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A Very Large-Scale Neighborhood Search Algorithm 
for 

the Combined Through and Fleet Assignment Model 
 
 

Ravindra K. Ahuja1, Jon Goodstein2, Amit Mukherjee3, James B. Orlin4, and Dushyant Sharma5 
 
 

Abstract 
 

The fleet assignment model (FAM) for an airline assigns fleet types to the set of flight legs that satisfies a 
variety of constraints and minimizes the cost of the assignment. A through connection at a station is a 
connection between an arrival flight and a departure flight at the station, both of which have the same 
fleet type assigned to them that ensures that the same plane flies both legs. Typically, passengers are 
willing to pay a premium for through connections. The through assignment model (TAM) identifies a set 
of profitable throughs between arrival and departure flights flown by the same fleet type at each station to 
maximize the through benefits. The through assignment model is usually solved after obtaining the 
solution from a fleet assignment model. In this current sequential approach, the through assignment model 
cannot change the fleeting in order to get a better through assignment, and the fleet assignment model 
does not take into account the through benefits. The goal of the combined through and fleet assignment 
model (ctFAM) is to come up with a fleeting and through assignment that achieves the maximum 
combined benefit of the integrated model. We give a mixed integer programming formulation of ctFAM 
that is too large to be solved to optimality or near-optimality within allowable time for the data obtained 
by a major US airline. We thus focus on neighborhood search algorithms for solving ctFAM, in which we 
start with the solution obtained by the previous sequential approach (that is, solving FAM first and 
followed by TAM) and improve it successively. Our approach is based on generalizing the swap-based 
neighborhood search approach of Talluri [1996] for FAM which proceeds by swapping the fleet 
assignment of two flight paths flown by two different plane types that originate and terminate at the same 
stations and the same times. An important feature of our approach is that the size of the neighborhood 
defined by us is very large; hence the suggested algorithm falls in the category of Very Large-Scale 
Neighborhood (VLSN) Search Algorithms. Another important feature of our approach is that we use 
integer programming to identify improved neighbors. We provide computational results which indicate 
that the neighborhood search approach for ctFAM provides substantial savings over the sequential 
approach of solving FAM and TAM. 
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1. INTRODUCTION 

The airline industry has been a pioneer in using IE/OR techniques to solve complex business 
problems related to the schedule planning of the airline. Given a flight schedule, an airline’s schedule 
planning group needs to decide the itinerary of each aircraft and each crewmember so that the total 
revenue minus the total operating costs is maximum and all the operational constraints are satisfied. The 
quality of the schedule is also measured in terms of other attributes such as schedule reliability during 
operations. The entire planning problem is too large to be solved to optimality as a single optimization 
problem using present day technology. Hence, it is typically divided into four stages (see, for example, 
Barnhart and Talluri [1997] and Gopalan and Talluri [1998]): (i) fleet assignment; (ii) through 
assignment; (iii) maintenance routing; and (iv) crew scheduling. These problems are solved sequentially 
where the optimal solution of one problem becomes the input for the following problem. There has been 
significant effort spent in modeling and solving these individual problems using advanced optimization 
models. The economies of scale at a large airline like United Airlines are such that a relatively minor 
improvement in contribution results in considerable improvement in the bottom line. As a result, airlines 
have benefited immensely from the advances in modeling these problems.  

The next frontier in the optimization of schedule planning is in solving an integrated optimization 
problem that will consider the entire planning problem mentioned above and include other downstream 
issues that affect the overall schedule quality. Basically, the planning problem is a multi-criteria 
optimization problem, i.e., there are many objectives that have different metrics, different priorities and 
different constraints. A sequential approach to solve such problems has a major drawback in that the 
solution at each stage does not take into account the considerations of subsequent stages. This results in 
overall suboptimal solutions. For example, if a fleet assignment is performed without considerations of 
optimizing crew scheduling, it becomes an arbitrary input for the crew scheduling process. On the other 
hand, if the fleet assignment incorporates crew issues, then it is likely to provide a better starting point to 
the crew scheduling optimization, resulting in overall economic benefits for the airline. 

The airlines are making a lot of effort to develop models to solve such integrated optimization 
problems for schedule planning. The objective is to break down the functional silos that exist in order to 
manage the complexity of the planning process by using advances in optimization technology and 
computing power. At United Airlines, there are two distinct strategies being pursued. The first strategy is 
to develop explicit joint optimization models with combined objective functions, combined set of 
constraints and combined data. Typically, these joint models are too large to be solved to optimality or 
near-optimality, suggesting that heuristics may be needed. Moreover, some downstream criteria cannot be 
represented easily in a form consistent with explicitly modeling the problem. For example, airline 
reliability is an important criteria in schedule planning that is related to the schedule structure, but it is 
very hard to model it in terms of a typical optimization problem. The second strategy exploits the nature 
of the planning problem. Instead of one optimal solution, there are typically many solutions that are close 
to the optimal in terms of contribution. However, these solutions can have very distinct characteristics on 
other criteria such as crew required, potential for through flights, schedule reliability, ground manpower 
requirements, etc. This implies that intelligent search techniques, when coupled with advanced 



 3

optimization modeling, hold a lot of promise in solving multi-criteria schedule planning problems. As a 
result, United Airlines initiated collaboration with MIT and University of Florida to explore solution 
techniques that exploited the nature of the overall schedule planning problem. The strategy was to build 
upon the foundation that already existed for modeling the individual stages and develop a robust and 
generic methodology that could be easily scaled up for other downstream criteria.  

In this paper, we propose an integrated approach that first solves the separate models to 
optimality in a stage-wise fashion followed by solving the integrated model heuristically using 
neighborhood search techniques. This approach guarantees that the solution obtained by our approach is 
no worse than the solution obtained by the current sequential approach and in practice is better. 

In this paper, we focus on integrating two of the airline scheduling models, the Fleet Assignment 
Model (FAM) and the Through Assignment Model (TAM), into a single model that we call the Combined 
Through Fleet Assignment Model (ctFAM). We next briefly describe these three models. 

Fleet Assignment Model (FAM): In FAM, planes of different fleet type are assigned to flight legs to 
minimize the assignment cost and subject to the following three types of constraints: (i) covering 
constraints: each flight leg must be assigned exactly one plane; (ii) flow balance constraints: for each 
fleet type, the number of planes landing at a city must be equal to the number of planes taking off from 
the city; and (iii) fleet size constraint: for each fleet type, the number of planes used must not exceed the 
number of planes available. Abara [1989] and Hane et al. [1995] give an MIP formulation for FAM. 
Subsequently, Clarke et al. [1996] and Subramanium et al. [1994] provide extensions to incorporate 
additional operational constraints related to maintenance and crew scheduling. 

Through Assignment Model (TAM): A through connection is a connection between an inbound flight 
leg and an outbound flight leg at a station which ensures that the same plane flies both legs. Both flights 
legs in a through connection get the same flight number in the airline’s flight schedule. Since a through 
connection allows passengers to remain onboard instead of changing gates at busy airports, passengers are 
willing to pay a premium for such connections; this premium is termed as the through benefit. TAM takes 
as an input a list of candidate pairs of flight legs that can make through connections with corresponding 
through benefits, and identifies a set of most profitable through connections. Observe that we can make 
through connections only between flights flown by the same fleet type; hence the fleet assignment limits 
the possible through connections. In the current implementations, TAM takes as an input the fleet 
assignment, identifies inbound and outbound flights at each city flown by the same fleet type, and 
determines through connections (that must be a subset of the candidate pairs) to maximize the through 
benefit. This problem can be solved as a bipartite matching problem. However, in practice the solution 
must satisfy some additional constraints, which yields a constrained bipartite assignment problem that can 
be solved using MIP techniques. We refer the reader to the papers by Bard and Hopperstad [1987], 
Barnhart et al. [1998], Gopalan and Talluri [1998], and Jarrah and Reeb [1997] for additional details on 
the TAM. 

The Combined Through Fleet Assignment Model (ctFAM): The through assignment depends on the 
fleet assignment in that a through connection requires that both its flight legs have the same fleet type. In 
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the current systems, FAM does not take into account the through benefits, and may yield fleet 
assignments with limited through assignment possibilities. TAM cannot change the fleeting in order to get 
a better through assignment. In our model, ctFAM solves the integrated model and simultaneously 
determines fleet assignments and through connections. The integrated model offers opportunities to 
obtain better solutions compared to the current sequential approach. We first developed an integer 
programming formulation of ctFAM, which was too large to be solved to optimality or near-optimality 
for a major US airline. We then pursued the approach outlined in Figure 1. In our approach, we first solve 
FAM to obtain an optimal (or nearly optimal) fleet assignment. For this fleeting, we then solve TAM to 
determine optimal (or nearly optimal) through connections. We then solve ctFAM heuristically using the 
neighborhood search algorithm with the optimal FAM and TAM solutions as the starting solution for the 
neighborhood search. 

Neighborhood search algorithms are widely regarded as an important tool to solve difficult 
combinatorial optimization problems effectively. In recent years, the fields of operations research, 
mathematical programming, and computer science have all witnessed a strong interest in the development 
and analysis of neighborhood search based approaches. The primary reasons for the widespread 
application of neighborhood search techniques in practice are their intuitive appeal, flexibility and ease of 
implementation, and their excellent empirical results (see, for example, Aarts and Lenstra [1997], and 
Glover and Laguna [1997]). We decided to pursue neighborhood search algorithms for ctFAM for the 
following reasons: 

(i) Neighborhood search algorithms have been very successful in solving a variety of large-scale 
combinatorial optimization problems. 

(ii) Neighborhood search algorithms permit us to start with the excellent solution obtained by solving 
FAM first followed by solving TAM. This guarantees that the neighborhood search algorithm 
obtains a solution that is at least as good as that obtained by FAM followed by TAM, and possibly 
better. 

(iii) Neighborhood search algorithms are typically quite efficient and scalable. Often, we can solve 
problems with only a linear increase (or a small polynomial increase) in the computation time. 

(iv) Neighborhood search algorithms are often flexible enough to incorporate other constraints that are 
difficult to model through linear constraints. 

We now present a brief overview of our neighborhood search algorithm for ctFAM. An issue of 
critical importance in a neighborhood search algorithm is the manner in which we define the 
neighborhood of a solution. As per Talluri [1996], we define neighbors of a given solution by performing 
“A-B swaps” for two specified fleet types A and B. An A-B swap consists of changing fleet types of 
some legs from A to B and of some legs from B to A so that all constraints remain satisfied. A profitable 
A-B swap decreases the total cost of the solution, which in our case includes the costs of throughs. 
Identifying a profitable A-B swap is not a trivial problem because the number of possible A-B swaps is 
exponentially large. Hence the neighborhood search algorithm using A-B swaps falls within the category 
of Very Large-Scale Neighborhood (VLSN) Search Algorithms, a topic studied by Thompson and Orlin 
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[1989], Thompson and Psaraftis [1993], and Ahuja et al. [2001a, 2001b]. The paper by Ahuja et al. [2002] 
presents a survey of very large-scale neighborhood search algorithms. 

Our approach consists of determining the starting solution by first solving FAM followed by 
TAM. This solution is successively improved by our neighborhood search algorithm. In each iteration, the 
neighborhood search algorithm selects any two fleet types, which we label as A and B, and performs a 
profitable "A-B swap". An A-B swap consists of changing some legs flown by fleet type A to fleet type B, 
changing some legs flown by fleet type A to fleet type A, and changing some through connections 
appropriately. The number of A-B swaps can be very large and difficult to enumerate explicitly. We 
describe a method using A-B Improvement Graphs which allows us to obtain profitable A-B swaps 
quickly in practice. The A-B improvement graph is constructed in a manner that each negative cost 
directed cycle in the graph satisfying some constraints defines a profitable A-B swap. 

The neighborhood search algorithms constructs the A-B improvement graph and solves an integer 
programming problem to identify a negative cost constrained directed cycle. This cycle yields a new fleet 
and through assignment with a lower cost. We repeat this process for every pair of fleet types A and B, 
and terminate when for every such pair of fleet types, we do not find improved neighbors. We developed 
and implemented both a local improvement algorithm (where we always perform cost-decreasing 
iterations) and a tabu search algorithm (where we sometimes allow cost-increasing iterations too). Our 
local improvement algorithm obtains a local optimal solution for ctFAM in 5-6 seconds, whereas we ran 
the tabu search algorithm for 20-25 minutes on our data sets, which are of realistic size data. The 
solutions obtained by our algorithms resulted in savings of $5 million to $25 million on an annual basis 
on the data provided by United Airlines. These results suggest that neighborhood search is a useful 
supplement to the techniques already developed in airline operations research. 

One of our major contributions in this paper is to generalize Talluri's [1996] concept of A-B 
improvement graph so that it incorporates through constraints. Our approach, when specialized to FAM, 
provides a neighborhood that contains the neighborhood due to Talluri and is much larger. Moreover, 
Talluri’s neighborhood made the following assumption concerning arrival and departure “banks”: any 
plane arriving at the bank would have sufficient time to be assigned to any of the departures at the bank. 
This assumption is overly restrictive in practice. Our neighborhood structure does not make this 
assumption.  Indeed, it does not even depend upon the existence of arrival and departure banks.    

This paper is organized as follows. In Section 2, we present an integer programming formulation 
for ctFAM. Sections 3 develops our neighborhood search algorithms for ctFAM. We describe some 
implementation details in Section 4. We give our computational results in Section 5. Section 6 gives 
conclusions of our research and avenues of future research. 

2. AN INTEGER PROGRAMMING FORMULATION OF CTFAM 

In this section, we present an integer linear (IP) formulation of ctFAM. We formulate this 
problem as a flow problem on a network, which we call the connection network. We first present input 
data for ctFAM, followed by the description of the connection network, followed by the IP formulation. 
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Input Data: 

We have the following input data for ctFAM: 

L : The set of all flight legs which need to be assigned planes. We use the index i to represent a particular 
leg. 

F : The set of all fleet types. We use the index f to represent a particular fleet type. 

T : The set of all candidate through connections. Each through connection is specified by a pair (i, j) of 
flights. 

size(f) : The number of planes of fleet type f available for assignment. 

dep-time(i) : The departure time for flight leg i. 

arr-time(i) : The arrival time for flight leg i. We denote by arr-time(i) as the time when flight i actually 
arrives plus the turn time (the time need to prepare the plane to be assigned to the next flight*). Thus, 
the plane released from the flight i can be assigned to any flight j with dep-time(j) ≥ arr-time(i) at the 
same city. 

dep-city(i) : The departure city for flight leg i. 

arr-city(i) : The arrival city for flight leg i. 

 f
ic : The cost incurred in assigning fleet type f to flight leg i. 

f
ijd : The cost incurred in connecting flight leg i with the flight leg j provided arr-city(i) = dep-city(j) and 

both the legs are flown by the fleet type f. Observe that f
ijd < 0 for (i, j) ∈ T, and 0 otherwise. 

count-time : A time instant on the 24-hour time scale when no plane leaves or arrives, that is, count-time ≠ 
arr-time(i) or dep-time(i) for any i ∈ L. We will assume here that count-time is midnight. 

Connection Network: 

We now explain how to construct the connection network, which will be the basis of our integer 
programming formulation as well as our neighborhood search algorithm for ctFAM. We denote the 
connection network as G = (N, E) where N denotes the node set and E denotes the arc set. The node set N 
= {i : i ∈ L} is obtained by defining a node for each flight leg i ∈ L, and the arc set E = {(i, j): arr-city(i) 
= dep-city(j)} consists of all possible connections between inbound and outbound flight legs. Obviously, a 

                                                      

* In practice, the turn time also depends upon the fleet type but for the simplicity of notation, we assume it to be 
independent of the fleet type. 
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connection between flight legs i and j is possible only if the arrival city of leg i is the same as the 
departure city of leg j. We give an example of connection network in Figure 2. 

A connection arc (i, j) is said to be a through connection arc if (i, j) ∈ T and a regular connection 
arc otherwise. We will use the following additional notation related to the connection network: 

I(i) = {(j, i) ∈ E: j ∈ N}, 

O(i) = {(i, j) ∈ E: j ∈ N}, 

S = {(i, j) ∈ E: arr-time(i) < count-time < arr-time(j)} ∪ {(i, j) ∈ E: dep-time(i) < count-time < arr-
time(i)}, where the inequalities are based on the circular 24-hour time. 

The set I(i) denotes the set of incoming arcs at node i in the connection network, the set O(i) 
denotes the set of outgoing arcs, and S denotes the set of arcs in the connection network that cross the 
count-time, which we assume to be midnight. We call the arcs in S as overnighting arcs; it contains the set 
of connection arcs that cross the count-time and also those connection arcs whose arrival flights are in the 
air at count-time. 

Decision Variables: 

We define two sets of decision variables in our integer programming formulation. The first set of 
decision variables ( f

iy ) specify the fleet assignment and the second set of decision variables ( f
ijx ) specify 

the (regular or through) connection assignment. 

f
iy : This variable takes value 1 if the flight leg i is assigned fleet type f, and 0 otherwise. 

f
ijx : This variable takes value 1 if both the flight legs i and j are flown by the fleet type f and we 

make a (regular or through) connection between the flight legs i and j, and 0 otherwise. 

Integer Programming Formulation: 

We give below the integer programming formulation of ctFAM. 

Minimize 
( , )

f f f f
i i ij ij

i N f F i j E f F
c y d x

∈ ∈ ∈ ∈
+∑ ∑ ∑ ∑           (1a) 

         subject to 

1,f
i

f F
y

∈
=∑             for all i ∈ N         (1b) 

( , ) ( )
,f f

ij i
i j O i

x y
∈

=∑   for all i ∈ N and all f ∈ F       (1c) 
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( , ) ( )
,f f

ij j
i j I j

x y
∈

=∑             for all j ∈ N and all f ∈ F           (1d) 

( , )
( ),f

ij
i j S

x size f
∈

≤∑   for all f ∈ F         (1e) 

f
ijx ∈ {0, 1},          for all (i, j) ∈ E and for all f ∈ F       (1f) 

f
iy ∈ {0, 1},          for all i ∈ N and for all f ∈ F       (1g) 

We represent a feasible solution of ctFAM as (x, y). The first and second terms in the objective 
function (1a) represent the contributions resulting from the fleet assignment and through assignment, 
respectively. The constraint (1b) ensures that each flight leg is assigned exactly one fleet type. The 
constraints (1c) and (1d) together with (1b) imply that each flight leg is assigned to another flight leg 
using a connection arc, and the two flight legs and the connection arc are assigned the same fleet type. 
The constraint (1e) ensures that the total number of planes of fleet type f in the assignment, which is the 
sum of the flows on arcs in S, is no more than the available planes given by size(f). Observe that to 
compute the number of planes of a particular fleet type k used in a fleet schedule, we sum the flow of 
planes of that fleet type on the overnighting arcs.   

In practice, the solution of ctFAM must also satisfy several additional constraints. These 
constraints incorporate aspects of maintenance routing and crew scheduling. To simplify the exposition, 
we defer the detailed description of these constraints to Appendix I. In Section 4, we explain how our 
algorithm needs to be modified to account for these constraints. 

Though ctFAM can be formulated as an integer programming problem, this problem is too large 
to be solved to optimality or near-optimality (using the current LP technology) for the national network of 
a large US airline. In the data supplied by United Airlines, there were 1,609 flight legs and 13 fleet types. 
The resulting IP formulation had approximately 100,000 integer variables and 18,000 constraints. We 
could not solve problems of this magnitude using the commercial IP solvers. We then focused on 
neighborhood search algorithms to solve ctFAM. Additional reasons for considering neighborhood search 
algorithms have earlier been described in Section 1. We describe our neighborhood search algorithm in 
the next section. 

3. NEIGHBORHOOD SEARCH ALGORITHMS FOR CTFAM 

 For any feasible solution (x, y) of ctFAM, we will define a set N(x, y) of neighboring solutions. 

Our neighborhood search algorithm works as follows: 
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algorithm neighborhood search; 
begin 
 obtain an initial feasible solution (x, y) of ctFAM; 
 while there is a neighbor (x′, y′) ∈ N(x, y) with c(x′, y′) < c(x, y) do 
           begin 

replace (x, y) by (x′, y′); 
 end; 
 output (x, y), which is a locally optimal solution; 
end; 
 
Figure 2. A neighborhood search algorithm for ctFAM. 

Though the neighborhood search algorithm stated above always replaces (x, y) by an improved 
neighbor (x′, y′), there exist variants which do occasionally replace (x, y) by worse neighbors too. These 
variants include simulated annealing and tabu search algorithms. (We note that simulated annealing is 
impractical when the neighborhoods are exponentially large.)  We have also investigated tabu search 
algorithms for ctFAM.  

There are three primary steps involved in designing a neighborhood search algorithm for ctFAM: 
(i) creating an initial feasible solution (x, y); (ii) defining the neighborhood N(x, y) with respect to the 

solution (x, y); and (iii) searching the neighborhood N(x, y) to identify an improved solution. We shall 

now discuss these steps in greater detail. 

Creating an Initial Feasible Solution: 

A feasible solution for ctFAM consists of a feasible fleet assignment and a feasible set of 
connections. We first obtain a feasible fleet assignment by solving the fleet assignment model (FAM). 
The solution of the FAM gives us a fleet assignment assigning a plane type to each flight leg. We next use 
the through assignment model (TAM) to generate a set of connections. We solve the through assignment 
problem at each city for each fleet type and optimally match the inbound flight legs with the outbound 
flight legs flown by the same fleet type. We solve these bipartite matching problems to generate a set of 
connections. The solution thus obtained is the starting solution for our neighborhood search algorithm. 

A-B Solution Graph: 

The A-B solution graph, SAB(x, y), is a subgraph of the connection network G = (N, E) and is 
defined with respect to a given fleeting and connection solution (x, y) and a pair of fleet types A and B. Its 
node set, N(SAB(x, y)), and arc set, E(SAB(x, y)), are defined as follows: 

N(SAB(x, y)) = {i ∈ N: A
iy = 1 or B

iy = 1},  

E(SAB(x, y)) = {(i, j) ∈ E: A
ijx = 1 or B

ijx = 1}. 

In other words, the A-B solution graph SAB(x, y) is the subgraph of G whose node set comprises of 
the flight legs that are assigned fleet types A and B in the solution (x, y), and the arc set comprises of the 
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connections between those flight legs. We shall refer to a node in the A-B solution graph as an A-node if 
A
iy = 1 and B-node if B

iy = 1. We shall refer to an arc in the A-B solution graph as an A-arc if A
ijx = 1 and 

B-arc if B
ijx = 1. 

A-B Swaps: 

Our neighborhood search structure uses the concept of A-B swaps to define neighboring solutions. 
We first define an A-B swap in a very general manner, one that permits a much larger neighborhood than 
we subsequently search. Given a feasible solution (x, y) of ctFAM, and a pair of fleet types A and B, we 
say that (x', y') is an A-B neighbor of (x, y) if it is a feasible solution that differs only in the assignment of 
A-flights and B-flights. The operation of obtaining an A-B neighbor is called an A-B swap. Figure 3(a) 
shows a part of the solution graph SAB(x, y) and Figure 3(b) shows the same part after the A-B swap has 
been performed. In the figure, we show A-nodes and A-arcs using regular lines, and B-nodes and B-arcs 
using dashed lines. Observe that the A-B swap changes the fleet type of nodes 4 and 10 from A to B and 
changes the fleet type of nodes 3 and 6 from B to A. Changing the fleet types of these nodes requires 
changing the connections too because we can connect nodes with the same fleet type only. The A-B swap 
must also ensure that the connections can be feasibly made, that is, for each connection arc (i, j), the 
arrival time of flight i is less than the departure time of flight j. 

Recall that while defining A-B swaps we require that we do not violate fleet size constraints for 
fleet types A and B.  Figure 4(a) shows a part of the A-B swap where the number of planes of a particular 
type used can increase. Suppose that flights 1 and 3 are flown by fleet type A and flights 2 and 4 are 
flown by fleet type B. Assume that flights 1 and 2 arrive at times 2 PM and 4 PM, respectively, and the 
flights 3 and 4 depart at 5 PM and 3 PM, respectively. Since flight 1 connects to flight 3 which leaves 
three hours later, the arc (1, 3) is not an overnighting arc. However, flight 2 arrives at 4 PM and connects 
to flight 4, which departs at 3 PM.  Thus the arc (2, 4) is an overnighting arc. If we change the fleet types 
of flights 1 and 3 from A to B, and of flights 2 and 4 from B to A, as shown in Figure 4(b), then we 
increase the number of planes used for type A by one and decrease the number of planes used for type B 
by one. Our neighborhood search algorithm does not allow such swaps if it leads to infeasibilities. Note 
that if we change the fleet type of flight 1 from A to B, fleet type of flight 2 from B to A, and swap their 
connections, as shown in Figure 4(c), then both the new connection arcs (1, 4) and (2, 3) are not overnight 
arcs. This swap will reduce the number of plane used for type B by one. Our neighborhood search 
algorithm allows such swaps.   

The example shown in Figure 4 illustrates a very simple A-B swap; on the other hand, there can 
exist far more complex A-B swaps, that affect many more flights and connections. In principle, we could 
identify an improving A-B neighbor of (x, y) by solving a restricted integer program.  We decided that 
this was computationally too intensive, and adopted a more efficient approach.  We search a subset of A-B 
neighbors of (x, y) using network optimization. We next define the concept of A-B improvement graph, 
which allows us to efficiently identify profitable A-B swaps over a structured subset of the A-B 
neighborhood. 
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A-B Improvement Graph: 

Before we discuss the creation of our improvement graph, we note that the A-B solution graph 
satisfies the following cycle-based property: The solution graph as restricted to the A nodes is a union of 
node-disjoint cycles, and the solution graph is also the union of node-disjoint cycles. Equivalently, each A 
node i has exactly one outgoing arc and exactly one incoming arc, and both these arcs have A-nodes as 
the other endpoint. In our swaps, we will be changing some A-nodes to B nodes and vice-versa. We will 
construct our A-B network in such a way that an improving cycle leads to a new solution with the above 
cycle-based property. 

Let us first illustrate the simplest type of swap before moving to the more complex swaps 
permitted below. Consider two directed paths P and P' in the A-B solution graph both starting at the same 
time t and the same location L, and both ending at the same time t' and the same location L', and such that 
P consists of A-flights and P' consists of B-flights. We can swap P and P', making all the flights of P into 
B-flights and making all of the flights of P' into A flights. To identify such path pairs, we could look for 
all paths of A-flights and all paths of B-flights starting at time t at location L and ending at time t' at 
location L'. Talluri [1996] recognized that we could find these paths in a simpler manner by reversing the 
direction of all B arcs, and then looking for a directed cycle. By doing so, one also identifies many other 
cycles, but each of the cycles (if midnight arcs are excluded from the cycles) corresponds to a valid A-B 
swap. In our approach, we also reverse the arcs incident to B nodes.   

An A-B improvement graph, GAB(x, y), is constructed for a given fleeting and through solution (x, 
y) and a pair of fleet types A and B. Each arc (i, j) in the A-B improvement graph has an associated cost cij. 
The A-B improvement graph satisfied the property that each directed cycle in it satisfying some 
constraints, called the validity constraints, corresponds to an A-B swap with respect to the solution (x, y), 
and the cost of the directed cycle equals the change in the fleeting and through costs. Consequently, a 
negative cost directed cycle satisfying the validity constraints gives a profitable A-B swap. We will 
subsequently refer to a directed cycle in GAB(x, y) satisfying validity constraints as a valid cycle. 

The node set of the A-B improvement graph is identical to that of the A-B solution graph. Hence it 
consists of A-nodes and B-nodes. Each arc (i, j) in the improvement graph signifies that we switch the 
fleet types of nodes i and j from B to A or from A to B (whichever is applicable) and reconnect the flights 
so that the connections are between flights that are assigned the same fleet types. In our approach, we add 
an arc (i, j) to the improvement graph whenever this change can be feasibly made without increasing the 
total plane count at the city arr-city(i) if i is A-node and dep-city(i) if i is a B-node. We define the cost cij 
of the arc (i, j) to be the change in the fleeting and through costs resulting from the change. Figure 5 
summarizes the six types of arcs that can be added to the improvement graph. In the figure, we show an 
A-node or an A-arc using regular lines, and a B-node or B-arc using dashed lines. The detailed explanation 
of these arcs is given next. 

Type 1 Arcs: Consider an arc (i, j) in the A-B solution graph which is an A-arc such that (i, j) ∉ S. We 
introduce the arc (i, j) in the improvement graph which corresponds to changing the plane types of both 
the flights i and j from A to B.  Both flights i and j become B flights, and we assume that their connection 
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is maintained. The cost of the arc (i, j), cij, is the sum of (i) the change in the fleeting cost when plane type 
of flight i is changed from A to B, and (ii) the change in the through revenues of the connection (i, j) due 
to change in fleeting types. Notice that when computing cij we include the change in the fleeting cost of 
flight i only but not flight j. We do it because if we include the cost of changing the fleet types of both the 
nodes i and j in the cost of arc (i, j), then when we sum the cost of arcs in a valid cycle, we will be double 
counting the changes in the fleeting costs. Since the arc (i, j) does not belong to the set S, it does not 
affect the fleet size constraint.  

Type 2 Arcs: A type 2 arc (j, i) is introduced in the improvement graph for each B-arc (i, j) in the A-B 
solution graph such that (i, j) ∉ S. This arc corresponds to changing the plane types of both the flights i 
and j from B to A and preserving the connection between the two flights. Notice that contrary to the case 
of type 1 arcs, we introduce the arc (j, i) instead of arc (i, j). The arcs are reversed as per the discussion 
above. The cost of the arc (j, i) captures the change in the fleeting cost of flight j and through costs of the 
connection arc (i, j).  

Type 3 Arcs: A type 3 arc (i, l) is introduced in the improvement graph for every pair, (i, j) and (k, l), of 
A-arcs in the A-B solution graph such that the change corresponding to it does not violate the fleet size 
constraints. The arc (i, l) signifies changing the fleet types of both the flights i and l from A to B. Since we 
can make connections between flights flown by the same fleet type, this change requires changing the 
connections too; we thus need to reconnect flight i with flight l and flight k with flight j. The cost of the 
arc (i, l) captures the change in the fleeting cost of flight i and the change in the through costs due to 
reconnections. We point out that we add the arc (i, l) to the improvement graph only if the corresponding 
change does not increase the number of planes of type A and B. For example, we require that (i) (i, l) ∉ S, 
and (ii) if (k, j) ∈ S than either (i, j) ∈ S or (k, l) ∈ S or both. Observe that in the absence of requirement 
(i), the number of planes of type B used could increase by 1 after the addition of arc (i, l). Similarly, if 
requirement (ii) is not satisfied than the number of planes of type A could increase by 1. 

Type 4 Arcs: We introduce a type 4 arc (j, k) in the improvement graph for every pair of B-arcs (k, l) and 
(i, j) in the A-B solution graph such that flight k can connect to flight j and flight i can connect to flight l, 
and such that the change corresponding to it does not violate the fleet size constraints. The cost of the arc 
(j, k) includes the costs of changing fleet type of flight j and k from B to A and the change in the through 
costs due to the reconnections. Notice that a type 4 arc is similar to a type 3 arc except that the direction 
of the arc is reversed. The requirements on the connection arcs are the same as those in type 3 arcs. 

Type 5 Arcs: We introduce a type 5 arc (i, k) in the improvement graph for every pair of arcs (i, j) and 
(k, l) in the A-B solution graph such that (i, j) is an A-arc, (k, l) is a B-arc, and the change corresponding to 
(i, k) does not violate the fleet size constraint, and such that flight i can connect to flight l and flight k can 
connect to flight j.  The arc (i, k) corresponds to changing the fleet type of leg i from A to B and of leg k 
from B to A. Changes in the fleet types require changing the through assignments too; leg i connects to leg 
l, and leg k connects to leg j after the swap. The cost of the arc (i, k) captures the cost of the change in the 
fleet assignment of leg i and the change in through connection costs due to the reconnections. To ensure 
that the number of planes of type A and B do not increase, we use the following two requirements on the 
connection arcs involved: (i) if (i, l) ∈ S then (k, l)∈ S, and (ii) if (k, j)∈ S then (i, j)∈ S.  
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Type 6 Arcs: A type 6 arc is similar to a type 5 arc but with its orientation reversed. We introduce the arc 
(j, l) in the improvement graph for every pair of arcs (i, j) and (k, l) in the A-B solution graph such that (i, 
j) is a B-arc, (k, l) is an A-arc, and the change corresponding to it does not violate the fleet size 
constraints. In addition, we require that flight i can connect to flight l and flight k can connect to flight j. 
The cost of the arc (j, l) includes change in the fleeting cost of flight j and the change in through costs due 
to reconnections. To ensure that the number of planes of type A and B do not increase, the requirements 
on the connection arcs are the same as those in type 5 arcs.  

We will identify A-B swaps by defining valid cycles which we define next. In the A-B solution 
graph, each node i is connected to a unique node j through the arc (i, j) and is also connected from a 
unique node k through the arc (k, i). For each node i, we define its “mate” as follows: (i) if i is an A-node 
and (i, j) is an arc in the A-B solution graph, then mate(i) = j; and (ii) if i is a B-node and (k, i) is an arc in 
the A-B solution graph, then mate(i) = k. 

Valid Cycles: A directed cycle W in the A-B improvement graph is said to be a valid cycle if it satisfies 
the following property for every node i ∈ W: mate(i) ∉ W unless (i, mate(i))∈ W. 

 The intuitive reason we do not allow valid cycles to contain both the nodes i and mate(i) in the 
valid cycles unless (i, mate(i)) ∈ W is as follows. The purpose of constructing the improvement graph is 
that a directed cycle in it defines an A-B swap and that the cost of the cycle equals the cost of the A-B 
swap. A directed cycle, which is not a valid cycle, cannot ensure this property. Consider, for example, a 
directed cycle W in the improvement graph which contains a Type 5 arc (i, k) (see Figure 5).  Let node j = 
mate(i) and l = mate(k). The arc (i, k) signifies the change that flight i reconnects to flight l and flight k 
reconnects to flight j, and the cost of the arc (i, k) captures the cost of these changes. If we allow the cycle 
W to visit node j or node l, then we will not be able to preserve the change indicated by arc (i, k) and its 
cost will become incorrect. Thus, if we make arc (i, k) part of the cycle, then we must disallow the mates 
of these nodes from being a part of the cycle. This difficulty arises when we include arcs of Type 3, 4, 5, 
or 6 in the cycle W. This difficulty does not arise when we make an arc of Type 1 or Type 2 to be the part 
of the cycle in which case we include both the node i and its mate. Hence the “unless” clause in the 
definition of the valid cycle. 

 We will now give a numerical example that a valid cycle in the improvement graph gives an A-B 
swap; this example will be followed by a formal proof of the general result. Consider the part of the A-B 
solution graph shown in Figure 6(a). When we construct the improvement graph, it will contain the valid 
cycle W = 3-4-10-7-8-6-3 shown in Figure 6(b). This cycle denotes the A-B swap, which when 
performed, produces the solution shown in Figure 6(c). Observe that all the nodes in the cycle switch their 
fleeting types. The arc (3, 4) in the valid cycle W is a Type 6 arc, this arc signifies that nodes 3 and 4 
switch their fleeting types and the inbound flights into these nodes swap their connections. The next arc 
(4, 10) in the cycle is a Type 3 arc which changes fleeting types and connections. The next arc (10, 7) is a 
Type 1 arc; it only changes the fleeting. The next arc (7, 8) in the cycle is a Type 5 arc which captures the 
fact that the outbound flights from these two nodes swap their flights. Finally, the two arcs (8, 6) and (6, 
3) are Type 2 arcs which change the fleeting types but not the connections. Figure 6(c) shows the same 
part of the solution graph when the corresponding A-B swap has been performed. 
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We are now ready to prove the general result.   

Theorem 1. Each valid cycle in the A-B improvement graph GAB(x, y) gives an A-B swap with respect to 
the solution (x, y). 

Proof: We note that any A-B swap results in a solution satisfying the constraints (1b) since any flight leg 
that has fleet types A or B assigned to them will have a fleet type (A or B) after the swap. The constraints 
(1e) are also satisfied since the changes corresponding to each arc in the A-B improvement graph ensure 
that the fleet size constraints (1e) are satisfied. We shall now show that the constraints (1c) and (1d) are 
also satisfied. This amounts to showing that the cycle-based property is maintained by the swap. Let W 
denote the valid cycle.  Let i be a node of the A-B solution graph. We assume inductively that node i has 
one incoming arc and one outgoing arc in the current solution, and these arcs join node i to nodes of the 
same fleet type.  We want to prove that this property is satisfied after the A-B swap. Our proof relies on 
the consideration of a number of cases. We show that the property holds for the A-nodes affected by the 
swap. A similar argument can be made for the B-nodes. 

Suppose first that i ∈ W and that i is an A-node.  We consider first the node that directly follows 
node i in W. We will show that after the swap, there is a B-node that directly follows node i in the 
resulting A-B solution graph.  If (i, j) is of type 1, then arc (i, j) is a B-arc in the A-B solution graph after 
the swap.  If (i, l) is of type 3, then arc (i, l) is a B-arc in the solution graph after the swap. If arc (i, k) is 
of type 5, then (i, l) is a B-arc in the solution graph after the swap. We also note that cases 2, 4 and 6 are 
not applicable to the arcs leaving an A-node. 

We now consider the node that directly precedes an A-node r in W. We will show that after the 
swap, there is a B-node that directly precedes node r in the resulting A-B solution graph.  If (i, j) is of type 
1 (in this case, r = j), then (i, r) is a B-arc in the A-B solution graph after the swap.  If (i, l) is of type 3, (in 
this case, r = l), then (i, r) is a B-arc in the A-B solution graph after the swap.  If (j, l) is of type 6, (in this 
case, r = l), then (i, r) is a B-arc in the A-B solution graph after the swap. We have just established that for 
an A-node in W, there is exactly one outgoing B-arc and exactly one incoming B-arc after the swap. A 
similar argument can be made for the B-nodes in the cycle W. 

We now consider nodes that are not in W and are affected by the swap.  In cases 1 and 2, there 
are no such nodes.  In case 3, node j has its incoming arc changed from (i, j) to (k, j), and node k has its 
outgoing arc changed from (k, l) to (k, j), and the cycle property remains satisfied after the swap.  (We 
know that j ∉ W, and k ∉ W because W is valid).  In case 4, node l has its incoming arc changed from (k, 
l) to (i, l), and node i has its outgoing arc changed from (i, j) to (i, l), and the cycle property remains 
satisfied after the swap.  (We know that i ∉ W, and l ∉ W, because W is valid.)  In case 5, the A-node j 
has its incoming arc changed from (i, j) to (k, j), and the B-node l has its incoming arc change from (k, l) 
to (i, l), and the cycle property remains satisfied after the swap. (We know that j ∉ W, and l ∉ W, because 
W is valid.)  Finally, in case 6, the B-node i has its outgoing arc changed from (i, j) to (i, l), and the A-
node k changes its outgoing arc from (k, l) to (k, j), and the cycle property remains satisfied after the 
swap. (We know that i ∉ W, and k ∉ W, because W is valid.)  This completes the proof of the theorem.♦ 
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3.5 Identifying A-B swaps 

In the last section, we have shown that we can identify A-B swaps by identifying valid cycles in 
the A-B improvement graph. However, identifying valid cycles in a graph is an NP-complete problem (see 
Appendix II). Fortunately, this problem was typically solved in a fraction of second using CPLEX in our 
benchmark cases. We will next model the problem of finding a union of node-disjoint valid cycles as an 
integer programming problem. 

We first introduce some notation related to the integer program. Let N′ = N(GAB(x, y)) denote the 
set of nodes and E′ = E(GAB(x, y)) denote the set of arcs in the A-B improvement graph. We associate a 
binary variable wij with each arc (i, j) ∈ E′. This variable takes value 1 if arc (i, j) is present in some valid 
cycle, and takes value 0 otherwise. We give the IP formulation next followed by its explanation. 

Minimize 
( , )

ij ij
i j E

c w
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∑               (2a) 

        subject to 

{ :( , ) } { :( , ) }
0, for ,ji ij
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{0,1}, for ( , )ijw i j E′∈ ∈ .              (2d) 

In the above formulation (2), the constraints (2b) and (2d) imply that the solution is a 0-1 
circulation. This 0-1 circulation can be decomposed into unit flows along directed cycles. The constraints 
(2c) ensure that the flow passing through each node i plus the flow passing through the node mate(i) is at 
most 1, which implies that the resulting flow will not pass through both the nodes i and mate(i). An 
exception to this rule occurs when flow takes place over the arc (i, mate(i)) in which case both the nodes i 
and mate(i) can be visited. It is easy to see that a feasible solution of (2) gives a set of valid cycles. If the 
improvement graph does not contain any negative cost valid cycles, then w = 0 will be an optimal solution 
of (2). If the improvement graph contains a negative cost valid cycle, then an optimal solution w* of (2) 
will give a collection of valid cycles with the minimum total cost. Using flow decomposition (see, for 
example, Ahuja, Magnanti, and Orlin [1993]), we can decompose w* into a set of node-disjoint cycles. 
Each of these cycles has a negative cost or a cost of 0.  The negative cost cycles include an associated 
profitable A-B swap. 

3.6 Neighborhood Search Algorithms 

We are now in a position to describe our neighborhood search algorithm for ctFAM. Figure 7 
describes the generic version of our algorithm. Our neighborhood search algorithm for ctFAM performs 
passes over all fleet pairs A and B and performs profitable A-B swaps. The algorithm terminates when in 
one complete pass it finds that no profitable swap exists for any pair of fleet types A and B.  
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algorithm  ctFAM neighborhood search; 
begin 

solve FAM to determine the optimal fleet assignment y; 
solve TAM to determine the optimal connections x for the fleet assignment y; 
repeat 

for each pair of the fleet types A and B do 
begin 

construct the A-B solution graph SAB(x, y); 
construct the A-B improvement graph GAB(x, y); 
while the A-B improvement graph GAB(x, y) contains negative cost valid cycles do 
begin 

determine a set W of negative cost valid cycles in the A-B improvement graph; 
perform A-B swaps corresponding to W; 
update the A-B solution graph SAB(x, y); 

end; 
end; 

until for every pair of fleet types A and B, GAB(x, y) contains no negative cost valid cycle; 
end; 

Figure 7. The neighborhood search algorithm for ctFAM. 

4. IMPLEMENTATION DETAILS 

We now describe some important details of the implementation of our neighborhood search algorithm.  

Identifying Negative Cost Valid Cycles: To identify a negative cost valid cycles in the A-B 
improvement graph, we solve the IP problem (2) using the commercial solver CPLEX 6.5 and do not run 
it up to optimality as it takes too much time. The solver solves the IP problem using a branch and bound 
algorithm. We keep track of the number of integer solutions found by the branch and bound algorithm and 
stop it as soon as it finds an optimal solution or finds 10 integer solutions, whichever occurs earlier. We 
use the best integer solution found, decompose it into node-disjoint profitable valid cycles, and perform 
A-B swaps corresponding to each valid cycle. Our neighborhood search needs only one negative cost 
valid cycle to improve the current solution and it need not be the best valid cycle. Consequently, we may 
terminate the IP whenever it has found a negative cost valid cycle. 

Updating Flight Connections: Our neighborhood search algorithm starts with a solution where the flight 
connections (given by the solution x) are optimal for the specified fleet assignment (given by the solution 
y). Each A-B swap performed by the algorithm changes the fleet assignment of some flight legs and may 
also change flight connections. After this change, the modified flight connections x′ may not be optimal 
for the modified fleet assignment y′. Hence, a possibility to improve the solution value exists by changing 
connections without changing the fleet assignment. Our algorithm checks for these possibilities and 
makes switches when improvements are possible. It solves a TAM for the fleet types A and B at every city 
where A-B swap has changed the fleet assignment. This step takes only a small proportion of the overall 
computational time, and occasionally improves the solution value substantially. 
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Handling Additional Constraints: In Section 2, we noted that the solutions of ctFAM also need to 
satisfy three additional set of constraints (A1) – (A3) described in Appendix I. To incorporate these 
additional constraints, we first added these constraints to FAM and to TAM so that the initial solution 
constructed by using these models satisfies these constraints. Subsequently, we ensured that each A-B 
swap performed by the algorithm maintains these additional constraints. We considered the 
straightforward approach of directly incorporating the constraints into the integer program in (2). 
Unfortunately, this method makes the integer program (2) substantially much more difficult to solve, and 
not practical for a neighborhood search approach. However, we also made the following fortuitous 
discovery: approximately half of all improving valid cycles for our previous model satisfy constraints 
(A1) - (A3). Accordingly, we solved (2) using the IP solver with no additional constraints. We performed 
an A-B swap as determined by the solution of the integer program when it also satisfied constraints (A1) 
– (A3).  

Tabu Search: The algorithm described in Figure 7 is a pure local search algorithm. We also implemented 
a tabu search algorithm. (See Glover and Laguna [1997] for details on tabu search). We implemented a 
version of the tabu search that incorporated the short-term memory aspect of tabu search; that is, we used 
tabu lists. To ensure that the tabu search approach would generate at least one valid cycle at each 

iteration, we added the constraint Σ(i,j)∈E wij ≥ 1 to (2).  In order to cut down on some of the unproductive 
searching, we restricted our search to a small subset of “promising” A-B pairs of fleet types. In addition, 
when we solved (2) by the IP solver, we enumerated 100 integer solutions only and the best solution 
among them determined the set of A-B swap performed. Each flight involved in an A-B swap is made tabu 
for the next 5 iterations. For any pair of fleet types A and B, we apply the tabu search algorithm for 100 
iterations and record the best solution found. 

5. COMPUTATIONAL TESTING 

In this section, we present computational results of our neighborhood search algorithms. We 
programmed our algorithms in the C programming language and on a Pentium 4 1.4 GHz processor 
computer with 512MB RAM and a Linux operating system. We tested our algorithms on the data 
provided by United Airlines.  

We tested our local improvement and tabu search algorithms on four problems whose data was 
provided by United Airlines: (i) FAM without maintenance constraints; (ii) ctFAM without maintenance 
constraints; (iii) FAM with maintenance constraints; and (iv) ctFAM with maintenance constraints. The 
starting solutions for these problems were obtained by solving integer programming problems. The 
integer programming problems were run up to 30 minutes as is the practice at that airline. The best integer 
solution obtained became the starting point of our neighborhood search algorithms. The table shown in 
Figure 8 gives the changes in FAM and through contributions by the use of neighborhood search. Our 
objective in the neighborhood search algorithms was to maximize the total fleet assignment and through 
contribution. The improvements obtained are reported on an annual basis. We observe both the local and 
tabu search algorithms improve the integer programming solutions quickly in a fairly reasonable time. 
The following additional conclusions can be drawn from the table: 
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• The local improvement algorithm is efficient and terminates quickly. It also improves the FAM 
solution. The reason that it can improve the FAM solution is that the FAM solution was not 
solved to optimality, but terminated with a nearly optimal solution. The neighborhood search 
algorithms found the possible improvements quickly. This suggests that neighborhood search 
algorithms can be used as a supplement to the integer programming techniques.  

• Our algorithms for ctFAM with maintenance constraints improved the integer programming 
solution by a substantially larger amount than ctFAM without the maintenance constraints. 
Maintenance constraints make the integer programming problem harder and the solution 
produced by the IP software leaves more room for possible improvement which our 
neighborhood search algorithm is able to obtain. 

• Our local improvement algorithm terminates in a matter of a few seconds. Our tabu search 
algorithm takes substantially longer then the local improvement algorithm, and is able to obtain 
somewhat better solutions. Our tabu search implementation was a straightforward 
implementation. We believe that greater savings can be obtained by a better and more 
sophisticated implementation of the tabu search. 

We performed some additional computational results to assess the behavior of our algorithms. 
Figure 9 shows the statistics we noted for our four models.    

6. CONCLUSIONS  

In this paper, we study the combined through and fleet assignment model (ctFAM) which 
integrates the fleet assignment model (FAM) and the through assignment model (TAM). We give an 
integer programming formulation of ctFAM which, unfortunately, is too large to be solved to optimality 
or near-optimality using the state-of-art commercial IP solvers. We propose a swap-based neighborhood 
search algorithm for ctFAM that proceeds by swapping the fleet types of flights flown by two fleet types. 
Our swap based neighborhood structure generalizes the previous neighborhoods suggested by Berge and 
Hopperstad [1993] and Talluri [1996]. We searched our (exponentially large) neighborhood heuristically 
using an integer programming solver. We implemented two versions of our basic algorithm – a local 
improvement algorithm and a tabu search algorithm.  

Preliminary computational results of our algorithms are quite encouraging. On the data provided 
by United Airlines, both our local improvement algorithm and our tabu search algorithm obtained 
substantial improvements in savings and computational times. The airline is currently converting the 
prototype into a full-scale application for use in the scheduling department. There are plans to expand the 
approach for solving more complex mutli-criteria optimization problems by incorporating other 
downstream criteria in the schedule planning process. In conclusion, a comprehensive framework has 
been developed for the airlines to model and solve advanced planning problems. 
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APPENDIX  I 

In this appendix, we briefly discuss three kinds of additional constraints that are enforced on a 
fleet assignment, and are closely related to constraints faced in other fleet scheduling problems as well. 
They are related to maintenance and crew scheduling. The rational behind these constraints is discussed in 
detail in Clarke et. al. [1996]. Our ctFAM includes these additional constraints and solutions obtained by 
our algorithms satisfy these constraints. 

1. Service Maintenance Constraints. For each fleet type f, the service maintenance constraints specify a 
set of maintenance stations at which a certain desired percentage of aircraft of fleet type f must be on the 
ground at midnight. These constraints can be easily incorporated into the ctFAM formulation. Let Sf 
denote the set of connection arcs such that a plane using one of these arcs is on the ground at midnight at 
one of the maintenance stations for fleet type f. Let pf denote the desired percentage of aircraft of fleet f at 
its maintenance stations. Using this notation, we can write the service constraint for fleet type f in the 

integer programming formulation (1) as:
( , )

( ).
100f

ff
ij

i j S

p
x size f

∈

≥∑  

2. Aircraft Balance Check Constraints. These constraints model the longer balance check maintenance 
(10-12 hours) done on the aircraft. An aircraft balance check constraint specifies a station s, an interval of 
the day (a, b), duration of the check D, a list L of fleet types, and a number K such that K planes from the 
fleet type list L must receive balance check of duration D within the interval (a, b) at station s. In order to 
incorporate this constraint in the integer program (1), let Q denote the set of connection arcs such that a 
plane taking any of the connections in Q is on the ground at station  s for a duration of at least D units 
between the interval (a, b). The aircraft balance check constraint can then be specified 
as: ( , ) .f

iji j Q f L x K
∈ ∈

≥∑ ∑  There may be several such constraints, one per type of balance check 

constraint.  

3. Crew Block Hour Constraints. The block hour of a flight is the time that elapses between the flight 
leaving the gate at the departure city and entering the gate at the arrival city. The crew block hour 
constraint requires that the total block hours of all the flight legs that are assigned to a given subset of 
fleet types should be bounded. Since each crew is typically trained for a subset of aircraft types, these 
constraints ensure that none of the crews is over or under-utilized. For each flight node i, let bi denote the 
block time of the flight leg associated with it. Let L represent the set of fleet types involved in the crew 
block hour constraint and m, M, respectively, denote the lower and upper bounds on the total block hours 
allowed for all the planes belonging to the fleet types in L. The crew block hour constraint can be 
incorporated in the formulation (1) as .c

f
i if L i Nm b y M

∈ ∈
≤ ≤∑ ∑  There may be several such constraints, 

one per type of balance check constraint.  
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APPENDIX II 

In this appendix, we show that the problem of finding a negative cost valid cycle in a graph is 
NP-complete.  

Negative Cost Valid Cycle Problem: 

Input: A graph G = (N, A), arc costs c: A → R, and a function mate: N → N such that for i ∈ N, (i, 
mate(i)) ∈ A and mate(i) ≠ mate(j) for j ≠ i. 

Question: Is there a negative cost valid cycle W in G (that is, is there a cycle W such that for every node i 
∈ W: mate(i) ∉ W unless (i, mate(i)) ∈ W)? 

We refer to an input instance of the problem as a yes instance if the answer to the question is yes. 
It is easy to see that the negative cost valid cycle problem is in NP since a negative cost valid cycle is a 
succinct certificate for the yes instances. In order to prove the NP-completeness of the negative cost valid 
cycle problem, we shall provide a polynomial time transformation from another problem called the path 
through forbidden pairs, which is known to be an NP-complete problem (see, for example, Garey and 
Johnson [1979]).  

Path through Forbidden Pairs Problem: 

Input: A graph G′ = ({1, 2,…, 2n}, A′) with 2n+1 nodes for some n > 0. 

Question: Is there a path P from node 1 to node 2n+1 in G′ satisfying the following property: for each k 
= 1, 2, …, n-1, the nodes 2k, 2k+1 can not simultaneously belongs to the path P?  

Given an input graph G′ for the path through forbidden pairs problem, we construct an input 
instance of the negative cost valid cycle problem as follows. The input graph for our instance is G = (N, 
a), where N = {0, 1, 2, …, 2n}, A = A′∪S∪{(2n, 1)}∪{(0, 2n)}) and S = {(2k, 2k+1): k = 1,…, n-
1}∪{(2k+1, 2k): k = 0,…, n-1}. The arcs in the set S and the arc (0, 2n) are added so that we can define 
the mate function in the desired manner. For k = 1, 2, …, n-1, we define mate(2k) = 2k+1 and mate(2k+1) 
= 2k. We set mate(0) = 2n, mate(2n) = 1, and mate(1) = 0. The reader can verify that our mate function 
satisfies the required conditions. We define the arc costs c as follows: 

0 if ( , )
1 if ( , )
1 if ( , ) (2 ,1)

ij

i j A
c i j S

i j n

′∈
= ∈
− =

 

It is easy to see that the instance above can be constructed in time polynomial in the size of G′. 

Theorem 2.  The instance (G, c, mate) is a yes instance for the negative cost valid cycle problem if and 
only if the graph G′ is a yes instance for the path through forbidden pairs problem. 
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Proof: If a path P exists in G′ from node 1 to node 2n such that it satisfies the required condition for path 
through forbidden pairs problem, then by the definition of c, the cost of the path P is 0 in the instance (G, 
c, mate). Further, by the construction of the mate function, the cycle obtained by adding the arc (2n, 1) to 
path P is a valid cycle. Hence, if G′ is a yes instance of the path through forbidden pairs problem, then (G, 
c, mate) is a yes instance of the negative cost valid cycle problem. 

Conversely, if W represents a negative cost valid cycle in the instance (G, c, mate) then it must 
contain the arc (2n, 1) and none of the arcs (i, j) ∈ S can be in the cycle W. By the construction of the 
mate function, this implies that for k = 1,…, n-1, the nodes 2k and 2k+1 cannot be in the cycle W 
simultaneously. Hence, the path obtained by removing the arc (2n, 1) from the cycle W satisfies the 
condition for the path through forbidden pairs problem in the graph G′. This proves our result.          ♦ 

Using the previous theorem and our construction of the instance (G, c, mate), we observe that 
there is a polynomial time transformation from any instance of the path through forbidden pairs problem 
to an instance of the negative cost valid cycle problem. Therefore, the negative cost valid cycle problem is 
an NP-complete problem. 
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                             Figure 1. Our approach for solving ctFAM. 
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Figure 2. Part of the connection network at a city with the inbound flights 1, 2, and 3, and 
the outbound flights 4, 5, and 6. 
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Figure 3. Illustrating an A-B swap.  
 (a) Part of the solution graph before the A-B swap.  
 (b) Part of the solution graph after the A-B swap.  
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Figure 4. Effect of swaps on the number of planes used.  
(a) Four flights and two connections. (b) a possible swap which increases the number of 
planes used for type A and decreases the number of planes used for type B; (c) a possible 
swap which decreases the number of planes used for type B. 
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Type 

of Arc 
Before the 

change in the 
solution graph 

After the change 
in the solution 

graph 

Corresponding 
arc in the 

improvement 
graph 

Cost of the arc in the 
improvement graph 

Type 1 
   

cij = ( B
ic + B

ijd ) 

       – ( A
ic + A

ijd ) 

Type 2 
   

cji = ( A
jc + A

ijd ) 

       – ( B
jc + B

ijd ) 

Type 3 

 
 

 

cil = ( B
ic + B

ild + A
kjd ) 

       – ( A
ic + A

ijd + A
kld ) 

Type 4 

  
 

cli = ( A
lc + A

ild + B
kjd ) 

       – ( B
lc + B

ijd + B
kld ) 

Type 5 

  

    
cik = ( B

ic + B
ild + A

kjd ) 

       – ( A
ic + A

ijd + B
kld ) 

Type 6 

  

     
cjl = ( A

jc + B
ild + A

kjd ) 

       – ( B
jc + B

ijd + A
kld ) 

 
Figure 5. Different types of arcs in the A-B improvement graph. 
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Figure 6. Valid cycles and A-B swaps. 
 (a)     Part of the A-B solution network. 
 (b)     A valid cycle in the improvement graph. 

 (c)      Part of the A-B solution network when the corresponding A-B swap is performed.  
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Model Local Improvement Algorithm Tabu Search Algorithm 

 

Changes in 
fleeting 
contribution 
(in millions) 

Changes in 
though 
contribution
(in millions) 

Changes in 
total 
contribution
(in millions) 

Running 
time 
(sec.) 

Changes in 
fleeting 
contribution
(in millions) 

Changes in 
though 
contribution
(in millions) 

Changes in 
total 
contribution
(in millions) 

Running 
time 
(sec.) 

FAM 
without 
maintenance 

0.55 0 0.55 
 
 

3 1.77 0 1.77 

 
 

144 
FAM with 
maintenance 
 

3.84 0 3.84 
 

10 
3.88 0 3.88 

 
 

299 
ctFAM 
without 
maintenance 

-5.25 22.40 17.15 
 

10 
-10.00 35.20 25.20 

 
 

1543 
ctFAM with 
maintenance 
 

-0.94 27.80 26.86 
 

9 
-2.12 31.77 29.65 

 
 

380 
 

Figure 8. Improvements obtained by the local improvement and tabu search algorithms. 
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Model  
# of 

iterations 

Average 
cost of the 

cycle 

Average 
length of 
the cycle 

Total # of 
flights 

changed 
# of 

passes 
FAM without 
maintenance 4 -382 3.5 13 2 
FAM with maintenance 40 -263 8.0 200 3 
ctFAM without 
maintenance 34 -956 10.4 222 3 
ctFAM with maintenance 
 39 -1154 10.5 246 3 
 
     (a) 
 

Model  
Total # of 
iterations 

Improving 
iterations

Worsening 
iterations

Average 
cost of the 

cycle 

Average 
length of 
the cycle

# of 
flights 

changed
# of 

passes 
FAM without 
maintenance 4163 1676 2487 279 4.7 41 3 
FAM with 
maintenance 1963 619 1344 1201 5.8 215 3 
ctFAM without 
maintenance 15354 4752 10602 1084 5.6 306 5 
ctFAM with 
maintenance 
 4998 1253 3745 1471 6.2 267 4 
 
     (b) 
 
Figure 9. Some statistics of the local search and tabu search algorithms. 
(a) Local improvement algorithm; (b) Tabu search algorithm. 

 




