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ABSTRACT

Engine oil consumption is an important source of hydrocarbon and particulate
emissions in modem automobile engines. Great efforts have been made by automotive
manufacturers to minimize the impact of oil consumption on engine emissions. Research
engineers in the last decade have been trying to study the sources and driving mechanism
of oil consumption. In contrast to oil consumption mechanisms in the piston-ring-liner
system of the engine, the Positive Crankcase Ventilation (PCV) blowby-oil consumption
mechanism has not yet been fully characterized. Studies have shown that the blowby
contribution to oil consumption could be significant under certain conditions.

In this study, an experimental approach was taken in order to study the sources and
characteristics of oil in the PCV blowby gases at different speeds and loads. An extensive
diagnostic system was successfully integrated in a production spark ignition engine, to
measure total oil consumption, blowby oil consumption and flow and in-cylinder
variables, such as inter-ring pressures, oil film thickness and liner temperatures.

Results showed an increase in blowby oil consumption with load and speed. Blowby
flow was mainly dependent on the load of the engine. Oil concentration in the blowby
varied with engine operating conditions. A strong relationship was observed between oil
consumption and sump oil level, showing that the oil in the crankcase is an important
source of oil in the blowby.

Moreover, extensive experiments were conducted to determine the blowby flow's oil
characteristics, by varying the liner temperatures and analyzing the mass distribution of
different oil particle size. It was found that the average oil droplet size decreased as the
load and speed were increased.

This work is an important step in understanding blowby oil consumption in efforts to
minimize oil consumption in spark ignition engines.

Thesis Supervisors:

Victor W. Wong
Lecturer, Department of Mechanical Engineering
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CHAPTER 1: Introduction

1.1 Motivation

In an effort to reduce automotive engine emissions and extend the costumers oil

change intervals, there have been a lot of studies that aim at reducing engine oil

consumption. Engineers have identified the power cylinder as one of the main

contributors to the engine oil consumption. Many engineers have investigated the

different types of oil transport in the power cylinder that affect the oil consumption in

internal combustion engines. Some previous studies have investigated the main oil

consumption mechanisms such as inertia and oil evaporation [1] [2] [3] [4]. However, little

effort has been done to thoroughly study the blowby oil consumption mechanism. The

only studies on crankcase ventilation systems focused on the contribution of the

crankcase blowby gases to oil consumption and the performance of oil separators

[1][4][5][6][7].

Recent studies have shown that the blowby oil consumption through the Positive

Crankcase Ventilation (PCV) system can be significant for various engine-operating

conditions [8][9]. However, these studies lack the information about the source and

characteristics of the oil in the blowby gas that flows back to the intake. This knowledge

becomes more important as engineers lower engine total oil consumption, and the relative

contribution of blowby oil consumption increases. As modem automotive engines get

more compact and clearances in the engine get tighter, there is more contact between the

moving parts and the lubricating oil. The smaller clearances promote oil droplet breakup

into smaller particle sizes, which are harder to filter with the current oil separators.

The PCV system in the spark ignition internal combustion engines circulates to the

intake the gases from the combustion chamber that flow past the piston rings and lands

into the crankcase. These gases in the crankcase are then pulled through the PCV line by

the intake manifold vacuum. The high-speed gases that flow through the piston rings

atomize the oil in the liner into small oil liquid particles that are entrained into the flow

[6]. The high piston-ring-liner temperatures also evaporate the oil species with lowest

partial pressures. The piston reciprocating movement produces high gas velocities that
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also entrain oil and flow past the PCV system after mixing with the blowby gases

[10] [11]. On the other hand, this system compensates for periodic volume changes caused

by the kinematics of the crank mechanism via an orifice or by a PCV valve. Therefore

there are two main sources that carry oil in liquid and vapor form to the crankcase

ventilation system. The schematic for this two oil entrainment mechanism are shown in

Figure 1-1.

In cylinder gases

Atomization

Blowby (mist) I

Separators f

Oil
returned Blowby from PRL
from LII .I
separator

High-speed gases

Oil Sump

Figure 1-1 Oil entrainment in the blowby flow from the
engine crankcase

piston-ring-liner system and the

As automotive engines get more powerful and small, they also run at higher operating

temperatures, which increase their oil evaporation [2]. However, the increased

temperature augments the engine parts thermal expansion, thus modifying the clearances

between the engine parts and affecting some of the oil properties. Experiments were run

to see the effect of increased liner temperatures in PCV blowby oil consumption. The

increase in engine speeds and loads also affect the oil entrainment in the blowby gases by

changing the oil droplet sizes as well as the flow magnitude and paths [7]. This has an

impact in the PCV system oil consumption, since for actual separators efficiency drops

for small size droplets and different lower pressure drops [5].
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In this paper, a study was carried out to measure, analyze and characterized the PCV

blowby oil consumption sources and their contribution to total oil consumption at steady

state conditions.

1.2 Project Background

This project aims at futhering the knowledge about the blowby oil transport

phenomenon. Previous experimental studies carried out by Ertan Yilmaz in the Sloan

Automotive Lab have investigated thoroughly various oil transport mechanisms in the

piston-ring-liner system for a production spark ignition engine [1]. That study showed the

different oil transport mechanism the relative contribution of the different oil transport

modes such as the inertia or mechanical throw off, evaporation or the blowby flow. The

Engine Lubrication Consortium of MIT has sponsored this and the previous studies in

engine oil consumption [1][12][20]. The consortium looks into the different oil transport

mechanisms that occur in the power cylinder experimentally and analytically, and it

develops simulation tools for the oil consumption study for the member companies.

In this study, the PCV blowby oil consumption was characterized for different

operating conditions, and some of the oil characteristics were measured along with

several particle size distribution measurements. In addition, total oil consumption was

measured which showed that blowby oil consumption was not one of the major oil

consumption mechanisms for the four-cylinder spark ignition engine. Nevertheless, for

turbocharged or compression ignition engines, where the blowby flow rates might be

much larger, the contribution of blowby oil consumption could be much bigger [4][7].

However, as engineers strive to minimize the oil consumption driven by the major oil

transport mechanism, the relative contribution from the blowby increases. Moreover,

automotive manufacturers are also concerned about the critical engine conditions where

the oil starts to foam and consumed via the PCV system. These concerns of the

automotive industry have motivated this investigation to understand the oil characteristics

through the crankcase by studying different PCV blowby oil transport characteristics.

Figure 1-2 shows the external PCV system of the SI production engine along with direct

sampling line.
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The experimental setup, which includes the PSA production spark ignition engine,

was setup previously in the Sloan Automotive Lab [1]. In addition to the previous setup,

a direct blowby sampling line and a gravimetric filter have been added. The blowby oil

consumption contribution has been obtained accurately by performing the experiments

using three different oil consumption diagnostic methods: a difference method, direct

method and a gravimetric method. The experimental apparatus is described in more detail

in Chapter 2 of the thesis.

Figure 1-2 Positive Crankcase Ventilation (PCV) system and the direct sampling line

The objective is to answer the unknown question about the source and oil

characteristics of the blowby flow, which affect the total engine oil consumption.

1.2 Project Scope

One of the major questions regarding the engine's PCV blowby oil consumption is

the source of oil in the flow. Two major oil sources are believed to contribute to total oil

consumption: the piston-ring-liner system and the oil sump (See Figure 1-1). In order to

quantify the oil contribution from each of the sources one of them needs to be isolated.
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Although running the engine with a dry sump was considered, technical difficulties did

not make it feasible. However, the production engine was run at different oil sump levels

inside the operational engine limits in an effort to isolate the contribution of oil

entrainment in the crankcase. The engine's lubrication system relies on oil jet. However,

due to safety reason the lowest level for the sump was inside the limit. Chapter 3 in the

thesis explains the different oil source contributions for various engine-operating

conditions.

In addition, the investigation also looked into the oil characteristics in the blowby

flow. The characteristics of the oil in the blowby are an important issue for automotive

manufacturers. Modern spark ignition engines use oil separators in order to remove the

oil from the flow. However, most of these separators have a limited capacity to remove

most of the smallest oil particles from the blowby flow. Therefore the efficiency of these

separators is of great importance when trying to reduce the blowby oil consumption

contribution [4][5].

Experiments were run for different engine thermal conditions to see the impact of oil

evaporation on the blowby oil consumption. Results for these experiments along with the

analysis are shown in Chapter 4 of the thesis. Furthermore, a gravimetric measurement

system implemented in the engine's PCV system was used to collect the oil from the

blowby flow with different pore size filters. These experiments have shown some of the

effects on the characteristics of the oil particles entrained in the blowby flow. This study

of the oil particle characteristics is also discussed in detail in Chapter 4 of the thesis.

Therefore, the main objectives of the project are summarized in the following points:

1- Check the three different diagnostic systems for blowby oil consumption

a. Difference Method

b. Direct Method

c. Gravimetric Method

2- Map the engine oil consumption for different loads and speed

a. Blowby

b. Total

c. Relative contribution of the blowby
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3- Study the oil source in the blowby

a. Different oil level experiments

b. Difference in total oil consumption

c. Lubricating condition

4- Investigate the oil characteristics in the blowby flow

a. Liner temperature effect on oil consumption

b. Oil particle size mass distribution

20



CHAPTER 2: Experimental Setup

2.1 Experimental Objectives

For the experimental investigations it is critical to control the parameters that are

most likely to affect the oil consumption and its sources. Therefore it is critical to choose,

develop and implement suitable experimental techniques. In this section the experimental

objectives and the technical approach to meet these objectives are discussed.

Oil transport in the piston-ring-liner system is governed by the ring-liner lubrication

condition, piston and ring dynamics and gas flow. All the driving forces vary with

different engine operating conditions. All parameters and especially the thermal

expansion of the component geometries vary with the operating conditions, thus affecting

the gas flow process in the piston-ring-liner system. In addition, the thermal conditions

on the cylinder are believed to affect the oil evaporation process. All these parameters

affect the oil transport process in the piston-ring pack, and thus the oil consumption

sources. Therefore in order to thoroughly study oil consumption and the blowby oil

consumption source it is vital to obtain simultaneous measurements of oil consumption

and in-cylinder parameters affecting the oil transport sources.

Accordingly, an experimental setup with the capability to measure oil consumption

along with blowby and in-cylinder variables that govern the oil transport and

consumption mechanisms is needed for the study of blowby oil consumption.

The experimental objectives are summarized as follows:

1- Present fast and accurate measurements of total engine oil consumption

a. Measurement of total engine consumption

b. Measurement of blowby oil consumption with three different

diagnostic methods

2- Present accurate blowby measurements

3- Present measurements of in-cylinder parameters that affect engine oil

transport and consumption

a. Measurements of oil film thickness

b. Measurements of cylinder and inter-ring pressures
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c. Measurements of the liner thermal conditions that affect oil

evaporation

2.2 Test Engine: Production Spark Ignition Engine

The test engine was a four-cylinder spark ignition engine. The engine characteristics

are shown in Table 2-1.

Engine Type Port Injected Spark Ignition Engine

Number of Cylinders 4

Displacement 2.01 liter

Bore 86.25 mm

Stroke 86.00 mm

Maximum Power 97.4 kW @ 5500 rpm

Maximum Torque 180 Nm @ 4200 rpm

Compression Ratio 10.4:1

Table 2-1 Test engine characteristics

The following engine was chosen for use in the experimental study because the 4-

cylinder spark ignition engine is a very representative automotive engine currently used

in the automotive industry. It gives the possibility to study the oil transport phenomena

with an engine that is widely used by automotive manufactures, thus giving us

meaningful results that can be compared with other automotive literature.

The test engine was modified for the implementation of different experimental

techniques and to control different engine operating condition [1]. The cylinder head was

modified to fit a pressure transducer in the third and fourth cylinders. Moreover, the

engine's block and liner for the third cylinder were machined to allow inter ring pressure

and liner temperature measurements, as well as for optical access to the piston-liner

interface for oil film thickness measurements.

In order to control the engine's thermal conditions, the coolant temperature was

controlled [1]. The engine coolant from an external coolant tank was circulated through
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the engine block. To regulate the coolant temperature to the desired temperature, the flow

of water city in a heat exchanger was controlled with a valve.

2.3 Measurement techniques

An extensive diagnostic system was implemented on the test engine to measure oil

consumption, blowby, in-cylinder parameters, cylinder and land pressure, and liner

temperatures. In this section the oil consumption experimental techniques are further

discussed.

2.3.1 Total Output Measurements

Engine total output measurements are the parameters such as the oil consumption,

blowby flow or air to fuel ratio that are measured before or after they go through the

engine system. The total output measurements from the test engine are the oil

consumption, the intake airflow, blowby flow, and the air to fuel ratio.

2.3.1.1 Engine Oil Consumption

Nowadays, modem passenger car engine oil consumption rates have reached quite

low numbers, of the order of 10 g/h. Due to this small consumption, the measurement of

oil consumption has been one of the major challenges for automotive engineers.

Traditional methods, such as weight and drain, and continuous weight require several

hours of operation. This length of time might introduce measurement errors due to

potential interferences with other engine physical mechanisms. For example, engine oil

consumption can be negative with these techniques due to the fuel dilution in the

lubricating oil [7][16].

One alternative to these traditional methods is the sulfur tracer technique. This

technique requires the use of high sulfur content oil and a low sulfur content fuel. It

monitors the sulfur concentration in the exhaust/blowby gases to determine engine oil

consumption. Researchers in the automotive industry have successfully demonstrated the

capabilities of the sulfur trace technique for the oil consumption measurements
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[1][2][3][4][5]. One of the techniques most widely used to obtain the blowby oil

consumption is by taking the difference between the total oil consumption output with

and without the blowby line connected. More on this technique and other measurement

methods will be discussed in Section 2.3.1.2.

2.3.1.1.1 High Sulfur Oil

The high sulfur oil is a vital component of the measurement technique, since the oil

consumption measurements rely in the sampling of sulfur in the exhaust or the blowby.

The overall concentration of sulfur in oil needs to be around 1.5% [wt.] in order to have

reliable measurements throughout the engine operating range [1]. The oil evaporation

process is selective, and major contribution comes from the species at the light end. Thus,

a consistent sulfur concentration in the oil is required throughout the oil distillation curve.

This is to assure that the consumed oil in vapor or liquid form has the same sulfur

concentration as in the original oil. Lubrizol Corp. formulated the special high sulfur

content baseline oil with the desired properties. Figure 2-1 shows the sulfur content of

each distillate (ASTM D 4294) versus the distillation (ASTM D 5236) of the baseline oil

[1]. Table 2.2 shows some of the most relevant properties of the oil such as the volatility

and viscosity. Fresh high sulfur oil needs to be run for about one to two hours to break-in

before running any experiments. The oil has a settling period where most of the

hydrocarbon species that are in the light end of the distillation curve are evaporated. The

measurements might turn out higher than steady state oil consumption masking the true

steady state results.

24



__m 1I- * Baseline Oil
9 0.8

4-

0.4

E-0.2-
0
Z 0 I

0 20 40 60 80 100

Volume distilled [%]
Figure 2-1 Baseline oil sulfur content with distillation

Baseline Oil (Mineral) ASTM D

SAE Viscosity GradeSAE Viscosity 1OW-30

Sulfur [wt. %] 1.51 1552

Volatility: GCD % off @ 3710 C 11.6

Noack 16.8 5800

Kinematic Viscosity @ 100'C 10.77 445

HTHS viscosity [cP] 3.04 4683

Table 2-2 Relevant baseline oil specifications

2.3.1.1.2 Low Sulfur Fuel

In order to have accurate measurements of the oil consumption, it is necessary to

minimize other sulfur sources. Since the air has very little sulfur (< 10 ppb), the only way

that the result could be altered would be with the interference of sulfur in gasoline. For

gravimetric experiments, fuel can be absorbed by the oil in addition to the gasoline

combusted in the chamber, masking the actual sulfur level of the samples. Nevertheless,

the distillation curve of the fuel shows that it evaporates much faster than the oil, almost
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not impacting the gravimetric runs. When running the blowby oil consumption

measurements, there is not any measurement equipment that can read the fuel level in the

flow. Thus it has been neglected due to its small contribution. To minimize its impact, a

low sulfur fuel was used with a sulfur level below 2 ppm [wt.]

2.3.1.2 Oil Consumption Measurements Setup

The oil consumption measurement setup is shown in Figure 2-2.

Exhast Sa
* X~enso

,......................... ........................ -.......

......................... ............. ".. ...........

0

0

Intake li Air Flow Meter

mpling SO 2 Analyzer

Heating Tape & Insulation
(Control Temperature)

~1~
Blowby

Data Acquisition System

Figure 2-2 Schematic of oil consumption measurement system

The system is composed of the exhaust sample system (exhaust/blowby), the lambda

(k) sensor, the air flow meter, the gravimetric particle filter and the data acquisition

system. One of the most critical elements is the exhaust/blowby sampling system.

Representative samples from the exhaust and Positive Crankcase Ventilation (PCV) line

are withdrawn and directed to the sulfur analyzer. The sampling line for the blowby and

exhaust contains stainless steel tubing (Grade 314) to ensure resistance against sulfur

dioxide (SO 2) corrosion [1]. The transport of the hot exhaust gas stream, which contains

particulates, might lead to deposition on cold walls. This process, also known as
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thermophoresis, could cause plugging of the sampling line. Unburned hydrocarbons or

particulates from the exhaust may also condense because the temperature drops.

Therefore it is critical to maintain the sampling lines at a high temperature in order to

prevent such phenomena from happening. In order to avoid these phenomena it is

necessary to control the temperature in the sampling line to 3000C.

An Antek* Sulfur-Analyzer (Model R6000 SE) was used to detect the sulfur

concentration in the exhaust gas sample [17]. Figure 2-3 illustrates the components of

the analyzer in detail and Figure 2-4 shows a view of the analyzer in the test cell. The

analyzer is designed as a flow-through analyzer. The sample must be conditioned before

entering the sulfur detection part of the analyzer. The sample gas is withdrawn by a

bellows pump and directed into a furnace for oxidation. A controlled flow rate of the

pyrolised gas is sent to a second furnace through a fixed restriction transfer tube. Before

entering the second furnace, the sample is mixed with additional oxygen to oxidize

unburned hydrocarbons, particulates and sulfur compounds contained in the sample.

Condensation of water in the cooled detection part of the analyzer could lead to sulfur

dioxide absorption and alter the oil consumption measurements. Therefore, after the

second furnace, two permeable membrane dryers remove the water in the sample gas

before it enters the detector. In the detector, the conditioned sample exhaust gas

(oxidized and dried) is mixed with Ozone (03) and exposed to ultraviolet radiation in the

fluorescence chamber. The UV light brings the sulfur dioxide in the sample to an excited

state, which results in a fluorescence emission. A photo multiplier tube detects the

fluorescence emission intensity, which has a linear relationship with the sulfur dioxide

concentration in the sample gas.
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Figure 2-3 Antek@ sulfur detector [29]

Figure 2-4 Antek® R6000 SE sulfur detector in the test cell
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Then the total oil consumption can be determined by measuring the sulfur content in

the exhaust, the airflow rate and the fuel flow rate. The airflow was measured with a

laminar flow meter and the fuel flow rate might be determined by measuring the air/fuel

ratio relative to the stoichiometric ratio in the exhaust. This air/fuel ratio was measured

with a Xsensor, which is installed near the exhaust sampling location. In order to obtain

the blowby oil consumption through the PCV by sampling it from the exhaust, the engine

was run with the PCV line connected to the intake and disconnected. The contribution

from the blowby transport was found by taking the difference between the two

configurations and by measuring the blowby flow. This is explained in more detail in

section 2.3.1.3.1.

However, the direct blowby measurement case was determined by measuring the

sulfur content in the blowby, and the blowby flow. The flow was measured with the Von

Karman-vortex shedding flow meter before and while the flow was sampled. The

temperature was also controlled in order to calculate the density of the blowby gas

(always close to air density). The content of sulfur in the fuel was neglected, since the

fuel amount in the blowby gases cannot be measured with the current setup. However, the

low sulfur fuel did not have a big impact on the sulfur dioxide measurements in the

analyzer. This method is further discussed in section 2.3.1.3.2.

The gravimetric diagnostic system determines the oil consumption by weighting the

collection of oil in a particle filter and by obtaining the blowby flow magnitude. The

sample flow was drawn with a pump and regulated by a flow meter to be constant. The

filters were weighted in a scale accurate to the 0.1 mg before and after the collection of

oil, thus determining the amount of oil trapped in the filter (Oil in gas form is not

trapped). This diagnostic method is further discussed in section 2.3.1.3.3.

A Lab VIEW based data acquisition program was used to simultaneously take raw

data, calculate oil consumption rate, and display it along relevant engine parameters. This

lets the test conductor validate the actual data and intervene if necessary. The only data

that could not be controlled online is the gravimetric particle collection, since the filters

were measured before and after experimentation.
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2.3.1.3 Engine Blowby Oil Consumption

In addition to the total oil consumption of the engine, blowby oil consumption was

also measured by using the three diagnostic methods described above. In this section, the

three different techniques are described more in detail.

2.3.1.3.1 Difference Method

The difference method consists on the measurement of the sulfur concentration from

the exhaust by connecting and disconnecting the PCV line while running the engine (See

Appendix A). The total oil consumption measurements (Shown in equation 2.1) are

assumed to be the sum of all the consumption sources mention in section 1.1.

moC ,WPCV =mevcap +inertia + mblowby (2.1)

By disconnecting the Positive Crankcase Ventilation (PCV) blowby line, the

assumption made is that the total output measurement lacks the blowby oil consumption

source as shown in equation (2.2).

=CW1011tPCV meveap + thinertia (2.2)

This way, by taking the difference between equations (2.1) and (2.2), the blowby oil

consumption can be calculated.

hblo"", = -OCw/PCV (2.3C,W)tPCV )

In this case, the engine's PCV line, when disconnected, was drawn to the atmosphere

thus changing the conditions under which its valve would normally operate. There was

less flow through the valve when the PCV line was disconnected due to the weaker

vacuum downstream the valve, as shown in Figure 2-5, for which the PCV flow would be

the closest to the blowby volume axis [18][19]. However, the blowby production for the
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highest load, close to the axis, increased and thus the valve flow characteristics restricted

the PCV blowby flow. The pressure in the intake was lower than atmospheric due to the

throttle loses increasing the vacuum. More results about the different engine operations

will be shown in Section 3.3.

0
PCV valve flow
characteristics

0

Blowby gas produced

Weak Strong
(Full load) VACUUM (Idle)

Figure 2-5 PCV valve and blowby flow characteristics

2.3.1.3.2 Direct Method

The direct method consists of taking the measurement directly from the PCV line. As

in the total output measurements, this diagnostic method also monitors the sulfur

concentration of the blowby gas to determine the blowby oil consumption (See Appendix

A).

This measurements approach samples from the PCV line directly. The sampling was

done downstream the PCV valve, which is used to regulate the PCV flow to match that of

the blowby gas flow in order no to have any pressure losses in the crankcase. The

experiments were run when the PCV line is connected or disconnected to the intake and

exhausted to the atmosphere. In the contrary to the first method, there was not switching
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between the two engine configurations, but rather the experiments were run either when it

was disconnected or connected.

The main difference of this method with the differential one was that the sulfur

concentration on the blowby gas is much higher due to the higher oil concentration in the

blowby flow compared to the exhaust. The resolution of this diagnostic method proved to

be higher, mainly because the blowby oil consumption component is not a major one in

the total oil consumption and especially at low loads where the differential method has

much more trouble to read the blowby contribution from two large oil consumption

numbers.

2.3.1.3.3 Gravimetric Method

The gravimetric method was setup to compare and check the results with the other

two diagnostic methods and to investigate the oil particle size distribution in the flow. It

relies on the collection of oil in a glass fiber and PTFE polymer paper, which is weighted

in a precision scale before and after running experiments. Although fuel absorbed by the

oil is also collected [8][11][16], the fuel evaporation rate is much faster than that of oil.

Therefore the weighing after the experiment was done about five to ten minutes later in

order to minimize its impact. This method consists of sampling a fixed flow from the

PCV line for a fixed period of time. Researcher in the aerosol-sampling field have

already demonstrated and validated similar type of sampling systems [6][10]. However,

due to the high cost and lead-time of these systems, a simpler system based on the same

method has been built in-house. The schematic of the setup is shown in Figure 2-6. The

main components of the diagnostic method are shown in Table 2-3 and the different filter

types used in Table 2-4.
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To blowby flow meter

PCV line (after separator) Pum

3ep r Iter holder
uJPCV valve Flow

Temperature TC meter

Figure 2-6 Setup of gravimetric method

Filter Holder 47 mm 0 Aluminum Holder

Flow Meter Rotameter with glass ball

Pump Positive Displacement

Tubing Stainless Steel Tubing %/"

Table 2-3 Gravimetric experimental components

Type Pore Size Thickness Retention Efficiency

(gm) (ASTM D2987)

Emfab 0.3 7 mils (198 gm) 99.99%

Zeflour 0.5 7 mils (198 gm) 99.99%

Table 2-4 Filter Specifications

Furthermore, this experimental method gives the possibility of using different pore

size filters, thus letting a more detail blowby oil characteristics study of the particle size

mass distribution. For the experiments the sampling feed line was not heated because the

monitoring of the aerosol temperature showed that it was around 30 0C [10]. This

temperature was close to the atmospheric and little condensation of the oil was expected;

unlike with the differential method setup which samples from the hot exhaust. On the
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other hand, the results for gravimetric method were generally slightly lower than the

previous diagnostic methods since it did not collect evaporated oil. Figure 2-7 shows a

picture of the setup in the test cell.

Figure 2-7 Gravimetric method component setup in the SI engine

2.3.1.4 Blowby

Blowby is the leakage of the combustion gases to the crankcase because of the

increase pressure in the combustion chamber. It is composed of the burned combustion

gases, unburned mixture and the lubricating oil that absorbs while it flows through the

ring-pack. Blowby gases are mixed with high-speed gases created by the reciprocating

movement of the engine components. Then, the blowby gases are circulated back to the

intake manifold by the Positive Crankcase Ventilation (PCV) system to prevent the
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emission of pollutants to the atmosphere. Blowby at a given speed and load is controlled

primarily by the greatest flow resistance in the flow path between the combustion

chamber and the crankcase, which is normally the smallest of the compression ring gap

area. However, there is also possibility of flow through the ring groove if there is ring lift

off or fluttering.

In order to accurately describe the blowby oil transport phenomena, it is necessary to

measure the blowby flow rate into the crankcase. Because of this, an accurate flow meter

was installed that was based on the Von Karman-vortex shedding principle [1]. Detail of

the blowby flow meter are summarize in Table 2-5.

Principle Von Karman-vortex shedding

Range 4-100 [1/min]

Accuracy <1% of reading

Table 2-5 Blowby meter specifications

The flow meter was installed after the PCV valve, which is used to maintain the

pressure in the crankcase around atmospheric. As discussed in section 1.1, the

reciprocating movements of the engine moving parts can also affect the oil consumption.

This reciprocating movement creates high-speed gases that affect the oil entrainment and

the pulsating behavior of the blowby flow. Figure 2-8 show the flow meter and some of

the components that are in the test cell.

Therefore, the blowby is a pulsating flow, with periods where it is reversed. The flow

pulsations are mainly caused by the volume changes in the crankcase due to the

kinematics of the crank mechanism as shown in Figure 2-9 [1]. However, the average

flow rate is out of the crankcase and what was measured. The PCV valve helps maintain

the pressure in the crankcase by only letting the blowby flow when the pressure is above

the predetermine one.
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Figure 2-8 Flow meter picture with volume damping tank
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Figure 2-9 Crankcase volume changes as a function of crank angle

Moreover, since the blowby meter is optimized to measure flows in only one

direction, if installed in the blowby path, it would give different flow rates than actual

due to flow reversal. Therefore, a damping system was installed upstream the flow meter

in order to minimize the flow fluctuations. This consisted of two large damping tanks

connected in parallel attached before the flow meter [1] [18].
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2.3.1.5 Oil Consumption Formulas

The formula to calculate oil consumption from the exhaust had been derived at MIT

(See Appendix A) using the sulfur dioxide concentration in the exhaust, the airflow rate,

the air/fuel ratio, and the mass fractions of sulfur in oil and fuel [1].

For the direct diagnostic method a different formula has also been derived using the

sulfur concentration in the blowby, the blowby flow and the mass fraction of sulfur in the

oil. In this section the basic assumptions and relations of the blowby oil consumption

formula will be described:

Calculating the blowby mass flow rate can approximate the consumed sulfur mass in

the blowby gas. The contribution from the fuel in the blowby is hard to approximate,

since the fraction of fuel in the blowby has not been measured, and due to the low

contribution, it has been neglected

mblowhy blowhy * Phiowh, (2.4)

Where

Phlowhy . atm (2.5)

.Thlowhy
hblowhy )

For simplifying purposes it is known that MbIowby~ Mair, and R is the universal gas

constant.

The mass fraction of sulfur in the blowby can be written as

w M
4S0,blwhy- VS02hlohy M (2.6,
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Where V shlob is the dry sulfur concentration in blowby in wt. %. Then by

substituting this in the blowby oil consumption formula

th *~b rnhblowhy *SO 2 ,blowhy (2.7)
OC,hlowhy ~

The current capabilities of the setup do not have the possibility to measure the moles

of water and wet blowby. However, further analysis of variation of the water fraction

moles showed that there was no much of impact on the final results, and thus it was

neglected.

For the gravimetric diagnostic method, it is simple to obtain the oil consumption rate

with the sampled flow, the blowby flow, and the measured weight of collected oil:

Mcollected

MOC,blowhy Qbarpye Qbh (2.8)
Qsample

Where the Qsample is fixed at 2.09 1/min, and tsample is the duration of time of the

experiment. The time of wa varied depending on the engine operating condition, for

which the oil loading varies.

2.3.2 In-cylinder Measurements

The engine block has been modified in the third cylinder in order to implement in-

cylinder measurements [1]. Piezoelectric pressure transducers positioned along the liner

provided inter ring pressures. The one-point Laser Induced Fluorescent (LIF) system has

been fitted to the engine to gain information about the oil film thickness distribution, with

four windows positioned along two different axes in the liner. Thermocouples were also

installed in the top and bottom position of the liner to measure liner temperatures. The

positioning of these measurements has been chosen for the ease of the test conductor to
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access them for experimentation and maintenance. Figure 2-10 shows more on detail the

positioning of these measurement probes installed in the third cylinder. Figure 2-11

shows the installed actual measurement probes in the engine

2 Pres-ure Measuremint
Ptsitions

2 Ttniperature
Q1,11 Mensurenent

Posi10o1S

AA_ tT

Atithrust side

Figure 2-10 Measurement locations of in-cylinder variables

Figure 2-11 Measurement probes in the engine 3rd cylinder
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2.3.2.1 Laser Induced Fluorescence System (LIF) System

The Laser Induced Fluorescence (LIF) diagnostic system was used to quantify the oil

film thickness between the piston rings and liner and the oil accumulation on the piston

lands during operation. The LIF system developed in the Sloan Automotive Lab has

shown its capabilities in previous studies [1][2][3][12][20]. For the LIF studies, the oil is

doped with a fluorescence dye to increase the natural fluorescence of the oil in order to

enable more accurate measurements of film thickness.

The LIF system is composed of a 442 nm 14mW Helium-Cadmium laser (Model

LiConix 4214N), focusing optics and optical filters, fiber optics and a photomultiplier

[15]. A schematic of the LIF system is shown in Figure 2-12. The laser beam, produced

by a Helium-Cadmium laser (441.6 nm), is directed through a bifurcated fiber optics

cable into the LIF focusing probe. In the probe, a conventional lens system focuses the

laser light onto the lubricating oil film on the piston and ring surface. The dye molecules

dissolved in the oil are excited by the laser light and undergo a fluorescence process. The

fluoresced light is picked up by the bifurcated fiber optics and directed through an optical

filter (495nm) - to block any reflected laser light - to the photomultiplier tube. In order to

have accurate measurements, the laser output to the engine from the fiber optics should

be about 3 to 4 mW. The output is very sensible to the condition of the fiber optics and

proper alignment of the laser beam, so great care should be paid when adjusting. Table 2-

6 shows the principal specifications of the laser.

Laser He-Cd

Power 14 [mW]

Excitation wavelength 442 [nm]

Dye Coumarin 523

Fluorescence wavelength 495 [nm]

Window Transmission 90 [%]

Table 2-6 Specification of LIF setup
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For the actual application, the oil has been doped with the fluorescence dye Coumarin

523 with a concentration of 1.0* 10-4 mol/liter [1][12]. This oil dye is used to increase the

natural fluorescence of the oil molecules and get more accurate results.

442 nm

He-Cd Laser ........ .

Focusing Op
Optical Filte

,tics and 495 nm
rs

PMT Focus Optics
& Optical Filters

Amp.

D.A.S. 100 kHz
Filter

Focusing Probe

Figure 2-12 Schematic of LIF system setup

The application of the LIF system requires several modifications to the engine block,

liner, and piston. First, detail axial and circumferential locations were determined for the

optical access to the combustion chamber. The locations needed to be chosen to get

optical access for the three lands in the piston-ring-liner system and the piston skirt. Two

different windows were located along the anti-thrust side, 40 mm and 80 mm from the

top of the liner [1][13]. Figure 2-13 shows the instantaneous location of the land for the

compression and expansion stroke.
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and
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Figure 2-13 Axial position of LIF probes and of different piston regions with crank

angle [1]

After the LIF measurement locations were determined, the stock engine block and

cylinder liners were machined for the installation of the windows. The machining and

assembly of the windows was done previously in the Sloan Automotive Lab. The

windows were assembled in a probe, which can be taken out from the engine window

mount for cleaning [1]. The window probes were installed inside a housing sleeve, which

also can be taken out from the engine for cleaning and maintenance. After installation on

the engine, RTV was applied at the inside and outside ends in order to seal the windows

from the coolant jacket in the engine.

The focusing probe consists of a probe housing, two optical lenses, and two spacer

rings to separate the lenses and to hold them inside the probe housing. The probe is

designed to position it inside the housing sleeve. A schematic of the housing sleeve and

focusing probe arrangement is shown Figure 2-14. These windows facilitated the

cleaning and maintenance of the optics inside the engine. Table 2-7 shows the

characteristics of the windows and spacers.
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Figure 2-14 Arrangement of LIF housing sleeve and probe assembly [1]

Spacers
Long
Short

Lenses (both are the same)

Dimension/Properties
.472±.003 in
.09±.002 in
6.3 mm Diam. and 12.7mm F.L.

Table 2-7 Specification for the LIF probe assembly components

The oil film thickness was obtained by post processing the output light intensity

signal. In order to correlate this output intensity signal, there are several methods that can

be used and that have been used in the Sloan Laboratory before [1][12]. However the

method used for the experiments was based on the depth of several tool marks in the

piston. Several scratch marks of different depths (20-40 jim) were done in the piston as

shown in Figure 2-15, along the laser sight path. Talysurf measurements of these marks

were used to determine the coefficient to convert the output voltage to microns of oil film

thickness [1][2][12].
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Dimensions in mm

'8
0.5

0.5
Piston scratch marks

0.5
0.5

28.0 mm from top of piston

23.0 mm from top of piston

Figure 2-15 Piston scratch marks for LIF calibration [1]

Great effort was directed to achieve a relatively flat groove surface by machining

each scratch mark with a new tool. Before reassembling the engine, the piston surface

profile was measured with a stylus instrument (Form Talysurf), since the detailed scratch

mark depths directly affect the calibration coefficient [1]. Figure 2-16 shows the micro-

geometric profile measurements of the piston with the scratch marks at the antitrust side.

280 p

/VA/VJ f SCIlrtch mark 2

Scratch niark I

Piston skirt

1 Ring groove
100 p

Figure 2-16 Surface profile of piston skirt and scratch marks at anti-thrust side [1]

The LIF calibration was performed with the calibration coefficients obtained during

the compression stroke. Figure 2-17 shows a sample LIF traces acquired during steady

state engine operation at different times. Each shown trace was averaged over ten

consecutive cycles. It has to be taken into account that the measurements were influenced
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with the time of data acquisition. For the steady state operation of the engine, the oil film

thickness (OFT) varies with time due to the ring rotation that changes the oil transport in

the liner [20][21][26][27]. This phenomenon has been characterized by the experiments

done on the single cylinder PSA research engine with the 2-D Laser Induced

Fluorescence technique in the Sloan Automotive Lab. The ring rotation might align the

ring gaps changing the blowby flow and oil supply characteristics, due to the differences

in the blowby gas dragging. Moreover, the blowby gas dragging affects the oil film

distribution and oil transport characteristics at the same time.

Compression Variation of OFT with operating time at steady-

Stroke 110 n-n
15 min

20 min

Piston profile

-40 -35 -30 - -20 -15 -10 -5 0 5

Distance from P *ton Top [mm]

Oil Control
Ring Groove

Piston Scratch Marks for Calibration

state
30

20

10

r,.

HQ

0

Top Ring Groove

Figure 2-17 Example of LIF traces and ring piston locations

2.3.2.2 Cylinder and Land Pressure Traces

The test engine's head was machined to house two pressure transducers in order to

obtain the cylinder pressure trace for two cylinders. The pressure measurements were

taken with water-cooled piezoelectric transducers.

In addition, two other pressure transducers were mounted into one side of the engine

to get the land pressure traces of the third cylinder. The location of these transducers is

shown in more detail in Figure 2-18. These axial locations ensured the measurement of

inter-ring pressures for the longest possible crank angle period. This setup was done

previously in the Sloan Automotive Lab [1]. One transducer was located just above the

top dead center (TDC) position of the scraper ring in order to measure second land
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pressures during the period of piston reversal between the compression and expansion

strokes. The second transducer was positioned lower on the liner. The distance between

both transducers was slightly larger than the width of the piston's second land. This

arrangement allowed the measurement of the second land pressure for the periods just

before and after the upper transducer upper on the liner was exposed to the second land

[1]. Figure 2-18 illustrates the axial positions of both pressure transducers on the liner,

and the instantaneous position of different piston regions as a function of crank angle

during late compression and early exhaust strokes. The instantaneous positions of the

piston regions during the exhaust and intake strokes were identical to the compression

and expansion strokes, respectively.

CA [deg]

-60 Compression stroke Expansion stroke 60
0-

nd Top of piston
2land press ure with:

Transducer 2 Transducer Transducer 2

-10 Transducer I

.0

Transducer 2
0

2"a Land
-20

3 d land pressure with transducer
2

-30 2d Groe3rd Land

Figure 2-18 Axial locations of the pressure transducers [1]

The transducers were mounted into a housing in order to hold them and seal the

cylinder from the engine's coolant leakage [1] as shown in Figure 2-19. On the other

hand, the mounting of the pressure transducer could affect the pressure traces by
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changing the volume of the cylinder. However, it did not have much effect on the results,
since there only was a maximum variation of just about 3% increase in volume.

Wall Liner

Bolt 9/16

L-

Threads

Glue

Figure 2-19 Pressure transducer housing assembly

Figure 2-20 shows a sample of the pressure traces averaged over 30 cycles. The 2 "d

land pressure trace is the combination of the land pressure measured with the lower and

the upper pressure transducers, when the 2"d land goes through the two location as shown

in Figure 2-18. It is true for the 3rd land pressure trace as well. Figure 2-20 shows the

sample of the second and third land pressure measurements with the two liner pressure

transducers for the late compression and early expansion strokes at steady state operation

for 100% load and 2500 rpm.
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Figure 2-20 Example of the lands pressure trace

2.3.2.3 Liner Temperatures

Cylinder liner temperatures influence the oil evaporation and the oil consumption in

consequence. On the other hand, the different temperatures can impact the thermal

expansion of the engine components and properties of the oil such as the viscosity.

However, the liner temperatures change with engine operating condition and liner

location. For example, top liner temperatures are much hotter than the lower one because

they are closer to the combustion chamber, having greater heat transfer with the

combustion heat. The heat dissipates by the conduction of the engine components, the

engine lubricant and the coolant in the engine.

Therefore, the engine liner and block were machined and two fine tip transition joint

thermocouples were installed at the liner to measure local temperatures. The ports on the

liner were blind holes and the measurements locations were at the top dead center

position of the scraper ring and the bottom dead center of the top ring as shown in Figure

2-10 [1].

In order to control the engine's thermal conditions and thus control the evaporation of

oil, the coolant temperature was controlled [1]. The engine coolant from an external
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coolant tank was circulated through the engine block. To regulate the coolant temperature

to the desired temperature, the flow of water city in a heat exchanger was controlled with

a valve. Figure 2-21 shows the relationship between the coolant and lower liner

temperature.

The plotted figure shows the linear relationship between the lower liner temperature

and the coolant outlet temperature that includes all the loads at a given speed. The top

liner temperature had greater influence from the combustion temperatures that changed

more dramatically with load. Therefore, top liner temperature did not show such a linear

relationship of increase thermal loading with the increase in coolant temperature. This

relationship was more convenient to compare the different engine conditions, since it

showed how the liner increases in temperature with the coolant outlet temperature.

2500 rpm -.--. 3500 rpm

140
130
120

110
90 0

____ - 80

70
60

53 55 56 57 80 81 82 83 88 89 89 91

T cool [C]

Figure 2-21 Relationship between the coolant and lower liner temperature

2.4 Experimental Conditions

The objective of the study was to investigate the blowby oil consumption and its

major oil sources at a wide range of operating conditions, such as speed, load or liner

temperature. The tests for the study were run at a range of speeds between 2500 rpm and

4000 rpm. The loads tested ranged between 150 N-m and 37.5 N-m, which are

represented in the figures as 100 % and 25 % loads respectively. Although the engine
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loads are also related to nominally the throttle position of the intake, the torque was the

controlled parameter since there is an intake pressure variation from day to day and

season to season. The maximum torque was selected to be 150 N-m because it was just

bellow the engine wide open throttle (WOT) torque curve as shown in Figure 2-22. If the

throttle position were controlled, the torque curve would vary, changing the engine

conditions, affecting greatly the blowby. The relationship between the load and blowby

flow will be further discussed in Chapter 3.

Steady state oil consumption, blowby and in-cylinder variables were measured to

obtain information about their response to changing load and speed. The oil consumption

and blowby maps were tested for four different loads (150, 112.5, 75 and 37.5 N-m) at

four different speeds (2500, 3000, 3500 and 4000 rpm).

170

165

160 0 " Actual Engine WOT Torque

z -0
00

155
0
I-

150 - Controlled Torque

145

140 -
2000 3000 4000 5000 6000

Speed [rpm]

Figure 2-22 Controlled torque and the engine torque at 100% as a function of speed

In cylinder variable were also measured at all the investigated conditions and used for

further oil consumption analysis. Figure 2-23 shows the operating conditions of the test

engine, along with the test points that were run for different thermal condition than the

standard (Tcooiant= 81.5±1.5 0C). It has to be noted that the test points that were run at

different thermal states also were run at the standard thermal conditions. The figure plots
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the torque versus the speed, rather than the intake manifold pressure. It has to be

mentioned again that the pressure varies from season to season mainly due to the change

in the environment conditions, although it varies less than 1% from day to day.

All the oil consumption diagnostic methods (See Section 2.3.1) have been run for all

the test points shown in Figure 2-23, and for both the total and blowby oil consumption

measurements.

1 8 0 -...........-..
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* Different Thermal Conditions 10100%
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Figure 2-23 Investigated steady state engine-operating conditions

2.4.1 Ring-pack Design

The baseline ring- pack used for the investigation consisted of a rectangular top ring

with a barrel faced running surface, a taper faced Napier ring and a U-flex oil control

ring, which is divided in about 50 ring segments with gaps between them [1]. Figure 2-24

shows the details of the baseline piston-ring-pack design.

The top ring gap has a gap size of 0.24 mm, which primary function is to seal the

combustion chamber. In order to minimize the blowby gas flow, this gap size would

need to be the smallest possible (See Appendix C). The second ring dampens the pressure

drop across the first ring by sealing the inter-ring pressure increase in the second land
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chamfer and delaying the pressure release into the third land chamber. The Napier faced

ring, also has the function of scraping the excess oil left in the liner while in the down

stroke. The oil control ring function is to control the oil supply to the liner, thus limiting

the oil consumption of the engine. They also act as check valve to prevent reverse blowby

flow towards the combustion chamber. This function is also carried by the second ring,

for which design are purposely done to reduced the reverse flow while simultaneously

increasing the down flow.

No Twist

Napier Ring

U-Flex (OCR)

Top Land U"

2nd Land

3rd Land

Dimensions in mm

Figure 2-24 Piston and baseline ring-pack geometry
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CHAPTER 3: Engine Blowby Oil Consumption and Oil Sources

3.1. PCV System blowby Oil consumption

The Positive Crankcase Ventilation (PCV) system in automotive engines ensures that

the harmful gases coming from the combustion chamber and passing through the ring

pack do not escape to the environment. These blowby gases entrain oil by particle

atomization and evaporation when flowing through the piston ring pack and the

crankcase. The blowby gases are composed of the combustion gases, fine oil droplets

with some hydrocarbons, water and fugitive dust particles [4][9][16][23]. Since these

blowby gases are circulated back to the intake, they represent a mode of oil transport that

affects the lube consumption. In addition, it is a source of emissions of hydrocarbons and

particulate matter, and of residue buildup that can increase the maintenance cost of

critical engine components.

The PCV blowby oil consumption is described as a function of three parameters as

shown in Figure 3-1: oil loading, blowby flow, and the separator efficiency. Although the

separator is not an integral part of the physical modeling of the blowby flow, it takes a

crucial part in the blowby oil consumption. Actual designs already remove a large part of

the larger droplets, believed to come from the crankcase.

Filtered Oil drops
(larger oil droplets-

Total inlet oil mist sump) Total escaped oil
mass flow rate mist mass
Min (g/hr) Mout (g/hr)

Blowby OC depends on: Oil Separator with efficiency 1i%

Oil entrainment in PRL and crankcase
Total separated

PCV flow rate oil mist mass

Oil drop size distribution Msep (g/hr)

Figure 3-1 Factors on the blowby oil consumption
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3.2 Factor Influencing Positive Crankcase Ventilation Blowby Oil Consumption

The oil transport in the piston-ring-liner systems is governed by different driving

forces, such as gas flow, ring motion and liner lubrication, which vary with the engine

operating conditions. For example, the blowby gas flow increased by a factor of four

between the lowest load and full load, due to the variation of the cylinder pressure. The

intake pressure increases from about 400 mbar to about 930 mbar for the highest load

case, where the throttle is at wide open (WOT). The peak cylinder pressure varies from

around 20 bars during the lowest load to about 50 bars at the highest load case.

Furthermore, the local pressures in the different regions of the piston-ring pack affect the

behavior of the ring dynamics, which affect the gas flow [1]. The gas flow can either flow

through the gap or the ring groove if fluttering occurs, which is characterized as vibration

of the top ring in the piston groove. This condition that enhances reverse gas flow

towards the combustion chamber could occur in the following critical conditions: the

inertial force of the ring is pointing towards the crankcase, the cylinder pressure is lower

than the second land pressure and the relative of the angle between the top ring and its

groove is positive.

In addition, the liner lubrication condition also affects the blowby oil consumption. It

is also important to know the oil distribution along the liner, since the oil consumption is

limited mainly by the oil accumulation in the second and third lands [1]. The oil

distribution along the liner and the flow characteristics through the ring pack controls the

atomization and oil entrainment in the blowby flow. In the same manner, the gas flow

affects the lubrication, by the gas dragging action that influences the oil film distribution

[26]. Figure 3-2 shows the oil film thickness relationship for 3500 rpm between load and

speed. When the load iss increased, the blowby flow is increased as explained in Section

3.3.3, which drags more oil, thus reducing the oil film thickness. Oil flow to the top land

with the reverse gas flow depends on the second land pressure and oil distribution on the

second land. PCV blowby oil consumption relative importance is minimized for these

cases, since most of the oil transport goes through the combustion chamber.
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Engine speed also affects the oil transport characteristics. It affects the interring

pressure distribution and thus affects the gas flow between different regions in the piston

assembly. Engine speed also increases the inertia of the reciprocating parts in the engine,

enhancing mechanical throw off to the combustion chamber. In addition, the PCV

blowby is also affected by the speed of the reciprocating movement of the engine

components that create high-speed gases in the crankcase. It also influences the splashing

of the oil in the sump, creating oil droplets that can be carried by the blowby and high-

speed gases in the crankcase if the aerodynamic drag force is greater than inertia of the

droplets.

8

7

E6

3- ~
2

0 3500

505I2500 Speed [rpm]

Load [%] 100

Figure 3-2 Oil film thickness for different loads and speeds

Moreover, operating conditions also influence the thermal loading of the engine

components, which affect the oil evaporation, oil viscosity and gas flow paths due to the

thermal expansion of the different components. All of these changes in the oil and the

component behavior affect the oil transport and oil distribution along the liner.

Therefore, all the oil consumption sources are also expected to change with engine

operating condition including the blowby oil consumption. A very detail study of the

different oil consumption sources was done previously by Ertan Yilmaz in the Sloan

Automotive Lab [1]. However, the blowby oil consumption has not yet been carefully

characterized. There is still a lack of understanding of the oil source for the oil
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consumption through the PCV system, along with some of the characteristics of the oil

entrained in the gas flow.

3.3 PCV Blowby Measurements

Steady state condition measurements were taken for different operating engine

conditions. The engine was run at a standard coolant temperature condition (Tooiant=

81.5±1.5 0 C). The results are discussed more in detail in the following section

3.3.1 Steady State Blowby Oil Consumption

The steady state PCV blowby oil consumption measurements were made first to gain

information about the oil consumption pattern with changing speed and load. The

conditions for which the blowby oil consumption was measured are shown in Section 2.4

of the thesis. The baseline oil consumption map versus speed and load is shown in Figure

3-4. The map shows the trend for PCV blowby oil consumption for a maximum oil sump

level and standard thermal operating conditions for an outlet coolant temperature of

81.5±1.5 0C. The oil consumption is presented in per cycle basis, which can compare the

oil consumption results for any speed. This representation implies that there is less time

for oil transport as the speed increases. Because of this, although the consumption for

4000 rpm is lower in per cycle basis, it is higher for an absolute unit such as g/h as shown

in Figure 3-5, since there are more cycles per time for the higher speeds.

The blowby consumption map showed some important characteristics and patterns.

For instance, the measurements showed a strong dependence with load. The increase in

load increased the pressure differential between the combustion chamber and the

crankcase leading to an increased blowby flow through the ring-pack and the PCV

system. Besides the flow velocity increase, the higher speed gases promoted oil film

atomization into small size oil particles [7]. Previous results from Ertan Yilmaz showed

this relationship as shown in Figure 3-3. There was also an increase in the liner and oil

temperature with load that increased oil evaporation.
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Figure 3-3 Load effect on particle size distribution in the blowby flow at 2500 rpm [1]

On the other hand, there was a strong dependence in blowby oil consumption with

speed. Increasing the engine's moving parts speed increased the high-speed gas

velocities on the crankcase. Furthermore, there was an effect in the oil droplet size

formation with speed, which affected the separation efficiency of the separator [5] [7] [22],

which is further discussed in chapter 4.1.1. Besides, the increase in the stirring of the oil

by the engine moving parts enhanced the oil entrainment in the PCV blowby flow.

Furthermore, there was also a boost in the thermal loading of the engine, which increased

the evaporation and thus the oil loading of the flow.
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Figure 3-4 PCV blowby oil consumption map
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Figure 3-5 PCV blowby oil consumption map in grams per hour

3.3.1.1 Different Diagnostic Measurement Result Comparison

As discussed in Section 2.3 of the thesis, several methods were used to take the

measurements of the blowby oil consumption. Figure 3-4 shows the results for oil

consumption with the direct method, and the other two methods that showed very similar

results. This method was chosen to display the results, because it proved to be the most

reliable and the easier to use of the three.

First, the gravimetric method did not collect the oil-evaporated form. Although some

condensation could happen while sampling, the blowby gas temperature was already at

room temperature (Tambient~30C) and little condensation was expected. Second, as

discussed in Section 2.3.1.3.1 the difference method run between two different engine-

operating conditions, which influenced the results for the highest load case especially,

giving larger contribution to blowby oil consumption than obtained with the direct

method [1][5]. Figure 3-6 shows the comparison between the three different methods for

3500 rpm and different loads. It has to be noted that for the lowest load, the difference

method poor resolution gave us a negative contribution of the PCV blowby oil

consumption. It is very hard to read the difference between the large oil consumption

numbers obtained at the two different engine configurations. However, results trend seem

to be similar and about of the same order of magnitude.
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Figure 3-6 Comparison between the three diagnostic methods

3.3.2 Steady State Total Oil Consumption

In addition, total steady state oil consumption measurements were taken to gain

information about the total oil consumption pattern and the relative contribution of the

PCV blowby oil consumption. These measurements also were taken in previous studies

[1][2][3][4][5][8], which showed about the same results obtained in this investigation.

Figure 3-7 clearly shows the load and speed dependence in the total oil consumption,

which is typical for internal combustion engines as stated in Section 3.2.

Oil consumption became more significant at high speed and loads. However, there

was an exception to the general trend at 3500 and 4000 rpm, where the oil consumption

increased as the load was decreased from 50% to 25 % for both speeds. The different

mechanism of oil transport and relative contribution were studied in great detail in

previous studies [1]
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Figure 3-7 Total steady state consumption

3.3.3 Blowby

Engine operation conditions changes the blowby flow magnitude and possible flow

paths through the ring-pack. Thus blowby is strongly dependent in the leakage paths. If

there are no major instabilities in the rings, then the blowby flow is structured as follows.

As the cylinder pressure raise during the compression stroke and combustion, the gases in

the combustion chamber are believed to leak to the second land through the top ring gap.

On the second land, the gases are believed to flow circumferentially going from the top

ring gap to second ring gap [1][20][21]. As the pressure increases due to the finite

volume in the second land, a pressure gradient evolves between the second and third

lands. This way gases flow to the third land through the second ring gap. On the third

land and with a U-flex oil control ring, blowby gases mainly flow in the axial direction.

This is assumed because the U-flex oil control ring may assume a wavy shape after

installation, which results in additional gaps between the ring and groove surfaces.

Nevertheless, it is also important to know that during the intake stroke, late expansion

and exhaust strokes blowby gases may flow back from the second land to the cylinder,

due to negative pressure gradient between the combustion chamber and second land.

60



The speed of the leakage of the gases mainly depends in the cylinder pressures and

interring pressures of the lands. The pressure directly influences the flow magnitude.

Figure 3-8 shows the cylinder pressures of the different piston lands at 3500 rpm. The

increase in cylinder pressure induces the increase in blowby flow as shown in Figure 3-

10. The increase pressure forced the blowby gases to leak through the different piston

lands at much higher rates.

50 -
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40 _75%
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Figure 3-8 Cylinder pressure traces for 3500 rpm and different loads

Even though the pressure was quite similar for the highest load cases, the 100 and

75% cases, the difference between them was that the highest load case pressure increase

before in the stroke (earlier crank angle degree). Thus, this difference reconciled that

more of the gases at the 100% case will flow through the piston lands. The pressure for

75% case rose more suddenly and would not drive that much flow through the power

cylinder, hence having a lower magnitude blowby.
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Figure 3-9 Interring pressure traces for 3500 rpm and two different loads

The interring pressure for the different piston lands also displayed differences with

load as shown in Figure 3-9. The increase in pressure for the highest load, forced more

gases through the first ring gap, thus increasing the second land pressure due to the finite

volume. Even though the second land dampened the pressure drop with the third land,

there was also a slight increase in the third land pressure. All of these pressure increases

are proportionally related to the increase in the blowby flow through the different lands.

Since the crankcase pressure did not change that much due to the engine ventilation

system, the pressure differential between the combustion chamber and the crankcase

increased, leading to the blowby flow increase.

Figure 3-10 shows the blowby flow in liters per minute for different speeds and loads.

This representation showed a strong dependence in load, although it almost remained

constant for increase engine speed. The increase in cylinder pressure created a greater

pressure gradient between the combustion chamber and crankcase as stated above, which

enhances the blowby gas flow through the ring pack.
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Figure 3 -10 PCV blowby flow map

Since all the driving forces that are believed to control oil transport within the piston

ring-pack, including the blowby gas flow, repeat periodically every cycle and thus should

scale with speed. In order to evaluate the impact of the blowby gas flow in the oil

transport, the blowby flow per cycle basis was calculated and shown in Figure 3-11. The

results also showed a clear dependence with load. On the contrary, there was a clear

dependence with speed at a constant load. This trend is explained as follows. As the

engine speed increases, blowby gases have less available time to flow through the land

and past the PCV system in one cycle. Therefore the amount of gases leaking through the

ring-pack and the blowby through the PCV system each cycle consequently decreases

with engine speed.
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Figure 3-11 Blowby flow map in per cycle basis

3.3.4 Oil Loading in Blowby Gas Flow

Of great interest for the blowby oil consumption is the oil loading of the flow, defined

as the mass amount of oil per volume in the flow. The oil loading gives important

information about the oil carried in the blowby, and can let us identify the conditions for

which the flow absorbs more oil, in either vapor or liquid form. Nevertheless, the result

obtained does not reflect the oil already separated in the engine separator. This analysis

sets up the basis of comparison between the oil entrained in the crankcase and ring-pack,

which is discussed further in Section 3.4.2.

Figure 3-12 illustrates the result for oil loading at the standard thermal conditions and

high oil level. The results showed the dependence of the blowby oil content for different

loads and speeds. It was clear that the oil loading increases with engine speed, although

the increase with load was less abrupt. Even at 3000 rpm the trend was not that clear. As

described before, the amount in the blowby depends on the oil entrainment in the ring-

pack and crankcase, and on the oil separator performance. The higher component

temperatures are likely to increase evaporation, and the higher flow velocities increase

the oil film atomization. The higher gas flow driven in the crankcase and the fast moving

parts also may enhance the droplet breakup processes in the crankcase as stated in 3.3.1.

64



Nevertheless, oil loading varied from condition to condition depending on the dominating

driving mechanism. Its minimization would lead to much lower oil consumptions through

the PCV system.
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Figure 3-12 PCV blowby oil loading for different engine operating conditions

3.3.5 Blowby Oil Consumption Relative Contribution

In addition to the PCV blowby oil consumption measurements, the total engine oil

consumption was also measured from the exhaust. The exhaust sampling measures all the

type of oil transport modes that occur in the engine at the same time. This way, the

relative contribution of PCV blowby to total oil consumption can be obtained as shown in

Figure 3-13.

This map was obtained by the experimental measurements taken from the PCV line

with the direct diagnostic method. For the highest load conditions this figure was larger

with the differential method [1][4][8] (See section 3.1.1.). However, the relative

contribution obtained with the direct sampling method was comparable to other results in

literature [1][4][8][9] for other than the 100 % load.

The relative contribution varied with the speed and load since other oil transport

modes (evaporation, inertia, and reverse blowby) became more important at different
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operating thermal conditions, loads and speeds [1]. However, an increasing trend was

quite consistent for all the speeds when increasing the load from 25 to 50% and from 50

to 75%, mainly due to the higher blowby flow rates. Therefore, blowby oil consumption

contribution obtained from the experiments was around 2-7% at the investigated

conditions.
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Figure 3-13 PCV blowby Oil Consumption relative contribution map

3.4 PCV System blowby Oil sources

Most of the oil consumed in the spark ignition engines comes from the power

cylinder. The PCV blowby is one of the mechanisms for oil transport in the power

cylinder and contributes to oil consumption. The oil can be absorbed either by the

atomnization of few micrometers or through evaporation of the low boiling lubricant oil

species under the effect of high gas temperatures in the power cylinder. However, some

of the oil evaporated in the power cylinder can be condensed due to the relatively lower

temperature of the crankcase. Oil can also be entrained in the crankcase either by

atomization of the oil droplets stirred by the moving parts and entrained in the high

velocity gases, and through evaporation of the low boiling oil species under high gas

temperatures [1][2]. Thus there are two main sources of oil entrainment in the blowby
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gas flow: the power cylinder and the crankcase. As the automotive industry struggles to

reduce the contribution of the power cylinder in total and blowby oil consumption, it is

important to quantify the amount that comes from each source.

3.4.1 Oil Source Investigation Approach

The blowby gases that flow through the ring pack reach the crankcase and interact

with the oil in it. The moving engine parts and the high-speed gas temperature promote

oil entrainment. As the oil level in the crankcase is lower, it is believed that most of the

oil entrained from the sump can be isolated in the blowby flow that goes through the PCV

system.

The production engine needs to be run inside an upper and a lower oil level limit in

order to ensure safe lubrication conditions. The engine used a pressurized and oil splash

lubrication system and due to safety reasons it was decided to run between the limits

stated before. The engine was run at these two limits as well as in an intermediate one as

shown in Table 3-1, in order to quantify the power cylinder oil contribution. The

expectation was that the oil consumption from the PCV blowby would be reduced. Also,

it has to be noted that the experiments were run with the stock separator for the

production engine [4][7][14]. The separator removes most of the larger particles and that

are believed to come from the crankcase [8][14] (See Section 4.1). Therefore most of the

contribution from the sump was already minimize for this experimental engine.

Engine Oil Levels:

1

Hiqh Level [4.5 Li

.5 cm Mid Level [4.1 Li
Low Level [3.7 Li

Level Volume [1] Distance from Max Level [cm]

High 4.5 0

Medium 4.1 0.75

Low 3.7 1.5

Table 3-1 Sump oil level characteristics and oil stick schematic
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The engine was run for the same conditions as for the steady state oil consumption

map showed in Section 3.3.1 for comparison of the results. An issue to take into account

is that even though the engine oil sump is lowered, the engine lubrication needs to be the

same so that engine oil transport methods do not change. Since the engine blowby gas

flow through the ring-pack affects the oil distribution in the engine, which in turn also

affects the other oil consumption mechanism, LIF oil film thickness experiments were

carried to check the oil distribution in the piston land.

3.4.2 Oil Source Measurements

The engine was run for different oil levels and different engine conditions, to obtain

information about the trends of oil consumption with the oil level. Figure 3-14 shows the

oil consumption for 3500 rpm as a function of oil level and load. There was a strong

relationship between the engine oil level and the PCV blowby oil consumption. This

reduction is believed to come from the isolation of the oil entrainment in the engine

crankcase. The interaction between the crankshaft and the oil in the sump was believed

to minimize, as there was less splashing between the moving parts and the oil in the

sump. Therefore, the oil level was the limiting factor in the oil entrainment in the blowby

gas flow through the crankcase.

The effect of load in blowby oil consumption was reduced to the point, where the

increase in load did not increase the oil consumption. The increase of the load increased

the thermal loading in the liner, leading to higher oil evaporation. Moreover, the blowby

flow increased with the load, usually showing larger oil consumption due to enhanced

atomization such as in the high level operation. Nevertheless, there was a strong

correlation between the oil level and the PCV blowby consumption that leads one to

believe that a large portion of the oil comes from the sump. In addition, high velocity

gases created by the reciprocating movement of the engine part might not entrain as much

as oil as in the high level oil due to the lower amount of oil in the sump.
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Figure 3-14 PCV blowby consumption at 3500 rpm as a function of oil level and load

Modem automotive engine have oil separator in the PCV system that remove most of

the larger oil droplets. These oil droplets are believed to come from the oil crankcase.

Smaller droplets come from the power cylinder, where the high-speed gases that flow

between the small gaps in the rings and groove promote the atomization of the oil film.

Even though most of the impact from the crankcase is isolated with the separators,

experiments have shown that there is still a relatively important source of oil that comes

from the sump.

Figure 3-14 shows how the oil consumption at 3500 rpm and low oil level reached an

oil consumption limit of about 2 gg/cycle. This amount was believed to come from the

power cylinder, and seemed to remain constant with the increase load. For the lower oil

level, at the higher liner temperature, the blowby flow did not entrain much more oil

limiting the oil consumption. Oil was also condensed and separated from the flow in the

crankcase because of the relatively lower temperatures.

The percentage difference in oil consumption between the high oil level and low level

for all the investigated conditions ranged between 50-70%. This great reduction in

blowby oil consumption came from the lowering of the oil level in the crankcase. It

suggested that half or less than half of the oil consumption in the PCV system came from

the power cylinder in the spark ignition engine.
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The entrainment of oil from the crankcase was believed to increase with speed, as the

moving parts in the crankcase stirred the oil in the sump more violently. For the high oil

level operation this was true as shown in Figure 3-15 for the 100% load case, for which

the blowby oil consumption was greater. As the oil level was decreased, this phenomenon

tended to vanish, having almost no increase with speed. This time, the oil consumption is

presented in grams per hour basis, a standard more commonly used in industry. This

representation is an absolute representation of the speed and load effects on oil

consumption, and does not give information about the oil consumption every cycle as in

the other results. Nevertheless, the calculation to get the result in per cycle basis was

carried and a very similar trend to the one presented was found.
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Oil consumption again had been decreased due to the isolation of most of the oil

entrain in the engine crankcase. There was less oil stirring as the oil level decreases, thus

lowering the oil entrainment in the crankcase. The effect of increase liner temperature did

not have a great effect on the low-level oil case either, suggesting that the oil evaporation

limits the oil entrainment. Again, the increase in temperature did not entrain more oil to

the flow, since the blowby flow almost did not change with speed. These results
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suggested that a lot of the oil entrainment came from the interaction of the moving

components in the oil sump.

3.4.2.1 Ring-pack Oil Entrainment

The blowby gases that flow through the ring-pack influence the oil distribution in the

piston lands. As these blowby gases flow through the ring-pack, they entrain oil in the

liquid and vapor form by different driving forces: oil evaporation and oil atomization into

micron size particles by locally high-speed velocity gases. The engine operating

condition affects these driving forces, changing the oil entrainment into the blowby gas

flow. For high loads, as the engine thermal loading and the blowby flow increases, these

two oil entrainment mechanisms are enhanced. However, as shown in Figure 3-16, the oil

loading for 3500 rpm did not increase with load for the lower oil levels. This

phenomenon was true for all the speeds investigated. Assuming that most of the oil

entrained in the crankcase was minimized, it looks like the oil entrainment was limited by

the oil evaporation rate, which is a function of the distillation curve and not by the oil

mass transfer by the atomization of the oil film, since the blowby flow did not increase

the oil consumption.

On the contrary, the increase in speed did not either increase the oil loading for the

highest load cases, although the engine thermal loading was increased. Figure 3-17 shows

the oil entrainment for 100% and different speeds, and did not show an increase in oil

loading but for 4000 rpm. This high-speed engine extreme thermal condition had

evaporated an extra amount of oil. Thus, the oil entrainment in the blowby gas flow

through the ring pack was mostly limited by the evaporation rate of the oil, although it

also entrained oil through the atomization of the oil film as stated in Section 3.3.1.

It also has to be noted, that some of the oil that was evaporated in the power cylinder

could condensate while flowing through the crankcase due to the relatively lower

temperatures. More detail discussion follows in the next section.
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3.4.2.2 Crankcase Oil Entrainment

The blowby gases that have flown through the ring-pack and the high-speed gases

driven by the movement of the engine components in the crankcase also entrain a large

portion of the oil in the flow while they are in the sump. In the crankcase, moving engine

parts with significant velocities and the alternating motion of the piston may generate

high-local velocities. Here the splashing of the oil by the moving parts, the leak of oil

from the bearings and the spray cooling jet of the piston could entrain additional oil. The

spray jet cooling is employed to reduce the high piston temperatures and to supply

additional lubrication to the highly loaded major thrust side of the cylinder liner [1]. The

oil is being sprayed from a nozzle at the big end of the connecting rod towards the inner

side of the piston. Airborne oil in the crankcase from sources described above can reach

significant velocities relative to the moving engine parts. The interaction between the

airborne oil and the high-speed gases promote oil droplet breakup, forming smaller oil

droplets due to the augmentation surface tension. Furthermore, collision of the oil

particles with the engine moving components may also generate smaller size particles.

These smaller particles are likely to be entrained in the blowby flow, since the

aerodynamic drag force is larger relative to the inertia force of the particles.

Figure 3-16 shows that as the engine loading increased for 3500 rpm the oil

entrainment also augmented for the high oil level. The higher velocity blowby gases,

entrained more of the oil particles in the crankcase due to higher aerodynamic drag force

as discussed above. For this case, it also can be noticed that as the oil level was

minimized the interaction of the moving parts with the oil was minimized.

On the other hand, it is clearly shown in Figure 3-17 a strong correlation in the oil

loading with speed for the high oil level. As predicted in Ertan Yilmaz study, the increase

in speed increases the oil entrainment in the blowby flow that goes through the PCV

system [1]. The speed enhanced the oil droplet breakup and consequent entrainment in

the gas flow. This effect was minimized as the oil level is decreased, almost not having

an effect for the lowest possible oil level, where the oil and moving component

interaction was minimized. This was true for all the engine speed investigated. In
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addition, at high engine speed, surface waves in the oil sump could be generated in the

air-oil interface inducing additional oil entrainment, such as at 4000 rpm.
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3.4.3 Lubrication Condition in Interring Pack for Different Oil Levels

Although results have shown that an important fraction of the oil entrained in the

blowby flow comes from the crankcase, it also has to be checked that the different oil

levels do not affect the engine lubrication condition. Even though the oil level had

influenced the contribution of the crankcase in the blowby flow through the PCV, it did

not really affect the total oil consumption as shown in Figure 3-18. For the 100% load

case shown, the total oil consumption remained about the same for the different speeds

apart from normal run-to-run variability in the engine oil consumption and the small

difference in the blowby oil consumption. This means that the lubricating condition and

oil distribution in the ring pack are not greatly affected to the extent of the changes in the

blowby oil consumption by the oil level, not affecting the dominating oil transports

(inertia and evaporation) present in the power cylinder. The total oil consumption also did

not change much for the different load conditions at a constant speed either.

=L

0)

0

250

200

150 -

100 -

50

0 '

4000
3500

Speed [rpm]
3000

4.5

2500

4.1

Figure 3-18 Total oil consumption for 100% load as a function of
speed

oil level and engine

74

Oil Level [1]

...... ........ ........ ....... ........ ....... .........

------------- - -----



Nevertheless, the Laser Induced Fluorescence (LIF) measurements were also carried

as a check that the lubrication distribution in the liner was about the same. The oil supply

rates along the piston-ring-liner system to the top land are likely to remain unchanged for

all oil levels, which was also supported by the LIF measurements of the piston lands as

shown in Figure 3-19.
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Figure 3-19 Oil Film Thickness (OFT) distribution at different oil levels for 3500 rpm
and 75% Load

Average oil film thickness was also calculated to see the trends of oil film thickness

with the oil level in the crankcase. The average oil film on each piston land was

quantified by integrating the oil film thickness trace along each land, dividing this oil

volume by the corresponding land's length for each stroke, and averaging the obtained

value for the oil film on each land over all engine strokes.

Figure 3-20 and 3-21 shows the average oil film thickness for the top crown and

second lands for 2500 rpm. The results showed that the oil film thickness varies with

condition and oil level for both the top and second lands. Nevertheless, the difference was

small to the extent it affected the blowby oil consumption , not the total oil consumption

when changing the oil level not affecting the oil distribution and the consequent oil

entrainment much. One thing to note is that the oil film thickness for the load of 75 %

and oil levels of 3.7 and 4.1 liters showed quite different results. However, there can be
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seen how the lower oil film in the top crown has been removed to the second land. Thus,

they represent a similar lubrication condition. The difference comes from the time when

the data is acquired, which affects the results as stated in Section 2.3.2.1.
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Figure 3-20 Top crown land average oil film thickness for 2500 rpm
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CHAPTER 4: PCV System Blowby Lube Characteristics

The PCV blowby oil consumption contributes to the total oil consumption although

results have shown that is not one of the main contributors for most of the engine

operating conditions. In Chapter 3, the blowby oil transport has been described, and the

sources of oil in the flow gases have been identified. The PCV blowby flow is composed

of the blowby gases that flow through the ring-pack, which entrain oil by oil film

atomization in the ring gaps and oil evaporation under high gas and component

temperatures. Furthermore, these gases that flow through the power cylinder are mixed

with the high speed velocity gases induced by the alternating movement of the engine

components in the crankcase, which also entrain oil by particle atomization and some

local oil evaporation. As mentioned in the previous chapter, it is believed that most of the

larger particles are believed to come from the crankcase, while the smaller particles are

from the atomization of the oil by the high speed gas flows under the small clearances in

the ring gap.

The PCV blowby consumption is limited by the flow magnitude, the oil entrainment

in the flow and the separator performance. After characterizing the blowby flow and oil

entrainment, it is of great interest to understand the characteristics of the oil in the

blowby, in either vapor or liquid form. In this chapter, the effect of the liner temperature

in the oil evaporation and entrainment in the flow are studied by carrying some

experiments at different thermal conditions. In addition, by using the gravimetric method

(See Chapter 2.3.1.3.3) and different pore size filters, a study of the smallest size oil

particles mass distribution has been obtained. All of these oil characteristics in the

blowby will affect its consumption and contribute to the total engine oil consumption.

4.1 Blowby Oil Particle Size Distribution

Previous experimental studies have assessed the performance of different oil

separators for different engine operating conditions [4][5][6][7]. For these studies, not

only the separation efficiency curve of the separator was found, but also the particle size
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mass distribution for the oil particles was obtained. Figure 4-1 shows the typical average

separator efficiency curve for most of the modem automotive engines. The parameter R

is the cumulative droplets size mass distribution. It is obvious that the separation

efficiency for the fine particles (< 4 gm) is very inefficient. The larger droplets that are

separated do not make a large percentage of the oil mass present in the blowby. However,

the smaller particles that are present in the blowby in a greater frequency can add up to a

higher oil mass percentage, thus influencing the blowby oil consumption. Moreover, it

has to be noted that if the oil present in the flow is in vapor form, most of the widely used

separators will not separate it from the flow. Thus, it is important to study the impact of

oil evaporation, as the engine power and size are decreased leading to higher thermal

loading.
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Figure 4-1 Typical droplet size distribution and separation efficiency [5]

As briefly discussed in Chapter 3, the engine operating conditions, such as the speed

and load, affect the particle size atomization (shown in Figure 3-3) and thus influencing

blowby oil consumption. The speed and load conditions also affect the pressure variation

of the blowby gas flow, which yield the pressure drop available for separation. Normally,

to increase the separator efficiency, the pressure drop across the separator needs to be

increased. However, there is a limit of increasing the separator efficiency by increasing

the pressure drop. In order to prevent the blowby gases to be vented from the crankcase,

it is necessary to provide a pressure below atmospheric at the crankcase. Specially at the
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low speed range of the spark ignition engine, the pressure in the induction port will not be

sufficient to guarantee a pressure below ambient in the crankcase if the pressure loss is

very high [5].

4.1.1 Oil Separators

As the gases flow through the separator, oil droplets are removed from the main gas

flow and returned to the engine sump. There exist different separator types based on the

varying separation principles: diffusion separators, inertial separators and electric

separators [5][7]. The diffusion separator's principle relies on the aerosol hitting a layer

of fine fibers or wires and the liquid particles hitting the obstacles, thus leaving the gas

cleaned after the filter. The inertial separators rely on the skillful guidance of the flow in

the separator in order to remove the oil particles by making them impact with obstacles.

The electrical separators charge the particles or droplets by spray electrodes. Then the

ionized aerosol moves in the electrical field towards the precipitation electrode and

separated there.

The test engine for this study was equipped with an inertial baffle separator. A

schematic illustrating the principle of a baffle separator is shown in Figure 4-2 along with

different types of inertial separators. This separator type has prevailed in the automotive

industry, driven mainly by an acceptable separation efficiency of small droplets (< 10

gm) at a reasonable pressure drop. In addition, the limited space in modern engines,

combined with economic factors, contributed to the popularity of the baffle separator in

passenger car engine, Oil droplet Baffles

Streamline
Droplet trajectory

cyclon labyrinth wire

Figure 4-2 Illustration of several inertial separators [5]
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The separation principle is based on inertial movements of the disperse phase, relative

to the carrier gas streamline. The movement of small droplets (order of 10 pim) in a gas

stream is governed by inertia forces and aerodynamic drag. When the exerted

aerodynamic drag on the droplet is not able to overcome the inertial forces, the droplets

divert from the flow streamline and impact on the baffles. Subsequently, the separated

oil drains off from drainage holes to the oil sump. However, not all particles can be

efficiently separated from the carrier gas; droplet sizes smaller than a certain diameter

may follow the gas flow. This is because inertia forces are proportional to the droplet

diameter to the cube (and the droplet velocity), and aerodynamic drag to the droplet

diameter (for Reynolds numbers smaller than 0.5). As a result, with decreasing droplet

size, the aerodynamic drag becomes significantly greater than droplet inertia and causes

the droplet to follow the gas flow. Therefore, it can be assumed that the probability for

droplets to divert from the streamline and impact on a baffle plate increases with their

diameter and their velocity.

Therefore, oil separators play a critical role in the blowby oil consumption since their

performance influences the percentage contribution to total oil consumption. However,

this study did not go to see the effects of different separator types, and the engine was run

with the stock baffle separator.

4.1.2 Particle Size Mass Distribution Measurements

The test engine was run at two different speeds (2500 rpm and 3500 rpm) and

different loads, in order to see the impact of the operating conditions in the oil particle

size mass distribution. The gravimetric analysis of the PCV blowby flow with different

pore size filters shows the mass distribution of oil particles in that range. The pore sizes

used are of 0.3 and 0.5 jim and depending on the running conditions there should be a

percentage difference between the oil collected by these filters. Previous studies have

shown that the 0.3 jim pore size collect more than 95% of the oil mass in the blowby flow

[5][6]. Most of the actual oil separators do not have the capability to filter the small

particles, which can contribute to the blowby oil consumption.
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Figure 4-3 shows the results for the oil consumption measured by the gravimetric

analysis for 3500 rpm at standard thermal conditions (Tcooiant=81.5±1.5 0C). For the

smaller pore size filter, the oil consumption increased as the load is increased. Previous

studies have showed how the engine load increases the concentration of the smallest

particles in the blowby flow [1]. Meanwhile for the larger pore size filter, it did not really

change that much. The load increased the mass percentage of the oil particles between the

two rated sizes. The larger magnitude of blowby that flows through the ring gaps and

groove seemed to increase the atomization of the oil film into this micron scale oil

particles. These small oil particles are believed to come from the power cylinder since

the gas passages are much smaller than in the crankcase. In addition the test engine has a

spray jet to cool the piston and supply additional lubrication for the highly loaded thrust

side. This jet sprays oil with a nozzle, combined with the higher speed flow might entrain

more of the smaller particles into the blowby.
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Figure 4-3 Oil consumption for the two different pore size paper filters

Results in Figure 4-4 show the percentage oil mass of particles between 0.3 and 0.5

gm over the oil mass collected with the smallest pore size, which was calculated by
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taking the difference of the oil collected with the two different filters. The speed affected

the creation of high gas velocities in the crankcase and enhanced the droplet breakup into
small droplets due to the more violent interaction of the engine parts with the oil in the

sump. This phenomenon, as the speed was increased, augmented the concentration of the

smaller size oil particles. The increase in flow pulsations might also affected the

separation efficiency, as the small particle pass by the separator. Furthermore, the faster

movement of the reciprocating parts also enhanced the entrainment from the oil jet nozzle

and oil in the sump. Thus, the figure correlates to the oil consumption increase in the

PCV blowby consumption map shown in Section 3.3.1 and explains the increase in the

oil consumption. Nevertheless, it also has to be taken into account the thermal loading

effect in the oil consumption map, since at higher speeds the oil evaporation is enhanced.

However, the oil in evaporated form was not collected in the gravimetric method and thus

has no impact in these results. In summary, the increase in the PCV blowby consumption

came due to the increase of the atomization of smaller size particles and the increase in

the evaporated oil. However, as seen in Section 3.4.2 the oil evaporation did not seem to

increase for the lower oil level, meaning that its impact should not increase severely.
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Figure 4-4 Percent oil mass of total PCV blowby oil for different engine operating
conditions
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There was a strong correlation between engine speed and oil entrainment in the PCV

blowby gases, which also was seen in Figure 4-4. The results showed that the mass

percentage of the particles in the range between 0.3 and 0.5 ptm increased as the engine

speed was increased. The concentration of the small particles (<0.5 gim) was enhanced

due to the droplet breakup enhancement by the higher blowby flows and more violent

interaction with the engine moving parts. This in turn increased the total PCV blowby oil

consumption. These oil particles entrained in the gas flow, go through the separators. The

particles that are larger were separated because the exerted aerodynamic drag force did

not overcome the inertial forces, thus impacting the baffles [2]. Therefore, as the gas

speeds were larger and the droplet sizes were smaller, particle passed by the separators

and contributed to the PCV blowby oil consumption. For current oil separators, the

efficiency is almost zero for the small particles (<4gm). Therefore, as the automotive

engine speeds are increased and the droplet breakup into smaller particles is enhanced,

the PCV consumption can increase.

Moreover, increasing engine speed might also affect the oil separator's efficiency.

Oil separator efficiency and pressure drop both depend on gas flow characteristic and the

size and velocity of the entrained droplets. Increasing engine speed has little impact on

the average gas flow rate (per unit time), but it increases the frequency of flow pulsations.

The impact of speed on blowby pulsation amplitude and on separator efficiency,

however, is unknown. The understanding of the impact of engine speed on the separation

efficiency requires detailed analysis of gas flow through the separator, which is beyond

the scope of this work.

4.2 Effect of Cylinder Liner Temperature

In addition to the particle size effect on the separation efficiency and consequently in

the total engine oil consumption, the oil in vapor form can contribute significantly in the

oil consumption. In order to study the evaporation effect, the test engine was run at

different coolant outlet temperatures, which affect the liner thermal conditions. The liner

temperature increase enhances the evaporation. However, the increase in the temperatures

also modifies the oil transport modes, increasing the engine total oil consumption
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drastically as shown in previous studies [1][2]. Nevertheless, the scope of this study was

to investigate the lube properties in the PCV blowby oil transport and does not look into

the total engine consumption. It also must be recognized that viscosity affects the flow of

the oil to the upper regions of the piston-ring-liner system and therefore affects oil

consumption. The HTHS (High Temperature High Shear) viscosity is believed to

influence ring and piston liner lubrication, and thus govern the oil transport on the liner.

All these properties for the oil are shown in Table 2-2. Since the change in temperature

influences the oil viscosity (See Appendix C), then the change in liner temperature will

therefore have effects on oil transport. However, even though some of the oil transports

to the different regions are changed, the limiting factor in the blowby oil consumption is

believed to be the oil evaporation.

4.2.1 Different Cylinder Liner Temperature Measurements

The increased temperature in the cylinder liner influences the evaporation of the oil.

Total oil consumption previous results showed how the oil evaporation dominates as the

liner temperature was increased [1][2]. Figure 4-5 shows the total oil consumption for

3500 rpm and two oils with different volatilities from previous study of Ertan Yilmaz in

the Sloan Automotive Lab. In addition, the increase in liner temperature can have a great

impact in oil viscosity and in components thermal expansion, and possibly affecting the

blowby flow and oil entrainment greatly.
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Figure 4-5 Total engine oil consumption for different liner temperatures

Figure 4-6 show the trend on PCV blowby oil consumption as the coolant outlet

temperature was increased for 2500 rpm. For all the loads but 100% case, the oil

consumption increased by a factor of around two. This was mainly due to the increase in

oil evaporation, although for the 100% case the engine lower oil viscosity and the thermal

expansion, which affected the blowby greatly, reduced the oil entrainment and

consumption.
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Figure 4-6 Temperature effect on oil consumption for 2500 rpm
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4.2.1.1 Liner Temperature Effect on Blowby Flow

There was almost no increase in oil consumption for the highest load. Therefore, by

taking the measurements of the blowby flow we can get the information to explain this.

The increase in temperature lead to the thermal expansion of the piston and rings,

consequently decreasing in the blowby flow by about 2 1/min for 2500 rpm as shown in

Figure 4-7. Although the larger decrease in flow happened to the 100% case, it occurred

to all of the loads in some manner. This decrease limits the effect of increase in

evaporation that lead to higher oil loading in the flow. The thermal expansion of the

various components in the power cylinder restricted and influenced the flow paths

through the ring gaps and grooves. Therefore, for the highest load, this flow restriction

could limit its oil consumption, inhibiting the oil consumption increase.
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Figure 4-7 Temperature effect on blowby flow for 2500 rpm

4.2.1.2 Liner Temperature Effect on the Oil Concentration

The oil (vapor and liquid) concentration in the blowby increased due to the higher

evaporation for high liner temperatures. On the other hand, the higher flow at lower

temperatures was believed to promote the oil film atomization into few micrometers

86



particles. Therefore, the oil loading varied with the engine operating condition due to the

oil transport mechanism change. Figure 4-8 shows the oil mass concentration for 100 %

and 75 % load cases for 2500 rpm. The oil concentration was greater for the 75% case at

the highest liner temperature. The change in the evaporation rate of the light end species

of oil was more important at this operating condition while the flow was not reduced as

dramatically as in the 100 % load case. In addition, the change in oil viscosity changed

the oil film thickness distribution, thus affecting the oil entrainment in the flow. The

lower oil viscosity promoted the oil consumption via mechanical throw off to the

combustion chamber. Therefore, even if the blowby flow magnitude was greater for the

higher load, there was not an increase in the atomization of oil particles due to the

variation in the oil film distribution.

Consequently, the oil entrainment driving mechanisms varied for different operating

conditions as shown in Figure 4-8. However, for the higher liner temperatures, the

increase in evaporation and component thermal expansion controlled the oil entrainment

mechanism and consumption. Although higher liner temperatures increased the oil

evaporation, they also affected the oil viscosity, which influenced the mechanical oil

transport. In addition, the component thermal expansion affected and modified the

blowby flow through the ring-pack influencing the oil entrainment mechanism. Since oil

consumption through the PCV system depends in the blowby flow and oil entrainment,

the trend varied from condition to condition with increasing liner temperature depending

which was the controlling factor, the evaporation or flow characteristics.
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4.2.2 Liner Temperature Effect on the Oil Evaporation

For the production engine, higher speeds have higher liner temperature for any load.

Evaporation seemed to be more dominant for the higher speeds, and as shown in Figure

4-9 for the 3500 rpm case, the oil consumption for all the loads at the lower coolant

temperature was much higher than compare to the 2500 rpm (See Figure 4-6). Moreover,

the oil consumption tended to converge to aproximately 0.55 g/h for both speeds.

However, the change in the oil consumption with temperature was more saddle for the

3500 rpm case. The very high liner temperature did not evaporate a large portion of the

next light end species in the distillation curve. As it happened in the lower speed, the

restriction of the blowby flow also controlled the blowby oil consumption, one because

the blowby flow was reduced and second because the oil loading stayed almost

unchanged. In addition, the higher temperatures at this speed reduced the oil viscosity,

which governs different oil transport methods to the top regions and affects the oil

entrainment by atomization into the blowby gases [2].
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The change in liner temperature had a great effect on the PCV blowby oil

consumption at the low loads for both the high and low speed conditions. For high load

conditions, which have hotter thermal conditions, the increase in liner temperature did not

bring higher blowby oil consumption. For these cases, even though the liner temperature

was increased, the blowby flow was modified and restricted and the high temperatures

did not evaporate the next light end oil species of the distillation curve. The other effect

on increasing the liner temperatures was the decrease in the oil's viscosity.

Since the PCV blowby consumption is both a function of oil loading and blowby

flow, the decrease in the flow can limit the absolute oil consumption. Figure 4-10 shows

the increase in oil consumption from the colder coolant outlet operating condition to the

hotter coolant condition. The effect of increase liner temperature was more appreciated at

the lower loads and speeds. This was due to the non-linear behavior of the distillation of

oil with temperature and the flow restriction with the increasing liner temperatures. In

general, the dependence of oil vapor pressure on temperature is described by an

exponential relationship [2]. The reducing effects in the blowby flow magnitude and

89

-*- 100%
-m-75%
-A - 50%

- - 25%
.A-

..------ -

A--



change in oil transport due to the lower oil viscosity explain the decrease in oil

consumption for the highest load condition, where the liner temperatures are much

higher.
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CHAPTER 5: Conclusions

For this work, the Positive Crankcase Ventilation (PCV) blowby contribution to oil

consumption in a production spark ignition engine was analyzed and quantified for

different engine operating conditions. The study also examined the oil entrainment

sources and lubricant characteristics in the blowby flow that affect the separation

efficiency of separators and the PCV blowby consumption.

On a two liter, four-cylinder production spark ignition engine, a diagnostic system

was implemented to measure engine total and blowby oil consumption and in-cylinder

parameters that affect the oil transport mechanisms. A sulfur-based oil consumption

method was used to measure real-time blowby and total oil consumption along with a

gravimetric method in order to check these results. A blowby flow meter was used to

measure total blowby flow out of the engine in the PCV system. Several measurement

probes were implemented to gain information on the in-cylinder parameters. The Laser

Induced Fluorescence (LIF) technique was used to study the oil distribution in the piston-

ring-pack. Two pressure transducers were positioned along the cylinder liner to measure

inter-ring land pressures. An additional pressure transducer mounted on the cylinder

head provided cylinder pressure traces. Two temperature probes along the cylinder liner

provided liner temperatures.

Blowby oil consumption along with total oil consumption, blowby flow and in-

cylinder parameters were measured in order to quantify and describe the PCV blowby oil

transport mechanism. Steady state measurements were taken at different operating

conditions in order to see the effect on the blowby oil consumption. Both the PCV

blowby oil consumption and blowby flow (in volume per cycle units) magnitude

increased with load and speed. The total oil consumption measurements also showed the

same trend as the PCV blowby oil consumption. Nevertheless, the PCV blowby

contribution to the total oil consumption varies from condition to condition, having a

maximum contribution of around 7% for the results measured directly from the PCV line.

The gravimetric method showed similar results as the direct method results. However, the

blowby percent contribution to the total engine oil consumption was calculated to be

higher for the difference method's highest loads. This difference happened because the
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engine was run at two different operating conditions: with the PCV line connected and

disconnected. The downstream vacuum was lower when the PCV line was connected.

This vacuum pressure modified the position of a valve placed along the line, and which

was used to match the blowby flow produced with what it flowed out of the engine. At

the highest load condition, the difference in the PCV valve operation was the greatest,

thus affecting the blowby oil consumption results, and augmenting the percent

contribution result.

The blowby oil entrainment sources were investigated by running the engine at

different oil levels in the crankcase. The blowby oil sources are believed to be the power

cylinder and the crankcase. The oil entrainment in the crankcase comes from the

splashing of the oil with the engine moving parts and the light oil species that evaporated

under the high temperatures. Running the engine at the lowest level possible under safe

operating conditions minimized the contribution from the crankcase oil entrainment.

Results show that between 40-70% of the oil consumption was reduced from the PCV

blowby when the engine was at the lowest level. Results also show that the contribution

from the power cylinder reaches a limit, even if the thermal conditions or the blowby

increase with load or speed. This oil consumption bound seemed to be limited by the oil

evaporation rate rather the increase in blowby flow that enhanced the oil atomization, as

shown by the trend in oil consumption versus the load for all the speeds run. In-cylinder

parameters, such as inter-ring pressure traces and oil film thickness were measured and

showed that the lubricating conditions did not change with the investigated operating

conditions tested.

Oil characteristics in the blowby flow were also investigated. The size distribution of

oil droplets were estimated using different pore size filters. The proportion of oil droplets

in the range from 0.3- 0.5 gm (small droplets) increased as the engine speed was

increased. This increase was believed to come from the oil droplet enhancement due to

the higher speed engine components that splashed the oil in the sump. The load increase

also augmented the percentage oil mass between the two particle sizes. This raise comes

with the increase in oil entrainment of small particles due to the higher blowby flows that

boost the oil droplet breakup from the oil film in the power cylinder.
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The engine was run at different liner temperatures, by controlling the coolant outlet

temperature. The blowby oil consumption increased for the lowest loads with the increase

in the liner temperature. This increase came from the increase in oil evaporation. The oil

evaporation was limited by the increase in components temperatures. However, for the

100% case the blowby oil consumption did not increase with temperature, and even

decreased at the highest speed investigated (3500 rpm). The oil properties such as the

viscosity and engine component thermal expansion were also affected by the increase in

the engine thermal conditions. The lower viscosity and the increase in the component

thermal expansion, which reduced the blowby flow by about 10%, affects the oil

transport mechanism and the entrainment in the blowby flow. Thus increase in the

evaporation, without the great effect in the change in oil properties and thermal

expansion, could greatly influence the blowby oil consumption. Nevertheless, the

increase in liner temperature modified the rest of oil transport mechanisms, in most of the

cases reducing the percent contribution of the PCV blowby consumption.

This study is an important advancement in understanding the blowby oil transport

mechanism. It has described and characterized the oil entrainment sources and some of

the oil characteristics that affect the blowby oil consumption for the test engine equipped

with a standard baffle separator. This study has made a great contribution to developing

new engine cylinder ring-pack designs and providing guidelines to developing new

analytical tools for new engine developments.
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Nomenclature

P.C.V.

O.C.

O.F.T.

L.I.F.

O.C.R.

T.C.

D.A.S.

PTFE

F.L.

M hiowbyOC

Qhlowhy

P hlowhy

P th

howby

R

Vs,hlowhy

M

m oc, Pcv

m OC'Vv/o1tPCV

M inertia

m e, t

Positive Crankcase Ventilation

Oil Consumption

Oil Film Thickness

Laser Induced Fluorescence

Oil Control Ring

Thermocouple

Data Acquisition System

Polytetrafluoroethylene

Focal Length

Lambda, ratio of acutal air to fuel ratio to stoichiometric air to fuel ratio

PCV blowby oil consumption in g/h

PCV blowby flow in 1/h

Blowby gases density in g/l

Atmospheric pressure

Blowby temperature

Universal gas constant (Section 2.3.1.5)

Dry Sulfur concentration in blowby in wt. %

Sulfur and blowby molecular weight ratio

Sulfur concentration in oil in wt. %

Total oil consumption with PCV line connected to the engine intake

Total oil consumption with PCV line disconnected to the atmosphere

Oil mass consumption by mechanical throw-off

Oil mass consumption by evaporation
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M blowhy Oil mass consumption by blowby transport

mcollected Mass collected for gravimetric analysis

t
sample Sampling time

T.D.C Top Dead Center

AOC Change in oil consumption

r.p.m. Revolution per minute

C.A. Crank Angle

T Temperature

R Cumulative droplets size mass distribution (for Section 4.1)

77F Separator efficiency

96



References

[1] Yilmaz, Ertan: "Sources and Characteristics if Oil Consumption in a Spark
Ignition Engine", PhD Thesis, Department of Mechanical Engineering, MIT,
September, 2003

[2] Yilmaz, E., Tian T., Wong V. W., Heywood, J. B.: "An Experimental and
Theoretical Study of the Contribution of Oil Evaporation to Oil Consumption",
SAE paper 2002-01-2684, 2002

[3] Yilmaz, E., Thirouard, B., Tian, T., Wong, V. W., Heywood, J. B., and Lee, N.:
"Analysis of Oil Consumption Behavior During Ramp Transients in a Production
Spark Ignition Engine", SAE paper 2001-01-3544, 2001

[4] Froelund, K.: "Real-Time Steady State Measurement of PCV-Contribution to Oil
Consumption on Ford 4.6 L SI -Engine", SAE paper 2000-01-2876, 2000

[5] Koch F., Haubner F. G., Orlowsky K.: "Lubrication and Ventilation System of
Modern Engines - Measurement, Calculations and Analysis" SAE paper 2002-01 -
1315, 2002

[6] Bischof 0. F., Tuomenoja H.: "The Measurement of Blow-by Gas Particles"
MTZ 7-8, 2003

[7] Harmut L., Trautmunn P.: "Measurement and Separation of Oil Mist Aerosol
from the Crankcase Exhaust of Internal Combustion Engines", MTZ 6-12,2000

[8] Froelund, K.: " Real-Time Steady State Oil Consumption Measurement on
Commercial SI-Engine", SAE paper 1999-01-3461, 1999

[9] Hill S. H., Sytsma S. S.: "A System Approach to Oil Consumption" SAE paper
910743, 1991

[10] Krause W., Spies K. H., Bell L. E., Ebert F.: "Oil Separation in Crankcase
Ventilation - New Concepts Through System Analysis Through System Analysis
and Measurements" SAE paper 950939, 1995

[11] Koch F., Hardt T., Haubner F. G.: "Oil Aeration in Combustion Engines -
Analysis and Optimization", SAE paper 2001-01-1074, 2001

[12] Tamai, Goro; "Experimental Study of Engine Oil Film Thickness Dependence on
Liner Location, Oil Properties and Operating Conditions", MS Thesis,
Department of Mechanical Engineering, MIT, August, 1995

[13] Heywood, J.B., Internal Combustion Engine Fundamentals, McGraw, 1988

97



[14] Pulkrabek, W.W., Engineering Fundamentals of the Internal Combustion Engine,
Prenitence Hall, 1997

[15] Ranganathan, G., Mohanram, P.V., "Tribological Studies for the Design Input
Parameters on Small Displacement - 4 Stroke Petrol Engines - A View from
Engine Oil Conservation", SAE paper 2002-02-1728, 2002

[16] Shayler P.J., Winborn L.D., Scarisbrick A.: "Fuel Transport to the Crankcase, Oil
Dilution and HC Return with Breather Flow During the Cold Operation of a SI
Engine", SAE paper 2000-01-1235, 2000

[17] Antek, Antek R6000 SE Sulfur Analyzer, Antek Industrial Instruments L.P.

[18] Ebner H. W., Jaschek A. 0.: "The Importance of Blow-By Measurements,
Measuring Equipment Required and Implementation", SAE paper 981081, 1998

[19] Toyota, Emission Sub Systems- Positive Crankcase Ventilation System, Toyota
Motor Sales, U.S.A.

[20] Thirouard, Benoist: "Characterization and Modeling of the Fundamental Aspects
of Oil transport in the Piston-Ring Pack of Internal Combustion Engines," Ph.D.
Thesis, Department of Mechanical Engineering, MIT, May 2001.

[21] Thirouard, B., Tian, T., and Hart, D. P.: "Investigation of Oil Transport
Mechanisms in the Piston Ring Pack of a Single Cylinder Diesel Engine, Using
Two Dimensional Laser Induced Fluorescence", SAE paper 982658, 1998.

[22] Conze, M., "Fired and Non-Fired Engine: A Comparative Study of Crankcase
Emission on Dynamometer Test Rigs", AutoTechnology 6/2001, 2001

[23] Crane M.E., Ariga S., Boulard R., Lindamood B.: "A Non-Intrusive Method of
Measuring PCV Blowby Constituents", SAE paper 941947, 1994

[24] Tian T., Noordzij B., Wong V. W., Heywood J. B.: "Modeling Piston-Ring
Dynamics, Blowby, and Ring-Twist Effects", ASME paper ICE-Vol. 27-2, 1996

[25] De Petris, C., Giglio, V., Police, G.:"Some Insights on Mechanisms of Oil
Consumption", SAE paper 961216, 1996

[26] Thirouard, B., Tiant, T. "Oil Transport in the Piston Ring Pack (Part 1):
Identification and Characterization of the Main Oil Transport Routes and
Mechanism", SAE paper 2003-01-1952, 2003

[27] Thirouard, B., Tiant, T. "Oil Transport in the Piston Ring Pack (Part 2):
Identification and Characterization of the Main Oil Transport Routes and
Mechanism", SAE paper 2003-01-1952, 2003

98



[28] Froelund, K. Schramm, J., Noordzij, B. Tian, T., Wong,V.W. :"An Investigation
of the Cylinder Wall Oil Film Development During Warm-Up of an SI-Engine
Using Laser Induced Fluorescence", SAE paper 971699, 1997

[29] Ellermann, J., Rohrle, M.D., Schelling, H. "Oil Consumption and Blowby of
Truck Diesel Engines - Test Bench Results", SAE paper 810937, 1981

[30] Furuhama, S., Hiruma, M., Yoshida, H., "An Increase of Engine Oil Consumption
at High Temperature of Piston and Cylinder", SAE paper 810976, 1981

[31] Bailey, B. K., and Ariga, S.: "On-Line Diesel Engine Oil Consumption
Measurement", SAE paper 902113, 1990.

[32] Noordzji, B. L.: "Measurement and Analysis of Piston Inter-Ring pressure and Oil
Film Thickness and their Effects on Engine Oil Consumption", MS Thesis,
Department of Mechanical Engineering, MIT, June 1996

99



(This page was intentionally left blank)

100



Appendix

Appendix A: Sample of Results Acquired and Calculations

ZOMU IlUU 4.0MI U.646 Z'I .ZU0 'I t).V0?J U.Zt)U U.z IU6/Z.U4 'I U'I.U-I '4 .

2500 75 2.752 0.205 18.194 14.555 0.188 0.18982.16 98.45 120.30
2500 50 1.925779 0.143 15.211 12.168 0.157 0.15881.31 95.66 112.95
2500 25 1.211 0.090 11.266 9.012 0.133 0.13479.94 92.53 104.47
3000 100 6.677 0.600 24.316 16.210 0.411 0.411 83.28 103.17 134.22
3000 75 4.944 0.445 21.368 14.245 0.347 0.347 82.63 101.28 125.48
3000 50 3.645 0.328 15.887 10.591 0.345 0.344 81.37 97.83 117.38
3000 25 2.728 0.246 10.933 7.289 0.375 0.374 81.05 94.91 108.87
3500 100 7.392 0.778 23.269 13.296 0.557 0.556 83.48 104.79 136.33
3500 75 5.979 0.628 19.304 11.031 0.542 0.542 83.13 103.28 129.43
3500 50 4.458 0.469 15.503 9.030 0.494 0.493 82.55 99.52 120.24
3500 25 2.663 0.280 10.175 5.814 0.459 0.458 81.82 96.26 111.34
4000 100 6.935 0.421 24.165 12.082 0.582 0.573 84.29 106.70 137.88
4000 75 6.322 0.844 21.718 10.859 0.585 0.582 84.14 105.72 132.42
4000 50 1.798 0.763 16.412 8.206 0.220 0.219 83.72 103.20 125.01
4000 25 1.218 0.146 11.376 5.688 0.21 0.214 83.05 99.738 116.52

Table A-1. Direct method data for the high level case

Speed Load Blowby OC BlowbyBlowbyBlowby Oil Oil TcooI Tdown TuI

[rpml [%] [Vg/cycleI OC [1/mIn] [cm/ey Concentration Concentration
[g/h] cle] [mg/ ] [g/cm]

2500 1003.299 0.245 23.864 19.0910.171 0.173 82.94 101.01 128.27
2500 752.734 0.204 18.647 14.9180.182 0.183 82.16 98.45 120.30
2500 501.779 0.132 15.176 12.1410.145 0.147 81.31 95.66 112.95
3500 1001.085 0.457 22.816 13.0380.120 0.121 79.94 92.53 104.47
3500 752.827 0.407 18.098 10.3420.184 0.185 81.40 102.44 133.31
3500 502.568 0.233 13.581 7.761P.200 0.201 81.46 101.11 125.24
4000 1001.792 0.481 23.521 11.7600.185 0.186 80.85 98.23 118.18
4000 751.231 0.407 19.356 9.6780.169 0.169 79.89 95.78 109.44
4000 502.474 0.301 14.350 7.1750.174 0.175 81.02 106.33 138.00

Table A-2. Direct method data for the medium level case
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Speed Load Blowby OC lowby Bowby Blowby il Oil Teoo T1own Tup

[rpm] [%] [gg/cycle] *C [lfmin] [cm3 lcy oncentration Concentration

[g/h] cle] mg/] 1[g/cma]
2500 100 3.299 .245 23.864 19.091 .171 0.173 82.94 101.01 128.27

2500 75 2.734 .204 18.647 14.918 .182 0.183 82.16 98.45 120.30
2500 50 1.779 .132 15.176 12.141 .145 0.147 81.31 95.66 112.95
2500 25 1.085 .081 11.200 8.960 .120 0.121 79.94 92.53 104.47

3000 100 2.827 0.252 22.880 15.253 .184 0.185 81.40 102.44 133.31
3000 75 2.568 .229 19.130 12.753 .200 0.201 81.46 101.11 125.24

3000 50 1.792 1.160 14.429 9.619 .185 0.186 80.85 98.23 118.18

3000 25 1.231 0.110 10.896 7.264 .169 0.169 79.89 95.78 109.44

3500 100 2.474 0.258 24.764 14.151 .174 0.175 81.02 106.33 138.00
3500 75 2.442 .255 18.785 10.734 .226 0.228 80.71 104.65 130.26
3500 50 2.433 0.254 14.817 8.467 .286 0.287 80.25 101.23 122.37
3500 25 1.395 .146 9.616 5.495 .253 0.254 79.71 97.27 113.21
4000 100 3.552 0.421 26.609 13.305 .264 0.267 81.62 109.63 140.02

4000 75 2.390 0.285 20.721 10.360 0.229 0.231 81.20 107.30 133.41

4000 50 2.372 0.283 14.950 7.475 0.315 0.317 83.13 103.92 125.93
000 25 1.438 0.171 11.130 5.565 0.255 0.258 81.91 99.30 116.32

Table A-3. Direct method data for the low level case
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Figure A-I Sample of sulfur concentration output for DAS with the difference method for
100% and 3500 rpm
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Figure A-2 Sample of sulfur concentration output for DAS with the direct method for
100% and 3500 rpm

ztuurpm 1 uuYo 0it.O dbio z.! 4 U.4015 U./.J zI.D U.100

2500rpm 75% 88.8 91.8 29.4 6 0.503 0.253 18.13 0.288
2500rpm 50% 89.6 91.5 29.3 6 0.323 0.154 14.61 0.129
2500rpm 25% 88.1 89.5 29.2 6 0.248 0.114 9.38 0.062
3000rpm 100% 89.3 92.1 37.9 5 0.560 0.268 21.69 0.349
3000rpm 75% 90.0 93.9 38.1 7 0.557 0.267 20.44 0.327
3000rpm 50% 91.0 94.9 38.2 9 0.433 0.207 15.50 0.193
3000rpm 25% 91.8 95.1 37.8 9 0.367 0.175 9.55 0.101
3500rpm 100% 90.7 94.2 38.6 5 0.700 0.335 25.87 0.436
3500 rpm 75% 91.9 96.5 38.8 7 0.657 0.314 19.39 0.348
3500 rpm 50% 91.9 96.7 38.9 9 0.533 0.255 15.03 0.243
3500 rpm 25% 92.9 96.9 38.6 9 0.444 0.213 9.12 0.153
4000 rpm 100% 90.8 96.0 39.0 5 1.040 0.498 27.17 0.811
4000 rpm 75% 91.8 99.7 39.1 7 1.129 0.540 21.71 0.704
4000 rpm 50% 89.9 98.3 39.1 9 0.933 0.447 15.24 0.408
4000 rpm 25% 90.1 97.2 39.2 9 0.789 0.377 9.51 0.215

Table A-4. Gravimetric method data for the low level case
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2500rpm 75% 87.6 92.9 18.3 6.000 0.700 0.335 18.462 0.371
2500rpm 50% 89.3 91.9 18.2 6.083 0.427 0.204 13.000 0.160
3500rpm 100% 87.9 90 20.5 5.000 0.420 0.201 22.003 0.265
3500rpm 75% 89.3 93.5 20.1 7.000 0.600 0.287 17.441 0.300
3500rpm 50% 90.3 93.6 19.6 9.000 0.367 0.175 11.802 0.124
4000rpm 100% 89.7 92.1 24.1 5.000 0.480 0.230 22.522 0.310
4000rpm 75% 88.3 92.5 24.5 7.000 0.600 0.287 18.757 0.323
4000rpm 50% 88.8 91.5 21.8 9.000 0.300 0.144 12.141 0.105

Table A-5. Gravimetric method data for the medium level case

Running Mass Mass TbIWbV Sample Mass Oil Blow OC
condition Filter Filter Time Flow Concent by [g/h]

Befo After [min] [mg/min] ration [l/min]
re [mg] [mg/]
[mg]

2500rpm 100% 87.6 89.5 29.3 4 0.483 0.231 21.57 0.299
2500rpm 75% 88.8 91.8 29.4 6 0.503 0.241 18.13 0.262
2500rpm 50% 89.6 91.5 29.3 6 0.323 0.155 14.61 0.136
2500rpm 25% 88.1 89.5 29.2 6 0.248 0.119 9.38 0.067
3000rpm 100% 89.7 91.7 29.6 5 0.414 0.198 22.16 0.263
3000rpm 75% 88.1 91.0 29.9 7 0.419 0.200 18.50 0.222
3000rpm 50% 89 92.3 30.1 9 0.368 0.176 14.57 0.154
3000rpm 25% 87.6 90.0 30 9 0.277 0.132 9.86 0.078
3500rpm 100% 89.7 92.0 29.6 5 0.462 0.221 22.79 0.302
3500 rpm 75% 88.2 91.1 29.7 7 0.416 0.199 19.07 0.228
3500 rpm 50% 88.9 92.3 29.9 9 0.388 0.186 13.70 0.153
3500 rpm 25% 88.7 90.8 29.9 9 0.348 0.166 8.08 0.081
4000 rpm 100% 90 93.5 30.4 5 0.704 0.337 24.05 0.486
4000 rpm 75% 89.3 93.8 30.8 7 0.797 0.381 19.11 0.437
4000 rpm 50% 88.4 93.9 31.1 9 0.613 0.293 14.27 0.251
4000 rpm 25% 90.5 94.7 31.2 9 0.471 0.225 9.08 0.123

Table A-6. Gravimetric method data for the low level case

Total oil consumption formula:

An oil consumption formula is derived using the measured sulfur dioxide concentration

in the exhaust, the airflow rate, the air/fuel ratio, and the mass fractions of sulfur in the oil

and fuel. In this section, the basic assumption and essential relations of the oil

consumption formula will be described:
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The consumed sulfur mass from the oil can be calculated from mass conservation,

SOil S,Wet Exhaust S,Fuel - S,Air (1)

where r SOil i, S,Fuel SWet Exhaust 5i SAir are mass flow rates of the sulfur in oil, fuel, wet

exhaust gas, and air respectively. The sulfur content of air is negligible (in the order of

10 ppb), therefore

(1)thS,Air = 0

With

inSO1  =M lo * S,Oil

MS,Fuel = mFuel * S,Fuel

(2)

(3)

(4)SWet Exhaust = MWet Exhaust * S,Wet Exhaust

where S,Oil, IS,Fuel I S,Wet Exhaust are the mass fractions of sulfur in oil, fuel, and exhaust

respectively. Substituting equations (2), (3), (4), (5) into (1):

M 1 Wet Exhaust

iSoi

From mass conversation and

M Air - L - St

Fuel

4S,Wet Exhaust -m Fuel * S, Fuel I (5)

(6)

where L is the air/fuel ratio, and LSt is the stoichiometric air/fuel ratio, it follows that

Wet Exhaust Air Fuel Oil A ir + LSt
(7)

The mass fraction of sulfur in the exhaust can be written as
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S,Wet Exhaust = WS,Wet Exhaust * (8)
M Wet Exhaust

Where MWet Exhaust is the molecular weight of wet exhaust, Ms is the molecular weight of

sulfur (32g/mol), and WS,Wet Exhaust is the molar fraction of sulfur in wet exhaust. With

VfSo 2 ,Wet Exhaust " YIS,Wet Exhaust (9)

where VS0 2 ,Wet Exhaust is the molar fraction of sulfur dioxide in wet exhaust. The molar

fraction of sulfur dioxide in the wet exhaust may be written as

S02,Wet Exhaust = VSo2,Diy Exhaust * H2O (10)
nWet Exhaust

where VfS2,Dry Exhaust is the molar fraction of sulfur dioxide in dry exhaust, and n H20 and

n Wet Exhaust are the moles of water and wet exhaust respectively. Substituting (8), (9),

(10), (.11) into (6) results in the final form of the oil consumption formula:

1'z 1 M h[+ ~ ]r HO ) li
Aroil S * VfS2,Dty SS 2 S,Fuel1 1

*SOi L St Wet Exhaust Wet Exhaust
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2500 100 8.299 1.245 22.971 18.377 0.903
2500 75 2.001 0.300 18.894 15.115 0.265
2500 50 0.835 0.125 15.078 12.062 0.138
2500 25 46.981 3.504 9.827 7.861 5.943
3000 100 17.910 1.616 22.461 14.974 1.199
3000 75 4.071 0.394 16.594 11.063 0.396
3000 50 1.963 0.185 13.442 8.961 0.230
3000 25 1.825 0.179 8.777 5.851 0.340

3500 100 16.503 1.741 21.249 12.142 1.366
3500 75 11.943 1.272 18.591 10.623 1.140

3500 50 4.209 0.448 14.117 8.067 0.529
3500 25 0.000 0.000 8.030 4.588 0.000
4000 100 11.985 1.495 22.086 11.043 1.128
4000 75 6.235 0.710 19.490 9.745 0.607
4000 50 0.454 0.049 15.449 7.725 0.053
4000 25 6.531 0.774 9.005 4.503 1.432

Table A-7. Difference method data for high level

Blowby Blowby
Speed Load OC OC Blowby Blowby Oil

(rpM) % (g/cycle) (g/h) (1/mm) (cm3Icycle) Concentration

2500 100 5.588 0.413 22.498 17.998 0.306
2500 75 -0.513 -0.046 16.121 12.897 -0.048
2500 50 0.518 0.037 13.312 10.649 0.046
3500 100 8.260 0.855 21.897 12.512 0.650
3500 75 2.555 0.274 16.487 9.421 0.277
3500 50 0.694 0.027 11.977 6.844 0.038
4000 100 4.077 0.515 22.668 11.334 0.379
4000 75 4.730 0.578 17.592 8.796 0.548

4000 50 0.322 0.023 12.283 6.141 0.032

Table A-8. Difference method data for medium level
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2500 100 14.831 1.126 22.661 18.129 0.828
2500 75 0.000 0.000 18.285 14.628 0.000
2500 50 5.068 0.383 13.035 10.428 0.490
2500 25 4.016 0.293 6.779 5.423 0.719
3000 100 10.867 0.963 23.693 15.795 0.678
3000 75 0.000 0.000 16.865 11.243 0.000
3000 50 7.203 0.643 12.461 8.307 0.860
3000 25 3.796 0.344 8.646 5.764 0.664
3500 100 13.886 1.437 20.927 11.958 1.145
3500 75 4.691 0.490 18.013 10.293 0.453
3500 50 1.822 0.178 13.449 7.685 0.221
3500 25 5.332 0.556 8.305 4.745 1.116
4000 100 5.141 0.591 28.522 14.261 0.345
4000 75 7.832 0.965 20.179 10.089 0.797
4000 50 7.796 0.926 14.686 7.343 1.051
4000 25 13.306 1.588 9.259 4.629 2.858

Table A-9. Difference method data for low level
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Appendix B: Common Reference Numbers

Converting jig/cycle to g/h:

" at 2500 rpm => 1 jig/cycle = 0.075 g/h
" at 3000 rpm => 1 jig/cycle = 0.090 g/h
" at 3500 rpm => 1 Ig/cycle = 0.105 g/h
" at 4000 rpm:=>1 g/cycle = 0.120 g/h

Typical Numbers with the SI 4-cylinder 2.01 L engine:

" Total Oil Consumption

o Full Load and 2500 rpm => 10 g/h
o Low Load and 2500 rpm -> 4 g/h
o Full Load and 4000 rpm -> 30 g/h
o Low Load and 4000 rpm -> 17 g/h

* Blowby Oil Consumption

o Full Load and 2500 rpm => 0.4 g/h (direct) & 1 g/h (differential)
o Low Load and 2500 rpm => 0.15 g/h & 0 g/h (differential)
o Full Load and 4000 rpm -> 1 g/h & 1.7 g/h (differential)
o Low Load and 4000 rpm => 0.3 g/h & 0.7 g/h (differential)

Blowby flow magnitude, and restriction study:

" Engine operating conditions & blowby flow (0.24 mm Top ring gap)
o Full Load and 2500 rpm => 969 mbar & 5.4 1/min per cylinder
o Low Load and 2500 rpm = 402 mbar & 2.2 1/min per cylinder
o Full Load and 4000 rpm => 940 mbar & 6 1/min per cylinder
o Low Load and 4000 rpm => 420 mbar & 2 1/min per cylinder

* Engine operating conditions & blowby flow (0.48 mm Top ring gap)
o Full Load and 2500 rpm = 960 mbar & 7.1 1/min per cylinder
o Low Load and 2500 rpm => 408 mbar & 3.0 1/min per cylinder
o Half Load and 4000 rpm => 680 mbar & 6.6 1/min per cylinder

* Note: Day to day variation on the intake pressure is less than 1%, and the torque was
controlled to be the same every run.
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Appendix C: Experimental Configurations

A. Difference method B.
App

To Antek or
PCV line gravimetric

Engine intake

4= Standard Operation

5-25 I/mi approx. C
Blowby

Ap
rf hEA~t ny =To Antek or A

Engine Intake gravimetric

PCV disconnected

rox S1/min 5-25 1/min approx.

Blowby

Engine Intake

PCV connected Intake

prox 51/min

PCV line

Engine

Figure C-I Different operating configuration used in the different diagnostics methods.
Configuration A is for the differential method, while the configuration B & C are used for

both the direct and gravimetric methods

Idle, Deceleration (Intake manifold vacuum
high) - Low blowby production

Acceleration, High Load - High blowby
production (excess flow through breather

hose)

-Va CULM oasfmgeoarqe

PCV Valve~ open

Vac u m Passage fag

PCV valve opert

Low Load - Moderate blowby production

Engine off, backfire

Figure C-2 PCV valve conditions for different loads
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Baseline Oil
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Figure C-3 Baseline oil distillation curve
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Appendix D: Other Significant Blowby Results and Plots
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Figure D-1 Percent blowby OC contribution to total OC with the difference method at
high oil level
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Figure D-2 Blowby OC for different lower liner temperatures for 3500 rpm and different
loads
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Figure D-3 Total OC for different loads for 2500 rpm and different oil levels
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