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ABSTRACT

An experimental study is conducted on the nature of extensional flows of mobile dilute
polymer solutions in microchannel. By observing such fluids on the microscale it is
possible to generate large strain rates (~ 50,000 s-) that are greater than values which
have been observed in macroscale contraction flows. Subsequently, large Deborah
numbers (equivalent to those observed on the macro scale in high viscosity solutions) are
generated for low viscosity solutions without the interplay of significant inertial effects.

High quality microfluidic channels are fabricated using soft lithography techniques.
Rheological behavior in these channels is dominated by an abrupt planar contraction,
which generates extensional flow in the working fluids. Dilute viscoelastic aqueous
solutions of polyethylene oxide are passed through 16:1 planar micro-contractions. Fluids
exhibit substantial elastic behavior marked by elastic instabilities followed by subsequent
lip vortices and eventually stable vortex growth. The onset of flow instabilities (De =50)
and the nature of vortex growth are similar for PEO solutions at various concentrations.
Differential pressure measurements indicate that substantial extensional thickening
occurs at the onset of flow instabilities and indicate that planar extensional viscosities
grow rapidly with increasing strain rates. Also apparent Trouton ratios are calculated
indicating that extensional viscosities are two orders of magnitude larger than shear
viscosities at high Deborah numbers.
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Title: Professor of Mechanical Engineering
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1 Introduction

In recent years advances on the microscale have modified the landscape of many

technical fields, including that of fluid mechanicians. The development of microfluidics

has renewed interest in many of the classical fluids problems which had been solved in

previous years. The microfluidics community is rapidly growing, and the "lab-on-a-chip"

phenomenon is becoming applicable to nearly all scientific disciplines. The introduction

of rapid prototyping (Effenhauser et al., 1997; Duffy et al., 1998) has now increased the

accessibility to microfluidics, making dramatic advances in the field, in both depth and

bredth, inevitable.

1.1 Microfluidics

The term microfluidics refers to fluidic devices with smallest feature sizes at lengthscales

of one micron or greater. Microfluidic endeavors have focused on various topics ranging

from biological systems to fluidic circuitry. And with increasing amounts of research

focused on microfluidic technologies, the potential applications of this research are

virtually unbounded.

Microfluidic devices have become critical components of various scientific and medical

applications. Such small-scale systems are ideal for many chemical and biological

endeavors for which small sample sizes and accurately defined geometries are

imperative. Microfluidic systems have been developed to assist in the analysis and

separation of deoxyribonucleic acid (DNA) (Effenhauser et al., 1997; Chou et al., 1999).

Also microfluidic devices have been employed in microfluidic networks with

immunoglobins for subsequent assays (Delamarche et al., 1997). These devices have also

been employed for cell sorting and cell analysis (Fu et al., 1999). The ultimate goal of

microfluidic research is to develop Micro Total Analysis Systems (yTAS), which are

capable of performing all sample analyses within one microfluidic chip. However, one of
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the limiting factors on this research has been the inability to effectively generate simple

valves and pumps to control transportation of samples between analysis chambers.

There are several means of fabricating microfluidic systems, each of which have their

own benefits and applications. Soft lithography has become the most utilized means of

microfluidic generation in recent years based on its simplicity, cost, efficiency, optical

transparency, and compatibility (Quake and Scherer, 2000; Stone and Kim, 2001). Soft

lithography uses photolithography to develop a mold off which multiple elastic polymer

channels may be reproduced. This polymer can be bonded to glass surfaces and allows

for simple fabrication of accurate microchannels. Other techniques for developing

microchannels include etching into surfaces such as silicon or glass. These techniques,

originally the backbone of microfluidics, are being used less due to the cost and time of

fabrication (Quake and Scherer, 2000; Stone and Kim, 2001). Recently techniques have

been developed which use chemical modification of surface properties to define

microfluidic boundaries (Zhao et al., 2001). These techniques define hydrophobic

boundaries to confine flow to hydrophilic regions, but these channels are only able to

withstand small pressures.

In microfluidic channels there are several means of developing flow within the network.

The simplest method is by creating a pressure gradient across the channel, either by

applying pressure at the input or a vacuum at the outlet. These techniques are capable of

generating large flow velocities, but require fluids to adhere to the physics of developed

pipe flow (parabolic velocity field). Another common technique for driving flow fields in

microfluidics is electrophoresis, which involves the use of electrically charged particles

which are set into motion by an imposed electric field. This technique allows for a

uniform flow field, but it is limited in achievable velocities. Other techniques involve the

usage of concentration gradients to stimulate osmotic movements within microchannels.

Lastly, boundary conditions, such as surface evaporation, capillary forces, or surface

permeability can be used to induce fluid motion. However, the only technique that can

generate large flow velocities (> 1 mm/s) in a liquid filled medium is the application of

an external pressure gradient.
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1.2 Complex Fluids in Microchannels

Non-Newtonian fluids are fluids that appear homogenous on the macroscale but actually

have a complex internal microstructure. Because of this internal structure, the properties

of these complex fluids can change based on the lengthscales and timescales of

associated flows (Bird et al., 1987). Many non-Newtonian fluids are marked by

substantial elastic and viscous properties which, unlike and Newtonian fluids, can lead to

counterintuitive flow and stress response. The nature of this elasticity is encapsulated in a

relaxation time, which is the timescale over which the fluid is able to return to a stress-

free condition: larger relaxation times are indicative of more elastic fluids.

Microfluidics as a field has its roots in observing non-Newtonian fluids. Some of the

earliest microfluidic devices were designed to test the flow of biological fluids in

channels constructed of silicon, designed on the same lengthscale as human capillaries

(Karlsson et al., 1991; Wilding et al., 1994). These fluids contain large microstructures

(such as proteins, DNA, or blood cells) which can generate highly non-Newtonian

behavior in the fluids. Works were primarily focused on the biological aspects of the

blood cell behavior, however bulk fluid viscosity was considered. Yet in these studies,

the elastic properties of the fluids were always neglected or not understood. There has

been little effort to focus on the rheological aspects of complex fluid flow on the

microscale.

Groisman and Steinberg examined the use of polymeric liquid in for the purpose of

enhanced mixing (2001) in small geometries (3 mm). While these were not

microchannels, the small lengthscales involved restrict fluids to low Reynolds numbers

and laminar flow, which is typical of microfluidics. In laminar flow of Newtonian fluids,

the primary means of mixing fluids is through diffusion. Because diffusion is small over

the timescales frequently considered (~ 100 ms), enhancing fluid mixing is frequently a

challenge for many microfluidic devices. Groisman and Steinberg investigated the use of

polymeric liquids to enhance mixing at low Reynolds numbers.
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The experiments of Groisman and Steinberg involved dissolving a small amount (800

parts per million) of high molecular weight (M,) polymer (polyacrylamide: M,

18,000,000 g/mol) in a Newtonian solvent. Then they compared the mixing of this

solution with the mixing of just the Newtonian solvent. The basis for using this polymer

was to reach the onset of elastic instabilities in the fluid and, therefore, enhance mixing.

This technique is similar to macroscale mixing in which the critical Reynolds numbers

are exceeded to induce turbulent mixing. However, for elastic instabilities the critical

parameter for the onset of instabilities is the Deborah number (or Weissenberg number):

De = Af (1.1)

where Xis the fluid's relaxation time and ' is the characteristic shear rate. When the

Deborah number becomes large the fluid elements are being sheared faster than they can

relax, thus instabilities occur (Bird et al., 1987) and mixing is enhanced (Groisman and

Steinberg, 2000).

These experiments made use of the large shear rates generated in small channels to

induce elastic instabilities in their viscoelastic solutions. They dyed the two fluid inlets

different colors to distinguish between the two flows (see figure 1-1). For the Newtonian

solvent, little mixing was observed (only that of diffusion), but for the polymer solution,

significant mixing occurs. Clearly the elastic instabilities are the driving force behind

allowing the two solutions to mix. They also examined concentration dependence of their

mixing device and determined that mixing was observed at concentrations as low as 7

ppm (parts per million) and showed that mixing could be enhanced in even high viscosity

solutions with Reynolds numbers as small as 0.0 16. However, the paper fails to

adequately analyze several of the rheological aspects (only the bulk viscosity and

characteristic relaxation time are given), which dictate the behavior of the fluids in such

geometries.
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Figure 1-1. (a) Image of the mixer used by Groisman and Steinberg to enhance mixing. (b)
Mixing of Newtonian solvent after passing through the mixer at low Reynolds Number (Re
0.16). (c) Image of the polymeric solution showing extensive mixing at the same flow rate
corresponding to a Deborah number of 6.7 (Groisman and Steinberg, 2001).

First, the analysis focuses on observing the mixing in smooth rounded channels, however,

there is little reason that such a geometry would enhance fluid mixing. In fact, sharper

and smaller geometries would enhance mixing by initializing elastic instabilities more

quickly. Stress singularities develop at such corners and have been the source of elastic

instabilities in many macroscale experiments (Bird et al., 1987), while rounded corners

tend to suppress elastic behavior (Evans and Walters, 1986; Evans and Walters, 1989).

Fluid instabilities are observed at Deborah numbers of 3.2, which is greater than unity,

but little explanation was offered for the delayed onset of elastic behavior. Also, in

considering concentration effects, they failed to quantify relaxation times as the

concentration decreased. Thus they did not determine if the critical Deborah number for

mixing was consistent with the Deborah number for the initial polymer solutions

observed.

In the laboratories of Steven Quake, a great deal of research has been applied to the

development of a microfluidic system which is analogous to integrated circuitry, using a

fluid in the place of electrons (Unger et al., 2000; Thorsen et al., 2002). However, the

difficulty in using such a system is the requirement of a separate controlling layer for
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adjusting the flow of fluids in the primary layer (Unger et al., 2000). This layer is

required to activate pumps and valves that can be used to transmit or store fluid as

desired. A third interconnecting layer is also required for controlling such systems, and

the increased complexity has made advances in this area difficult. Recent research has

focused on utilizing polymeric fluids in place of this controlling layer based on their non-

linear flow properties (Groisman et al., 2003; Groisman and Quake, 2004). By utilizing

such fluids, the necessity for moving parts and controlling layers would be reduced, or

possibly eliminated, facilitating channel fabrication.

Groisman and Quake have recently published several papers in which polymer solutions

are observed in microchannels that are designed to act as control, memory, and logical

elements (Groisman et al., 2003; Groisman and Quake, 2004). In their first paper, they

discussed the properties of a non-linear resistor which exploits the complex rheological

behavior of a polymer solution (Groisman et al., 2003). They used a 250 ppm solution of

polyacrylamide (M = 18,000,000 g/mol) in a Newtonian solvent as the working fluid.

The resistor consisted of a series of contractions and expansions which were designed to

instigate flow instabilities in the fluid (see figure 1-2).

Figure 1-2. An image of the nonlinear resistor developed by Groisman et al. at varying
applied pressures. Beyond a critical pressure (~30 Pa) large changes in pressure only
correspond to moderate changes in flow rate (Groisman et al., 2003).

They observed that above a critical applied pressure the flow rate only increases a small

amount despite gross increases in the applied pressure (see figure 1-3). This behavior

corresponded with the onset of vortex behavior in the solution at a Deborah number of

De = 0.8. Such vortex behavior was only observed in polymeric solutions where

extensional effect inhibit the flow of the solutions through the contractions. Between a
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range of applied pressures of nearly an order of magnitude (P ~ 20 - 200 Pa), fluid flow

rates only increased by a small amount (- 20%). They believed that such a microfluidic

resistor could be used as a constant current device that can restrict flow rates despite a

wide range of applied pressures.

10

0 0
0 20 40 60 80 100 120 140

AP per segment, Pa

Figure 1-3. Flow rate dependence on applied pressure drop for the nonlinear resistor
proposed by Groisman et al. (Groisman et al., 2003).

In this paper they also detail the mechanism of a "flip-flop" memory device based on

polymeric fluid principles. They utilize the difference between the flow of extended

polymers with that of relaxed polymers to modify flow patterns within the microfluidic

chip. Once again they are taking advantage of the extensional behavior of polymer

solutions on the small scale and the subsequent vortex behavior that dictates the flow of

polymer solutions (see figure 1-4).

Figure 1-4. Microfluidic flip-flop used by Groisman et al. for controlling flow directions

Again for this study there is little emphasis on the rheological advantages of the fluid and

geometries they have chosen. These systems are designed effectively from a functionality
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standpoint, and they have used polymer concentrations that are small enough to keep

fluid viscosities near that of water (q - 1.3 mPa-s), however they do not extensively

quantify the rheological properties of their fluids. They suggest that the fluid is in the

dilute to semi-dilute range of concentrations but do not determine the possible effects of

molecular interaction on flow properties. They also only examine one polymer

concentration, without interpreting the extensional effects of using further diluted

solutions of their fluid. Also, the complicated channel geometry leads to asymmetrical

vortices, which are not explained in the text. Because no other studies have been

performed on similar shapes, there is no explanation for the resulting asymmetry. They

also do not quantify the growth of such vortices and whether flow patterns are stable in

time or space. Thus, from their results it is difficult to extract any extensive rheological

parameters from the flow patterns.

The most recent paper by Groisman and Quake (2004) explains the fundamentals of

microfluidic rectifier (a channel whose resistance changes based on the direction of the

flow). Once again they use a solution of polyacrylamide (M,= 18,000,000 g/mol) in a

Newtonian solvent. The fluid is passed through a series of saw-toothed expansion

contraction geometries. As the Deborah number grows, elastic instabilities develop and

flow patterns are no longer reversible (see figure 1-5). Beyond this instability, the fluid

acts differently depending on the direction of the flow (see figure 1-6). The extensional

behavior is dependent on both the total Hencky strain on the fluid (see section 2.1.3) and

the associated strain rate. Based on the geometry the strain should be identical and the

strain rate should actually be larger in the direction of the sharper contraction. However,

because of the asymmetries in the vortices in the gradual direction, the flow is less stable

which translates to a larger amount of total strain in this direction. The more abrupt

contraction generates symmetric vortices, which limit swelling at the prior expansion,

thus the actual strain is smaller. However this effect is not thoroughly analyzed in their

paper.
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Figure 1-5. Streakline patterns for microfluidic rectifier at different applied pressures. Flow
travels forward for pictures (a) - (d) and backward for pictures (e) - (h). The images show
the irreversibility of the polymer solutions in microchannels caused by elastic instabilities
(Groisman and Quake, 2004).
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Figure 1-6. Flow rate - pressure dependence of the microfluidic rectifier. Circles indicate
forward flow (left to right), while squares are backward flow (Groisman and Quake, 2004).

In this paper they accurately describe the transient nature of the vortices as they grow and

note that they are steady in the abrupt expansion, but vary with time in the linear

contraction. They also accurately determine the flow rate dependence on the pressure

drop over a large range of applied pressures. In each of these papers, they understand the

qualitative physics behind their mechanisms, however they do not analyze all the

interacting rheological parameters in a quantitative sense.
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For this paper on the fluidic rectifier, Groisman and Quake characterize the fluid's

relaxation time based on an identical polymer concentration in a more viscous solvent,

assuming the relaxation time scales with fluid viscosity. However, this estimate does not

account for the polymer-solvent interactions, which can have an effect on the measured

relaxation time, even in dilute solutions (Brandrup et al., 1975). They also fail to note the

effects of having contraction expansion geometries within such close proximity: the

chains may not be able to relax in such a small time, depending on the fluid's velocity.

The relaxation times need to be considered in relation to the total residence of the fluid

before the next contraction (see section 5.3.3). Because they are attempting to optimize

the polymer stretching on one portion of the channel, it would be advantageous to utilize

a hyperbolic contraction (see section 1.6) to generate more uniform polymer stretching.

More effective rheological characterization and efficient channel design may allow for

extensional effects to increase the magnitude of the nonlinearity of the flow resistance.

These few papers on complex fluids focused primarily on the nature of the flow

instabilities and subsequent exploitation of these flow characteristics. From a practical

standpoint, it is necessary to understand the rheological nature of such flows before being

able to optimize the usage of polymeric fluids in microchannels. Understanding the

underlying physics behind the evolution of such vortex behavior and the necessary

rheological parameters that dictate the onset of such flow anomalies will ultimately lead

to useful applications of such microfluidic devices.

1.3 Entry Flow

Based on the observations of Groisman and others, it is desired to understand the

fundamentals behind the elastic nature of fluid flows in microfluidic systems. For many

years, understanding and predicting entry flow behavior has been one of the classical

problems of fluid mechanics. Entry flow has been a landmark challenge for the

experimental, computational, and theoretical worlds (Brown and McKinley, 1994).

21



Entry flow has been well quantified for Newtonian fluids, and the results would not be

expected to change on the microscale (see figure 1-7). However, for non-Newtonian

fluids, where rheological properties change based on the lengthscales involved in the

problem, the resulting behavior is not as certain. Polymer solutions are non-Newtonian

fluids in which polymers chains exist on at lengthscales of tens to hundreds of

nanometers. Studies have been performed attempting to understand the physics of these

fluids on the macroscale (Bird et al., 1987). However, as the lengthscales of the

microchannels begin to approach that of the fluid's microstructure (within an order of

magnitude) it is unclear that the behavior of the fluids will continue to mimic that of the

macroscale. At such small scales the channels begin to "see" the individual polymers

instead of only bulk fluid.

Figure 1-7. Creeping contraction flow of a Newtonian fluid: comparison of experimental

results and computational simulations (Boger et al., 1986).

Entry flow is also a problem with many industrial applications from inkjet printing to

microinjection molding (see figure 1-8). Inkjet printing is a high volume commercial

industry, which is dependent on extensional flows of a non-Newtonian fluid on the

microscale. Micromolding is a growing industry based on scaled-down version of

injection molding for which small parts (- 1 ym) can be fabricated by injection of a

polymer into a mold through a converging geometry. Naturally, the deficiencies of

injection molding on the macroscale (melt fracture and degradation) still need to be

addressed on the microscale. Also, studies have been performed observing the behavior

of emulsions passing through contraction for the purposes of flow focusing (see figure 1-

9). Microfluidic researchers are frequently concerned with the flow of non-Newtonian
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fluids (especially bio-fluids) in complicated geometries for which shear effects are

insufficient in quantifying material behavior (Beebe et al., 2002). Assessing the fluid

rheology also requires knowledge of the fluids interaction with stretching. The relevant

parameter for characterizing the ability of the fluid to resist stretching is the extensional

viscosity.

Figure 1-8. Inkjet printing cartridge: a micro-entry flow of a non-Newtonian fluid

Figure 1-9. Images of a micro-contraction used for flow focusing of emulsions. The
contraction is used to generate emulsion droplets (Anna et al., 2003)

1.4 Extensional Viscosity

Just as shear viscosity quantifies the ability of a fluid to resist shearing, the extensional

viscosity is a measurement that quantifies the ability of a fluid to resist stretching. The

behavior of Newtonian fluids in uniaxial extension is such that its extensional viscosity is

three times its shear viscosity (Trouton, 1906). However, for non-Newtonian fluids there

is an additional component to the extensional viscosity that frequently increases the
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extensional viscosity as strain rates increase in an effect termed extensional thickening.

The increase in the extensional viscosity is common to non-Newtonian fluids because of

their internal microstructure. As the fluid is stretched, these internal elements, which are

initially coiled in a random walk, are elongated into a string-like element. This is

especially true in polymer solutions where the polymers are long chains which, when

stretched fast enough, exert a large amount of force to prevent further extension.

Typically, at very low strain rates, non-Newtonian fluids act like Newtonian fluids

because the fluid relaxes more quickly than it is being unraveled. However, if the fluid is

stretched fast enough that the internal microstructure is unable to return to a random

walk, extensional thickening takes place. The Deborah number is a comparison of the

rate of stretching and the time required for the fluid's microstructure to relax:

De = % (1.2)

where is the strain rate. It has been experimentally and theoretically observed that at

Deborah numbers larger than unity, non-Newtonian effects become important (Bird et al.,

1987). Extensional thickening refers to increases in a fluids steady-state extensional

viscosity as a function of the strain rate: the onset of which is typically at a Deborah

number of unity. Another extensional effect is strain hardening which refers to a transient

increase in a fluid's extensional viscosity based on the total strain on the fluid. However,

for entry flows, the strain rates are controlled by the flow rate, whereas the strain is

dictated by the contraction ratio. Thus, the extensional behavior of the fluid is dependent

on the strain rate.

Previous experiments have shown that for dilute solutions the additional extensional term

can be as large as two orders of magnitude greater than the Newtonian extensional

viscosity (Metzner and Metzner, 1970; Spiegelberg et al., 1996; Agarwal and Gupta,

2002; Cooper-White et al., 2002). Most of these experiments however, are limited in their

range of strain rates. By working on the microscale, extensional flows can yield

additional information about the fluid properties in regimes beyond what has been

observed in the past. For low viscosity fluids, relaxation times are small enough that non-

Newtonian extensional effects only become important at high strain rates.
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Measuring extensional viscosity has been a challenge for experimentalist for many years

(Macosko, 1994). For this reason, few extensional rheometers are commercially

available. Several techniques are available for measuring the extensional viscosity

including filament stretching and fiber wind-up. These techniques are generally restricted

to low strain rates and high viscosity fluids. There are a few techniques in which it is

possible to measure the extensional behavior of mobile fluids (opposed jet being the most

common). Figure 1-10 shows the results of an opposed jet study on solutions of

polyethylene oxide (PEO), the same polymer that will be examined in this study

(however the solvent viscosities and polymer molecular weights are different). The

substantial elastic behavior of these polymers significantly contributes to the extensional

viscosity of the solutions. However, in these commercially available techniques, it is not

possible to reach the magnitude of strain rates to be examined in this study (see section

5). Using entry flow techniques, mobile fluids can be studied and large ranges of strain

rates are readily achievable.
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Figure 1-10. Extensional viscosity of various PEO solutions using a opposed jet rheometer

Typically extensional flow problems have been examined on the macroscale. The

relevance of moving such observations to the microscale has several implications. First,

reducing the size of the geometries allows high strain rates to be achieved:
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iY=k (1.3)
L AL

where V is the average velocity, Q is the flow rate, A is the cross sectional area, and L is

a characteristic lengthscale. Because the strain rate scales with the inverse of a length

scale, at constant velocities, the strain rates in the present experimentation, at moderate

flow rates, are several orders of magnitude greater than previous entry flow systems. The

obtainable strain rates exceed those achievable on commercial extensional rheometers,

such as the Rheometric RFX opposing-jet rheometer (Hermansky and Boger, 1995; Ng et

al., 1996; Cooper-White et al., 2002). Also for previous experiments it was difficult to

deal with the inertial effects associated with low viscosity fluids. In microchannels,

inertial effects are much smaller, allowing for low viscosity fluids to be examined.

Another benefit of using microfluidic devices is their simplicity: microfluidic geometries

can be fabricated in a rapid manner and specific to the design requirements (Duffy et al.,

1998; Xia and Whitesides, 1998).

One of the drawbacks of using a microfluidic device for measuring extensional properties

are that only two-dimensional structures can be generated. This limits the current study to

planar geometries, whereas many previous experiments have focused on uniaxial flows

(see section 2.1). Another problem with microfluidic systems is that few experiments

have been performed trying to make quantitative rheological measurements of these

systems. As a result, there has been little emphasis on making sharp vertical sides walls,

which is of critical importance to the current project. Another limitation of

microchannels, especially ones fabricated using PDMS (polydimethylsiloxane), as in the

rapid prototyping technique (Duffy et al., 1998), is their inability to withstand large

pressures. While this is infrequently an issue with low-viscosity fluids, it does become a

problem as flow rate and viscosity increase.

1.5 Applications for ISN

The Institute for Soldier Nanotechnologies (ISN) is a United States Army funded project

focused on developing technology to improve the quality of soldier apparel. One aspect
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of this project is focused on the development of microfluidic technologies to monitor and

control various components of the soldier uniforms. Because the field of microfluidics is

relatively new, understanding of many underlying physical phenomena are required for

such devices to become widely used for practical applications.

A great deal of research for ISN has focused on developing field-responsive fluids. These

fluids react to external applied fields and subsequently change their mechanical

properties. For example, in the presence of a magnetic field, magnetorheological fluids

(MR fluids) change from a mobile fluid to a yield stress fluid. Changing the magnitude of

this magnetic field can change the energy absorption by larger than an order of magnitude

(Deshmukh, 2003).

One goal of ISN is to produce microfluidic interconnects which will encompass the entire

uniform. By integrating valves and pumping systems, these interconnects will allow

fluids to travel throughout the uniform as desired to specified locations. By developing

pumping schemes such as the ones discussed in section 1.2 (Groisman et al., 2003;

Groisman and Quake, 2004), circulation of desired fluids to various portions of the

uniform is possible. The significance of this work may allow for the energy absorbing

fluids to be transported to various sections of the uniform and subsequently activated in

order to protect various areas. These fluids can also be circulated to specific areas of the

uniform in order to immobilize a region in the case of injury. Thus, understanding the

behavior of these fluids in microchannels is required for determining the optimal

configurations required for transporting these fluids.

Based on the magnitude of their energy absorbance, field responsive fluids may also be

employed in microchannels to appropriately modify flow conditions. Because of their

responsive properties, these non-Newtonian fluids can also be used as valves and

switches for changing flow patterns within microfluidic devices. In figure 1-11 a

switchable microvalve is generated using an MR fluid (5% 500-nm ferrofluid emulsions)

that is able to stop the flow of fluid when a field is applied. When the field is released,

fluid once again begins to flow in the channel. For this switchable device, it is possible to
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halt the fluid motion completely until a minimum pressure is obtained. This behavior is

different from that of the fluids used by Groisman and Quake in which the flow rate was

held constant only when pressure exceeded a critical value. The MR fluid is capable of

altering the motion of the fluid independently of the applied pressure. In order to use such

a fluid to stop flow, it is required to pass the fluid through an extensional flow, so that the

fluid can resist acceleration. Optimizing the behavior of such a flow requires an

understanding of extensional nature of a non-Newtonian fluid passing through such

devices. For many ISN applications, complex extensional flows of non-Newtonian fluids

play an active role in the functionality of microfluidic systems.

Figure 1-11. MR fluid used as a valve to stop fluid flow. Fluid initially flows through channel
(left). Upon applying a magnetic field, flow is stopped (right) (image courtesy of Ramin
Haghgooie).

The roughness of the geometries (figures 1-2, 1-4, 1-5, 1-9, and 1-11) in these is another

factor that is an important concern in rheology (see section 3.1). Rheological

measurements, especially if they are to be compared to numerical simulations, need to be

performed on well-defined geometries.

1.6 Project Goal

The goals of this project are to generate extensional flows in microchannels and quantify

the extensional viscosity of dilute polymer solutions. Extensional flows, or shear free

flows, are characterized by converging streamlines that indicate stretching of the fluid

particles. These flows can be generated through a number of different contractions and
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expansions geometries. Microfabrication limits the choice of geometries to planar shapes.

The velocity gradient for a planar pure extensional flow is:

a 1 0 0(
1= I0 -1 0 (1.4)
ax

\0 0 01/

such that the rate of strain tensor is:

'2 0 0"

V=(Vv+(Vv)T) = 0 -2 0 (1.5)

0 0 01/

Solving for the flow velocities results in the following two-dimensional flow field:

xIx 2 = xOx 2 0  (1.6)

where the x1 is motion in the direction of the flow, x2 is the motion in the secondary

direction, and x1,o and X2,O are constants for a given streamline. This formula describes a

hyperbolic shape for pure planar extensional flow (see figure 1-12). However, this

formula also requires that there is a uniform axial velocity (direction 1) throughout each

cross section of the flow. This is difficult to generate in channel flow because of the no-

slip boundary condition at the walls. Attempts have been made to lubricate the walls of a

hyperbolic geometry to induce slip, but these experiments have generally been

unsuccessful: failing to completely eliminate shear from the flow (Macosko, 1994). Some

experiments have been conducted on planar geometries with a linearly converging

geometry (James and Saringer, 1982), but the majority of experiments have been run on

abrupt contractions (Walters and Rawlinson, 1982; Evans and Walters, 1986; Evans and

Walters, 1989; Chiba et al., 1990; Chiba et al., 1992; Quinzani et al., 1995; Purnode and

Crochet, 1996; Ryssel and Brunn, 1999; Olson and Fuller, 2000; Stelter and Brenn, 2000;

Nigen and Walters, 2002; Stelter et al., 2002; Mitsoulis et al., 2003). To compare with

previous works done on the macroscale, abrupt contractions were chosen as the means of

generating extensional flow for the present study (see figure 1-13).
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Figure 1-12. Shear-free planar flow

Figure 1-13. Dimensions of microchannels used in the present study

For entry flow studies, several relevant parameters define the nature of the geometry. The

contraction ratio (0p) for a planar geometry is the ratio of the upstream and contraction

widths:

W Ac
p, - A - (1.7)
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where W is the upstream width, W, is the contraction width, and A I and A, are the cross

sectional areas of the upstream and downstream contractions. And the aspect ratio (ARp)

of the planar channel is defined as:

ARh
AR= (1.8)

W
where h is the height of the channel in the neutral direction. These two dimensionless

parameters will be important in comparing the present study with previous entry flow

studies.

In the present study extensional flow properties are examined using several different

techniques. The fluid motion is examined using streak image photography to observe the

vortex patterns and viscoelastic effects of the extensional phenomena arising near the

flow entry. Also, extensional viscosities are calculated using an analysis of the additional

pressure loss accrued by the extensional motion of the fluid into the contraction. Before

continuing, it is necessary to examine previous studies conducted using similar

geometries and determine the specific significance of reducing the channel dimensions to

the microscale.
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2 Background

2.1 Contraction Experiments

2.1.1 Dimensionless Parameters

In order to compare the results from the present study to that of previous works, both

axisymmetric and planar, it is necessary to establish an unambiguous means of

calculating dimensionless variables. The Deborah number is a dimensionless parameter

that is indicative of the relative importance of the elastic stresses of the fluid with the

timescale of the system (Bird et al., 1987). The Deborah number is defined for a planar

contraction geometry as:

De, = 2s = WC (2.1)

and for axisymmetric contractions:

DeA = / (2.2)
R2

where VC is the average velocity in the contraction, We is the characteristic dimension of

the planar contraction (as in figure 1-13), and R2 is the contraction radius for an

axisymmetric contraction (see figure 2-1). For Newtonian fluids the Deborah number is

zero as there is essentially no relaxation time associated with the fluid. As a Newtonian

fluid is deformed, the orientation of the individual molecules change, but they have no

preferred orientation, so there is no time scale associated with the dissipation of stresses

or relaxation of the microstructure. For polymer solutions, when the fluid is stretched or

sheared, the polymer chains extend from their original orientation. However, when the

motion is ceased the polymer strands are driven to return to their original random

orientation as a result of entropic forces. This relaxation process takes a finite amount of

time, which is based on a number of different factors depending on the specific polymer

and the base solvent. The means for evaluating this quantity for the polymer solutions in

this study is explained in section 4.3.
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Figure 2-1. Axisymmetric contraction, as used in previous macroscale studies

Inertia also affects the dynamics of any fluid system. The Reynolds number is a

comparison of the relative importance of inertial and viscous stresses in the fluid. The

Reynolds number for a planar contraction system is defined as:

Pv WRe, = C (2.3)
77o

and for an axisymmetric contraction as:

ReA =2pVCR2  (2.4)
7o

where p is the fluid density, 77 is the zero-shear-rate viscosity.

Both the Deborah number and the Reynolds number have an associated lengthscale.

Because the present study is performed on the microscale, a comparison of the Deborah

number and Reynolds number is greatly affected by this lengthscale. Thus, the elasticity

number (El) is used as a dimensionless representation of this comparison:
El, = De- 2117 (2.5)

Rep pW 

and for an axisymmetric contraction

ElA = (2.6)
2pR2

The elasticity number compares the relative importance of elastic effects in the system

with inertial and viscous effects, based solely on channel geometry and fluid properties.
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The magnitude of this parameter is completely independent of the velocity or shear rate

of the fluid.

The contraction ratio (0p), is a key parameter in determining the entry behavior for a

planar contraction. The contraction ratio is defined as in equation (1.7):

WWe
And for an axisymmetric contraction the contraction ratio is:

I6A = R (2.7)
R2

where R, is the upstream radius.

Non-Newtonian fluids typically possess material properties (namely relaxation time and

viscosity) which vary with shear rates (j). These fluids have been used in many similar

contraction geometries, but these effects can be accounted for by considering the

rheological properties to be shear rate dependant parameters (Walters and Rawlinson,

1982; Evans and Walters, 1986; Evans and Walters, 1989; Chiba et al., 1990; Chiba et

al., 1992; Quinzani et al., 1995; Purnode and Crochet, 1996; Olson and Fuller, 2000;

Nigen and Walters, 2002; Mitsoulis et al., 2003). Thus modified dimensionless numbers

are also calculated to account for the various effects of shear-thinning and rate-dependent

relaxation times. For these non-Newtonian fluids, the elasticity number is no longer

independent of the fluid velocity, but the elasticity number does provide a means of

comparing the present study with those performed with different fluids and different

dimensions.

El(f)- 2/ (2.8)
W"

2.1.2 Entry Behavior

In entry flow problems there is a balance between a number of rheological and inertial

stresses that lead to interesting physical phenomena. Various regimes of vortex patterns
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develop and are suppressed based on the relative importance of elasticity and inertia. In

an attempt to minimize the total energy consumed in the entry process, flow patterns

depart from the simple Newtonian converging flow (see figure 2-2).

Figure 2-2. Vortex growth for a Boger fluid in an axisymmetric contraction (Rothstein and
McKinley, 1998).

For the uniaxial case, a number of different regimes have been observed. At low Deborah

numbers, a "Moffatt eddy" is observed in the salient corner, as in Newtonian fluids (see

figure 2-3). However, for elastic fluids, as the Deborah number is increased, two different

vortex patterns are observed. For some fluids, stress singularities at the re-entrant corner

lead to a large steady recirculation zone termed a corner vortex (see figure 2-3). The

corner vortex typically grows to the re-entrant corner, and a vortex length (L,) is

computed as the reattachment length. The dimensionless vortex length (X) yields another

means of evaluating the flow:

- L " (2.9)
W 1PW

At a Deborah number and Reynolds number of zero, the dimensionless vortex length

approaches the value for a Moffatt eddy (XhffattA = 0.17 for an axisymmetric contraction

and XIoffattp = 0.19 for a planar contraction (Alves, 2004)). A second regime of fluid

instabilities is termed a "lip" vortex. Here the recirculation is no longer steady in time or

space and originates at the re-entrant corner. At higher Deborah numbers both of these

vortex patterns become unstable, similar to the melt flow instabilities observed in

injection molding of polymer melts.
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Figure 2-3. Three different vortex regimes observed in axisymmetric contractions

Experimentally, it has been show for axisymmetric contractions that little or no new

information is obtained by observing contraction ratios ( 3A) greater than 4. Thus, many

experiments and simulations have been done at this contraction ratio for its practical and

theoretical importance. Typically these experiments are also performed using Boger

fluids. Boger fluids are fluids with constant viscosity, yet elastic properties. This quality

makes them ideal for observing the rheological behavior of many systems.

It has been proposed that the nature of elastic behavior for creeping flow in an

axisymmetric flow is dependent on the Deborah number and the contraction ratio

(McKinley et al., 1991) (see figure 2-4). However this analysis fails to account for the

associated inertial stresses that are present in the flow of mobile fluids, as is true for the

present experiments.
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Figure 2-4. Different vortex growth regimes determined based upon contraction ratio and
Deborah number (McKinley et al., 1991).

Based on previous axisymmetric experiments, it appears that the relative importance of

elastic and inertial stresses determines which regime of vortex behavior occurs

(especially at a fixed contraction ratio). For this reason the elasticity number is important

in quantifying this and previous studies (see figure 2-5). At large elasticity numbers,

vortex behavior and significant growth are observed due to elastic stresses. For elasticity

numbers less than unity, inertial stresses diminish or completely suppress vortex

behavior. Based on the magnitude of the elasticity number and contraction ratio, it should

be possible to predict the subsequent vortex behavior. Because the magnitude of the

elasticity number is inversely related to the square of a lengthscale, it is possible to

generate large elasticity numbers without using fluids with high viscosity or long

relaxation times.
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Figure 2-5. Plot of the Deborah number versus the Reynolds number and associated vortex
regimes for entry flow experiments

2.1.3 Axisymmetric Studies

As noted in the previous discussions, entry flow experiments have been examined

thoroughly on the macroscale. Cable and Boger published a series of papers discussing

vortex behavior and giving means of quantifying vortex behavior (Cable and Boger,

1978; Cable and Boger, 1978; Cable and Boger, 1979). These papers also described the

developments of divergent flow regimes with counterintuitive flow fields in the

contraction region of entry flow (velocity profiles are concave as opposed to the standard

parabolic flow shape.) However, all fluids in their study had rate-dependant rheological

properties. The fluids studied were aqueous polyacrylamide (PAA) solutions: similar

solutions would later be examined heavily in both axisymmetric and planar geometries

(Evans and Walters, 1986; Evans and Walters, 1989; Chiba et al., 1990; Chiba et al.,

1992).

Boger and Binnington examined the behavior of Boger fluids in contraction geometries

(Boger et al., 1986). This analysis resolves that vortex patterns can be observed for

constant-viscosity fluids if the elastic properties are significant. Their results suggest that

for high viscosity, high elasticity fluids, vortex behavior is observed in the form of both
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lip vortices and corner vortices which can interact and contribute to different flow

patterns.

David Boger published an encompassing review of the research that had been performed

on flows through contractions (Boger, 1987). He reports that the entry flow problem has

been solved for Newtonian and inelastic non-Newtonian fluids, but remains unsolved for

flow of viscoelastic fluids, both with and without shear-thinning properties. He concludes

that the definitive property that dictates the fluid motion in entry flows is the extensional

viscosity. However, because extensional viscosity is dependent on both strain and strain

rate, the shape and size of geometries lead to different flow patterns. For elastic fluids,

even with nearly identical shear rheological properties, fluids can have vastly different

extensional viscosities, which significantly contributes to the entry flow behavior. These

extensional viscosities can lead to either the development of lip vortices, corner vortex

growth, or both.

McKinley et al. analyzed the effect of an entry flow at different contraction ratios in an

attempt to quantify and categorize the conditions required for the onset of lip vortices

(1991). They quantified the axial flow velocities using laser-Doppler velocimetry (LDV)

to consider the extensional nature of the flow field. Using flow visualization, they

accurately documented the onset of several different lip instabilities that were both

periodic and seemingly arbitrary in nature.

Rothstein and McKinley resolved many issues that had arisen over the course of many

papers on axisymmetric contractions (1998; 2000). They used pressure measurements to

quantify the substantial entrance effects of Boger fluids in a contraction geometry. These

papers also concludes that different elastic fluids can possess different vortex behavior,

despite similar Deborah numbers (Rothstein and McKinley, 1998). This behavior is

explained by a dimensionless normal stress ratio (N ) which compares the normal stresses

associated with shear flow with the elastic effects of extension:

NI /q4 Sr ()

(ZZ - r,) /r10 Tr(c) (2.10)
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where Sr(f) is the shear-rate-dependent stress ratio, N is the first normal stress

difference in shear, Tzz - rr is the first normal stress difference in a uniaxial extension,

and Tr (c) is the Trouton ratio based upon the Hencky strain (see discussion below).

They concluded that if this ratio (N ) is greater than N = 0.055, corner vortex growth is

dominant flow behavior. At lower stress ratios, lip vortices were observed to dominate

the flow patterns. This relationship explains why at higher Deborah numbers the corner

vortex typically supplants the lip vortex: the finite extensibility of the polymer chains

leads to shear-thinning and extensional effects become dominant. This result also

explains why for large contraction ratios, in which total strain is larger, the extensional

stresses dominate the normal stress difference and lip vortices are not observed.

While vortex behavior was consistently observed on the macroscale in axisymmetric

contractions of viscoelastic fluids, planar contractions are not necessarily two-

dimensional flows (based on the confinement in the neutral direction). The two-

dimensional assumption simplifies the behavior in uniaxial contractions. Thus, these two

different entry flow regimes do not necessarily predict identical flow behavior.

Experiments which have compared the two different types of flows for identical fluids

have typically found different behavior both qualitatively and quantitatively (James and

Saringer, 1982; Nigen and Walters, 2002).

In a planar contraction there has not been any significant examination to determine if a

contraction ratio (#p) exists that has the same significance as a 4:1 contraction in

axisymmetric geometries. The resulting Hencky strain (c) on a fluid in a contraction

geometry is defined as (McKinley et al., 1991):

6 = f dt =f v dzt (2.11)

For axisymmetric flows this simplifies to:

CA = 2In(1) (2.12)

But for a planar contraction the total strain is:

, = In (,) (2.13)
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The corresponding contraction ratio for the planar case to a 4:1 axisymmetric contraction,

which maintains an equivalent strain and likewise an equivalent area reduction, would be

Op = 16. But experiments by Evans and Walters have shown that at higher contraction

ratios new information can be obtained (1986).

The ratio of shear rates for the upstream and the downstream portions of the channels are

also different for planar and axisymmetric contractions. The shear rate is found for a

channel to be:

V =(2.14)
L

where L is once again a characteristic length. Thus, for an axisymmetric contraction the

ratio of shear rates is:

- = -=' pA3 (2.15)
ZR2 Q

However for an infinite planar contraction the resulting ratio of shear rates is:

- = ( =)_p (2.16)
h, W,2 Q,

Thus there are clearly different conditions dictating the behavior of the fluid in a planar

contraction from that of an axisymmetric contraction.

2.1.4 Planar Studies

While a great deal of attention has been paid to the uniaxial contraction flow problem,

fewer studies have been performed in planar geometries. An early paper by Cogswell

summarized work dealing with the planar contraction problem but did not include any

experimental data (Cogswell, 1978). This paper did introduce the idea of a secondary

expansion at the entrance of planar contractions and even mentioned a modification

capable of suppressing the expansion for purely converging flows. This same behavior

would later be observed in several experiments (Chiba et al., 1990; Chiba et al., 1992).
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In the present thesis, a number of experimental results on planar contractions are

examined. For each experiment, the range of calculated Deborah numbers and Reynolds

numbers are computed to determine the magnitudes of these quantities in comparison to

the present study. Figure 2-3 plots the relationship between these two dimensionless

quantities for each planar contraction experiment.

10

Reynolds Number

15 20

Figure 2-6. Comparison of the dimensionless flow parameters of
studies performed on the macroscale
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Figure 2-4 reproduces the results of figure 2-3, however it accounts for the shear rate

dependent effects in the fluids that were used in a number of experiments. For many of

these experiments insufficient rheological data was given, especially for relaxation times.

To compensate, a characteristic 'Maxwell' relaxation time was determined assuming an

upper convected Maxwell-like fluid:

(2.17)

where N is the first normal stress difference. Still many of the papers did not adequately

quantify their rheological parameters and associated relaxation times cannot always be

determined from their results (Nigen and Walters, 2002).
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Figure 2-7. Comparison of the dimensionless flow parameters for experiments, accounting
for rate-dependant rheological properties

Walters and Rawlinson examined a planar entry flow problem in 1982 and found no

vortex behavior for several different Boger fluids . These fluids were similar to Boger

fluids that had been used in axisymmetric studies in which vortex behavior was observed

(Walters and Webster, 1982). However, they did observe asymmetric instabilities (similar

to the flow instabilities seen at large Deborah numbers in axisymmetric studies) at

Deborah numbers of approximately De = 15.

Evans and Walters performed a number of experiments to examine the behavior of both

Boger fluids and shear-thinning PAA solutions in planar contractions (Evans and

Walters, 1989). Their results suggested that elastic behavior, namely vortex enhancement,

is only observed for highly shear thinning fluids (n ~ 0.4) (see figure 2-8). Boger fluids

exhibited no vortex behavior until flow instabilities were reached. These papers also

examined the effects of rounding corners on flow patterns. They determined that by

rounding the re-entrant corners, vortices could be suppressed in shear thinning fluids.
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Figure 2-8. Planar contraction results for a Boger Fluid in an 80:1 contraction (left) (Evans
and Walters, 1986): Re = 0.18, De = 0.10, a 0.5 % PAA solution in a 4:1 contraction (center)
(Evans and Walters, 1989): Re = 7.5, De = 2.7, and a 0.1 % PAA solution in a 10:1
contraction (right) (Chiba et al., 1990): Re =89, De = 4.6

Chiba et al. performed a number of experiments using aqueous solutions of PAA in high

aspect ratio (25 < ARp < 75) planar contractions (1990; 1992). It was assumed that high

aspect ratios would permit a two-dimensional approximation. They observed many

complex stream patterns that appeared to show the flow was diverging then converging

as the fluid entered the contraction (see figure 2-8). This was similar to the secondary die-

swell behavior predicted by Cogswell 10 years earlier. They determined the patterns to be

a consequence of elastic effects causing streamlines to converge in the vertical plane, thus

the flow was actually three-dimensional. However, they still did not observe any of the

typical viscoelastic behavior associated with vortex growth observed in the axisymmetric

configurations.

Quinzani et al. examined the behavior of complex concentrated polymer solutions,

accounting for multiple relaxation times in a planar contraction (1995). They compared

experimental results for extensional viscosity with simulations (using various constitutive

equation) and found a strong correlation especially using the Phan-Thien-Tanner model.

They observed extensional thickening at Deborah numbers below unity. However, they

did not perform flow visualization to determine the nature of vortex behavior for their

fluids.

Purnode and Crochet attempted to simulate the results of Evans and Walters for planar

and axisymmetric contractions (1996). Their results matched the results of Evans and
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Walters for shear thinning PAA solutions. However, due to numerical difficulties, they

did not examine Boger fluids for the same contractions to determine if their simulations

were still valid for constant viscosity, elastic fluids.

Nigen and Walters attempted to once again quantify the behavior of Boger fluids in

planar contractions as compared with axisymmetric contractions (2002). However, in this

study, they also incorporated PIV (particle imaging velocimetry) and pressure

measurements. Despite their more advanced techniques, they still observed no influence

of the fluid elasticity in any of the measurements in planar contractions. Pressure drops

followed a linear Newtonian path (see figure 2-9) and enhanced vortex patterns were

absent. However, they did not specify the range of Deborah numbers considered or

sufficient rheological information about the fluids considered.

L) 01

Figure 2-9. Flow rate versus applied
(Nigen and Walters, 2002).

rsi r

pressure for the contraction flows of Boger fluids

In only a few of these experiments were measurements of extensional viscosity or entry

pressure drop examined. However, several experiments have been performed previously

to determine the nature of extensional viscosities in planar geometries. James and

Saringer generated a planar sink flow of a dilute polymer solution in a linearly
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converging die in an attempt to quantify the non-Newtonian effects (1982). For the

wedge-shaped channel no pressure dependence was observed. In the same paper it was

determined that for the same fluid in a conical geometry, the pressure loss was dependent

on the fluid's extension rate: the pressure drop grew to nearly 4 times its Newtonian

prediction at high strain rates. The only study of planar geometry in which extensional

viscosities were found to be dependent on strain rates was the study by Quinzani et al.

(1995).

From figures 2-3, it is clear in which regime of parameter space the present study lies in

relation to previous studies in terms of dimensionless fluid and flow parameters. By using

a microfluidic device the present study is able to reach new regions in parameter space.

Because of the low concentration of polymer, the fluids in the current study do not show

large shear rate dependence (see section 4). But because they are mobile, the experiments

are not restricted to zero Reynolds number. The resulting elasticity numbers are large

enough to anticipate elastic behavior similar to what has been observed in axisymmetric

experiments for Boger fluids.

The problem with comparing all of these studies is the difference in the fluid and channel

properties. Even though elasticity numbers may be comparable, contraction ratios are

frequently different and so are aspect ratios. The elastic behavior in a contraction

geometry are at least a function of the Deborah number, Reynolds number, and

contraction ratio. Also, in a contraction, the shear rates vary greatly in the direction of the

flow and normal to the flow, thus the behavior of shear thinning fluids can act different

from Boger fluids. To appropriately relate all of these experiments, it would be necessary

to account for all these factors. Appropriate analyses of these quantities would require a

complicated three-dimensional viscoelastic simulation based on relevant parameters

(Alves, 2004).
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2.1.5 Expansion Behavior

Much less research has been performed in observing the exit behavior of fluids. The

reason for this is likely because entry flow has typically been most applicable for polymer

injection. At the fluid entry, instabilities must be accounted for to maintain uniform flow

of polymer melts. At an expansion, the large viscoelastic forces that generate vortex

behavior, work in an opposite fashion, suppressing vortex behavior (White et al., 1987;

Townsend and Walters, 1994; Olson and Fuller, 2000). But it is also known that inertial

forces can generate expansion vortex behavior in the limit of low elasticity (Townsend

and Walters, 1994). Townsend and Walters analyzed expansion of viscoelastic and

Newtonian fluids in identical channels. They found that at high Reynolds numbers

Newtonian fluids generated large circulation zone, but for the same Reynolds number (Re

= 10) and a low Deborah number (De = 1), the vortex exit vortex behavior was

completely suppressed (Townsend and Walters, 1994).

Expansions are typically observed for high-viscosity, high-elasticity fluids, where elastic

forces dominate these inertial effects (Rothstein and McKinley, 2000; Kim et al., 2001).

Because the present study is aimed towards examining low viscosity fluids, it is of

interest to determine if these inertial stresses will be large enough to overcome the elastic

effects in expansions. For microfluidic applications understanding this exit behavior is a

key component to controlling the subsequent fluid motion. In using polymeric fluids for

valves and pumps, as Groisman and Quake were attempting, it is necessary to understand

and control the outflow of fluid (Groisman et al., 2003; Groisman and Quake, 2004).

They did not analyze the rheological aspects of this viscoelastic expansion behavior in

their applications, but it was a relevant parameter for the devices they constructed.

2.2 Calculating Extensional Viscosity: Cogswell's Method

Based on the entry flow of a fluid it is possible to calculate the extensional viscosity. This

calculation is based on the pressure loss accrued in the entry flow. The planar extensional

viscosity of a fluid is defined as:
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77 = -" I 22  (2.18)

where VH - r 2 2 is the first normal stress difference and t is a constant strain rate. From

equation (1.5) it is clear that the planar extensional viscosity for a Newtonian fluid is four

times the shear viscosity. In order to determined the apparent extensional viscosity for a

contraction flow, it is necessary to decompose the pressure drops in the channel. Figure

2-10 illustrates the various sources of pressure loss as the fluid flows into the small

contraction. Fluidic devices are typically a series of channels of varying contraction

lengths (L,). Using a Bagley Chart, the entry pressure loss (APen) can be determined by

extrapolating to a zero contraction length (see figure 2-11). The pressure drop across the

contraction is determined to be:

AP = AP + AP,, (2.19)

where AP, is the pressure loss due to fully developed channel flow (see section 5.2.1 for

the calculated magnitude of these pressure drops). As the length of the channel

approaches zero, this pressure loss due to channel flow approaches zero and the pressure

drop across the contraction is dominated by the entry pressure loss (see figure 2-11). The

magnitude of the entry pressure loss is associated with the extensional component of fluid

stretching as it enters the contraction. However, decomposing the entry pressure drop into

shear and extensional components is more complicated.
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Figure 2-10. Sources of pressure loss along the microchannels
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Figure 2-11. Sample Bagley plot: pressure drop is extrapolated to zero contraction length

Starting with Metzner and Metzner a number of papers have been written that propose,

validate, and revise techniques for determining the extensional viscosity from entrance

pressure data (1970). In the early paper of Metzner and Metzner, the contraction flow

geometry was first examined as an extensional flow in an attempt to extract rheological

elongational information. Their analysis assumed that the flow was completely shear-

free, which leads to the following expression for the apparent extensional viscosity and

the associated strain rate:
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AP
7 , = - en(2.20)

where the apparent extension rate is as in equation (1.3):

V

R2

Cogswell, in 1972, analyzed the entry flow problem incorporating the effects of shear in

addition to elongation (Cogswell, 1972). This work would become the landmark for entry

flow analysis from which most other theories were derived. Through many validations

(Padmanabhan and Macosko, 1997; Gotsis and Odriozola, 1998; Rajagopalan, 2000), it

still holds as the most consistently accurate of the entry flow methods despite its

simplicity and precarious assumptions. His analysis approximated the flow to be locally

fully developed in the straining region of the flow. He also assumed the flows to be

converging in conical (for axisymmetric flow) or wedge-shaped (planar) patterns. The

fluids are assumed to be power-law fluids, for which material properties are dependent on

the shear rate. The results of his analysis lead to the following formulas for calculating

planar extensional viscosity and the associated strain rates strictly from the imposed flow

rate and the measured entrance pressure (APe,,):

-= " (2.21)
3(r 1 -r 22 )

where r, is the shear stress at the wall and the first normal stress difference is:

1
TI - 22= 1-(n + 1) AP, (2.22)

2

where m is the power law coefficient and n is the power law index of the fluid such that:

r = a m -"I (2.23)

For a planar contraction, the apparent shear rate (f<) is defined as:

f1 8i (2.24)
We

and the final expression for the planar extensional viscosity is:

S3(n1)
2 Ap2

77 = 3( "l' (2.25)
4mf "
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This result is somewhat surprising because it is dependent on the square of the entrance

pressure drop and the derivation of this formula is independent of the fluids vortex

behavior. Cogswell's analysis assumes inertia is neglected, and that the resulting flow

will always behave in a manner in which vortices are generated (Cogswell, 1972). In fact

the half angle of convergence (0o) for a fluid in a planar contraction is determined to be:

p6 = tan_1 3 (2.26)

Based on this formula, for a Newtonian fluid the half-angle of convergence would be 37'.

However, for most Newtonian fluids the actual half-angle of convergence is

approximately 90'. This result makes Cogswell's method incorrect for any scenario in

which vortices are not observed. Despite, its inaccuracies, Cogswell's method is still used

frequently and has been proven to be an effective means of calculating extensional

viscosities for many fluids (Padmanabhan and Macosko, 1997; Gotsis and Odriozola,

1998; Rajagopalan, 2000).

Cogswell's analysis has been useful in industry due to its relative simplicity, but other

means of extensional viscosity calculation have been proposed by Binding and later

Gibson, which minimize free energy and accounted for complexities of the flow

(Binding, 1988; Gibson, 1989). Binding's method proposed a power-law dependence for

the extensional viscosity, and his analysis noted errant assumptions made by Cogswell on

the nature of the flow fields (Cogswell's assumptions is based on a strain rate defined by

a power-law fluid, however the velocity fields in his calculations are determined for

Newtonian fluids) (Binding, 1988). Several authors have performed studies comparing

the works of Gibson and Binding with that of Cogswell by numerical simulations and

determined these methods are generally of equal accuracy to Cogswell's method, but

seldom behave markedly better (Kwag and Vlachopoulos, 1991; Mackay and Astarita,

1997; Rajagopalan, 2000; Zatloukal et al., 2002). Over a large range of strain rates, and

especially at high strain rates, Cogswell's analysis is still considered the best means for

calculating extensional viscosity (see figure 2-12) (Kwag and Vlachopoulos, 1991;

Rajagopalan, 2000).
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Figure 2-12. Comparison of several techniques for predicted extensional viscosity with data
obtained using Phan-Thien-Tanner constitutive model at a strain of 0.5. Results show good
agreement with simulations especially at high shear rates (Rajagopalan, 2000).

Mackay and Astaria later looked at the differences between the analyses of Cogswell and

Binding and determined the two analyses to be equivalent given the assumption that the

velocity is zero at the vortex edge (Mackay and Astarita, 1997). Combining this with

other numerical simulations validating its response, lends credibility to using Cogswell's

technique for rheological purposes in this paper.

However, it was noted by Rajagopalan that a common criticism of entrance flow is that

the extension rate is not necessarily steady, and there is not necessarily a large enough

strain in the contraction to reach the steady state, as Cogswell assumed (Rajagopalan,

2000). This may confirm the observations of Padmanhabhan and Macosko whose results

agreed with the fiber wind-up results only at strains of 3 (Padmanabhan and Macosko,

1997). The maximum Hencky strain in their 12:1 axisymmetric contractions would be 5

based on the formula for maximum strain (see equation (2.11)).

It is worth noting that the majority of calculations and simulations were performed using

axisymmetric contractions, whereas the present study is concerned with planar

contractions. Many of the theoretical works in the area were extended to the planar

condition, but they have not been validated as extensively as the axisymmetric case
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(Cogswell, 1972; Binding, 1988; Gibson, 1989). Also, the majority of fluids that have

been examined are polymer melts, not solutions. This is only important in the sense that

the present study deals with fluids for which the inertial forces cannot be completely

neglected. However, the resulting Deborah numbers are similar to those examined in the

present study. A summary of all these experiments and simulations dealing with

extensional viscosity calculation from entry pressure data is included in table 2-1.

The current study will investigate new regimes of parameter space relative to the

magnitude of inertial and elastic stresses. Vortex growth behavior is expected due to the

magnitude and behavior of the elasticity number (El > 1) in the present study. The

techniques for developing the microchannels, quantifying fluid behavior, and observing

the fluid motion will now be explored in detail.
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Author/Year Fluids AIP* Results

Metzner and A Estimated the pressure drop to be due to only extensional

Metzner effects. Their analysis is still useful in determining an apparent

1970 extensional viscosity and apparent strain rate for entry flow
problems.

A, P Using stress balance found correlation for determining
extensional viscosity from entry pressure drop in abrupt

Cogswell Polymer contractions. Factored in shear components of flow for both
1972 Melts planar and uniaxial extension. Determined extensional

properties by assuming conical (axisymmetric) and wedge-
shaped (planar) entry flow patterns.

Cogswell A, P Compared Cogswell technique with other contemporary
1978 analyses to determine similarity between all approaches

A, P Determined Cogswell's analysis to be incorrect because of
inconsistency in the way velocity fields and shear rates were

Binding defined. Built on Cogswell's result to balance the total energy
1988 in the system. Calculated extensional viscosities, for both

uniaxial and planar flows, to be power-law functions of strain
rate.

A Used Cogswell-Binding to compare entry elongational
Aqueous viscosity with commercial spin line rheometer. Found good

Binding and PA, correlation for axisymmetric flow, but did not analyze planar
Walters Xanthun contraction flow for Boger fluids. In planar flow, streamlines
1988 Solution, are not uniformly converging as is assumed in Cogwell's

Boger Fluid analysis.

A, P Calculated extensional viscosity assuming power-law behavior
Gibson without assuming entrance angle based on fluid properties.
1989 Calculations do not account for varying entry angles with strain

rate.
A Compared Cogswell and Binding analyses with finite element

Kwag and DPE results and determined both only match the slope in
Vlachopoulos HDPE extensional viscosities. However, it was determined that
1991 Cogswell's technique was acceptable at high stretch rates

(>10 1/s)

Mackay and LDPE, A Analyzed the difference between Cogswell's and Binding's

Astarita 0.05% PAA techniques and determined them to be the same given several

1997 in Maltose assumptions on the kinematics of the motion. Also determined
Syrup Cogswell's analysis to be adequate at high strain rates.

Padmanabhan A Compared Cogswell's analysis with Fiber-windup method and

and Macosko LDPE determined Cogswell gives good qualitative agreement.

1997 Cogswell's analysis was comparable to fiber-windup
performed at a strain of 3, even though Hencky strain E = 5.

Gotsis and PP, LDPE, A Compared results form Binding analysis with that of uniaxial
Odriozola VECTRA, extension. Entry flow results agreed well with uniaxial
1998 PS stretching at an averaged Hencky strain over the entry region.

Binding et a PS, PMMA, A Used Cogswell-Binding result to determine the extensionalB a. PP, HDPE, viscosity of polymer melts at high pressures by imposing
LDPE power-law dependence.

Koizumi and Poly A Used Cogswell's analysis to determine dependence of
Usu (vinyliene elongational properties on PVDF polymer melt.
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Binding et al. Multigrade A Used Cogswell-Binding result to analyze multigrade oils. For
Bini9 Muig Newtonian fluids result predicts a Trouton ratio of
1999 Oils approximately 5.

Phan- A Compares Cogswell, Binding, and Gibson predictions with
Rajagopalan Thien- PTT simulations. Cogswell gives good qualitative agreement
2000 Tanner (as good as all other techniques), and best correlation at high

Model strain rates.

A Used modified White-Metzner model to compare accuracy of

Zatloukal et al. Metzner Cogswell, Binding, and Gibson models for calculating

2002 fluid and extensional viscosities. Determined that all agreed

LDPE qualitatively, but quantitatively Cogswell and Binding were less
accurate for White-Metzner fluids especially at low strain rates.

Table 2-1. Review of Cogswell's method and its applications (A/P* - axisymmetric or planar)
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3 Testing Procedure

3.1 Fabrication

Microchannels were fabricated using the soft lithography techniques pioneered in the

laboratories of George Whitesides for fabrication of PDMS microchannels (Duffy et al.,

1998; Xia and Whitesides, 1998; McDonald et al., 2000). In this technique a mold, from

which multiple PDMS channels may be produced, is fabricated using lithography. The

entire process (from concept to channel) can be accurately completed (features as small

as 1 ym, fabricated to within 10 % of nominal dimensions) in approximately 48 hours;

hence the label rapid-prototyping has been linked with this fabrication method. Despite

its simplicity this method is still the most effective way to generate microchannels with

relatively high vertical walls (depths greater than 10 microns, with tapering less than 5').

The entire fabrication process used in the present study is outlined in figure 3-1.

1 - Start with a clean silicon wafer

2 - Spin coat photoresist (ST-8 50) and pre-bake

3 - Apply barrier coat (CEM-BC7 5) and

UV L1 contrast enhancer (CEM 388SS)

4 - Expose unmasked reaions

e 5 - Wash away contrast and barrier coats

6 - Post-bake and develop photoresist

7 - Coat wafer with PDMS

8 - Peel PDNS and bond to glass slide

Figure 3-1. Fabrication process used in the present study
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3.1.1 Mold Fabrication

The first portion of the process (steps 1-6) must be done in a cleanroom to ensure that no

particles can corrupt the channels. Molds were fabricated for the microchannels in the

current study at MIT's Exploratory Materials Laboratory (EML), which is a subsidiary of

the Microsystems Technology Laboratories (MTL). The EML is a class 1000 cleanroom,

which means there are fewer than 1000 particles larger than 0.5-micron diameter per 100

cubic feet.

The process begins with a clean silicon wafer: 3-inch p-type boron-doped wafers were

used in this study for economical reasons (Silicon Quest International) (step 1). The type

and size of the wafer are not important to the process, but silicon is required for the clean

room and works best as a base for the photoresist. The wafer is spin coated with SU-8 50

(Microchem) to achieve a uniform thickness of 50 microns (step 2). SU-8 is a brand of

negative photoresists, which are well suited for microfabrication in which high-aspect

ratios are required. The wafer is next soft-baked to cure the SU-8. Next two additional

layers are spin-coated onto the wafer, which are required to generate vertical sidewalls. A

barrier coat (Shin-Etsu MicroSi, Inc: CEM BC 7.5) is spun on top of the SU-8 and a

contrast enhancer (CEM 388SS) is spun on top of the barrier coat (step 3). A chrome

mask with the inverse of the desired features (channels are transparent, everything else is

opaque) is placed over the wafer, and the wafer is then exposed to collimated UV light

(step 4). The areas of the wafer that are exposed to the light are chemically cross-linked.

The wafer is next hard baked to further solidify areas of SU-8 that were exposed. The

contrast enhancer and barrier coat are removed using deionized water (step 5). Finally,

the unexposed regions of photoresist are dissolved from the wafer using an SU-8

developer (step 6). The resulting product is a silicon wafer with towers of SU-8 that are

the inverse of the desired microchannels.

Several aspects of this technique are altered from the original model set forth by Duffy

and Whitesides (Duffy et al., 1998; Xia and Whitesides, 1998). The most notable change

is the use of the contrast enhancer and barrier coat. In many microfluidics applications,
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corners are rounded and walls are tapered, without many consequences on the final

product. However, when performing rheological measurements, it is imperative to

minimize surface roughness and achieve vertical sidewalls. As UV sources age, the light

drifts away from perfect collimation and additional wavelengths can be transmitted. The

contrast enhancer recollimates the light by blocking out non-perpendicular light; as a

result, UV exposure times increase by a factor of two. The barrier coat is immiscible with

both the SU-8 and contrast enhancer and prevents the two layers from dissolving into one

another. Figure 3-2 shows the difference between a mold generated using a barrier coat to

collimate the light and a mold fabricated without a barrier coat.

v~

Figure 3-2. SU-8 Mold without contrast enhancer (left) compared with mold using contrast
enhancer (right)

Another variation from the standard method is to use a chrome mask. It is also possible to

generate molds using a high-resolution (2540 dpi) transparency. However, at this

resolution features are only accurate to approximately 5 microns. Again, because

rheological measurements require precise geometries, it is necessary to achieve the

maximum resolution possible. Using these transparency masks, waviness was apparent in

the molds and resulting microchannels. It is especially important to minimize the radius

of curvature at the corners of the entry and exit of the contractions, as this can greatly

affect entrance behavior (Evans and Walters, 1986; Evans and Walters, 1989). The

resolution of the chrome mask is below 1 micron and features as small as 10 microns can
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be generated. The differences between molds made using a transparency and chrome

mask is illustrated in figure 3-3.

25 Im
25 p

Figure 3-3. Comparison of the SU-8 mold from a transparency mask (left) and a chrome
mask (right). Both were generated using the contrast enhancer.

Using photoresist, as opposed to etching into the wafers, was preferred because vertical

sidewalls were desired. Using silicon wafers restricts the shapes of the channels because

silicon can only be etched at defined angles based on the type of wafer (doping and

crystallographic orientation) (Qu et al., 2000). Vertical sidewalls can be generated in

silicon, but only at laborious extents (Dwivedi et al., 2000). Silicon channels are also

more expensive and time-consuming process than building channels upward. Conversely,

SU-8 is able to generate high aspect ratios (h/W~ 10) and vertical walls (tapered angle, a

~ 890) (see section 3.3). Cross-linked SU-8 is also physically stiff (Young's Modulus, E =

4.02 - 4.25 GPa), making the molds able to withstand small forces, such as the ones that

will be generated in forming the PDMS channels (Lorenz et al., 1997; Tay et al., 2001).

However SU-8 is also brittle, so larger forces can cause the cross-linked photoresist

towers to be sheared off of the silicon wafer.

Originally SU-8 2050 was to be used rather than SU-8 50, and for most applications the

2000 series is preferred (Shaw et al., 2003). The SU-8 2000 series has faster baking times

and fewer impurities, minimizing the formation of bubbles on the surface of wafers.

However, because a contrast enhancer is being used in the fabrication process, the baking

processes generate thermal stresses on the surface of the SU-8. The stresses are generated
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by the mismatch in the thermal conductivities of the three layers (the contrast enhancer,

the barrier coat, and the SU-8). The surface thermal stresses generate cracks in the

contrast enhancer, which is standard, however the cracks propagate and are evident in the

SU-8 (see figure 3-4). Cracks are limited in the regions where the photoresist has been

cross-linked, but they are still evident. Because SU-8 50 has longer baking times than

SU-8 2050, the thermal stresses are not as great and the size and number of cracks is

significantly reduced. Thus SU-8 50 is used as the photoresist for all of the molds.

Figure 3-4. Image of cracks in SU-8 2050 mold

The cracks generated from the baking processes were originally a concern. These cracks

propagate from areas where sharp corners are desired in the channels. However, SEM

(scanning electron microscope) images (figure 3-5) of the resulting PDMS microchannels

from these molds indicate that the size of the cracks (- 1 jtm) is modest in comparison to

the size of other features in the geometries. The SEM images also have finer cracks,

which do not appear on the molds or on any replications of the PDMS (figure 3-5). These

cracks were in the surface of the gold coating on the surface of the PDMS. Gold has been

sputter deposited (- 1 nm) on the surface of the PDMS so as to allow PDMS to generate

secondary electrons when impeded on by an incident beam from the electron gun within

the SEM. A sensor in the SEM collects these secondary electrons, and these electrons

collectively generate the image of the sample. Because the PDMS cast devices are elastic

and the gold forms only a small layer on the surface, cracks form easily when handling

the channels. However, the channels that were used for SEM imaging cannot be bonded
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and are, therefore, not used for any measurements or flow visualization. These cracks do

not exist on the bonded channels.

Figure 3-5. SEM image of PDMS channels and the cracks generated in the SU-8 baking
processes

From figures 3-5 and 3-6, it is also possible to see ridges on the wall surfaces. These

ridges are results of the photolithography process and are common in microchannels

generated using the present technique (Duffy et al., 1998). However, they are small

(approximately 10 yim in periodicity and 0.5 Itm in amplitude) and not visible from

vertical views. Mask quality also aids in reducing the size of these ridges. From figures 3-

5 and 3-6 it is also possible to see the quality of the channels. They are nearly vertical

(870 < a < 930) even for the smallest features (see section 3.3 for calculation). There is a

small amount of tapering at the bottom of the channel, however this is small (10% of

channel) and is indistinguishable in larger channels.
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Figure 3-6. Entry of 160:10 pm channel

3.1.2 PDMS Channels

From each SU-8 mold, it is possible to repeatedly generate (approximately 20 times

without noticeable degradation) PDMS microchannels without using a clean room (steps

7 and 8 in figure 3-1). First a thin layer (- 10 nm) of tridecafluoro-1,1,2,2-

tetrahydrooctyl- 1 -trichlosilane (United Chemical Technologies) is vapor deposited on the

surface of the SU-8 mold. This chemical increases the contact angle of the PDMS on the

silicon and SU-8, and the hydrophobicity of the mold facilitates the removal of the

PDMS. Next a 10:1 mixture of PDMS and curing agent (Dow Coming: Sylgard 184) is

degassed and poured over the mold (step 7). When pouring the PDMS over the mold, the

hydrophobic nature of the silicon prevents PDMS from wetting many of the sharper

geometries. To eliminate the resulting bubbles, it is necessary to vacuum the mold for

several minutes until bubbles detach from the mold surface. Bubbles remaining at the

PDMS surface are inconsequential to the geometry and generally disappear during the

curing process. The PDMS is then cured at 80'C for approximately 25 minutes. The

PDMS is then removed from the mold, and holes are punched as access ports for the

inlets, outlets, and pressure ports. The holes are punched using a blunt syringe tip (BD

Luer Stub Adapter 20 gauge: 0.61 mm ID, 0.91 mm OD). The syringe tip generates a

high stress on the PDMS so that when the PDMS relaxes, a clean 400 im diameter hole
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has been formed. It is advantageous to punch the holes from channel side of the PDMS

because inserting the syringe tip is a cleaner process then the exit. The tip can tear the

PDMS when exiting, but this is unlikely when entering the surface. The PDMS channels

and a microscope slide are cleaned using isopropanol, placed in a plasma asher, and

exposed to gaseous plasma (air works best). The asher cleans the organic materials from

the PDMS and glass, modifying surface properties so that the PDMS and the slide form

an irreversible covalent bond upon contact (step 8).

PDMS is a practical material for the production of these microchannels based on its

material properties and the ease of fabrication. It is liquid impermeable, but unlike silicon

it is gas permeable. PDMS is an elastic polymer, so it is flexible and durable. This works

well for low viscosity fluids, however as the fluid viscosity increases, pressures increase

and deformation of the channel walls can be observed at higher flow rates. Stiffer

polymers, such as polyurethane, would likely be a better option for systems with more

viscous working fluids. The optical transparency of PDMS is critical for flow

visualization and PIV measurements. The optical transparency of polyurethane is not as

high as PDMS. Polyurethane also has longer curing times and has not been as widely

accepted as PDMS for microfluidic applications. Because of these material properties

PDMS is advantageous to silicon microchannels and other elastomers.

The problems with using PDMS are based on the difficult surface properties of the

elastomer. PDMS has reportedly varying surface properties, namely the contact angle of

the fluid is found to change over time (Hillborg et al., 2000). PDMS is hydrophobic, so

frequently it is difficult to wet many portions of the channel and bubbles will form at

salient corners. However, because PDMS is gas permeable, air bubbles slowly disappear

as the air permeates through the channel walls. These surface properties also enable

particles to frequently stick to the surfaces. Typically in flow visualization experiments,

the fluorescent particles stick to the walls of the channels especially at sharp contractions.

This however, may be due to the ridges that originated from the lithography process,

which are observed in figures 3-5 and 3-6.
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3.2 Experimental Setup

Once the channels have been bonded, several different experimental techniques are

employed to quantify the flow properties of the microrheometry channels. For each setup,

22 gage (0.41 mm ID, 0.71 mm OD) stainless steel tubes (McMaster-Carr) are used to

interconnect the microchannels to external TygonV plastic tubes (ID 0.7 mm, OD 2.4 mm

- Norton Performance Plastics) at the inlets, outlets, and pressure sensors. The PDMS

hole is smaller than the outer diameter of the tubes, and therefore stretches and conforms

around the stainless steel tube to form a leak-proof seal. For this setup the inlet tube is

connected to a syringe, and a syringe pump (Harvard Apparatus - 11 Plus series)

generates a constant flow rate for the entering fluid. The syringe pump operates on a

stepper motor that moves the syringe shaft at a constant velocity. Thus to ensure that the

times between steps on the motor is small enough to have a negligible effect on the flow

rate in the channels a minimum velocity must be achieved. To combat this deficiency we

have utilized a range of syringes with different volumes (500 p1, 1 ml, 3 ml), so the range

of achievable flow rates spans several decades (0.1-15 ml/hr).

3.2.1 Pressure Measurement

Honeywell pressure sensors (26PC, differential model) were used to determine the

pressure loss in the channels. Liquid was allowed to flow through the channel to the

pressure tap locations and tubing was connected to the pressure tap once bleeding began.

After the tubing also began to bleed, it was connected to the pressure port on the pressure

sensor. This was done for two pressure tap locations in the microchannel. The

microchannels were designed to measure a pressure drop across a contraction at pressure

ports 3 mm upstream of the contraction and 3 mm downstream from the expansion. This

is a minimum of 60 diameters away from the contraction and expansion to ensure that the

pressure sensors do not interfere with the flow patterns.
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Maximum Presure Sensitivity Resolution Maximum Voltage Overpressure
Model (kPa) (mV/kPa) (mV) (mV) (kPa)
26PCB 35 1.45 0.02 50 138
26PCC 100 0.97 0.03 100 310
26PCD 200 0.48 0.03 100 413

Table 3-1. Summary of pressure sensors specifications

The pressure sensors measure a differential pressure across the contraction as shown in

figure 3-7. The pressure sensors consist of encasing around a piezoresistive sensor die,

which outputs a voltage proportional to the pressure difference between the two ports.

The voltage from the sensor is read by a data acquisition (DAQ) card (National

Instruments: PCI-MIO-l6XE-50). The card works with a LabVIEW program to

appropriately amplify, read, and analyze the signal from the sensor. Another channel on

the DAQ is also used to supply the voltage to power the sensor. The LabVIEW program

allows the user to specify the voltage range over which the output from the sensor would

be read. The signal is amplified appropriately to accommodate this voltage range and

then translated within the program to the actual sensor value. One of three different

pressure sensors were employed based on expected pressure drop with measurable

pressure ranges of from zero to 35, 100, and 200 kPa.

Pressure Sensor
Fluid Ail

Filled
Sensor Die Thbing

Pressure
SSensor

yringe Plunp To computer

Q Q

Contraction Outlet

Figure 3-7. Setup of pressure measurement system
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After tests have been run, the pressure sensors are calibrated using a column of water of a

desired height. The measured voltage is correlated with the resulting known pressure (P

pgH, where g is the gravity, and H is the height of the column) as shown in figure 3-8.

12000
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8000
0

6000

2 4000
C)

2000 * 35 kPa Sensor
C 100 kPa Sensor

< 0 A 200 kPa Sensor

-2000 k ' I I . I I . . I
0 3 6 9 12 15 18

Sensor Output (mV)

Figure 3-8. Plot of the calibration curves used for the three different pressure sensors

For the pressure measurements a lag exists between specifying the control rate and the

pressure reaching its steady-state value. The time delay has been observed in pressure

measurements of visco-elastic fluids (Yesilata et al., 2000). This lag is approximately 1

minute using water and at a flow rate of 1 ml/hr (see figure 3-9). However, increasing the

flow rate decreases the magnitude of the lag. The fluid's viscosity has the opposite effect,

causing lag to increase as has been previously observed (Yesilata et al., 2000). For most

fluids the pressure data was taken over 5 minutes sampling at a rate of 20 Hz. The

resulting data was averaged from the point at which the voltage reading leveled off and

for the remainder of the time. This was always at least 100 seconds of data (2000 data

points) (see figure 3-10). For this reason, all streak images were also performed after

waiting for several minutes for flow patterns to stabilize and flow rates to reach specified

values.

66



0

80000

70000

60000

50000

40000

30000

20000

10000

n
0 300 600 900 1200 1500 1800

Time (s)

Figure 3-9. Pressure increase with time for increasing flow rates (0 ml/hr - 6 ml/hr). Flow
rates are increased 1 ml/hr every 5 minutes. Data is taken using a Newtonian 55% glycerol
and water mixture (no = 8.59 mPa-s) in a 400:25 Am contraction. Time lag is on the on the
order of 5 minutes at the lowest flow rates, but decreases as flow rate increases.
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Figure 3-10. Figure shows lag times for the 0.1% polyethylene oxide solution at increasing
flow rates. This figure shows the time range over which pressure measurements are
averaged.

The lag is likely due to several factors. First, as the pressure sensor takes data, fluid is not

directly touching the sensor die. Instead, air is trapped between the fluid in the pressure

tubing and the pressure die. The pressure reading is equivalent to the pressure in the air.

Thus the air must be compressed to equal the pressure in the channel. Thus a pressure
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gradient is generated and the delay is caused by the amount of time is required for the

liquid to compress the air to steady state in both the upstream and downstream pressure

tap. However, decreasing the amount of air in the pressure ports seemed to do little to

decrease the timescale of this delay. Another source of time lag is due to the elasticity of

the various components of the setup. The tubing and PDMS both have elasticity, so

increasing the flow rate results in increased pressure and as a result expansion of these

elastic materials. As steady state is reached, the tubing and PDMS recede to an

undeformed state. The last possible source of time delay is due to the speed of visco-

elastic pressure waves (cve) (Kazakia and Rivlin, 1981; Yoo and Joseph, 1985):

Cve r 0) (3.1)

This velocity is small (~10 cm/s) but because tubing lengths are small (-20 cm) this

would not account for the large time delays.

3.2.2 Video and streak imaging

Video and streak images were taken using a Zeiss microscope and attached cameras. The

microscope used an air objective at a ten times magnifications. For this lens the

numerical aperture is 0.25 and the associated field of depth is 38 microns. Because the

depth of the channels is 50 Itm, the resulting images capture most of the total channel

depth. The fluid was seeded with fluorescent particles (1.1 tm diameter: 7-FN- 1000 -

Interfacial Dynamics Corporation) at 0.02 wt%. These particles are small enough that

they do not affect the bulk motion of the fluid. The fluorescent particles are illuminated

by an ion-Argon laser, at a wavelength of 532 nm. The particles are excited in this range

and emit light at a wavelength of 580 nm. Optical band pass filters are used to eliminate

all light outside 580 nm.

For channels to be used in any imaging processes the holes for the pressure taps were not

punched in channels; otherwise the setup was the same as for the pressure measurements.

Video clips were taken using a CCD (charge-coupled device) camera (Pulnix TM-200).

Images are obtained at 29.97 frames per second and they are recorded to a digital video
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(DV) cassette. Resulting video is stored at images sizes of 768 by 494 pixels. Digital

videocassettes are converted to audio video interleaved (AVI) format, and final video

resolution is 0.98 sm/pixel. CCD exposure times vary between 0.001 and 0.016 seconds,

however for sufficient lighting, the maximum exposure time (0.016 s) was employed.

Attempts at obtaining high-speed video (using Phantom V5.0 Camera) of flows failed

due to insufficient optical attachments and lighting.

The still images were taken using an Apogee Instruments CCD camera (KX32ME)

(image size: 2184 by 1472 pixels). In many previous experiments, streak images took as

long as several minutes of exposure time to obtain (Evans and Walters, 1986). However,

it took much less time (~ 10 ms) in this study because fluid velocities are higher (TV 10

cm/s) and the field of view is smaller (~ 500 pm). Exposure times varied between 0.01

and 0.03 seconds for the streaked images in the present study (see section 5.1). The

images obtained were saved in the tagged image file format (TIF) at a resolution of 0.7

Am/pixel.

3.3 Geometry

The dimensions chosen for these experiments were determined based on the limitations

of the chrome mask and the lithography process. The mask was limited to a resolution of

I Am, thus, to ensure that the corners of the geometry were in fact right angles, the

contraction width (Wc) was chosen as 25 sm. To compare these results with previous

works in planar geometries, the contraction ratio (3) was designed as 16 to 1. (Evans and

Walters, 1986; Nigen and Walters, 2002). At this ratio, the Hencky strain is the same as a

4:1 contraction in the axisymmetric case, so the elastic effects were to be compared with

axisymmetric experiments on 4:1 contractions (Cable and Boger, 1978; 1978; 1979;

Rothstein and McKinley, 1998). Also, the smallest feature specified for the chrome mask

(Advance Reproduction Corporation)was 10 /m. Thus, another of geometries was

fabricated with the contraction width, W = 10 pm, and the larger dimension was W=

160 sm to maintain the 16:1 contraction ratio. For each of these 16:1 contractions the

length of the contractions (L,) varied between L, = 50 Am and L, = 400 Am.
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A third set of contractions were fabricated at a contraction ratio of p = 4. For one

channel the contraction width was designed as W, = 50 im while for the second channel

the contraction width was W = 12.5 Am. For these channels goal was to compare streak

patterns with planar 4:1 contractions that Evans and Walters and Quinzani (Evans and

Walters, 1986; Evans and Walters, 1989; Quinzani et al., 1995). However, the contraction

length was only designed as L, = 200 pm. Because it is unclear whether a 4:1 contraction

ratio is large enough to neglect the effects of the wider channel (WI), there was no intent

to employ Cogswell's analysis to determine extensional viscosities for these contractions.

Once the channels are fabricated there were a number of methods employed to ensure

that nominal dimensions were upheld in the final channels. In early attempts at

fabrication (using a transparency mask and without employing the contrast enhancer) the

final microchannels were not as specified in the initial drawings. Channels were

significantly tapered (a~ 70'), and the base dimensions were oversized (as much as 15

ym). These errors were due to the poor collimation of the UV source and the mask.

However, after resolving these issues, there was still concern with accurately measuring

the lengthscales of final channels. A calibrated microscope was used to measure each of

the relevant dimensions in the PDMS replicas. In the finalized channels nearly all of the

features were within 5% of their designed sizes (figure 3-11). The only exception was the

W, =10 ytm contractions. These were consistently oversized by approximately 2 yim.

Channel Designed (pm) Measured (pm)
Wc Lc W1 Wc Lc W1

Channel 1 25 50 400 23.52 49.06 394.43

Chip A Channel2 25 100 400 25.05 100.21 393.25
Channel 3 25 200 400 24.01 199.37 393.05
Channel 4 25 400 400 24.33 397.29 392.81
Channel 1 10 50 160 11.99 49.39 160.31

Chip B Channel2 10 100 160 13.00 99.73 161.18
Channel3 10 200 160 12.48 198.96 158.64
Channel4 10 400 160 12.36 396.78 160.28

Chip C Channell 50 200 200 50.34 198.33 198.55
Channel 2 12.5 200 50 12.15 196.53 49.38

Table 3-2. Measured dimensions compared with specified dimensions
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Figure 3-11. Sample PDMS channel for length measurement: nominally a 400:25 pm
contraction, measured values are within 5% of the designed dimensions

Using a microscope is only accurate in measuring distances in plane. Thus to measure the

height of the channel, another technique was required. The spin coating process has been

highly refined, but it is still difficult to control heights to within 5% (Lorenz et al., 1997;

Shaw et al., 2003). For this project all the channels were to be taken off one single wafer

of uniform depth. So it was imperative that an accurate reading of the depth throughout

the channel was established. Most methods of non-invasive depth measurement are

typically not more viable than the 5% accuracy of the spin coating process, so a more

robust approach was taken. Because only one mold was employed, it is known that each

set of channels is identical. Thus one set of PDMS channels that were pulled off the

master mold was sliced thinly at a specified channel location (see figure 3-12). The cross-

section of the channel was placed sideways under the microscope and the lengths were

measured in the same fashion as the other distances. This was performed at several

different locations throughout the mold. At each location the depth was constant to within

2% of 50 itm. These same images were also used to determine the tapered angle (a) of the

channels. For each channel the tapered angle was always within 30 of a = 900, the desired

right angle.
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Figure 3-12. Cross section of 160 ym channel, used for measuring channel depth

SEM images were initially employed to measure lengthscales for the channels. However,

these measurements were less accurate than those obtained by optical microscopy. The

SEM images are able to zoom in closer and observe the channel roughness and three-

dimensional features that can only be viewed from an oblique angle. So SEM images

were taken of the channels, but primarily for qualitative means.

With channels fabricated very close to designed specifications and a pressure

measurement setup, it is now possible to measure extensional properties fluids as set forth

in the project motivation. However, it is first necessary to quantify the rheological

properties of the fluids to be examined in this study.

72



4 Fluid Rheology

4.1 Fluid Selection

4.1.1 Polymer architecture

The dynamics of polymers in a solution is greatly influenced by the concentration relative

to the critical overlap concentration (c*). The overlap concentration is the point at which

polymer molecules begin interacting. At concentrations much less than c*, the fluid is

considered dilute and the polymer chains each behave as if they are independent in the

solvent. As the concentration increases (c - c *), molecules begin overlapping in the

semi-dilute range. In concentrated solutions ( c >> c *) the polymer chain interactions

strongly influence the behavior of the fluid. The critical concentration for polymer

solutions is dependent on the properties of both the polymer and the solvent (see figure 4-

1). The critical concentration can be determined based on the properties of the fluid-

polymer interaction and statistical probabilities of polymers interacting.

I

log M.,

SEMI-DILUTE
ENTANGLED

BOGERI
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log 0

Figure 4-1. Molecular weight plotted against concentration. This figure shows the different
solvent regimes based on various polymer concentrations and molecular weights. Adopted
from (Dontula et al., 1998).
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The critical concentration is the concentration at which the volume of the polymer coils is

equal to the total volume of the fluid, thus molecules must interact in with one another.

The critical concentration for a polymer solution can be approximately calculated using

the formula:

c M(4.1)

N Ar'

where M, is the molecular weight, NA is Avagadro's number, and (r2) is the mean

square of the radius of the coiled polymer chain. Statistical probability suggests that the

most likely shape for a polymer in solution is in the form of a sphere. This radius is a

statistical probability determined from the random walk of the polymer. The radius of the

polymer sphere can be related to the number of monomer chains in the polymer and its

interaction with the surrounding fluid (McKinley and Armstrong, 2000).

c* M' 3 (4.2)
NA ( aCmn,,l2 )2

where as is the swelling ratio, which is the affinity of the polymer for its solvent, C. is

the characteristic ratio of the polymer, indicating how freely the monomer is to rotate

back upon itself, 1 is the average bond length, and nm is the total number of bonds:

n jM", (4.3)

where mo is the molecular weight of one monomer andj is a coefficient is derived from

the number of bonds of length 1, in each molecule. Combining this formula, with equation

(4.2) it is clear that c* decreases with increasing molecular weight (c* ~Mw0 ). This

trend is illustrated in figure 4-1. Equation (4.2) serves as a basis for determining the

critical concentration, however, it uses a statistical approximation of the radius, which

means it is only an approximate calculation of the overlap concentration.

Each of these variables is documented for most polymer solutions in the Polymer

Handbook (Brandrup et al., 1975), with the exception of the swelling ratio, which is

dependent on the polymer interaction with the solvent. This variable can be calculated

through the formula:
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a- (v) Y2 _ Y___2~ n 1

( ((3v) -Y' - (3v) 0.666n, (44)

L IY) )- C
where C is the Reimann zeta function, N is the number of Kuhn steps (the number of

freely rotating rods), and v is the solvent quality exponent determined from tabulated

calculations of intrinsic viscosity measurements for the polymer in a given solution

(a=3 v-1) (McKinley, 2002). Thus the final value of c* can be written as:

c* "' 3(4.5)

22

NA (3v) 0.666nm iIY2Coflml2

0/2 C-

The finite extensibility (Le2) of a solution is a ratio of the maximum length of a polymer

compared with a characteristic length of the polymer for a given solvent. By convention

the characteristic length of the polymer is one-third the mean squared radius such that the

finite extensibility is calculated as (McKinley, 2002):

3R 2  0.666n.La= "= 3 ' (4.6)
r C )

4.1.2 Working Fluids

The purpose of using a microfluidic device to examine flows was to take advantage of the

ability to generate large shear and extension rates while maintaining low Reynolds

numbers. The behavior of mobile non-Newtonian fluids in microchannels was

particularly of interest. Non-Newtonian fluids are characterized by complex

microstructure while maintaining a homogenous appearance on the macroscale.

Specifically, fluids with elastic properties were of interest, in order to generate Deborah

numbers above unity (as defined in equation (2.1)).
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At Deborah numbers greater than unity, elastic effects typically become important in the

flow. Because strain rates are so large on the microscale, generating high Deborah

numbers in this system requires only small relaxation times (~ 1 ms). The ability to

obtain Deborah numbers above unity for fluids with low relaxation times makes it

possible to study the non-Newtonian properties of mobile liquids (n < 10 mPa s).

However, the goal was to still keep the Reynolds number relatively small (equation (2.3))

in order to minimize inertial effects relative to elastic effects. At low viscosities, it is

difficult to neglect inertial effects. Thus, while the Reynolds numbers remain small, they

do exceed unity for many experiments performed.

It was also desired to keep the viscosity of the fluid approximately constant. For constant

viscosity fluids, the Reynolds number is linearly related to the flow rate. In non-

Newtonian fluids, the shear viscosity typically decreases as the shear rate increases. For

this system there are very large shear rates at the walls, and previous studies have shown

that strongly shear-thinning viscoelastic fluids show vortex growth in planar geometries

(Evans and Walters, 1986; Evans and Walters, 1989). The present study was intended to

investigate the behavior of constant viscosity fluids in similar geometries. Previous

studies have examined such constant viscosity fluids in planar geometries previously but

were unable to observe any vortex behavior (Walters and Rawlinson, 1982; Evans and

Walters, 1986; Evans and Walters, 1989).

Boger fluids are fluids with substantial elastic properties, but constant shear viscosities.

These fluids are, therefore, ideal for many rheological applications where elastic

properties are to be examined, but viscous and inertial effects are intended to be invariant.

These fluids are generally formed by dissolving small amounts of high molecular weight

polymer in a high viscosity solvent (see figure 4-1).

For a dilute solution, the viscosity is a linear function of the concentration:

17o =), 1 + [7]c +O(C2 (4.7)
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where [n] is the intrinsic viscosity (see section 4.3.1). By using water as the base solvent

and relatively low concentrations of polymer, it is possible to generate a low viscosity

solution that also exhibits significant elastic properties.

Zimm theory predicts the relaxation time associated with a dilute polymer solution (see

section 4.3.1). The theory predicts that the relaxation time is linearly related to the

molecular weight of the polymer and the solvent viscosity:

A, % M (4.8)

To obtain substantial relaxation times (> 0.1 ms), fairly large polymer molecular weights

are required. However, by using water as the base solvent, relaxation times are

measurable and viscosities remain small. For these solutions it is required that large shear

rates (> 1000 s1) be used to measure rheological properties, which is very difficult to

obtain without the influence of inertial forces. For this reason a microfluidic device is

necessary for characterizing these fluids.

The base fluid for all these experiments was a low viscosity Newtonian fluid (either

deionized (DI) water or a mixture of DI water and glycerol). The polymer used was

polyethylene oxide (PEO) (Sigma Aldrich) with a molecular weight of M, = 2,000,000

g/mol. PEO was used for its high molecular weight, water solubility, and mechanical

properties. PEO is a flexible polymer, which lends itself to highly elastic behavior even at

low concentrations. Because of these properties, this fluid has been used in several

previous studies where similar fluids were desired (Dontula et al., 1998; Mun et al., 1998;

Tirtaatmadja et al., 2004). In the present study PEO was mixed at concentrations of 500

ppm (0.05% weight), 1000 ppm (0.1%), and 3000 ppm (0.3%).

For PEO, each monomer has the chemical formula C2H40 (mo = 44 g/mol). At a

molecular weight of 2,000,000 g/mol, the values for each component of the polymer

architecture are listed in table 4-1.
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V n C / (1) (r2) 2 (nm) Le2  c* (ppm) c* (wt %)

0.55 1.36 x 10' 4.1 1.47 165 2.44 x 104 741 0.0741%

Table 4-1. Polymer architecture for PEO (Mw = 2,000,000 g/mol). (Value for v from
(Tirtaatmadja et al., 2004), C,. from (McKinley and Armstrong, 2000))

From this data, it is possible to determine that the fluids dealt with in this paper are

primarily in the semi-dilute concentration region. The concentration of the 0.1% PEO is

very close to the overlap concentration (c/c*= 1.3) and would be expected to behave

more like a dilute solution where polymer molecules act independently. Conversely, the

0.3% PEO is clearly beyond the dilute limit (c/c* = 4.0) and polymer interaction would

have a larger effect on its rheological properties. Only the 0.05% PEO would be within

the dilute range (c/c* = 0.7).

The rheological measurements in the next sections lead to characterization of these fluids

in comparison to the dilute solution approximations. But for each fluid, elastic stresses

are large enough in these channels to exceed the inertial stresses. This leads to relatively

large elasticity numbers (see section 2.1). However, unlike many previous studies, inertia

cannot be neglected, leading to interesting flow properties.

4.2 Viscosity Measurement

It was critical to determine the steady shear behavior of the fluid in order to resolve the

Reynolds and elasticity numbers. To measure the viscosity a controlled stress rheometer

(TA Instruments AR2000) was used in shear flow. A double gap Couette cell fixture on

the AR2000 was used to characterize the viscous properties of each fluid employed in

these experiments (see figure 4-2). The Couette cell consists of three concentric

cylinders, and it is generally used for low viscosity fluids because this geometry increases

the total wetted surface area. Fluid fills the gap between the inner stationary cylinder

(stator) and the outer rotating cylinder (rotor) and also between the rotating cylinder and

the outer stationary cylinder. Thus total shear stress, and therefore the measured torque, is
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large enough to accurately characterize mobile fluids. The gaps between the inner and

outer cylinders are set to keep the shear rates constant, even though the rotor has a higher

velocity at the outside:

QRD (4.9)
ARD

where 0 is the angular velocity of the rotor, RD is the average radius, and ARD is the

difference between the inner and outer radius, such that:

(RRj + RS,) (RR,o + (4.10)
2(RR,i -Rs~) 2(Rs'0 - RR,o

where RRJ (20.38 mm) and RR,o (21.96 mm) are the inner and outer radius of the rotor,

respectively, and Rsi (20 mm) and Rso (22.38 mm) are the inner and outer radius of the

stator (see figure 4-2). Because the AR2000 is a controlled stress rheometer, it is

advantageous to ramp the stress over several decades. For the present tests, the range of

achievable torques was spanned (0.1 - 200,000 mN-m).

Rotating CentralX Cylinder

59.5 mm

Fixed Outer Cylinder Fixed Inner Cylinder

(RS, = 22.38 mm) Fixe I 0mm)
(RS, 20 mm)

Rotor Flui d
(Re = 20.38 mm,
R 0= 21.96 mm)

Figure 4-2. Schematic of double gap Couette cell for AR2000

To ensure the rheometer is accurately measuring the torque on the system and the Couette

cells are concentrically aligned, a calibration fluid (Cannon Instrument Co.) is used. The

calibration fluid is purely viscous, and shear viscosity measurements should be
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independent of stress (and shear rate). The viscosity of this fluid is tabulated for 20C to

be 4.004 mPa-s. Tests on this fluid yield fluid viscosities close to the tabulated value

(within 6% for all valid shear rates) confirming the accuracy of the rheometer (figure 4-

3). Tests were then performed on all of the fluids to be used in this study at 20C. The

viscosity for all of these fluids is plotted as a function of shear rate in figure 4-3.

10 100

Shear Rate (s-')

1000 10

- Dl Water
0.05% PEO

. 0.1% PEO
v 0.3% PEO
+ PEO 0.1% + 55% Glycerol

-- 55% Glycerol
- Calibration Fluid

4.004 mPa-s

* *v **4*e***$*** *********** :

=0.0003 Pa

m i n .,. . . .

Figure 4-3. Rheological data for fluids employed in this study

At high and low shear rates the viscosity data is errant. At low shear rates, the torque

required is too small to generate constant shear flow. As the shear stresses decrease

toward the noise floor of the rheometer, the measured viscosity increases. This tendency

is evident based on the formula for calculating the viscosity:

r7= FCouette
T

(4.11)

where T is the applied torque and FCouette a factor with units of the inverse of a volume

based on the geometry of the present Couette system (Fcouette = 2976 m-3). For low shear

rates, the applied torque is dominated by system noise, and the resulting viscosity scales
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as the inverse of the shear rate. At higher shear rates, the low Reynolds number

approximation is exceeded and the fluid inertia begins affecting the data. Inertial forces

can generate secondary motion known as Taylor vortices when an inner cylinder is

moving in a Couette cell (Macosko, 1994). Stresses are required to generate these

vortices and the resulting measured torque exceeds the torque strictly associated with the

viscous stresses. The onset of Taylor instabilities are reached at a critical Taylor (Ta)

number, which for the present setup is defined as:

Ta=p 2Q2 (Rs~0 --RRO) RRTa2 >3400 (4.12)

For a fixed geometry, the onset of Taylor vortices is only dependent on the fluid's

viscosity and density. For many of the fluids examined in this study the onset of this

instability is 2000 - 5000 s-1, which is also where data begins to diverge for its thinning

behavior (see figure 4-3). However, Macosko also reports that the onset of these

instabilities is actually delayed by non-Newtonian effects (Macosko, 1994).

A turbulent instability occurs in outer cylinder rotations, which would be the inner gap

for the Couette cell used in this study (Macosko, 1994). However, the condition for this

instability (Re > 50,000) occurs at higher velocities than the onset of a Taylor vortex. A

final instability, which would cause errant viscosity measurements, is a periodic

instability dependent on a critical Deborah number (Larson, 1992). However, a critical

condition for this instability is determined by the ratio of the inner and outer radius:

R
K = SO (4.13)

RR,o

This instability can be ignored when this ratio is greater than K = 0.95, which is the case

for the AR2000 double gap Couette cell (K = 0.98).

Thus, the onset of a Taylor instability is the limit of the rheometer. Thus shear viscosity

data is accurate for a range of shear rates from approximately 10 s 1 to 1000 s-. This is a

large range, however shear rates generated in the microchannels are even larger than the

maximum values achievable on the rheometer (section 5).
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In order to perform Cogswell's analysis (section 2.2), fluid is assumed to be a power-law

fluid of the form of equation (2.23). For all of the fluids observed, except the 0.3% PEO

solution, a constant viscosity is a reasonable approximation (within 15% for all other

fluids). But there clearly is a weak dependence on the shear rate. At high shear rates, even

small amounts of shear thinning can greatly reduce the pressure loss in channel flow

(Bird et al., 1987). Data is fit to power-law curves, and values for calculating the power-

law behavior of each fluid, m and n, are included in table 4-2. Zero-shear-rate viscosities

are also determined for each fluid at the lowest shear rate at which viscosity

measurements are valid.

Fluid no (mPa s) m (Pa -s") n Shear Rates (s-)
DI Water 1.01 0.0010 0.992 20-1000
0.05% PEO 1.84 0.0020 0.970 10-1000
0.1% PEO 2.32 0.0025 0.977 10-1000
0.3% PEO 8.31 0.0132 0.880 50-1000
0.1% PEO + 55% Glycerol 18.20 0.0192 0.956 1-800
55% Glycerol 8.59 0.0087 0.995 10-1000
Calibration Fluid 4.22 0.0045 0.985 10-1000

Table 4-2. Rheological data from double gap Couette cell

For the 0.1% PEO solution the power-law index, n, is relatively close to unity (n

0.977). In fact for the calibration fluid it falsely appears that there is some dependence (n

0.985) on the shear rate. One can conclude that this sets the limit on how close to a

constant viscosity fluid one can measure to be within 1.5%. So one would assume that the

viscosity of the 0.1% PEO fluid is slightly more dependent on shear rate than this error

limit, and data is in fact due to shear-rate dependence. But for the 0.3% PEO solution n is

small enough (n = 0.880) that it is clearly due to shear thinning of the fluid, which will be

important in evaluating the resulting pressure drop in channel flow. The dependence of

the power-law index on concentration is plotted in figure 4-4. Figure 4-4 also contains a

plot of the zero-shear-rate viscosity against the viscosity and is compared with the

prediction for dilute solutions. For the graph, it is clear that the 0.3% PEO solution is

clearly beyond the dilute solution limit. However for the 0.05% and 0.1% PEO solutions,

the dilute solution prediction is within 20% of the measured viscosities.
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Figure 4-4. Effects of PEO concentration on power law index and zero-shear-rate viscosity.
Values for zero-shear-rate viscosity are compared with dilute polymer solution prediction.

A cone and plate fixture was also used in an attempt to measure the first normal stress

difference, N. A lightweight cone (acrylic) was used to minimize the geometry inertia,

however, the values of the normal stress difference were small and inconsistent from trial

to trial. The steady shear data from these experiments were used to test the accuracy of

the Couette cell measurement. The cone and plate tests matched the Couette cell results

to within 10% for all fluids.

Attempts were also made at measuring the storage modulus and loss modulus using small

amplitude oscillatory shear (SAOS) experiments for both the Couette cell and the cone

and plate rheometer. However, a linear viscoelastic region was not definitive from strain

sweeps data and resulting SAOS data was not acceptable. Even in the most viscous fluid,

which should have the longest relaxation times, data was not conclusive due to the small

magnitude of the resulting torques. All data for the storage modulus was just system

noise. With the small magnitude of the relaxation time, it is also likely that SAOS data is

only relevant at large oscillatory frequencies, beyond the limits of the rheometer.
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4.3 Relaxation Time

4.3.1 Dilute Solution Theory

It is useful to calculate the relaxation time for the fluids in the limit of dilute

concentration even though it may be inaccurate. This value will at least provide an order

of magnitude estimate of the appropriate relaxation time and a lower bound limit for the

relaxation time. It also gives physical intuition as to the physico-chemical factors that

affect the relaxation time of a polymer solution. Zimm theory is used to predict the

longest relaxation time of a polymer solution in the limit of infinitely small

concentration:

1 = (4.14)

2) RT

where [qi] is the intrinsic viscosity, 77 is the solvent viscosity, and R is the universal gas

constant. This relaxation time is for a good solvent, however, it is useful to adjust the

front factor as adopted from Tirtaatmadja et al. (2004) specific to PEO in water for a

solvent quality factor (v) of 0.55.

= 0.463 [ ] (4.15)
RT

Since this theory assumes that the solution is infinitely dilute, there is no dependence of

relaxation time on polymer concentration. Thus, there is no change in the predicted

values of relaxation time for each water-based solution.

The intrinsic viscosity is determined from the Mark-Houwink-Sakurada equation, which

estimates the intrinsic viscosity as:

KM" a(4.16)

where a is the same exponent referred to in section 4.3.1 and K is a coefficient

determined empirically for different polymers and solvents. From Tirtaatmadja et al.,

values of K and a were determined to be K = 0.072 ml/ga+l and a = 0.65 for PEO in water

(2004). These values were also in agreement with tabulated values from the Polymer
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Handbook (Brandrup et al., 1975). The resulting relaxation time for 2,000,000 g/mol

molecular weight PEO in water from Zimm theory is computed from equation (4.14) to

be 0.34 ms at 20'C.

While Zimm theory may not be adequate for the dilute and semi-dilute fluids examined in

this thesis, it does lend insight into how the relaxation times of the fluids vary with both

molecular weight and solvent viscosity. Since the relaxation time is a linear function of

solvent viscosity, solutions of PEO in glycerol and water were used as a simple means of

increasing relaxation times. Despite being able to determine the effects of molecular

weight and solvent viscosity, it is still necessary to find a means of measuring all

relaxation times.

4.3.2 Capillary Breakup: Theory

Standard rheological tests and theoretical calculations fall short of providing an accurate

measure of the relaxation time for the fluids employed in this study. Instead, another

means of physically measuring the relaxation time was required. However, many

standard rheological techniques require that the fluid be viscous enough to generate

relatively large forces. For the low viscosity fluids employed in this study, there are a

limited number of ways in which the relaxation time can be measured. Also, it is

preferred to measure the relaxation time in a way that is similar to the experiments to be

performed. For this case an extensional flow was desired, unlike the typical shear

relaxation time obtained from SAOS experiments. In extensional flow polymer molecules

are stretched, not sheared, which means the polymer molecules in solution behave

differently. As a result the time required to return to the undeformed state is different,

yielding a different relaxation time. Previous studies have been performed to measure

relaxation time of similar PEO solutions using droplet breakup (Vance et al., 2000;

Tirtaatmadja et al., 2004). For the present study, a means of balancing elastic stresses

with capillary forces was employed by using a capillary breakup extensional rheometer

(CABER).
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The CABER experiment consists of two circular plates (radius, RO = 3 mm) between

which the fluid is confined by its own surface tension at an initial gap, ho, of 3 mm. The

top plate quickly moves (50 ms) to a specified distance (hf= 9 - 12 mm) away from the

bottom plate (see figure 4-5). The final aspect ratio of the fluid thread is defined as:

h
A = h(4.17)

2RO

The fluid is allowed to thin under the capillary stresses and eventually breaks. A laser

sheet is positioned at the midpoint of the final position of the two plates and measures the

diameter of the fluid filament between the two plates as the fluid thins. The CABER

instrument samples the fluid diameter at a rate of 1000 Hz.

Laser

Motor

-- wea.Top Receptor
Cylinder

Receptor

Figure 4-5. Schematic of CABER setup (picture adopted from (Verani and McKinley, 2004))

Extracting relaxation times from the CABER measurement of the midplane radius as a

function of time is based on the stress balance between surface tension and elastic

stresses. Calculating the relaxation time from the radius-time data is based on an

extensional decay of the radius with time. In high-molecular-weight polymers with low

viscosities, the capillary forces in the filament drive the flow (Bazilevskii et al., 2001).

For fluids with a single relaxation time, the balance of surface tension and internal fluid

elasticity reduces to the following time-dependent exponential decrease in filament radius

(Entov and Hinch, 1997; Bazilevskii et al., 2001):
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-t

R = Rfe 3  (4.18)

where Rf is the radius of the filament at time (t = 0) when the two plates are completely

separated. This result is independent of any inertial effects, so aspect ratios were adjusted

to eliminate inertial effects from the system.

Studies have been performed to determine if the aspect ratio in capillary thinning

experiments has any effect on the calculated value of the relaxation time for polymer

solutions (Stelter and Brenn, 2000). Stelter and Brenn concluded that the aspect ratio

could have an effect on the measured relaxation time if the solution was beyond the semi-

dilute region. However because all fluids in the present study fall within this region,

relaxation times are expected to be independent of aspect ratio.

The relaxation time is also dependent on the rate at which the fluid is being stretched or

sheared. The CABER generates a uniaxial extension as the filament thins. To evaluate the

stretch rate of this motion it is necessary to compare the equation of motion for an

extensional flow with that of the CABER. For a uniaxial extension:

dR 1
= -- IR (4.19)

dt 2

Solving this equation and equating it for (4.18) CABER experiments yields that:

2
/1 = De = - (4.20)

3

The internal stresses of the system keep the fluid thread necking at a natural Deborah

number of 2/3. Thus the actual strain rate at which the relaxation time is measured is

dependent on the fluid employed.

For the preceding analysis to be valid, inertial stresses and viscous stresses should be

small compared to elastic stresses. To determine the limits of this instrument, it is

necessary to compare the time scales associated with the evolution of the different

stresses and to compare them with the time scales of the instrument.
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The time scale associated with the balance of surface tension and inertial stress is referred

to as the Rayleigh time scale (tR), which is defined as:

t -pRO (4.21)
tR

where RO is the radius of the fluid droplet and u is the surface tension of the fluid (for

simplicity a :=q= 0.07 N/m, where u, is the solvent surface tension). This time is also

the inverse of the natural frequency associated with the fluid droplets. For the CABER

instrument the Rayleigh time is approximately tR = 0.02 s for an aqueous solution. Also

the associated time scale from the balance of viscous and capillary stresses on the

systems is defined as:

tv ~ R(4.22)

Typically the CABER is used to measure the extensional viscosity of a fluid undergoing

breakup, but for the CABER to be able to measure this quantity, it is necessary that the

viscous time scale to be greater than the Rayleigh time. This viscous time scale is based

on the viscosity of the fluid being constant. For the fluids examined in this study, the

viscous time scale is approximately t, = 10 ms at its largest value (for the most viscous

fluid).

Because the viscosity for all fluids used in these experiments is less than those required,

the inertial time scale is dominant (t/tR- z0.5). To be able to measure elasticity it is

necessary that the relaxation time be larger than the maximum time scale of the system,

which for this case is the Rayleigh time scale. So it is required that:

De0 = >1 (4.23)
pR2

0~

Where Deo is an intrinsic Deborah number comparing the system's elastic and inertial

time scales. Based on this description, the minimum resolvable relaxation time for this

system is approximately 20 ms. Adding glycerol and PEO does not significantly change

the density (~ 15%) or the surface tension (~ 10 %), so this value is relatively constant for

all solutions used in these experiments. However, these are only order of magnitude
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values as capillary thinning can be observed even at lower timescales. This is possible

because the elastic stresses grow as the filament thins, while inertial stresses are

dissipated due to damping.

Using the Rayleigh time as the approximate relaxation time of the fluids studied in this

examination, the extension rate is approximately = 30 s-1. This is much smaller than

the expected extension rates for the microchannel contraction ( > 10,000 s1), but it is

an accurate means of evaluating a relaxation time because it is an extensional flow. Other

techniques, such as drop break-up, for measuring the relaxation times of dilute solutions

usually are based on the same principle of fluid necking due to capillary stresses and,

therefore, yield rheological data at the same natural Deborah number of 2/3 (Tirtaatmadja

et al., 2004).

4.3.3 Capillary Breakup - Results

For each fluid employed in this study (even Newtonian), tests were performed to measure

a relaxation time. Typical thinning and breakup behavior are included in figure 4-9.

Images in figure 4-6 are taken even intervals (At = ev"' , where teven, is the time until
5

breakup of the filament) showing the thinning behavior of the various fluids until breakup

at an aspect ratio of 1.61. The pictures are taken using a Phantom V5.0 high-speed

camera (1000 frames per second). The sensor obtains images at 512 by 216 pixels,

exposing each image for 0.214 ms. The image is magnified by a factor of 1.7 and the

resolution of each image is 26.8 pm per pixel. For each trial performed, video is

examined to ensure that the fluid is thinning in the appropriate exponential fashion

without interference (either external or due to unexpected behavior of fluid droplets).

From these images in figure 4-6, it is clear that filaments form easily without droplets

interfering with data.
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0.1%PEOA=1.6 tet=50ms,h=3mm

t=-60ms t=0 t=0.2t 0vn t=0.4t..n t=J-.6t 6 r t=O.Otvn t=t 0

0.3 % PEO, A= 1.6 tevr = 110 m s, h=3mm

t--50ms t=0 t=0 .2t.,e t=0.4t., .t=.=.te tO - tevent

0.1% PEO in 55%wt. glycerol/water, A= 1.6 t, 560 ms, h=3mm

t=-50ms t= t=0. e t=4t.vent t-.6 vent t- 0.8vent t-ewt

Figure 4-6. High-speed video of capillary thinning on CABER for 0.1% PEO, 0.3% PEO,
and 0.1% PEO + 55% Glycerol. Images are taken at six equal intervals from when the plates
are fully separated until filament break-up
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Data for the CABER experiments are analyzed to determine the relaxation times. Time

zero is defined as starting after the 50 ms during which the plates are still moving apart.

Data from time zero onward is plotted on a semilog plot and fit to an exponential curve

(figures 4-7 and 4-8) to determine the relaxation time as defined in equation (4.18). Five

tests were performed for each fluid at four different aspect ratios. The resulting relaxation

times are averaged for each aspect ratio and are plotted in figure 4-9. In the present study,

aspect ratio effects were not significant (relaxation time is constant to within 20%) and

the relaxation time was mostly independent of the aspect rate. The only effect of the

aspect ratio was its impact on how smoothly the filament formed. At high aspect ratios,

droplets frequently formed in low viscosity fluids, interrupting the relaxation data. At

lower aspect ratios, the droplets that form on the top and bottom plate frequently oscillate

into the region being measured by the laser.

A = 1.41
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Figure 4-7. CABER results at the lowest aspect ratio (A = 1.41). 0.1% PEO in 55% glycerol
and water data shows oscillations at the Rayleigh frequency.
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A = 1.61
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Figure 4-8. CABER results from medium aspect ratio (A = 1.61)
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Figure 4-9. Relaxation time average over 5 trials for each aspect ratio. For each fluid, the

dependence on the aspect ratio is weak and appears random. For the less viscous fluids at

low aspect ratios the data was either precise (within 10%) or completely inaccurate, and

therefore ignored. As a result, error bars for these fluids are small.
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For most experiments the data was clean enough to determine a relaxation time. However

for the less viscous fluids (the 0.3% PEO and 0.1% PEO solutions) the formation of

droplets frequently interfered with the data at higher aspect ratios (figure 4-10). For these

experiments data was ignored and only clean trials were incorporated in the tabulated

values. At the highest aspect ratio, it is impossible to determine any significant material

information about the 0.1% PEO, and no relaxation time is recorded. For the 0.1% PEO

in glycerol and water, the fluid relaxation time was easily determined for each trail, as the

rheological properties resulted in clean data. However, an interesting phenomenon can be

determined from the data. At low aspect ratios it is possible to determine the Rayleigh

time scale from the oscillating frequency of the top and bottom droplets. At the lowest

aspect ratio, the droplet moves in and out of the range of the measured radius, yielding a

damped periodic error at the frequency of the Rayleigh time scale (see figure 4-11). This

natural oscillating time scale is evident from the 0.1% PEO in 55% glycerol and water

from figure 4-7.

Figure 4-10. Images of droplet formations in 0.1% PEO which cause errant data at high
aspect ratios (A = 2.02) (Image courtesy of Lucy Rodd)

t=10ms t=26ms t=47ms t=66 ms t=88ms t=110 Ms

Figure 4-11. Images of the damped oscillations of the lower droplet which can interfere with
CABER measurements. Images are taken for the 0.1% PEO in 55% glycerol and water
solution at an aspect ratio of A = 1.41.
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Following the initial experiments, trials were performed on a 0.05% PEO solution. This

fluid was clearly approaching the limits of the accuracy of the CABER instrument as

inertial effects were evident at most aspect ratios. Results resolved relaxation times at

only the lowest aspect ratio (A = 1.41). At all higher aspect ratios droplet formations

interfered with the relaxation data. The value of this relaxation time is only slightly less

than that obtained for 0.1% PEO (table 4-3), indicating that the solution is below the

overlap concentration c*, which is as predicted in section 4.3.1.

Also, to demonstrate the effect of fluid elasticity on the results in this setup, figure 4-12

shows the difference in the thinning behavior of the 0.1% PEO in 55% glycerol and water

and the Newtonian 55% glycerol and water solution. Clearly the elasticity of the polymer

solution is responsible for the exponential decay in the midplane radius. The only data in

which the Newtonian fluid formed a clean thinning behavior (no droplets) was at a ratio

of 1.22. But because the aspect ratio was found to have little effect on the thinning effect,

the difference in the aspect ratio for these two trials is negligible.

1 7 #*f2AA .

. 0.1 (

.00,00 0.01 0.02 0.03 0.04
T0.1 mTime (s)

X4

4 1 A AA

j~55% Glycerol A A

A 0.1% PEG + 55% Glycerol

0.00 0.05 0.10 0.15 0.20 0.25

Time (s)

Figure 4-12. Comparison of the thinning data of a polymer solution (0.1% PEO + 55%
Glycerol and Water) and a Newtonian fluid (55% Glycerol and Water). Data is taken at
aspect ratios of A = 1.41 and A = 1.22, respectively.
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Based on all the experiments performed and linear regression data from the plots in figure

4-9, it appears that capillary breakup behavior is independent of the aspect ratio for these

dilute solutions. The values for the relaxation time are averaged over accurate result

(containing no droplets) for different aspect ratios. These values are included in table 4-3.

For the 0.1% and 0.3% PEO solutions the relaxation time is less than the Rayleigh

timescale, however, these values are still well determined for the experiments. It is clear

that the thinning data is due to elasticity, as for Newtonian fluids, the thinning behavior is

not an exponential decay (see figure 4-12). CABER tests on water resulted in errant data,

which resulted in a relaxation time of 0.6 ms. This value then provides a measure of the

error of the system, which adds confidence to the data for low viscosity solutions.

Fluid Relaxation Time (mns) Ahs (Pa-')
0.05% PEO 1.5± 0.4 1.49

0.1% PEO 1.6 ±0.3 1.58
0.3% PEO 4.6± 1.0 4.55
0.1% PEO + 55% Glycerol 23.0 ± 2.1 2.68

Table 4-3. Relaxation times for fluids used in the present study

Relaxation time values varied by less than 2.1 ms for each trial using the 0.1% PEO in

55% glycerol and water. For the 0.1% PEO solution, the relaxation times only varied by

0.3 ms from trial to trial. For the 0.3% PEO solution, the relaxation times varied by as

much as 1 ms from trial to trial. For all of these the error is less than 20%, which is within

a reasonable range and indicates repeatability and validity of the measured data.

From the analysis on Zimm theory, one might expect that the relaxation time would scale

with the solvent viscosity for the same concentration of PEO. However, from Table 4-3,

it is clear that there is a difference between the value of the relaxation time divided by the

solvent viscosity for the 0.1% PEO in water solution and the 0.1% PEO in 55% glycerol

and water mixture. This discrepancy is derived from the fact that both the intrinsic

viscosity and the solvent quality factor (P) are dependent on the solvent in addition to the

polymer (Brandrup et al., 1975).
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4.3.4 Comparing Relaxation Times

Clearly the relaxation times measured by the CABER are significantly greater than the

values determined through Zimm theory (at least 5 times). Rothstein noted that calculated

relaxation times were 20 times greater than measured zero-shear-rate relaxation times

-N
determined from first normal stress coefficient (, = 1 ) for a Boger fluid (Rothstein

Yyx

and McKinley, 1998):

/1= - 0.29 1 (q -7,(4.24)
000

This relationship gives the longest relaxation time for a linear viscoelastic fluid in the

limit of zero-shear-rate (Bird et al., 1987). However for the fluids in the current study, it

is difficult to get any measure of the first normal stress coefficient. The magnitude of this

relaxation time (N) is different for each solution, depending on the zero-shear-rate

viscosity (no), however the relaxation time will be approximately 30 times smaller than

the relaxation time measured using the CABER tests. There is clearly a discrepancy

between measurements and calculations for different polymer solutions. For this reason,

it is unclear as to whether the critical Deborah number for these experiments will actually

be unity as anticipated. From this analysis, it is best to use the measured relaxation time

from the CABER results. These values are the most accurate for an extensional flow, and

are therefore most appropriate for the flows considered in this experimentation. They

yield results for the relaxation time which have been confirmed and validated through

many experiments (Entov and Hinch, 1997; McKinley and Tripathi, 2000; Bazilevskii et

al., 2001).

4.4 Density

The density of the fluids was measured using a simple pipette and a scale. A known

volume of fluid is acquired by the pipette and massed. Three trials were performed for

each fluid and the total density was averaged. Adding PEO to the solvent has the effect of

reducing the fluid density, however this amount is small (< 2%) for the water-based
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solutions. For the glycerol water mixture the contribution is larger, but still less than 5%.

However, it is worth noting that the density of the water and glycerol mixture is

significantly larger (15%) than that of pure water.

4.5 Fluid Summary

Based on all previous measured results the fluid properties to be considered for the

present flow characterizations are summarized in table 4-4. These properties are as

desired for the fluids to be studied by a microfluidic device. For the microchannels

considered, the range of achievable flow rates (0.1 ml/hr - 15 ml/hr) allows the

microfluidic channels to create a high Deborah number (De ~ 100) with small inertial

effects (Re < 10) (see section 2.1). It is now possible to extend the previous rheology to

quantify the associated dimensionless parameters of each fluid for thorough entry flow

analysis.

P 110 m n c/c*
Fluid (g/cm 3) (mPa-s) (Pa-s") (Ms)
DI Water 0.988 1.01 -- -- 0 0
0.05% PEO 0.986 1.84 0.0020 0.970 0.7 1.5
0.1% PEO 0.985 2.32 0.0025 0.977 1.3 1.6
0.3% PEO 0.971 8.31 0.0132 0.880 4 4.6
55% Glycerol + Water 1.136 8.59 -- -- 0 0
0.1% PEO + 55% Glycerol 1.085 18.20 0.0192 0.956 1.3 23.0

Table 4-4. Summary of fluid properties
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5 Results and Discussion

For nearly all of the results in this section, the 16:1 contractions (W, = 25 txm) were used

as the working channels. These contractions were dimensionally the most accurate

compared with the designed specifications (within 5%). The radius of curvature (~ 3 ym)

on all features is nearly constant, thus for the smaller channels, these rounded corners are

more significant with respect to the total geometry. Also, using a contraction ratio of Op =

16 as opposed to Op = 4 was advantageous to compare with axisymmetric experiments

with equivalent Hencky strains. However, a 4:1 (W, = 50 ttm) contraction was used in

flow visualization for one trial to determine the nature of elastic instabilities.

5.1 Streak Images

Because the results of many previous papers only included streak images, these were the

primary means of comparing the present experiment with those performed on the

macroscale. It was desired to determine whether vortex enhancement could be generated

on the microscale, as it has been observed for Boger fluids in axisymmetric contractions.

From the images obtained it is possible to calculate the associated vortex lengths (Lv, see

figure 2-3) and determine the Deborah numbers associated with the onset of elastic

effects.

5.1.1 Deionized Water

The first fluid examined is a Newtonian fluid, as a controlled experiment. Clearly water

has no associated elasticity, and no vortex enhancement would be anticipated. Spanning

all flow rates with DI water as the working fluid, the contraction flows appeared laminar

and reversible, as expected (see figure 5-1). It is difficult to resolve any vortex length

from the upstream region, as particles approach the salient corner but never touch it

completely. Since no particles enter this region, it is not possible to determine the nature

of the flow, but from previous analyses, a vortex must exist in this corner (Nguyen and
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Boger, 1979). However, this detachment length remains constant at approximately 20 stm
for all flow rates considered.

a) d)

b) e)

c) f)

Figure 5-1. Streak images for DI water in 400:25 ,im contraction showing the growth of exit
vortices (a) Re = 5.5 (b) Re = 8.3 (c) Re = 14 (d) Re = 22 (e) Re = 33 (f) Re = 44
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In observing the exit of the contraction, inertial vortex growth began to develop as flow

rates are increased (see figure 5-1 (b - f)). These vortices originate at exit corner of the

expansion at a flow rate of 1.5 ml/hr (Re = 8.3). The vortices grow toward the salient

corner of the expansion and are symmetric for all flow rates. Vortices do not appear in

the entry of the contraction due to the inertial forces which suppress all vortex behavior.

However, in expansion flows, inertia works in the opposite fashion, enhancing secondary

flows (Townsend and Walters, 1994). The vortices are symmetric for each image,

indicating that the flow is stable.

5.1.2 0.1% PEO Solution (El = 11.7)

At low flow rates the behavior of the 0.1% PEO solutions also appears Newtonian:

streamlines converge in laminar fashion at the contraction (see figure 5-2 (a)). However,

as the Deborah number increases, the streamlines begin to depart from laminar behavior

(De = 41 - 55): an indication of the onset of elastic effects. This region is marked by

streamlines which appear to have pronounced curvature. As the Deborah numbers grow,

elastic vortex behavior begins to appear. With increasing Deborah numbers (55 < De <

96) the flow begins to become unstable. Streamlines appear to cross one another (see

figure 5-2 (c)). This is an indication of the fluids desire to begin vortex growth behavior.

Closer to the top and bottom surface of the microchannel, shear stresses are larger and

velocities are lower. Because the depth of focus for this microscope setup is rather large

(38 stm), the images are capturing particle motion for flow close to the channel surface as

well as the centerplane, giving the appearance of crossing streamlines. As Deborah

numbers increase (De > 96), substantial elastic vortices appear in the corners and flow

becomes unstable in time. A single vortex develops which shows preference for one side

of the channel. This initial asymmetry (shown in figures 5-2 (d - e)) is resolved as

Deborah numbers increase (De > 124). Corner vortices continue to grow with increasing

flow rate and remain approximately symmetric for all flow rates observed (figures 5-2 (f

- h)). At the highest Deborah numbers observed (De ~ 220) diverging flow is observed in

the entry region (figure 5-2 (h)). This regime is marked by flow patterns in which particle
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paths begin to expand toward the channel walls while approaching the corner vortex.

Over the range of flow rates considered, flows never become unstable.

a)

b)

c)

di)

f)

g)

hi)

Figure 5-2. Streak images for the 0.1% PEO solution (El = 11.7). (a) De = 27.6, Re = 2.35 (b)
De = 41.3, Re = 3.52 (c) De = 55.1, Re = 4.69 (d) De = 96.4, Re = 8.21 (e) De = 110, Re = 9.39
(f) De = 124, Re = 10.6 (g) De = 165, Re = 14.1 (h) De = 220, Re = 18.8
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Diverging flow patterns, as seen in figure 5-2 (f - h) are typically observed when shear-

thinning behavior enhances the Reynolds number in an attempt to suppress vortex growth

(Cable and Boger, 1978). This diverging flow regime typically has a velocity which is

maximum far away from the centerline, typically close to the walls of the channel. These

flow patterns have been proven experimentally (Cable and Boger, 1978) and numerically

(Duda and Vrentas, 1973), but there are few explanations for the off-center maximum

velocity. It was also shown by Cable and Boger that these flow patterns are metastable:

flow divergence only occurs when flow rates are increased and not when large flow rates

are reduced. Because flow never became unstable, the stability of the diverging flow

regime was not examined.

Vortex lengths are calculated by using other know distances in the image (channel width)

and measuring the detachment length relative to this known distance (see figure 5-3).

This method only serves as an approximate measurement, but because vortex lengths are

not strictly defined in the flow pattern, it is impossible to measure these values with a

resolution better than ±25 sm. The upstream vortex length is non-dimensionalized and

plotted in figure 5-4. The dimensionless vortex length begins at the Moffat eddy (x=

0.19) and, at the start of instabilities, vortex length increases linearly with the Deborah

number for the 0.1% PEO solution. The shaded and empty squares indicate the two

different sides of the planar channel. At Deborah numbers beyond De = 150, these are

both greater than the Moffat eddy. And at higher Deborah numbers (De > 300) the two

vortex lengths become nearly identical.
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Figure 5-3. Technique used for measuring vortex lengths: upstream width is measured as W,
= 400 pm and rotated to measure vortex length, L,
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Figure 5-4. Dimensionless vortex length plotted against Deborah number for the 0.1% PEO
solution

These results are not in agreement with many of the other observations of planar

geometries (Walters and Rawlinson, 1982; Evans and Walters, 1986; Evans and Walters,

1989; Chiba et al., 1990; Chiba et al., 1992). The 0.1% PEO solution is low viscosity and

has minimal shear thinning effects, yet vortex growth is observed in planar contraction

flow. The Deborah numbers obtained in this study exceed those of other studies of Boger

fluids in planar contractions by several orders of magnitude (Walters and Rawlinson,

1982; Evans and Walters, 1986). Vortex growth was not observed until large Deborah

numbers (De ~ 50) were obtained, and it is quite likely that other studies failed to

generate Deborah numbers which would dictate the onset of extensional effects.
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The results for the 0.1% PEO solution are similar to those obtained by many

axisymmetric entry flow studies (Rothstein and McKinley, 1998). The linear increase of

vortex lengths with the Deborah number agrees with the observations of Rothstein and

McKinley for axisymmetric contractions of Boger fluids. The onset of vortex growth,

however, occurs at much higher Deborah numbers than anticipated (as compared to

Rothstein). This discrepancy is likely due to the difference in means of calculating

relaxation time (section 4.3.5) as well as the interplay of inertial effects on the entry flow.

Plugging the Zimm relaxation time into equation (4.24):

O = 0.29 ( o
000

the resulting relaxation time would be ? = 54 Is, which is a factor of 30 times smaller

than the measured relaxation times. Clearly, the discrepancy between measured values

and those which are obtained through the zero-shear-rate limit of the Zimm model is

quite large. Rothstein and McKinley used this calculated relaxation time (Xi) in their

study, even though it differed from their measured values (1998). The other factor

suppressing vortex development is the confinement of the channels. The height of the

channel (h = 50 [m, see table 3-1) in the neutral flow direction is not large enough to be

neglected and viscous effects from this top and bottom surface likely serve to inhibit

vortex growth. However, the trends of vortex growth for axisymmetric contractions are

upheld for the planar contraction in the present study.

The other type of entry flow that is frequently examined is a square/square contraction

(Walters and Rawlinson, 1982; Xue et al., 1998; Alves et al., 2003). These studies have

frequently found substantial vortex growth in elastic fluids, both shear thinning fluids

(Alves et al., 2003) and Boger fluids (Walters and Rawlinson, 1982). However in these

studies, the formation of lip vortices were noticeably absent as compared with

comparable fluids in axisymmetric and planar contractions. Vortex growth in these

studies was also more substantial than in the present study, likely due to the inherent

three-dimensional nature of the square/square contraction, which leads to large unequal

stress singularities at the entry plane.
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In the present study, downstream of the contraction, the vortex behavior is again different

from that of water. Instead of vortex growth, vortex suppression is observed. It has been

demonstrated that elasticity and inertia have opposite effects on an expansion as they do

on an entry flow (Townsend and Walters, 1994; Olson and Fuller, 2000). Inertia serves to

suppress vortices in entry flow, but increases secondary flow in flow expansion.

Conversely, elasticity induces vortex growth in entry flow, but suppresses vortices in

expansions.

5.1.3 0.3% PEO Solution (El = 126)

For the 0.3% PEO solution it was expected to observe similar behavior to the 0.1% PEO

solution. However, to ensure that the observed effects were elastic in nature (as opposed

to inertial or viscous) vortex growth was expected to occur at the same Deborah number,

which, because relaxation times are larger (see table 4-4), translates to a smaller flow

rate. For the 0.3% PEO solution the power-law index (n = 0.88) is smaller than that for

0.1% PEO solution (n = 0.98), thus it is anticipated that shear thinning effects may also

be important and slightly change entry behavior of the fluid.

At the lowest Deborah numbers, the flow was once again laminar in nature (figure 5-5

(a)). However, as the Deborah number increases (De > 61), a clear lip vortex grows from

the reentrant corner (figure 5-5 (b - d)). This vortex grows slowly and moves in an

unstable manner in both time and space. Clear instabilities occur as the lip vortex begins

to grow outward toward both reentrant corners (figure 5-5 (d)). At Deborah numbers

above 123 (2 ml/hr) the flow patterns become more stable. As the Deborah number

increases, the vortices grow steadily, however the vortices are clearly asymmetric. This

asymmetry is likely due to very small imperfections in the channel geometry that arise

during fabrication and are amplified by fluid viscoelasticity. However, at higher Deborah

numbers (De > 247), flow patterns become symmetric and diverging flow begins. At

large Deborah numbers (De > 330) the flow begins to become unstable: streaklines are no

longer clearly defined.
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a) f)

b) g)

c) h)

di) i)

e)F

Figure 5-5. Streak images of the 0.3% PEO solution (El 126) (a) De 41.2, Re = 0.33 (b) De
= 61.7, Re = 0.49 (c) De = 82.3, Re = 0.65 (d) De = 103, Re = 0.82 (e) De = 123, Re = 0.98 (f) De
= 144, Re = 1.1 (g) De = 165, Re = 1.31 (h) De = 247, Re = 2.0 (i) De = 330, Re = 2.62 (h) De =
494, Re = 3.9
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An interesting flow phenomena can be observed at the higher flow rates for the 0.3%

PEO solution. At Deborah numbers greater than 330, a tertiary flow pattern is observed

(figure 5-5 (i - j)). The standard corner vortex does not entirely reach the salient corner of

the channel entry (see figure 5-6). In the corner, a second vortex begins to appear. This

vortex rotates in an opposite fashion to the rotation of the primary vortex. This behavior

is a new observation and has not been found in previous experiments where strain rates

are much lower. Because the strain rates of the fluid are so large in the bulk, even the

secondary velocities are large enough to create a second stress singularity in the salient

corner. This singularity gives rise to this tertiary flow pattern.

Figure 5-6. Transient images of the secondary vortex for the 0.3% PEO solution in the 16:1
contraction (De = 494). Images are taken every 200 ms.

To quantitatively characterize the entry flows, the vortex behavior of the 0.1% and 0.3%

PEO fluid data is compared. The vortex lengths of the two solutions are plotted as a

function of the Deborah number in figure 5-7. This data indicates a strong correlation

between the viscoelastic vortex growth for both fluids. The dimensionless vortex lengths

start at values close to the Moffat eddy length. As the Deborah number increases, both

fluids begin to diverge from the Moffat length at the same critical Deborah number (De ~

50). Both fluids experience vortex growth in a linear manner, and the slopes of this

vortex length versus Deborah number are similar (dX / dDe = 0.0026). This figure is

compared with figure 5-8, which is a plot of the dimensionless vortex lengths against the

Reynolds number. In this plot, there is no correlation between the two fluids: a clear

indication that vortex enhancement is an elastic effect and not inertial in origin.
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Figure 5-8. Dimensionless vortex lengths plotted against Reynolds number:
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The onset of non-Newtonian effects is typically marked by a departure from the simple

laminar Newtonian behavior observed in the entry flow of water and similar fluids. In

comparing the behavior of the 0.1% and 0.3% PEO solutions, streamlines first begin to

depart from the laminar behavior at similar Deborah numbers. Vortex growth at higher
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flow rates is also comparable in a qualitative nature. From these images it is possible to

distinguish five distinct regimes of flow development (see section 6.1). The first region

(De = 0 - 50) is defined by Newtonian-like flow convergence. Secondly, small flow

divergences begin to develop (De = 50 - 60), but no vortex behavior is evident. The third

region is characterized by the onset of unstable "lip" vortices (De = 60 - 125). These

instabilities are only seen in the 0.3 % PEO solution, and are likely suppressed by inertial

forces in the 0.1% PEO solution. In this region, for both solutions, flow patterns are

unstable and give streak images the appearance that streamlines cross one another. The

fourth region of flow development (De = 125 - 300) is the onset of stable corner vortex

growth and eventually diverging flow. A fifth region of flow development (De > 300) is

the vortex instability observed in the 0.3% PEO solutions.

5.1.4 4:1 Contraction

The 4:1 contraction (W, = 50 tm: see table 3-1) was not used extensively in

experimentation: streak images were taken for only the 0.3% PEO solution. Once again

the flows began in a Newtonian fashion, however as the flow rates increased, vortex

enhancement was never evident. Instead, flow instabilities began to occur that were

marked by a pronounced secondary swelling (see figure 5-9) as has been seen in several

previous studies (Cogswell, 1978; Chiba et al., 1990; Chiba et al., 1992). This is very

similar to the diverging flow behavior in many axisymmetric studies (Cable and Boger,

1978), but the divergence occurs without the existence of a corner vortex as has typically

been seen in axisymmetric flows. While no vortex behavior was observed in these

channels, elastic instabilities did begin to form at the same Deborah number (De = 50) as

in the 16:1 contractions despite the different geometry.
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a)

d)

Figure 5-9. Streak images of the 0.3% PEO solution in a 4:1 contraction (200:50 Jim) (El =
31.2). (a) De = 40, Re = 1.28 (b) De = 61, Re = 1.95 (c) De = 81, Re = 2.60 (d) De = 121, Re =
3.88
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The elasticity number for the 0.3% PEO solution in the 4:1 contraction is El = 31. This

value is larger that the associated elasticity number for the 0.1% PEO solution in the 16:1

contraction because the contraction width (W) is larger. The reason vortices are

suppressed in this fluid is likely due to the significant effect of the upstream walls. The

contraction ratio is not large enough to assume a 2-D sink flow, thus the channel walls

confine the flow restricting the vortices from forming. Instead divergent flow develops in

the entry region as a local response to extensional stresses near the centerline. This flow

pattern seems to be a conflict between the elastic and inertial stresses, but the exact nature

of the flows is unresolved.

5.2 Pressure Drop Analysis

5.2.1 Calculated Newtonian Pressure Losses

The goal of obtaining pressure measurements in the system was to determine the

variation in the enhanced pressure losses caused by extensional thickening of the

solutions, yielding an enhanced extensional viscosity for the fluid. To calculate the

additional component of the pressure drop, it is necessary to determine the expected

pressure loss for a Newtonian fluid in a rectangular channel. The pressure drop for a

Newtonian fluid with the same shear viscosity as the zero-shear-rate viscosity (s = -qo) is

calculated assuming Poiseuille flow in three rectangular channels (see figure 5-10). Two

of the channels are identical (upstream and downstream of the contraction) and can be

combined to give the total pressure loss:

AP . -i ( CIPQLI + CjpQL' (5.1)New t onanDhWj 2D2 hW (

where L, is the length of the larger channels (3 mm each) and C and C, are shape factors

for calculating additional pressure losses in rectangular channels (Fay, 1994):

C = f ReD,h (5.2)
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wheref is the Darcy friction factor and ReD,h is the Reynolds number using the hydraulic

diameter (Dh) as the characteristic length scale:

DA = (5.3)
PR

where PR is the perimeter and A is the area of the channel. The shape factors, C and Ce,

are determined to be C = 82.5 and C, = 61.9 respectively from previous tabulated values

(Fay, 1994). These shape factors are determined through numerical simulations for

tabulation, but can be calculated for pipe flow (C = 64) and for an infinite plane (C = 96)

from the Navier-Stokes equation. Clearly upstream and downstream the channels begin to

approach the infinite plane limit. In the contraction region the channel is closely

approximated by the circular shape factor due to the confinement of the walls.

C 21 \2

AP -AP +AP±+AP
Newtonian - 1 2 c

Figure 5-10. Pressure losses accrued between pressure taps

These equations are only valid if the entry length (Le) is small compared to the length of

the channel. This value was calculated by Vrentas and Duda (Vrentas and Duda, 1973) to

be:

L= Re +0.11 (5.4)
2 (9

This length is small (Le < 10 Itm) compared with the contraction lengths for all fluids at

low flow rates (Q < 1.5 m/hr). Compared to the Lc = 400 yim contraction, this entry length

is never large (Le = 50 im for the 0.1% PEO solution at the maximum flow rate).

However this could be a significant portion of the smallest contraction (Lc = 50 mti) as

flow rates increase. But for many of the non-Newtonian fluids, data shows that entrance
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pressures dominate the pressure loss in this contraction region, making the pressure drop

in the contraction negligible.

For Newtonian fluids, the additional pressure drop associated with the extensional

viscosity is the Sampson pressure loss (Dagan et al., 1982), which is defined for a

Newtonian fluid in an axisymmetric entrance as:

AP =- (5.5)
R2

In this expression the factor of 3 is derived from the extensional viscosity (qE 3s). Thus

for a planar contraction the equivalent pressure loss would be:

AP =W(5.6)

For all flows considered this value is small enough (see table 5-1) that the error of the

pressure sensors (-5% for water) interferes with this measurement. The magnitude of this

additional pressure drop is approximately 6% of the total pressure drop for the fluids

considered in the smallest contraction length (L, = 50 Am). Because this value is linear in

viscosity and flow rate, it is a constant fraction of the total pressure loss in the system.

This additional factor is not included in expected pressure because the difference between

measured pressure and calculated values should equal this Sampson pressure drop,

enabling the calculation of an extensional viscosity. The total pressure drop across the

two pressure taps is:

AP = AP + API + AP+ AP, (5.7)

AP, / (AP + AP2 + AP )
Lc (sm) 16:1 (Wc = 25 sm) 4:1 (Wc = 50 ym)

50 9.55% 1.76%
100 6.75% 1.65%
200 4.25% 1.48%
400 2.44% 1.22%

Table 5-1. Sampson pressure drop as a percentage of total Poiseuille pressure drop for
various channels and contraction ratios
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5.2.2 Shear Thinning Effects

The effects of shear thinning on pressure losses are considered, even though the power-

law index is close to unity. In this system, shear rates are extremely high and pressure

losses can be greatly reduced from the Newtonian prediction (Koo and Kleinstreuer,

2003).

Pressure loses from a shear thinning fluid can be calculated only for a few well-defined

shapes. Rectangular channels do not have any defined pressure loss equations, thus the

system must be approximated using other shapes. For flow between two infinite planes,

the pressure loss for a power-law fluid is defined as:

A-PL, [Q (1 +2n) I mL(58XPL plane -[( 2 )~m1(5.8)
pae 2n WB B

where n and m are the power law index and coefficient (see section 2.2), 2B is the

separation of the planes, L is the length of the channels, and Wis the thickness of the

planes (Bird et al., 1987). For this equation to be valid, it is assumed that the width of the

channel is much smaller than the height (B << W). For the microchannels in this study,

the channel geometries are closer to squares than to infinite plates (especially in the

contraction where the majority of the pressure loss occurs). Thus, a circular channel is

considered, for which the pressure loss due to shear thinning is defined as:

p [Q(l+3n) ] 2mL (59)
PL,pipe L zn 3  (5.9

;TnR' R

where R is radius of the pipe (Bird et al., 1987). A circular channel is useful to consider,

because flow confinement in both direction is included in the calculations. For both of

these approximations, the pressure loss data would not be specific to the microchannels in

this study. To resolve this issue, the ratio of pressure loss that is due to shear thinning

effects as compared to that of Newtonian fluids (n = 1) is determined. For an infinite

plane channel, the resulting ratio is:

APL plane V n-1 )nM
=p - -+2 (5.10)

Newtonian B n 37
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And for a circular channel the ratio of the power-law pressure loss to the Newtonian

pressure drop is:

ppipe 2 -+3 m (5.11)
APNewtonian D3 n 40

These ratios are multiplied by the calculated Newtonian pressure loss specific to each

section of the channel (section 5.2.1). This gives an estimate of the effects of shear

thinning for the channels (see figure 5-11). Both of the infinite planar cross section and

the circular cross-section have the same effect on the calculated pressure losses (within

1%). Thus for convenience, and the accuracy of having flow confined, the circular

estimate is used to calculate the shear thinning effects.

1.0 . . . , ...... ...... .

0.8

0.6

0.2

0.0-
1.0 0.8 0.6 0.4 0.2 0.0

Power Law Index (n)

Figure 5-11. Pressure loss ratio for power-law fluid estimate compared with Newtonian fluid
as a function of the power-law index (n) for channel of the same dimensions of the
contraction (W, = 25 jim, h = 50 jim).

A comparison of calculated pressure loss values for Newtonian and shear thinning fluids

with the viscous properties of fluids considered in the present study (see table 4-4) are

plotted in figure 5-12. Shear thinning has a large effect (- 55%) on the expected pressure

loss data for the 0.3% PEO solution for the channel with the longest contraction length

(L, = 400 [tm), where shear thinning would have the largest effect. The effect is smaller

for the 0.1% PEO solutions (~ 15%) but it is still a significant amount. While it may be

somewhat inaccurate to extrapolate the power-law fluid data from rheological

measurements to the shear rates considered in this geometry, it may provide a more

accurate means of calculating expected pressure loss than the Newtonian estimate.
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Figure 5-12. Comparison of the predicted pressure loss based on Newtonian and power-law
analysis for 400:25:400 pm contraction/expansion (L, = 400 sm) for the 0.1% and 0.3% PEO
solutions. Pressure loss data for the circular and infinite planar cross section are
indistinguishable.

5.2.3 Pressure Measurements

Pressure data was taken for the L, = 50 Am, 100 Am, and 400 Am (see table 3-1) channels

in the 400:25 Am contractions. The pressure measurements were taken over a range of

flow rates (0 ml/hr < Q < 6 ml/hr) with a maximum measurable pressure of 200 kPa (see

section 3.2.1). The mold that was used for all these channels was slightly damaged on the

200-micron contraction, so pressure data was not taken on these channels. Data for each

channel was taken for water, the 0.1% PEO solution, and the 0.3% PEO solution.

Experiments using these channels and the higher viscosity solution (0.1% PEO in

glycerol/water solution) yielded primarily errant data, as deformation of PDMS became

evident at moderate flow rates. Also with higher viscosity fluids, PDMS particles were

pulled into the contractions repeatedly, clogging the contractions. As a result, a third non-

Newtonian fluid was used: a solution of 0.05% PEO in water. The pressure data for this

fluid was only measured for the L, = 400 pm contraction. All of the raw pressure data is

tabulated in the appendix.
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For the DI water, the pressure drop was expected to increase linearly with the flow rate.

In each channel the pressure drops were found to be approximately linear with flow rate

(see figures 5-13 - 5-15) (see table 5-2), however the measured values are less than

calculated pressure drops (see section 5.2.4 for explanation). The expected deviation due

to extensional viscosity is indistinguishable for a Newtonian fluid. Thus, for Newtonian

fluids, it is difficult to extract any quantitative extensional effects in the contraction.

40000r .I , ... .. ... ,

A

30 000k
[ A

0~

a

20000
a)A

Ea)
E

10000

0
0 2 4 6 8

Flow Rate (ml/hr)

Figure 5-13. Measured pressure versus flow rate data for 400:25 pm contraction (L = 50
pm) for all fluids
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Figure 5-14. Measured pressure versus
Am) for all fluids

flow rate data for 400:25 Am contraction (L, = 100
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Figure 5-15. Measured pressure versus flow rate data for 400:25 Am contraction (LC = 400
Am) for all fluids
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Pa hr Range of
Fluid Lc A B Flow Rates R2

(pm) m (Pa) (ml/hr)
50 707.3 313.9 0-8 0.972

Water 100 1778.7 -302.0 0-6 0.981
400 2478.3 322.2 0-7 1.000
50 1356.7 63.4 0-1.75 0.992

16:1 0.1% PEO 100 1651.7 48.6 0-1.5 0.996
(IW = 25 400 4451.0 210.4 0-1.5 0.998
pm) 50 5237.3 -861.4 0-1 0.999

0.3% PEO 100 4470.1 71.2 0-1 0.994
400 8638.0 389.7 0-0.75 0.993

0.05% PEO 400 3725.2 248.1 0 - 2 0.988
55% Glycerol + Water 400 13437 2141.2 0-3 0.998

Water 0 5131.0 1393 0-10 0.997
57 pm 0.1% PEO 0 7531.6 3058 0-10 0.995

0.3% PEO 0 12970 7470 0 - 5 0.996

Table 5-2.
57 pm)

Linear fits for pressure data across 16:1 contractions and straight channel (WI =

For the elastic polymer solutions there are more interesting responses in the pressure-flow

rate dependence. For the 0.1% PEO solution the pressure data is linear until a flow rate

between 2 - 3 ml/hr depending on the contraction (see table 5-2). Above this flow rate

the pressure drop appears to increase in a non-linear manner. This flow rate corresponds

to a Deborah number of approximately De =50: the same Deborah number at which

elastic effects were observed in the streamlines of the 0.1% PEO solution in the streak

images. As the flow rate increases, the pressure loss grows well beyond expected

Newtonian results. This is a clear sign of extensional thickening behavior in the fluid.

For the 0.3% PEO solution the behavior was very similar to that of the 0.1% PEO

solution, however the onset of the extensional thickening was observed at lower flow

rates, as is anticipated. The pressure drop begins to increase at a flow rates between Q =
0.5 and Q = 1 ml/hr. Once again this translates into a Deborah number of approximately

De =50. The pressure drop in the 0.3% PEO solution increases more quickly than the

0.1% PEO solution when extensional thickening occurs. From the raw data, it is unclear
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as to whether this effect is due to the higher shear viscosity of the fluid or due to a greater

extensional viscosity.

A 0.05% PEO solution was also examined in the 400-micron contraction. Even though

this solution is more dilute than the 0.1% PEO solution, the relaxation time is not

significantly smaller than the 0.1% PEO solution (X= 1.5 ms compared to X= 1.6 ms: see

table 4-4). The similar relaxation time was determined to be a result of the concentration

of the 0.05% PEO solution being below the critical concentration (c*). For this fluid the

pressure loss behavior is comparable to that of the 0.1% PEO solution (figure 5-15),

however the pressure increase is more gradual (as is expected due to the lower shear

viscosity).

5.2.4 Pressure Measurement Validation

One of the major errors in the pressure data was the inconsistency of the acquired values.

Pressure sensors were statically calibrated using columns of water (see figure 3-8),

however, measured pressure drops did not agree with computed pressure drops for most

of the channels observed, even for Newtonian fluids. Likely the errant pressure

measurements were due to air bubbles trapped in various portions of the tubing in the

pressure taps. Despite the errors, pressure values were close to predicted values (within

20% for water), however it is difficult to actually predict measured values for the non-

Newtonian fluids because the shear rates ( ~ 50,000 s-1) are beyond those measured by

the rheometer (j ~ 1000 s-1). Another source of error is from three-dimensional effects.

The values of the shape factor (C) are only estimates for straight channels. In these

microchannels, other effects may also distort pressure measurements (such as the large

circulations zones at the expansion).

The shape factors were considered as possible sources of pressure error. The minimum

shape factor (Csquare= 56.9) and maximum (Cane = 96) generate a range of possible

pressure losses for such geometries. These ranges are plotted in figure 5-16 and compared

with the measured pressure drop for water in each contraction length. Only the data for
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the L, = 50 skm contraction lies within the range of pressure losses, although the L, = 100

,Im and L, = 400 pIm contractions are close to the limits (within 10%). However, these do

not appear to be close to the same limit: the data for the L, = 100 ym contraction is close

to the upper limit while the L, = 400 pm contraction is close to the lower limit. Based on

these observations, it would be impossible to conclude that any shape factor discrepancy

is responsible for the errant pressure measurements.
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(b) (c)
Figure 5-16. Range of pressure drops for maximum shape factor (C = 96) and minimum (C =

56.9) compared with the actual pressure loss data for DI water in each contraction (a) L, =

50 ym (b) L, = 100 pm (c) L = 400 /im

5.2.4.1 Hole Pressure Error

The possibility that hole pressure error could be effecting the pressure measurements is

incorrect. Hole pressure (P*) is a difference between actual wall pressure and measured

pressure:

P*=I -I, (5.12)
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where P,, is the pressure measured by a flush-mounted traducer, and Plh is the pressure

measured by a recessed transducer (see figure 5-17). This discrepancy is derived from the

normal stresses in the fluid, which cause streamlines to bend as they pass over pressure

holes. The tension in the streamlines causes a tensile stress to be exerted over the holes in

a channel, causing the transducers to measure a lower pressure than the actual pressure in

the bulk flow. Fortunately the magnitude of this error is consistent with the size of the

hole.

P1 x

1,

d
b

P1h

Figure 5-17. Hole pressure effect: tension in streamlines cause recessed pressure sensors
(P],h) to read less than that of a flush mounted transducer (P,) (picture source: (Macosko,
1994))

The other important factor for pressure hole measurements is inertial effects. Inertia

works in an opposite manner, causing pressure sensors to read higher than the actual

pressure in the channel. It has been determined (Joseph, 1990) that this viscoelastic effect

is more important when:

d < A7(5.13)

However, this does not necessarily translate to inertial or viscoelastic effects being large,

it is only a comparison of the relative magnitude of each value.

The measured hole pressure error is related to the first and second normal stress

differences (N and N2) for a circular hole (Higashitani and Pritchard, 1972):
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= . N, (f)- N 2  )(5.14)

3 1,1 (Q)

This has been simplified in terms of the normal stress difference (Tanner and Pipkin,

1969; Tanner, 1985):

P* N () (5.15)
5

However, because the shear rates at the upstream and downstream pressure taps are

equivalent, the normal stresses are equal. Thus, the hole effect cancels itself out for

differential pressure measurements.

5.2.4.2 Repeatability

In order to ensure the pressure loss is repeatable, three trials were run using the 0.1%

PEO solution in the L, = 400 fim contraction (see figure 5-18). The pressure

measurements were consistent for each trial. At low flow rates, the pressure varies by as

much as 100%, but this error is due to the accuracy of the pressure sensor: this error is

constant at approximately 1000 Pa (two standard deviations). At high flow rates (1 < Q <
3.5), the range of measured pressures drops for each were within this 1000 Pa error. The

pressure data was taken using different PDMS channels (but still off the same mold), and

small-scale feature differences formed in the fabrication process (curing times, channel

smoothness, and plasma exposure: see section 3.2) likely changed the onset of specific

vortex behavior at higher flow rates.
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Figure 5-18. Pressure measurements are conducted on three different trials using the L =
400 im contraction for the 0.1% PEO solution to show repeatability for the same fluid and
geometry. Measured pressures are compared with Newtonian and power-law calculations.

5.2.4.3 Straight Channel

To verify that the source of pressure loss was actually due to the resistance to extension

from the polymer solution, pressure drop measurements were made across a straight

channel. The channel was 57 microns in width, 50 microns in height, and 6 millimeters in

length (AR = 0.88, Dh = 52.3 tum, C = 57.5). The resulting pressure drop should be:

Newtonian = f p IJ) LIJ (5.16)

(see section 5.2.1). Pressure data was taken across this contraction for DI water, the 0.1%

PEO solution, and the 0.3% PEO solution. The pressure drop data is plotted in figure 5-

19 against the flow rate. The data is compared with Newtonian estimates for the same

channel and the power-law prediction for the channel. The pressure loss is approximately

linear for each of the fluids as is desired; indicating that the pressure loss observed in the

previous sections is clearly owed to the extensional effects associated with the entrance

flow and not any wall shearing effects from the microchannels. However, the Newtonian
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and power-law approximation do not accurately calculate the expected pressure losses for

the non-Newtonian solutions.
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Figure 5-19. (a) Pressure loss data for a W, =57 jim straight channel. Measured data is
compared with Newtonian and power-law predictions for pressure drop. (b) Darcy friction
factor (f) is plotted against Reynolds number

5.2.4.4 Second Newtonian Fluid

To test the accuracy of the pressure sensors, tests were run on a second Newtonian fluid

(55% glycerol and water mixture). For this fluid the viscosity was 8.59 mPa-s, so one

would expect that the pressure drop would increase by a factor of 8.6 from the data for

water. A trial was performed for the 400-micron contraction to measure this pressure

loss. The data was close to linear as is expected (see figure 5-15), but the slope of the

resulting pressure-flow rate data is less than 8.6 times that of water (see table 5-2). At

higher flow rates the pressure begins to diverge from the initial linear increase, however

this is attributed to microchannel deformations caused by the large pressure (greater than

50 kPa) within the channels. Thus, only the initial pressure-flow rate slope (0 - 3 ml/hr)

is considered: the data indicates that the slope of the glycerol-water mixture is only 5.4

times the values for the water in the same channel.
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5.2.5 Normalized Pressure Data

By normalizing the measured pressure drop with respect to the predicted pressure drop

for a Newtonian fluid, it is possible to determine the accuracy of the measurements

relative to these predictions (figure 5-20). For the L, = 50 Itm contraction the pressure

data agrees with predictions at the higher flow rates. However at the lower flow rates, the

pressure drop appears to be larger than the predicted pressure loss. However, this error is

magnified by the small magnitude of these pressure losses (~ 1000 Pa) compared to the

error of the system (~ 1000 Pa). For the L = 100 pm contraction a similar error is

observed. The measured data once again appears linear with the Reynolds number (figure

5-14) but does not agree with normalized predictions. At the longest contraction (L =

100 Arm) length the pressure-flow rate dependence is nearly linear. The dimensionless

pressure loss is approximately constant with the Reynolds number.

2
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E
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Figure 5-20. Normalized pressure data (with respect to the Newtonian prediction: equation
(5.1)) for the DI water in each contraction

The normalized pressure loss data is plotted against the Deborah number in figure 5-21

for the 0.1% PEO solution. From the Newtonian normalization, it appears that the

pressure loss is less than calculated by about 40%. However, it is clear from these graphs
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that the onset of extensional effects occurs at the same Deborah number (De > 50 ) for

each contraction: a good indication that the vortex growth behavior is repeatable.

Reynolds Number Reynolds Number
0 3 6 9 12 15 0 3 6 9 12 15

3 . . . . ........................... .... 4 ....
E Contraction 1 (50 tm) ( Contraction 1 (50 ptm)
0 Contraction 2 (100 ptm) o " Contraction 2 (100 pm)
a Contraction 4 (400 m) * Contraction 4 (400 pm)

2-

2 -

E U U a

U EB

0 0 . . .... ....... .'. .. . .0.
0 25 50 75 100 125 150 0 25 50 75 100 125 150

Deborah Number Deborah Number

Figure 5-21. Normalized pressure data for the 0.1% PEO solution in each contraction.
Pressure is normalized against the Newtonian prediction (equation (5.1)) (left) and the
power-law prediction (from equation (5.10)) (right)

To compensate for the offset in the pressure loss, the shear thinning assumptions (using

the values of n and m in table 4-4) were incorporated into the calculated pressure loss

(equation (5.11)). Including shear-thinning effects improves the accuracy of the measured

values, however error still exists at low flow rates where the normalized pressure drop

should be unity. The lack of a direct correlation between predictions and measured values

will become important in section 5.3 when extensional viscosities are calculated.

For the 0.3% PEO solution, again the critical Deborah number agrees with the onset of

vortex behavior from the streak images (De = 50) (see figure 5-22). As the length of the

contraction increases, the normalized pressure drop decreases. This is because the

entrance pressure loss should be constant regardless of the length of contraction. As the

contraction gets longer, the percentage of the total pressure loss that is attributed to the

entry pressure loss decreases.
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Figure 5-22. Normalized pressure data for the 0.3% PEO solution in each contraction.
Pressure is normalized against the Newtonian prediction (equation (5.1)) (left) and the
power-law prediction (from equation (5.10)) (right)

Once again the data was also compared with shear thinning data of a power-law fluid for

the 0.3% PEO solution (figure 5-22). This normalization improved the agreement

between the measured values and predicted values, and the same trends are observed as

the normalized Newtonian result. The pressure increase associated with elastic effects

occurs at a Deborah number that correlates with the onset of extensional thickening in the

0.1% PEO solution.

Because both the normalized pressure drop and the power-law pressure drop fail to

accurately account for the pressure drop across the channel, a third technique was

employed to normalize the data. The measured pressure loss, in the region in which flow

was steady and pressure drop was linearly related to the flow rate, was fit to a line. The

expected pressure loss is extrapolated about this initial Newtonian-like pressure loss

pattern such that:

APN =AQ+B (5.17)

where A and B are variables used to linearize the pressure drop at low flow rates. The

pressure data is now normalized about this initial pressure loss, as shown in figure 5-23

(see table 5-2 for tabulated values of A and B).
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Figure 5-23. Pressure loss normalized by the tangential pressure drop from the linearly
increasing region

Figure 5-23 indicates that the onset of extensional behavior occurs at comparable

Deborah numbers for each viscoelastic fluid in each contraction, but the actual entrance

pressure increase is not constant: it depends on the length of the contraction (L,) and the

Deborah number. Thus the extensional effects of the different fluids are not the same.

Another reason why this data does not collapse onto one line is due to the inertial effects

on the system. For the more viscous solutions, the Reynolds numbers are much smaller

than for less concentrated solutions.

5.3 Extensional Viscosity

5.3.1 Cogswell's Analysis

For these experiment it is possible to extrapolate to a zero-length contraction to evaluate

the effects of entry pressure loss (APen). However, there is also a component of the

pressure drop that is a function of the upstream and downstream channel flow. Since the

fluids are approximately Newtonian, it would be easy to factor this term out if the

pressure drops were consistent with Newtonian predictions. However, since pressure
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drops do not completely agree with calculated values, another means of determining the

entrance pressure loss must be analyzed.

Once again the extrapolated linear pressure drop is used as the Newtonian pressure drop

(APN). Additional contributions to the pressure drop are calculated from the divergence

from this extrapolated pressure loss line. Based on flow visualization, it is determined

that this entry pressure drop is the dominant source of pressure loss, as there are little exit

effects. Thus the calculated entry pressure is:

APn = APeasured - AN (5.18)

From this calculation it is possible to proceed with Cogswell's analysis. However, there

are still several key problems with the analysis.

For most experiments performed using Cogswell's method the working fluid has been a

polymer melt, not a polymer solution. The difference is that polymer solutions typically

have larger increases in extensional viscosities than polymer melts (Tirtaatmadja and

Sridhar, 1993). The equation for strain rate of a fluid (equation (2.21)) using Cogswell's

analysis predicts that the strain rate is dependant on the product of the wall stress

(1-, ~ Q") and the shear rate (- Q) divided by the entry pressure drop. Thus this

predicts that the strain rate (i) will actually decrease with flow rate if the entrance

pressure increases such that:

AP > Q"l+ (5.19)
Thus, for the present system, in which the entrance pressure loss is large, the predicted

strain rate would decrease as the flow rate increases.

Also a clear indication of the errant usage of Cogswell's technique in this problem is the

prediction of the convergence angle for Newtonian fluids. From the images in section

5.1.1 (see figure 5-1), it is clear the convergence angle in the entry region is not 370 as

predicted for Cogswell's method (see equation (2.26)). Finally, a last problem with

Cogswell's analysis for this current system is that inertial effects are not negligible.

Reynolds numbers are typically above unity for these flows, whereas in Cogswell's
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analysis and most of its applications, the Reynolds numbers are essentially zero. As a

result, another means of calculating the extensional viscosity is required.

5.3.2 Apparent Extensional Viscosity

Because Cogswell's analysis falls short of explaining the pressure loss data for these

polymer solutions, it is necessary to evaluate the extensional viscosity by other means.

Thus, the analysis of Metzner and Metzner was employed to try to quantify the

extensional behavior (Metzner and Metzner, 1970). This analysis was originally

employed to estimate the apparent extensional viscosity of dilute polymer solutions, so it

is an appropriate measure for present analysis. It is only an approximation, because shear

effects are neglected and strain rates are only calculated through an approximation:

( = 2i / We ). Their analysis also assumes that the entire pressure loss is derived from

extensional effect (equation (2.20)), so the resultant values are somewhat flawed.

However, the increases in entry pressure is an extensionally-dominated effect so these

estimates are practical.

From the pressure data, the entrance pressure loss is determined by subtracting the

tangential data at low flow rates from the measured data using equation (5.18) and the

data in table 5-2. Thus for low flow rates the measured apparent extensional viscosity is

only the scatter of the points about the prediction and should be ignored. However, at

higher flow rates (De > 50), when the pressure drop data diverges from this tangential

prediction the apparent extensional viscosity grows rapidly (see figure 5-24). It is also

worth noting the magnitude of the strain rates achieved in figure 5-24. These values (' >

50,000 s-) are larger than others have been able to achieve in entry flow problems

without inertial effects dominating (Walters and Rawlinson, 1982; Evans and Walters,

1986; Chiba et al., 1990; Quinzani et al., 1995). They are also several times greater than

the strain rates obtained in many opposed jet rheometers (e 20,000 s-1) (Cooper-White

et al., 2002).
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Figure 5-24. Apparent extensional viscosity plotted against strain rate for the 0.05% PEO,
0.1% PEO, and 0.3% PEO solutions as calculated for the 400-micron contraction

The apparent Trouton ratio is determined based on the zero-shear-rate viscosity of the

fluids and plotted against Deborah number (figure 5-25):

Tr, = 77P'a (5.20)

The results for the 0.1% PEO and 0.05% PEO solutions agree quite well. However, the

results for the 0.3% PEO solutions are somewhat different. The Trouton ratio does not

reach the same magnitude as the other polymer solutions. The reason for this is most

likely connected to the concentration of the solution compared to the critical

concentration (c*). Because the 0.3% solution is about 4 times the critical concentration,

the fluid is in the semi-dilute regime (see section 4.1.1). It has been well documented that

the growth of the extensional viscosity of semi-dilute solutions is not as dramatic as that

of dilute solutions (Tirtaatmadja and Sridhar, 1993).
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Figure 5-25. Trouton ratio plotted against Deborah number for 0.05% PEO, 0.1% PEO, and
0.3% PEO solutions as calculated for the L, = 400 jim contraction

The Trouton ratio is again plotted for each contraction length based on the specific

solution (figures 5-26 and 5-27). The data on these plots should superpose, as the same

fluid is being used for each trial. However, the longer contraction lengths have larger

apparent extensional viscosities (or Trouton ratios) than the small contraction lengths for

the same Deborah number. This is true for both solutions but the phenomenon is more

evident for the 0.3% PEO solution. Likely, this error is due to the small sample size used

for extrapolation of the linear range of pressure drop (see table 5-2). With a greater range

of data, the error would likely be reduced such that the graphs of Trouton ratio versus

time would collapse onto one for each solution.
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From the graphs of the apparent extensional viscosity it is possible to make several

conclusions about the nature of the PEO solutions. First, each solution experiences

significant extensional thickening entering the contraction. The extensional viscosities

increase by nearly two orders of magnitude above the zero-shear-rate viscosities.

Secondly, the concentration of the solution has a large effect on the resulting Trouton

ratio. Dilute solutions of PEO experience a larger increase in the Trouton ratio than the

semi-dilute solutions at comparable Deborah numbers. Also, the critical Deborah number

(De = 50) for the onset of elastic behavior (both increased pressure drop and enhanced

vortex behavior) in the planar contraction is larger than previous experiments had been

able to generate (Walters and Rawlinson, 1982; Evans and Walters, 1986; Nigen and

Walters, 2002). As a result these previous studies failed to observe vortex growth in their

experiments with constant viscosity fluids. Lastly, the onset of extensional thickening

corresponds with the onset of vortex behavior in the flow visualization, thus it is possible

to conclude that the elasticity of the fluids is the driving force for the development of

such secondary flow growth.

5.3.3 Residence Time

The total residence time of the different fluids in the contraction is examined as a source

of the higher Trouton ratio in longer contractions. The residence time for the fluid in the

contraction (t,) is defined based on the average velocity:

t L = , (5.21)
vc

From this value it is possible to calculate a dimensionless measure of the total residence

time. The residence Deborah number (Der) is a comparison of the time in the contraction

to the total relaxation time of the fluid:

A D C=D L
De - t - De (5.22)

tC L W

If this value is less than unity, the fluid has time to relax while it is in the contraction.

However, for residence Deborah numbers greater than unity, the fluid will not have

returned to its original random configuration. Whether the fluid is exiting the contraction
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in its extended state or in a relaxed state could affect the pressure drop across the

contraction (see figure 5-28) (Tanner, 1985). Figure 5-29 shows a plot of this residence

Deborah number against the flow rate for the 0.1% PEO and 0.3% PEO solutions in the

shortest and longest contractions.

V -%Io

PEO Molecule
-pe

Figure 5-28. Schematic showing the extension
contraction.

LC.

and relaxation of a polymer across the
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Figure 5-29. Dimensionless residence times (Der) plotted against flow rate
and 0.3% PEO solutions

for the 0.1% PEO

From figure 5-29 it is clear that these fluids are only within the contractions for very short

times (t, < 100 pts), at the flow rates of interest. This is substantially smaller than the
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relaxation times of these fluids (X~ 1 ms). Based on the Maxwell model, the time

required for stresses to be dissipated is approximately five times the relaxation time (Bird

et al., 1987). However, because stresses relax exponentially (r ~ e/De,), polymer

relaxation increases significantly even at short times. Thus, while the polymer does not

relax completely in either channel, the relaxation is significantly greater (because stresses

are further dissipated) for the longest contraction (L, = 400 pm) than the other shorter

channels. The fluid in the more relaxed state would result in a different pressure drop

across the contraction.
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6 Conclusion

6.1 Summary

Using soft lithography, microchannels have been generated with sharp features and

vertical sidewalls (870 < a < 93 ) that are accurate to design specifications (within 5%).

These channels are designed to generate extensional flows that can be used to quantify

rheological behavior of mobile polymer solutions. The lengthscales associated with these

channels allow the present study to examine strain rates (4 100,000 s-) which exceed

those of previous entry flow experiments.

In this thesis, the flow fields of several different fluids have been observed in planar

microfluidic contractions (16:1 and 4:1). The behavior of these fluids is markedly

different from the observations of many other researchers on macroscale planar

contractions. The resulting elastic instabilities and subsequent vortex growth more

closely resembles the observed behavior of axisymmetric contractions because the

obtained Deborah numbers (De ~ 300) are much greater than those previously examined

(De < 50) at moderate strain. These vortex patterns are observed for two different

solutions of PEO in water. The growth of vortices in these two solutions are qualitatively

and quantitatively (in terms of vortex length) similar at equivalent Deborah numbers. As

vortex growth continues divergent flow is observed and at high Deborah numbers (De ~

300) flows become unstable. At these large Deborah numbers, tertiary motion is observed

in the salient corners. For Newtonian fluids, no such vortices are observed in contraction

flows because there is no associated Deborah number. The elasticity number is

determined to be the relevant fluid and system property that dictates the vortex behavior

in entry flow. Based on the observations in this thesis, figure 6-1 illustrates the

progression of vortex behavior that is obtained for a 16:1 planar contraction based on the

associated Reynolds number and Deborah number.
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Figure 6-1. Predicted vortex regimes based on the Reynolds and Deborah number for a 16:1
planar contraction.

At abrupt expansions, vortex enhancement is evident for Newtonian fluids. The vortices

are a function of inertial forces: growing with Reynolds numbers. For viscoelastic fluids,

the elasticity suppresses recirculation at an expansion. Both PEO solutions show vortices

at higher flow rates. However, they do not originate at the exit corner (as in Newtonian

fluids); instead the vortex behavior originates from the salient corner of the expansion.

A system was also generated to measure the pressure loss for these fluids across the

contraction and expansion. The pressure drop in all Newtonian fluids follows a linear

path with flow rate. As non-Newtonian fluids are introduced into the system, the pressure

drop initially acts in a linear manner. However, at a critical Deborah number the onset of

elastic instabilities leads to a dramatic increase in the pressure drop. The onset of non-

Newtonian behavior occurs at equivalent Deborah numbers for three non-Newtonian

solutions examined (De ~ 50 5 ). This divergence from Newtonian behavior also

corresponds well with the observed onset of elastic instabilities in flow visualization.
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This increased pressure loss is associated with the resistance to extension from the

polymer molecules. The magnitude of this additional pressure loss is large enough that

accepted Cogswell method of evaluating extensional viscosity is unable to capture the

nature of this flow. Instead, it is possible to quantify the apparent extensional viscosity of

the fluids in this study. These values indicate that extensional viscosities increase by

several orders of magnitude at large strain rates. The associated Trouton ratios grow large

(Tr ~ 100) with increasing Deborah numbers. Thus, these polymer solutions exhibit

highly non-Newtonian extensional properties.

6.2 Future Work

In the present system there is still a limit on the accuracy of measurements due to the

extent of shear stress in the channels. By using a hyperbolic channel it may be possible to

generate a flow that is shear-free, enabling calculation of an extensional viscosity to be

specifically correlated to the entry pressure loss. This requires overcoming the no-slip

boundary condition at the channel walls. PDMS is naturally hydrophobic, so it is possible

to induce some slip at the walls, but different silane treatments need to be investigated to

increase the hydrophobicity of the surfaces.

For the present study, extensive work was performed on the 16:1 planar contraction,

however it is necessary to examine the 4:1 planar contraction. Some preliminary

experimentation has been done on this geometry, but pressure measurements need to be

made to determine the nature of this flow. For both the 16:1 and 4:1 geometries it is

necessary to formulate an accurate means of evaluating the characteristic strain rate for

the fluid in the converging region. While the Cogswell analysis failed to calculate strain

rates, it may be possible to evaluate strain rates directly using micro PIV techniques.

However, presently PIV systems respond in such a manner that fluid velocities near the

orifice are too large to be captured by the PIV system, which has a minimum response

time of approximately 10 gts. In this amount of time, the particles have moved too far for

velocities to be calculated by the imaging analysis software. At smaller magnifications,
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vector densities are too small to resolve useful information near the entry plane (see

figure 6-2).

Figure 6-2. Sample micro PIV for water in 16:1 contraction. Field of view is too small to
resolve velocities near the contraction.

The final goal of this experimentation is to move to smaller geometries. The natural goal

of many researchers is to continuously reduce sizes from the macroscale to the

microscale to the nanoscale. For this study the implications of moving to smaller sizes

could be significant. At smaller lengthscales, the Deborah numbers will increase and the

Reynolds numbers will decrease. Thus, it may be possible to generate significant

viscoelastic vortex behavior in infinitely dilute solutions. Elasticity numbers will still be

large, and extensional viscosities of such fluids may increase well beyond those measured

in the present study.

Advances in technology have made possible nanopores (nanometer sized holes) which

generate strain rates large enough to unravel single strands of DNA for subsequent

sequencing (Meller et al., 2001; Isambert, 2002). U.S. Genomics has integrated DNA

reading technology with a hyperbolic microchannel geometry for rapid analysis of DNA

strands (see figure 6-3). Thus, the ability to understand the behavior of fluids in such

devices is becoming a pressing requirement for many scientific fields.
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Figure 6-3. Schematic of the nanopore created by U.S. Genomics to unravel single strands of
DNA (image courtesy of (Langreth, 2002))

The ultimate goal of any research on entry flow behavior is to understand the nature of

the vortex growth and the associated role of extensional viscosity on the entrance

pressure loss. From this study it is apparent that it is possible to generate vortices in 16:1

planar contractions, but it is difficult to do so in 4:1 contractions. The elasticity number

gives an indication of vortex behavior for flows with similar contraction ratios. However,

further understanding of the nonlinear interaction of the contraction ratio and the shear

and extensional rheology of the fluid with the generation of elastic behavior needs to be

understood. Numerical simulations with realistic viscoelastic constitutive models may

prove to be useful in this regard. Using the techniques of soft lithography to manufacture

microfluidic devices it is possible to test various fluids and geometries in a short amount

of time. Expanding upon this work may lead to understanding definitively the interaction

of each rheological factor into how elastic behavior develops in entry flows.
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Appendix
DI Water 0.1% PEO 0.3% PEO 0.05% PEO

Q (ml/hr) AP (Pa) Q (ml/hr) AP (Pa) Q (ml/hr) AP (Pa)
0.25 351 0.50 792 0.50 1757
0.25 320 1.00 1351 1.00 4376
0.50 827 1.50 2054 1.25 8407
1.00 1371 1.75 2501 1.50 9372
1.50 1764 2.00 2908 1.75 16814
1.50 1041 2.25 3549 2.00 18744
2.00 1971 2.50 4121 2.25 26117
2.00 1399 3.00 6684 2.50 27771
2.50 2364 3.50 12197 2.75 34663

50 pm 3.00 2694 4.00 16056 3.00 39142
3.50 2929 4.50 17159
3.50 2446 5.00 23499
4.00 2894
4.50 3218
5.00 3577
6.00 4417
7.00 5327
8.00 6347

DI Water 0.1% PEO 0.3% PEO 0.05% PEO
Q (ml/hr) AP (Pa) Q (ml/hr) AP (Pa) Q (ml/hr) AP (Pa)

0.25 471 0.25 481 0.50 2315
0.50 882 0.25 498 0.50 2191
0.75 1213 0.50 834 0.50 2412
1.00 1413 0.50 889 1.00 4541
1.00 1654 1.00 1613 1.25 7098
2.00 2839 1.50 2584 1.50 8890
3.00 4596 2.00 3735 1.50 10337
3.00 4521 2.00 3783 1.75 13920
3.00 5306 2.00 3790 2.00 19984
4.00 6312 2.00 3894 2.00 19915

100 pm 5.00 8269 2.50 6216 2.25 24739
6.00 11370 2.50 6857 2.25 24395

3.00 10130 2.50 29632
3.25 11853 2.50 30390
3.50 15229 2.75 34456
3.75 21914 2.75 33767
4.00 24670 3.00 37764
4.00 24739
4.50 29081
5.00 36110
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DI Water 0.1% PEO 0.3% PEO 0.05% PEO
Trial 1

0.00
0.50
0.75
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
7.00

-211
971
1553
2171
3364
4579
5814
7071
8334
9528
10791
12055
13248
14582
17179

Q (ml/hr) AP (Pa)
0.10
0.25
0.50
1.00
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.75

297
949
1946
4087
6579
8194
10089
12476
16407
18302
22654
26796
31148

Trial 2
Q (ml/hr) AP (Pa)

0.25 1105
0.50 2089
1.00 4100
1.50 6439
2.00 9999
2.50 15857
3.00 21089
4.00 38221
4.50 60278
5.00 67767
6.00 85207

Q (ml/hr) AP (Pa)
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75

2653
4500
6972

10748
17601
24372
31450
37811
43145
49814
55559

Q (ml/hr) AP (Pa)
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.50
3.00
3.50
4.00
4.50
5.00

2019
3439
3818
4762
5685
6684
7925
11508
16263
21638
26738
31561
37143

Trial 3
Q (ml/hr) AP (Pa)

0.50 1623
0.75 2677
1.00 3845
1.50 6367
2.00 10047
2.25 12818
2.50 15712
2.75 18606
3.00 22121
3.50 31424
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