterns for the data-plane in Ver-
sion II1. The design and orchestration of these communication patterns and the place-
ment of functionality within the data-plane are two of the major contributions of this
thesis. In the final version of the router, we have eliminated communication con-
tention between different stages of the router, except for the sending of the headers
from the third to fourth stage. The streamlined communication patterns allow the

router to achieve its high performance.
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Chapter 3

Evaluation

This chapter discusses our implementation of the Raw router and presents our per-
formance evaluation and analysis. The evaluation compares the forwarding rates and
throughputs of all three versions of the router and the Intel IXP1200. Finally, we

analyze the latency and a breakdown of the time required to process each packet.

3.1 Implementation

The Raw Router was developed using a validated cycle-accurate simulator of the Raw
chip. We chose to use the simulator to develop our prototype router, as opposed to
the actual Raw hardware, for two reasons. First, the simulator gives us complete
flexibility for the placement of devices and memories around the Raw processor. The
fabricated Raw board has restrictions on which Raw pins are connected to memories
and which pins are connected to external devices. This is why the original Version I
design was oriented so packets flow horizontally—this orientation accommodated the
placement of memories supported by the actual hardware. However, since our goal was
to explore different router architectures and we wanted to see how fast we could push
the router, we decided to change our design to use memories that are not supported
by the current Raw hardware board, but could be supported in a future revision.
The second advantage of the simulator is that it supports simulation of arbitrary

devices attached to the Raw processor. We used this device simulation support to
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implement our high-performance linecards. Although the Raw board does have a
PCI bus, PCI devices are not yet supported. Using simulated linecards allowed us
to focus on the design of the router itself, without worrying about the interfaces to
the linecards. Furthermore, by using simulated linecards we were able to explore the
performance advantages of linecards that are aware of features supported by streaming
processor architectures, such as using a streaming memory protocol instead of DMA

transactions.

3.1.1 Control-plane

In our initial implementation of the Raw Router, the control-plane is not used. For
this implementation, the input linecards are connected directly to the southern-edge
of tiles 12-15 of the data-plane. The forwarding tables are statically initialized when

the router boots.

3.1.2 Data-plane

As the control plane has not been used in this implementation, the forwarding tables
are statically-initialized. Because the router cannot change its routing table without
the control plane, only a single forwarding table is used, as opposed to the two

tables—one of which accepts the next update—as described in section 2.3.1.

The Raw router data-plane was written in C code for the tile processors and
assembly code for the switch processors. The entire data-plane is about 1300 lines
of C and 500 lines of switch assembly. The linecards were written in 800 lines of a

C-like language supported by the Raw simulator for external devices.

Aside from the differences explicitly mentioned above, the implementation con-

forms to the design presented in Chapter 2.
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3.2 Experimental Methodology

The evaluation for this thesis makes use of a validated cycle-accurate simulator of
the Raw chip. Using the validated simulator as opposed to actual hardware allows us
to explore alternative motherboard configurations and use simulated linecards. [10]
further describes this simulator. Our simulated input linecards read their input from
files containing the packets in byte streams. These linecards have a configurable rate
at which they send their next packet to the Raw processor. If the rate is greater than
the saturation point of Raw, then the linecards will stall until the Raw processor is
able to accept the next packet. The output linecards write every byte they receive
from the Raw processor to trace files, which are validated in post-processing scripts

to ensure that the router is routing correctly.
For our timing results, we use a Raw microprocessor clock speed of 425MHz.

The input linecards send UDP packets at specified rates. We used two types of
input packet files: randomly generated and captured traces. The randomly generated
packet files are traces of 4000 packets of a specified size with 128 different source
and destination addresses. Each of these 128 source and destination addresses are
randomly assigned to an input and output port, respectively. For each evaluation, we
ran the same configuration four times with four different random traces, and averaged
the results. We found that there was no difference in performance when using traces
longer than 4000 packets or using more than 128 addresses. The forwarding table is
initialized with 32-bit entry prefixes, that is, each address has its own entry in the
forwarding table. 32-bit prefixes also require two memory references for each table

lookup, which is the worst-case performance.

The captured trace files !

each contain 10,000 packets. For the live traces, the
forwarding table is initialized with randomly assigned 24-bit entry prefixes, which
more accurately reflect actual routing table entries. The results for the live packet
traces are also averaged from four different traces, each containing 10,000 packets.

For the live packet traces, we ignored the timing data included in the traces, and

'The packet traces were obtained from http://lever.cs.ucla.edu/ddos/traces/
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configured the linecards to send the packets at the maximum rate that the router
would accept them.

Our evaluation measures the forwarding rate, throughput, and latency of the
router. The forwarding rate is measured using 64-byte packets, which are minimum-
sized TCP packets. Small packets place more demand on a router’s CPU and other
bottleneck resources than large packets, because the CPU is used in proportion to the
number of packets forwarded, not in proportion to bandwidth. However, the through-
put is also an important measurement, because it stresses other router resources, such
as internal bandwidth. Throughput is measured by using 1500-byte packets, which
are the maximum size of an Ethernet packet. Finally, latency is measured to de-
termine how much time the router delays the packet in the forwarding process. The
latencies for both large and small packets are measured. If the router has high latency
and delays a packet for too long, then packets can arrive at the receiver out-of-order.
Out of order packets can cause problems at the application layer, but should also be
avoided because they can cause TCP to conclude that packets are being dropped,

which will lead to spurious retransmissions and may lead to congestion.

3.3 Forwarding Rates

Perhaps the most important performance measurement of a router is its forwarding
rate. The forwarding performance is evaluated by measuring the rate at which a router
can forward 64-byte packets over a range of input rates. Minimum-size packets stress
the router harder than larger packets; the CPU and several other bottleneck resources
are consumed in proportion to the number of packets forwarded, not in proportion to
bandwidth. Plotting forwarding rate versus input rate indicates both the maximum
loss-free forwarding rate (MLFFR) and the behavior of the router under overload.
An ideal router would emit every input packet regardless of input rate, corresponding
to the line y = z.

Figure 3-1 compares the performance of the Raw router and of the Intel IXP1200

network processor for IP routing. The Intel IXP1200 results were collected using
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the IXP1200 simulator included with Intel IXP Developer Workbench. We used the
example router provided by Intel, which has two 1Gbit linecards. To measure the
performance of the IXP1200, we used the sample 64-byte packet streams provided
with the IXP simulator. The IXP simulator did not allow us to set the rate at which
packets are sent to the router, so we plot the saturation point—which is 2,900,000

packets per second— and interpolate the rest of the curve.

For the Raw Router, we used 64-byte packet traces and measured the output rate
as the offered load was increased in increments of 100,000 packets. The maximum loss-
free forwarding rate of Raw is 9,455,000 packets per second. Raw’s peak forwarding
rate, attainable with bursty senders, is 9,535,000 packets per second. When the
offered load exceeded Raw’s forwarding capabilities, the linecard would stall until the
forwarding column was able to receive the next packet. The bottleneck for minimum-
sized packets is either the routing table lookup or computing the header checksum,

and is discussed in more detail in section 3.5.

Figure 3-2 shows the performance of several variations of the Raw Router. The
“null” line shows the performance of the router which does no processing. The check-
sum and T'TL are not computed and the results are always successful, and the output
port is always the same as the input port. The MLFFR for the null router is 15.5 mil-
lion packets per second and provides a baseline for the maximum possible forwarding
rate with no processing or switching overhead. The “IPv4 version III” line shows the
performance of the final, optimized implementation of the router, and is the same

plot included in figure 3-1.

Two other points of comparison are routers built with a Pentium III. One mea-
surement is for the Click modular router [3]. The other measurement is for Linux IP
routing modified to poll the network interfaces cards instead of taking interrupts on a
packet arrival. Click has a MLFFR of 333,000 packets per second, and polling Linux
has a MLFFR of 284,000 packets per second. Both of these results are taken from
[3], which reports that the results were measured using a 700MHz Pentium III and
100Mbit PCI Ethernet controllers. Table 3.1 provides a summary of the maximum

loss-free forwarding rates for the various routers and versions of the Raw router.
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Figure 3-1: Raw and IXP1200 Forwarding Rates Comparsion. Forwarding
rate as a function of input rate for the Raw and IXP1200 routers (64-byte packets).

3.4 Throughput

Although small packets best measure the processing capabilities of a router, the per-
formance for routing large packets is another important metric. Large packets stress
a router’s internal bandwidth and its ability to move data from its input ports to its
output ports.

Table 3.2 shows the throughput when routing 1500-byte packets for the optimal
and “null” versions of Raw router, as well as the IXP1200 router with two 1Gb
linecards. The Raw IP router has a sustained throughput of 13.74Gb/s. The bot-
tleneck of the router for large packets is the transferring of the packet payload into
and out of the SDRAM buffers. The throughput for the captured packet traces is
9.34Gb/s. The throughput for the captured traces is expected to be lower than the

peak throughput, since the router must consume resources processing many small
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Figure 3-2: Raw Router Forwarding Rates. Forwarding rate as a function of
input rate for the several implementations of the Raw router (64-byte packets).

packets.

Table 3.2 also illustrates the substantial improvements made to the throughput
with the various enhancements over Version I and Version II. The improvement from
Version I to Version II is largely due to the elimination of contention on the memory
networks. The further gain of over 5Gb/s between Version II and Version III comes
from using more efficient memory transactions, namely streaming memory transac-

tions for the input payloads and pipelined memory requests for the outputs.

3.5 Latency

Table 3.3 shows the latency, in both cycles on the Raw processor and the correspond-

ing time in nanoseconds, for the Raw IP router and the “null” implementation. These
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Router Forwarding Rate (Mpackets/s)
Raw null 15.5
Raw IPv4 version III 9.45
Raw IPv4 version 11 8.4
Raw IPv4 version I 6.7
IXP1200 IPv4 2.9
Linux Click IPv4 0.33
Linux polling [Pv4 0.28

Table 3.1: Forwarding Rates Summary. A summary of the maximum loss-free

forwarding rates of 64-byte packets for several routers.

Router Throughput (Gb/s)
Raw null 20.82
Raw IPv4 version III 13.74
Raw IPv4 version II 8.66
Raw IPv4 version I 5.96
IXP1200 IPv4 1.9

Table 3.2: Throughput Comparsion. A measure of sustained throughput for 1500-
byte packets.

measurements were made from Raw cycle count at the beginning of each forwarding
stage, and summing the results for all the stages. For 64-byte packets, the Raw IP
router adds only 293ns of latency. As a comparison, the Click router has a latency of

2798ns for a 64-byte packet [3].

The difference between the latency for 64-byte and 1500-byte packets shows that
moving the packet payload to and from memory is the router bottleneck for large
packets. These results show that there is additional overhead for processing the
packet payload in addition to just moving the data. There is a difference of 1436
bytes that need to moved into and out of memory. 1436 bytes equals 359 4-byte
words. Because it takes one cycle to read and write each word, it should take an
additional 718 cycles to read and write these extra bytes. However, the 5394 cycles
needed to process a 1500-byte packet is much more than 718 cycles more than the

690 required for a 64-byte packet. The extra 3986 cycles represent overhead from the

memory transactions, the memory latency, and contention on the memory network.
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Router  Packet size Cycles Time(ns)

Raw null 64 416 177
Raw IPv4 64 690 293
Raw null 1500 3490 1483
Raw IPv4 1500 5394 2292

Table 3.3: Raw Latency. Latency of the Raw router for 64 and 1500 byte packets.

In particular, the memory dynamic network used by the output linecards to retrieve
the packet payload accounts for the majority of this overhead latency, because it is

not able to use the streaming memory interface used by the input linecards.

Stage Task Cycles Time(ns)
1 Forwarding table lookup < 24bit prefix 29/ ~ 100 12/ ~ 42
1 Forwarding table lookup > 24bit prefix 36/ ~ 150 15/ ~ 64

2 IP header checksum 78 33
3 Update TTL and checksum 26 11
4 Dequeue and send to output linecard 22 9

Table 3.4: Raw Task Times. The time taken to perform the different packet header
processing steps. The first value for the forwarding table lookup is the time if the
result is already in the processor data cache; the second value represents a cache miss.
The time taken to satisfy a cache miss varies based on the tile’s distance from the
memory; the averaged value is shown.

Table 3.4 further breaks down the cost of forwarding a packet through the Raw
router. This table shows that for small packets, the bottleneck stage is either the table
lookup or IP header checksum, depending on whether the cache-line(s) containing the
result for the table lookup are already in the data-cache. The address prefix length
for the lookup does not impact the latency if the relevant portions of the forwarding
table are already cached. However, if the table entries are not cached, then the lookup

takes fifty percent longer for a long prefix, and is also the bottleneck stage.

53



o4




Chapter 4

Future Work and Conclusion

This chapter discusses future research possibilities for further increasing the perfor-

mance and functionality of the Raw router, and then concludes.

4.1 Future Work

Prefetch Payloads in Stage 4

The bottleneck for large packets is reading the payload from memory using the output
linecards. While the linecard is reading the payload, its Stage 4 queuing tile is blocked,
simply polling the dynamic network for new headers from Stage 3. Instead, the Stage
4 tile could begin to prefetch the payload for the next packet in the queue into a local
buffer in the processor data-cache. Then, when the linecard is ready for the next
packet, the Stage 4 tile can send it the entire packet, not just the header.

The hard part of this optimization is ensuring that a Stage 4 tile does not slow
down the router by interfering with a read being performed by another linecard to the
same memory. Otherwise, the tile would create contention at the memory controller.
The tile would have to ensure that no other tiles or linecards are currently performing
a read from the desired memory before beginning the prefetch. Similarly, the tile
should be interrupted if either its linecard completes sending its packet before the

prefetch is completed or if another linecard wants to begin a read from the same
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memory controller.

Concurrent Packet Processing in Output Linecards

If the output linecard is able to read from the memory network and either the general
dynamic network or the second static network in the same cycle, then it would be
possible to have the output linecards process large and small packets concurrently.
While the output linecard is busy reading a large packet payload on the memory
network, the queuing tile could send it payload-less packets from its queue using
either the general dynamic network or the second static network. In addition to
increasing the forwarding rate for mixed sized packets, this would greatly reduce the
latency for small packets queued behind several large packets.

Note that this optimization is largely incompatible with the previous one propos-

ing prefetching packet payloads.

Stage 4 Queuing and Dropping Packets

Evaluations should be done to determine how long the Stage 4 queues should be
to guarantee an acceptable amount of latency. Currently, the router does not drop
packets when it is congested—if the queues in Stage 4 become full, then the network
buffers will fill and eventually cause the processors to stall. However, dropping is
implemented in Stage 4—it is just not enabled. Further evaluations can determine
the effect on performance and latency if the router drops packets when the Stage 4

queues become full.

Stage 3 Queuing

Another optimization that could potentially increase the forwarding rate and through-
put, and possibly the latency for some packets at the expense of others, would be
to add queuing to Stage 3. If a single Stage 4 tile’s queue is full, then whenever a
Stage 3 tile attempts to send a header to that queue, that forwarding column will

stall—even if the other queues are empty. Instead of blindly attempting this blocking
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write, the Stage 3 tile could poll the dynamic network status register. If it sees that
the buffer for the direction in which it needs to send is not empty, then it would
know that there is possibly congestion on the dynamic network, and it could enqueue
that header. Each Stage 3 could maintain four queues, one for each output port. It
could then potentially send subsequent headers to an output port for which there
is no contention. However, it should eventually drain the headers from the queue,
regardless of whether the buffers are empty or not.

This idea should definitely be explored along with dropping packets from the Stage

4 queues, which addresses the same issue.

Control-plane

The control-plane has not been implemented. An initial version of BGP was made to

run on Raw, but much work remains to integrate it into the router.

Filters - QoS

Various filters can be added, either in the data-plane or in another Raw tile, to imple-
ment other functionality, such as Quality of Service (QoS) guarantees and statistics

gathering.

More than 4 Linecards

Design a router using Raw able to support more than four linecards. A naive approach
would be to simply put two four-port routers side by side. This will not work, however,

because the packet payloads would be in severe contention for such a design.

4.2 Conclusion

This thesis describes the design and implementation of a gigabit network router on a
general-purpose parallel architecture microprocessor. The Raw router is built without

any custom hardware and achieves fast forwarding rates and high throughput through
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the careful programming and management, in software, of the interconnects within
the Raw chip.

Our results demonstrate the great potential of parallel architectures for high-
performance routers. The Raw router is more than three times faster than a router
built using Intel’s custom-made IXP1200 network processor. When compared to a
software router built with a Pentium III, Raw is able to forward over 30 times as many
packets per second. We hope that the Raw router will encourage further exploration

of flexible high-performance software routers built using parallel architectures.
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