

MIT Sloan School of Management

Working Paper 4388-01
December 2001

A VERY LARGE-SCALE NEIGHBORHOOD SEARCH

ALGORITHM FOR THE COMBINED THROUGH AND FLEET
ASSIGNMENT MODEL

Ravindra K. Ahuja, Jon Goodstein, Amit Mukherjee, James B. Orlin and
Dushyant Sharma

© 2001 by Ravindra K. Ahuja, Jon Goodstein, Amit Mukherjee, James B. Orlin and Dushyant Sharma. All rights
reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided

that full credit including © notice is given to the source."

This paper also can be downloaded without charge from the
Social Science Research Network Electronic Paper Collection:

http://ssrn.com/abstract_id=337641

http://ssrn.com/abstract_id=337641

 1

A Very Large-Scale Neighborhood Search Algorithm
for

the Combined Through and Fleet Assignment Model

Ravindra K. Ahuja1, Jon Goodstein2, Amit Mukherjee3, James B. Orlin4, and Dushyant Sharma5

Abstract

The fleet assignment model (FAM) for an airline assigns fleet types to the set of flight legs that satisfies a
variety of constraints and minimizes the cost of the assignment. A through connection at a station is a
connection between an arrival flight and a departure flight at the station, both of which have the same
fleet type assigned to them that ensures that the same plane flies both legs. Typically, passengers are
willing to pay a premium for through connections. The through assignment model (TAM) identifies a set
of profitable throughs between arrival and departure flights flown by the same fleet type at each station to
maximize the through benefits. The through assignment model is usually solved after obtaining the
solution from a fleet assignment model. In this current sequential approach, the through assignment model
cannot change the fleeting in order to get a better through assignment, and the fleet assignment model
does not take into account the through benefits. The goal of the combined through and fleet assignment
model (ctFAM) is to come up with a fleeting and through assignment that achieves the maximum
combined benefit of the integrated model. We give a mixed integer programming formulation of ctFAM
that is too large to be solved to optimality or near-optimality within allowable time for the data obtained
by a major US airline. We thus focus on neighborhood search algorithms for solving ctFAM, in which we
start with the solution obtained by the previous sequential approach (that is, solving FAM first and
followed by TAM) and improve it successively. Our approach is based on generalizing the swap-based
neighborhood search approach of Talluri [1996] for FAM which proceeds by swapping the fleet
assignment of two flight paths flown by two different plane types that originate and terminate at the same
stations and the same times. An important feature of our approach is that the size of the neighborhood
defined by us is very large; hence the suggested algorithm falls in the category of Very Large-Scale
Neighborhood (VLSN) Search Algorithms. Another important feature of our approach is that we use
integer programming to identify improved neighbors. We provide computational results which indicate
that the neighborhood search approach for ctFAM provides substantial savings over the sequential
approach of solving FAM and TAM.

1 Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611, USA.
2 Information Services Division, United Airlines World Headquarters - WHQKB, Chicago, IL 60666, USA.
3 Information Services Division, United Airlines World Headquarters - WHQKB, Chicago, IL 60666, USA.
4 Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
5 Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

 2

1. INTRODUCTION

The airline industry has been a pioneer in using IE/OR techniques to solve complex business
problems related to the schedule planning of the airline. Given a flight schedule, an airline’s schedule
planning group needs to decide the itinerary of each aircraft and each crewmember so that the total
revenue minus the total operating costs is maximum and all the operational constraints are satisfied. The
quality of the schedule is also measured in terms of other attributes such as schedule reliability during
operations. The entire planning problem is too large to be solved to optimality as a single optimization
problem using present day technology. Hence, it is typically divided into four stages (see, for example,
Barnhart and Talluri [1997] and Gopalan and Talluri [1998]): (i) fleet assignment; (ii) through
assignment; (iii) maintenance routing; and (iv) crew scheduling. These problems are solved sequentially
where the optimal solution of one problem becomes the input for the following problem. There has been
significant effort spent in modeling and solving these individual problems using advanced optimization
models. The economies of scale at a large airline like United Airlines are such that a relatively minor
improvement in contribution results in considerable improvement in the bottom line. As a result, airlines
have benefited immensely from the advances in modeling these problems.

The next frontier in the optimization of schedule planning is in solving an integrated optimization
problem that will consider the entire planning problem mentioned above and include other downstream
issues that affect the overall schedule quality. Basically, the planning problem is a multi-criteria
optimization problem, i.e., there are many objectives that have different metrics, different priorities and
different constraints. A sequential approach to solve such problems has a major drawback in that the
solution at each stage does not take into account the considerations of subsequent stages. This results in
overall suboptimal solutions. For example, if a fleet assignment is performed without considerations of
optimizing crew scheduling, it becomes an arbitrary input for the crew scheduling process. On the other
hand, if the fleet assignment incorporates crew issues, then it is likely to provide a better starting point to
the crew scheduling optimization, resulting in overall economic benefits for the airline.

The airlines are making a lot of effort to develop models to solve such integrated optimization
problems for schedule planning. The objective is to break down the functional silos that exist in order to
manage the complexity of the planning process by using advances in optimization technology and
computing power. At United Airlines, there are two distinct strategies being pursued. The first strategy is
to develop explicit joint optimization models with combined objective functions, combined set of
constraints and combined data. Typically, these joint models are too large to be solved to optimality or
near-optimality, suggesting that heuristics may be needed. Moreover, some downstream criteria cannot be
represented easily in a form consistent with explicitly modeling the problem. For example, airline
reliability is an important criteria in schedule planning that is related to the schedule structure, but it is
very hard to model it in terms of a typical optimization problem. The second strategy exploits the nature
of the planning problem. Instead of one optimal solution, there are typically many solutions that are close
to the optimal in terms of contribution. However, these solutions can have very distinct characteristics on
other criteria such as crew required, potential for through flights, schedule reliability, ground manpower
requirements, etc. This implies that intelligent search techniques, when coupled with advanced

 3

optimization modeling, hold a lot of promise in solving multi-criteria schedule planning problems. As a
result, United Airlines initiated collaboration with MIT and University of Florida to explore solution
techniques that exploited the nature of the overall schedule planning problem. The strategy was to build
upon the foundation that already existed for modeling the individual stages and develop a robust and
generic methodology that could be easily scaled up for other downstream criteria.

In this paper, we propose an integrated approach that first solves the separate models to
optimality in a stage-wise fashion followed by solving the integrated model heuristically using
neighborhood search techniques. This approach guarantees that the solution obtained by our approach is
no worse than the solution obtained by the current sequential approach and in practice is better.

In this paper, we focus on integrating two of the airline scheduling models, the Fleet Assignment
Model (FAM) and the Through Assignment Model (TAM), into a single model that we call the Combined
Through Fleet Assignment Model (ctFAM). We next briefly describe these three models.

Fleet Assignment Model (FAM): In FAM, planes of different fleet type are assigned to flight legs to
minimize the assignment cost and subject to the following three types of constraints: (i) covering
constraints: each flight leg must be assigned exactly one plane; (ii) flow balance constraints: for each
fleet type, the number of planes landing at a city must be equal to the number of planes taking off from
the city; and (iii) fleet size constraint: for each fleet type, the number of planes used must not exceed the
number of planes available. Abara [1989] and Hane et al. [1995] give an MIP formulation for FAM.
Subsequently, Clarke et al. [1996] and Subramanium et al. [1994] provide extensions to incorporate
additional operational constraints related to maintenance and crew scheduling.

Through Assignment Model (TAM): A through connection is a connection between an inbound flight
leg and an outbound flight leg at a station which ensures that the same plane flies both legs. Both flights
legs in a through connection get the same flight number in the airline’s flight schedule. Since a through
connection allows passengers to remain onboard instead of changing gates at busy airports, passengers are
willing to pay a premium for such connections; this premium is termed as the through benefit. TAM takes
as an input a list of candidate pairs of flight legs that can make through connections with corresponding
through benefits, and identifies a set of most profitable through connections. Observe that we can make
through connections only between flights flown by the same fleet type; hence the fleet assignment limits
the possible through connections. In the current implementations, TAM takes as an input the fleet
assignment, identifies inbound and outbound flights at each city flown by the same fleet type, and
determines through connections (that must be a subset of the candidate pairs) to maximize the through
benefit. This problem can be solved as a bipartite matching problem. However, in practice the solution
must satisfy some additional constraints, which yields a constrained bipartite assignment problem that can
be solved using MIP techniques. We refer the reader to the papers by Bard and Hopperstad [1987],
Barnhart et al. [1998], Gopalan and Talluri [1998], and Jarrah and Reeb [1997] for additional details on
the TAM.

The Combined Through Fleet Assignment Model (ctFAM): The through assignment depends on the
fleet assignment in that a through connection requires that both its flight legs have the same fleet type. In

 4

the current systems, FAM does not take into account the through benefits, and may yield fleet
assignments with limited through assignment possibilities. TAM cannot change the fleeting in order to get
a better through assignment. In our model, ctFAM solves the integrated model and simultaneously
determines fleet assignments and through connections. The integrated model offers opportunities to
obtain better solutions compared to the current sequential approach. We first developed an integer
programming formulation of ctFAM, which was too large to be solved to optimality or near-optimality
for a major US airline. We then pursued the approach outlined in Figure 1. In our approach, we first solve
FAM to obtain an optimal (or nearly optimal) fleet assignment. For this fleeting, we then solve TAM to
determine optimal (or nearly optimal) through connections. We then solve ctFAM heuristically using the
neighborhood search algorithm with the optimal FAM and TAM solutions as the starting solution for the
neighborhood search.

Neighborhood search algorithms are widely regarded as an important tool to solve difficult
combinatorial optimization problems effectively. In recent years, the fields of operations research,
mathematical programming, and computer science have all witnessed a strong interest in the development
and analysis of neighborhood search based approaches. The primary reasons for the widespread
application of neighborhood search techniques in practice are their intuitive appeal, flexibility and ease of
implementation, and their excellent empirical results (see, for example, Aarts and Lenstra [1997], and
Glover and Laguna [1997]). We decided to pursue neighborhood search algorithms for ctFAM for the
following reasons:

(i) Neighborhood search algorithms have been very successful in solving a variety of large-scale
combinatorial optimization problems.

(ii) Neighborhood search algorithms permit us to start with the excellent solution obtained by solving
FAM first followed by solving TAM. This guarantees that the neighborhood search algorithm
obtains a solution that is at least as good as that obtained by FAM followed by TAM, and possibly
better.

(iii) Neighborhood search algorithms are typically quite efficient and scalable. Often, we can solve
problems with only a linear increase (or a small polynomial increase) in the computation time.

(iv) Neighborhood search algorithms are often flexible enough to incorporate other constraints that are
difficult to model through linear constraints.

We now present a brief overview of our neighborhood search algorithm for ctFAM. An issue of
critical importance in a neighborhood search algorithm is the manner in which we define the
neighborhood of a solution. As per Talluri [1996], we define neighbors of a given solution by performing
“A-B swaps” for two specified fleet types A and B. An A-B swap consists of changing fleet types of
some legs from A to B and of some legs from B to A so that all constraints remain satisfied. A profitable
A-B swap decreases the total cost of the solution, which in our case includes the costs of throughs.
Identifying a profitable A-B swap is not a trivial problem because the number of possible A-B swaps is
exponentially large. Hence the neighborhood search algorithm using A-B swaps falls within the category
of Very Large-Scale Neighborhood (VLSN) Search Algorithms, a topic studied by Thompson and Orlin

 5

[1989], Thompson and Psaraftis [1993], and Ahuja et al. [2001a, 2001b]. The paper by Ahuja et al. [2002]
presents a survey of very large-scale neighborhood search algorithms.

Our approach consists of determining the starting solution by first solving FAM followed by
TAM. This solution is successively improved by our neighborhood search algorithm. In each iteration, the
neighborhood search algorithm selects any two fleet types, which we label as A and B, and performs a
profitable "A-B swap". An A-B swap consists of changing some legs flown by fleet type A to fleet type B,
changing some legs flown by fleet type A to fleet type A, and changing some through connections
appropriately. The number of A-B swaps can be very large and difficult to enumerate explicitly. We
describe a method using A-B Improvement Graphs which allows us to obtain profitable A-B swaps
quickly in practice. The A-B improvement graph is constructed in a manner that each negative cost
directed cycle in the graph satisfying some constraints defines a profitable A-B swap.

The neighborhood search algorithms constructs the A-B improvement graph and solves an integer
programming problem to identify a negative cost constrained directed cycle. This cycle yields a new fleet
and through assignment with a lower cost. We repeat this process for every pair of fleet types A and B,
and terminate when for every such pair of fleet types, we do not find improved neighbors. We developed
and implemented both a local improvement algorithm (where we always perform cost-decreasing
iterations) and a tabu search algorithm (where we sometimes allow cost-increasing iterations too). Our
local improvement algorithm obtains a local optimal solution for ctFAM in 5-6 seconds, whereas we ran
the tabu search algorithm for 20-25 minutes on our data sets, which are of realistic size data. The
solutions obtained by our algorithms resulted in savings of $5 million to $25 million on an annual basis
on the data provided by United Airlines. These results suggest that neighborhood search is a useful
supplement to the techniques already developed in airline operations research.

One of our major contributions in this paper is to generalize Talluri's [1996] concept of A-B
improvement graph so that it incorporates through constraints. Our approach, when specialized to FAM,
provides a neighborhood that contains the neighborhood due to Talluri and is much larger. Moreover,
Talluri’s neighborhood made the following assumption concerning arrival and departure “banks”: any
plane arriving at the bank would have sufficient time to be assigned to any of the departures at the bank.
This assumption is overly restrictive in practice. Our neighborhood structure does not make this
assumption. Indeed, it does not even depend upon the existence of arrival and departure banks.

This paper is organized as follows. In Section 2, we present an integer programming formulation
for ctFAM. Sections 3 develops our neighborhood search algorithms for ctFAM. We describe some
implementation details in Section 4. We give our computational results in Section 5. Section 6 gives
conclusions of our research and avenues of future research.

2. AN INTEGER PROGRAMMING FORMULATION OF CTFAM

In this section, we present an integer linear (IP) formulation of ctFAM. We formulate this
problem as a flow problem on a network, which we call the connection network. We first present input
data for ctFAM, followed by the description of the connection network, followed by the IP formulation.

 6

Input Data:

We have the following input data for ctFAM:

L : The set of all flight legs which need to be assigned planes. We use the index i to represent a particular
leg.

F : The set of all fleet types. We use the index f to represent a particular fleet type.

T : The set of all candidate through connections. Each through connection is specified by a pair (i, j) of
flights.

size(f) : The number of planes of fleet type f available for assignment.

dep-time(i) : The departure time for flight leg i.

arr-time(i) : The arrival time for flight leg i. We denote by arr-time(i) as the time when flight i actually
arrives plus the turn time (the time need to prepare the plane to be assigned to the next flight*). Thus,
the plane released from the flight i can be assigned to any flight j with dep-time(j) ≥ arr-time(i) at the
same city.

dep-city(i) : The departure city for flight leg i.

arr-city(i) : The arrival city for flight leg i.

 f
ic : The cost incurred in assigning fleet type f to flight leg i.

f
ijd : The cost incurred in connecting flight leg i with the flight leg j provided arr-city(i) = dep-city(j) and

both the legs are flown by the fleet type f. Observe that f
ijd < 0 for (i, j) ∈ T, and 0 otherwise.

count-time : A time instant on the 24-hour time scale when no plane leaves or arrives, that is, count-time ≠
arr-time(i) or dep-time(i) for any i ∈ L. We will assume here that count-time is midnight.

Connection Network:

We now explain how to construct the connection network, which will be the basis of our integer
programming formulation as well as our neighborhood search algorithm for ctFAM. We denote the
connection network as G = (N, E) where N denotes the node set and E denotes the arc set. The node set N
= {i : i ∈ L} is obtained by defining a node for each flight leg i ∈ L, and the arc set E = {(i, j): arr-city(i)
= dep-city(j)} consists of all possible connections between inbound and outbound flight legs. Obviously, a

* In practice, the turn time also depends upon the fleet type but for the simplicity of notation, we assume it to be
independent of the fleet type.

 7

connection between flight legs i and j is possible only if the arrival city of leg i is the same as the
departure city of leg j. We give an example of connection network in Figure 2.

A connection arc (i, j) is said to be a through connection arc if (i, j) ∈ T and a regular connection
arc otherwise. We will use the following additional notation related to the connection network:

I(i) = {(j, i) ∈ E: j ∈ N},

O(i) = {(i, j) ∈ E: j ∈ N},

S = {(i, j) ∈ E: arr-time(i) < count-time < arr-time(j)} ∪ {(i, j) ∈ E: dep-time(i) < count-time < arr-
time(i)}, where the inequalities are based on the circular 24-hour time.

The set I(i) denotes the set of incoming arcs at node i in the connection network, the set O(i)
denotes the set of outgoing arcs, and S denotes the set of arcs in the connection network that cross the
count-time, which we assume to be midnight. We call the arcs in S as overnighting arcs; it contains the set
of connection arcs that cross the count-time and also those connection arcs whose arrival flights are in the
air at count-time.

Decision Variables:

We define two sets of decision variables in our integer programming formulation. The first set of
decision variables (f

iy) specify the fleet assignment and the second set of decision variables (f
ijx) specify

the (regular or through) connection assignment.

f
iy : This variable takes value 1 if the flight leg i is assigned fleet type f, and 0 otherwise.

f
ijx : This variable takes value 1 if both the flight legs i and j are flown by the fleet type f and we

make a (regular or through) connection between the flight legs i and j, and 0 otherwise.

Integer Programming Formulation:

We give below the integer programming formulation of ctFAM.

Minimize
(,)

f f f f
i i ij ij

i N f F i j E f F
c y d x

∈ ∈ ∈ ∈
+∑ ∑ ∑ ∑ (1a)

 subject to

1,f
i

f F
y

∈
=∑ for all i ∈ N (1b)

(,) ()
,f f

ij i
i j O i

x y
∈

=∑ for all i ∈ N and all f ∈ F (1c)

 8

(,) ()
,f f

ij j
i j I j

x y
∈

=∑ for all j ∈ N and all f ∈ F (1d)

(,)
(),f

ij
i j S

x size f
∈

≤∑ for all f ∈ F (1e)

f
ijx ∈ {0, 1}, for all (i, j) ∈ E and for all f ∈ F (1f)

f
iy ∈ {0, 1}, for all i ∈ N and for all f ∈ F (1g)

We represent a feasible solution of ctFAM as (x, y). The first and second terms in the objective
function (1a) represent the contributions resulting from the fleet assignment and through assignment,
respectively. The constraint (1b) ensures that each flight leg is assigned exactly one fleet type. The
constraints (1c) and (1d) together with (1b) imply that each flight leg is assigned to another flight leg
using a connection arc, and the two flight legs and the connection arc are assigned the same fleet type.
The constraint (1e) ensures that the total number of planes of fleet type f in the assignment, which is the
sum of the flows on arcs in S, is no more than the available planes given by size(f). Observe that to
compute the number of planes of a particular fleet type k used in a fleet schedule, we sum the flow of
planes of that fleet type on the overnighting arcs.

In practice, the solution of ctFAM must also satisfy several additional constraints. These
constraints incorporate aspects of maintenance routing and crew scheduling. To simplify the exposition,
we defer the detailed description of these constraints to Appendix I. In Section 4, we explain how our
algorithm needs to be modified to account for these constraints.

Though ctFAM can be formulated as an integer programming problem, this problem is too large
to be solved to optimality or near-optimality (using the current LP technology) for the national network of
a large US airline. In the data supplied by United Airlines, there were 1,609 flight legs and 13 fleet types.
The resulting IP formulation had approximately 100,000 integer variables and 18,000 constraints. We
could not solve problems of this magnitude using the commercial IP solvers. We then focused on
neighborhood search algorithms to solve ctFAM. Additional reasons for considering neighborhood search
algorithms have earlier been described in Section 1. We describe our neighborhood search algorithm in
the next section.

3. NEIGHBORHOOD SEARCH ALGORITHMS FOR CTFAM

 For any feasible solution (x, y) of ctFAM, we will define a set N(x, y) of neighboring solutions.

Our neighborhood search algorithm works as follows:

 9

algorithm neighborhood search;
begin
 obtain an initial feasible solution (x, y) of ctFAM;
 while there is a neighbor (x′, y′) ∈ N(x, y) with c(x′, y′) < c(x, y) do
 begin

replace (x, y) by (x′, y′);
 end;
 output (x, y), which is a locally optimal solution;
end;

Figure 2. A neighborhood search algorithm for ctFAM.

Though the neighborhood search algorithm stated above always replaces (x, y) by an improved
neighbor (x′, y′), there exist variants which do occasionally replace (x, y) by worse neighbors too. These
variants include simulated annealing and tabu search algorithms. (We note that simulated annealing is
impractical when the neighborhoods are exponentially large.) We have also investigated tabu search
algorithms for ctFAM.

There are three primary steps involved in designing a neighborhood search algorithm for ctFAM:
(i) creating an initial feasible solution (x, y); (ii) defining the neighborhood N(x, y) with respect to the

solution (x, y); and (iii) searching the neighborhood N(x, y) to identify an improved solution. We shall

now discuss these steps in greater detail.

Creating an Initial Feasible Solution:

A feasible solution for ctFAM consists of a feasible fleet assignment and a feasible set of
connections. We first obtain a feasible fleet assignment by solving the fleet assignment model (FAM).
The solution of the FAM gives us a fleet assignment assigning a plane type to each flight leg. We next use
the through assignment model (TAM) to generate a set of connections. We solve the through assignment
problem at each city for each fleet type and optimally match the inbound flight legs with the outbound
flight legs flown by the same fleet type. We solve these bipartite matching problems to generate a set of
connections. The solution thus obtained is the starting solution for our neighborhood search algorithm.

A-B Solution Graph:

The A-B solution graph, SAB(x, y), is a subgraph of the connection network G = (N, E) and is
defined with respect to a given fleeting and connection solution (x, y) and a pair of fleet types A and B. Its
node set, N(SAB(x, y)), and arc set, E(SAB(x, y)), are defined as follows:

N(SAB(x, y)) = {i ∈ N: A
iy = 1 or B

iy = 1},

E(SAB(x, y)) = {(i, j) ∈ E: A
ijx = 1 or B

ijx = 1}.

In other words, the A-B solution graph SAB(x, y) is the subgraph of G whose node set comprises of
the flight legs that are assigned fleet types A and B in the solution (x, y), and the arc set comprises of the

 10

connections between those flight legs. We shall refer to a node in the A-B solution graph as an A-node if
A
iy = 1 and B-node if B

iy = 1. We shall refer to an arc in the A-B solution graph as an A-arc if A
ijx = 1 and

B-arc if B
ijx = 1.

A-B Swaps:

Our neighborhood search structure uses the concept of A-B swaps to define neighboring solutions.
We first define an A-B swap in a very general manner, one that permits a much larger neighborhood than
we subsequently search. Given a feasible solution (x, y) of ctFAM, and a pair of fleet types A and B, we
say that (x', y') is an A-B neighbor of (x, y) if it is a feasible solution that differs only in the assignment of
A-flights and B-flights. The operation of obtaining an A-B neighbor is called an A-B swap. Figure 3(a)
shows a part of the solution graph SAB(x, y) and Figure 3(b) shows the same part after the A-B swap has
been performed. In the figure, we show A-nodes and A-arcs using regular lines, and B-nodes and B-arcs
using dashed lines. Observe that the A-B swap changes the fleet type of nodes 4 and 10 from A to B and
changes the fleet type of nodes 3 and 6 from B to A. Changing the fleet types of these nodes requires
changing the connections too because we can connect nodes with the same fleet type only. The A-B swap
must also ensure that the connections can be feasibly made, that is, for each connection arc (i, j), the
arrival time of flight i is less than the departure time of flight j.

Recall that while defining A-B swaps we require that we do not violate fleet size constraints for
fleet types A and B. Figure 4(a) shows a part of the A-B swap where the number of planes of a particular
type used can increase. Suppose that flights 1 and 3 are flown by fleet type A and flights 2 and 4 are
flown by fleet type B. Assume that flights 1 and 2 arrive at times 2 PM and 4 PM, respectively, and the
flights 3 and 4 depart at 5 PM and 3 PM, respectively. Since flight 1 connects to flight 3 which leaves
three hours later, the arc (1, 3) is not an overnighting arc. However, flight 2 arrives at 4 PM and connects
to flight 4, which departs at 3 PM. Thus the arc (2, 4) is an overnighting arc. If we change the fleet types
of flights 1 and 3 from A to B, and of flights 2 and 4 from B to A, as shown in Figure 4(b), then we
increase the number of planes used for type A by one and decrease the number of planes used for type B
by one. Our neighborhood search algorithm does not allow such swaps if it leads to infeasibilities. Note
that if we change the fleet type of flight 1 from A to B, fleet type of flight 2 from B to A, and swap their
connections, as shown in Figure 4(c), then both the new connection arcs (1, 4) and (2, 3) are not overnight
arcs. This swap will reduce the number of plane used for type B by one. Our neighborhood search
algorithm allows such swaps.

The example shown in Figure 4 illustrates a very simple A-B swap; on the other hand, there can
exist far more complex A-B swaps, that affect many more flights and connections. In principle, we could
identify an improving A-B neighbor of (x, y) by solving a restricted integer program. We decided that
this was computationally too intensive, and adopted a more efficient approach. We search a subset of A-B
neighbors of (x, y) using network optimization. We next define the concept of A-B improvement graph,
which allows us to efficiently identify profitable A-B swaps over a structured subset of the A-B
neighborhood.

 11

A-B Improvement Graph:

Before we discuss the creation of our improvement graph, we note that the A-B solution graph
satisfies the following cycle-based property: The solution graph as restricted to the A nodes is a union of
node-disjoint cycles, and the solution graph is also the union of node-disjoint cycles. Equivalently, each A
node i has exactly one outgoing arc and exactly one incoming arc, and both these arcs have A-nodes as
the other endpoint. In our swaps, we will be changing some A-nodes to B nodes and vice-versa. We will
construct our A-B network in such a way that an improving cycle leads to a new solution with the above
cycle-based property.

Let us first illustrate the simplest type of swap before moving to the more complex swaps
permitted below. Consider two directed paths P and P' in the A-B solution graph both starting at the same
time t and the same location L, and both ending at the same time t' and the same location L', and such that
P consists of A-flights and P' consists of B-flights. We can swap P and P', making all the flights of P into
B-flights and making all of the flights of P' into A flights. To identify such path pairs, we could look for
all paths of A-flights and all paths of B-flights starting at time t at location L and ending at time t' at
location L'. Talluri [1996] recognized that we could find these paths in a simpler manner by reversing the
direction of all B arcs, and then looking for a directed cycle. By doing so, one also identifies many other
cycles, but each of the cycles (if midnight arcs are excluded from the cycles) corresponds to a valid A-B
swap. In our approach, we also reverse the arcs incident to B nodes.

An A-B improvement graph, GAB(x, y), is constructed for a given fleeting and through solution (x,
y) and a pair of fleet types A and B. Each arc (i, j) in the A-B improvement graph has an associated cost cij.
The A-B improvement graph satisfied the property that each directed cycle in it satisfying some
constraints, called the validity constraints, corresponds to an A-B swap with respect to the solution (x, y),
and the cost of the directed cycle equals the change in the fleeting and through costs. Consequently, a
negative cost directed cycle satisfying the validity constraints gives a profitable A-B swap. We will
subsequently refer to a directed cycle in GAB(x, y) satisfying validity constraints as a valid cycle.

The node set of the A-B improvement graph is identical to that of the A-B solution graph. Hence it
consists of A-nodes and B-nodes. Each arc (i, j) in the improvement graph signifies that we switch the
fleet types of nodes i and j from B to A or from A to B (whichever is applicable) and reconnect the flights
so that the connections are between flights that are assigned the same fleet types. In our approach, we add
an arc (i, j) to the improvement graph whenever this change can be feasibly made without increasing the
total plane count at the city arr-city(i) if i is A-node and dep-city(i) if i is a B-node. We define the cost cij
of the arc (i, j) to be the change in the fleeting and through costs resulting from the change. Figure 5
summarizes the six types of arcs that can be added to the improvement graph. In the figure, we show an
A-node or an A-arc using regular lines, and a B-node or B-arc using dashed lines. The detailed explanation
of these arcs is given next.

Type 1 Arcs: Consider an arc (i, j) in the A-B solution graph which is an A-arc such that (i, j) ∉ S. We
introduce the arc (i, j) in the improvement graph which corresponds to changing the plane types of both
the flights i and j from A to B. Both flights i and j become B flights, and we assume that their connection

 12

is maintained. The cost of the arc (i, j), cij, is the sum of (i) the change in the fleeting cost when plane type
of flight i is changed from A to B, and (ii) the change in the through revenues of the connection (i, j) due
to change in fleeting types. Notice that when computing cij we include the change in the fleeting cost of
flight i only but not flight j. We do it because if we include the cost of changing the fleet types of both the
nodes i and j in the cost of arc (i, j), then when we sum the cost of arcs in a valid cycle, we will be double
counting the changes in the fleeting costs. Since the arc (i, j) does not belong to the set S, it does not
affect the fleet size constraint.

Type 2 Arcs: A type 2 arc (j, i) is introduced in the improvement graph for each B-arc (i, j) in the A-B
solution graph such that (i, j) ∉ S. This arc corresponds to changing the plane types of both the flights i
and j from B to A and preserving the connection between the two flights. Notice that contrary to the case
of type 1 arcs, we introduce the arc (j, i) instead of arc (i, j). The arcs are reversed as per the discussion
above. The cost of the arc (j, i) captures the change in the fleeting cost of flight j and through costs of the
connection arc (i, j).

Type 3 Arcs: A type 3 arc (i, l) is introduced in the improvement graph for every pair, (i, j) and (k, l), of
A-arcs in the A-B solution graph such that the change corresponding to it does not violate the fleet size
constraints. The arc (i, l) signifies changing the fleet types of both the flights i and l from A to B. Since we
can make connections between flights flown by the same fleet type, this change requires changing the
connections too; we thus need to reconnect flight i with flight l and flight k with flight j. The cost of the
arc (i, l) captures the change in the fleeting cost of flight i and the change in the through costs due to
reconnections. We point out that we add the arc (i, l) to the improvement graph only if the corresponding
change does not increase the number of planes of type A and B. For example, we require that (i) (i, l) ∉ S,
and (ii) if (k, j) ∈ S than either (i, j) ∈ S or (k, l) ∈ S or both. Observe that in the absence of requirement
(i), the number of planes of type B used could increase by 1 after the addition of arc (i, l). Similarly, if
requirement (ii) is not satisfied than the number of planes of type A could increase by 1.

Type 4 Arcs: We introduce a type 4 arc (j, k) in the improvement graph for every pair of B-arcs (k, l) and
(i, j) in the A-B solution graph such that flight k can connect to flight j and flight i can connect to flight l,
and such that the change corresponding to it does not violate the fleet size constraints. The cost of the arc
(j, k) includes the costs of changing fleet type of flight j and k from B to A and the change in the through
costs due to the reconnections. Notice that a type 4 arc is similar to a type 3 arc except that the direction
of the arc is reversed. The requirements on the connection arcs are the same as those in type 3 arcs.

Type 5 Arcs: We introduce a type 5 arc (i, k) in the improvement graph for every pair of arcs (i, j) and
(k, l) in the A-B solution graph such that (i, j) is an A-arc, (k, l) is a B-arc, and the change corresponding to
(i, k) does not violate the fleet size constraint, and such that flight i can connect to flight l and flight k can
connect to flight j. The arc (i, k) corresponds to changing the fleet type of leg i from A to B and of leg k
from B to A. Changes in the fleet types require changing the through assignments too; leg i connects to leg
l, and leg k connects to leg j after the swap. The cost of the arc (i, k) captures the cost of the change in the
fleet assignment of leg i and the change in through connection costs due to the reconnections. To ensure
that the number of planes of type A and B do not increase, we use the following two requirements on the
connection arcs involved: (i) if (i, l) ∈ S then (k, l)∈ S, and (ii) if (k, j)∈ S then (i, j)∈ S.

 13

Type 6 Arcs: A type 6 arc is similar to a type 5 arc but with its orientation reversed. We introduce the arc
(j, l) in the improvement graph for every pair of arcs (i, j) and (k, l) in the A-B solution graph such that (i,
j) is a B-arc, (k, l) is an A-arc, and the change corresponding to it does not violate the fleet size
constraints. In addition, we require that flight i can connect to flight l and flight k can connect to flight j.
The cost of the arc (j, l) includes change in the fleeting cost of flight j and the change in through costs due
to reconnections. To ensure that the number of planes of type A and B do not increase, the requirements
on the connection arcs are the same as those in type 5 arcs.

We will identify A-B swaps by defining valid cycles which we define next. In the A-B solution
graph, each node i is connected to a unique node j through the arc (i, j) and is also connected from a
unique node k through the arc (k, i). For each node i, we define its “mate” as follows: (i) if i is an A-node
and (i, j) is an arc in the A-B solution graph, then mate(i) = j; and (ii) if i is a B-node and (k, i) is an arc in
the A-B solution graph, then mate(i) = k.

Valid Cycles: A directed cycle W in the A-B improvement graph is said to be a valid cycle if it satisfies
the following property for every node i ∈ W: mate(i) ∉ W unless (i, mate(i))∈ W.

 The intuitive reason we do not allow valid cycles to contain both the nodes i and mate(i) in the
valid cycles unless (i, mate(i)) ∈ W is as follows. The purpose of constructing the improvement graph is
that a directed cycle in it defines an A-B swap and that the cost of the cycle equals the cost of the A-B
swap. A directed cycle, which is not a valid cycle, cannot ensure this property. Consider, for example, a
directed cycle W in the improvement graph which contains a Type 5 arc (i, k) (see Figure 5). Let node j =
mate(i) and l = mate(k). The arc (i, k) signifies the change that flight i reconnects to flight l and flight k
reconnects to flight j, and the cost of the arc (i, k) captures the cost of these changes. If we allow the cycle
W to visit node j or node l, then we will not be able to preserve the change indicated by arc (i, k) and its
cost will become incorrect. Thus, if we make arc (i, k) part of the cycle, then we must disallow the mates
of these nodes from being a part of the cycle. This difficulty arises when we include arcs of Type 3, 4, 5,
or 6 in the cycle W. This difficulty does not arise when we make an arc of Type 1 or Type 2 to be the part
of the cycle in which case we include both the node i and its mate. Hence the “unless” clause in the
definition of the valid cycle.

 We will now give a numerical example that a valid cycle in the improvement graph gives an A-B
swap; this example will be followed by a formal proof of the general result. Consider the part of the A-B
solution graph shown in Figure 6(a). When we construct the improvement graph, it will contain the valid
cycle W = 3-4-10-7-8-6-3 shown in Figure 6(b). This cycle denotes the A-B swap, which when
performed, produces the solution shown in Figure 6(c). Observe that all the nodes in the cycle switch their
fleeting types. The arc (3, 4) in the valid cycle W is a Type 6 arc, this arc signifies that nodes 3 and 4
switch their fleeting types and the inbound flights into these nodes swap their connections. The next arc
(4, 10) in the cycle is a Type 3 arc which changes fleeting types and connections. The next arc (10, 7) is a
Type 1 arc; it only changes the fleeting. The next arc (7, 8) in the cycle is a Type 5 arc which captures the
fact that the outbound flights from these two nodes swap their flights. Finally, the two arcs (8, 6) and (6,
3) are Type 2 arcs which change the fleeting types but not the connections. Figure 6(c) shows the same
part of the solution graph when the corresponding A-B swap has been performed.

 14

We are now ready to prove the general result.

Theorem 1. Each valid cycle in the A-B improvement graph GAB(x, y) gives an A-B swap with respect to
the solution (x, y).

Proof: We note that any A-B swap results in a solution satisfying the constraints (1b) since any flight leg
that has fleet types A or B assigned to them will have a fleet type (A or B) after the swap. The constraints
(1e) are also satisfied since the changes corresponding to each arc in the A-B improvement graph ensure
that the fleet size constraints (1e) are satisfied. We shall now show that the constraints (1c) and (1d) are
also satisfied. This amounts to showing that the cycle-based property is maintained by the swap. Let W
denote the valid cycle. Let i be a node of the A-B solution graph. We assume inductively that node i has
one incoming arc and one outgoing arc in the current solution, and these arcs join node i to nodes of the
same fleet type. We want to prove that this property is satisfied after the A-B swap. Our proof relies on
the consideration of a number of cases. We show that the property holds for the A-nodes affected by the
swap. A similar argument can be made for the B-nodes.

Suppose first that i ∈ W and that i is an A-node. We consider first the node that directly follows
node i in W. We will show that after the swap, there is a B-node that directly follows node i in the
resulting A-B solution graph. If (i, j) is of type 1, then arc (i, j) is a B-arc in the A-B solution graph after
the swap. If (i, l) is of type 3, then arc (i, l) is a B-arc in the solution graph after the swap. If arc (i, k) is
of type 5, then (i, l) is a B-arc in the solution graph after the swap. We also note that cases 2, 4 and 6 are
not applicable to the arcs leaving an A-node.

We now consider the node that directly precedes an A-node r in W. We will show that after the
swap, there is a B-node that directly precedes node r in the resulting A-B solution graph. If (i, j) is of type
1 (in this case, r = j), then (i, r) is a B-arc in the A-B solution graph after the swap. If (i, l) is of type 3, (in
this case, r = l), then (i, r) is a B-arc in the A-B solution graph after the swap. If (j, l) is of type 6, (in this
case, r = l), then (i, r) is a B-arc in the A-B solution graph after the swap. We have just established that for
an A-node in W, there is exactly one outgoing B-arc and exactly one incoming B-arc after the swap. A
similar argument can be made for the B-nodes in the cycle W.

We now consider nodes that are not in W and are affected by the swap. In cases 1 and 2, there
are no such nodes. In case 3, node j has its incoming arc changed from (i, j) to (k, j), and node k has its
outgoing arc changed from (k, l) to (k, j), and the cycle property remains satisfied after the swap. (We
know that j ∉ W, and k ∉ W because W is valid). In case 4, node l has its incoming arc changed from (k,
l) to (i, l), and node i has its outgoing arc changed from (i, j) to (i, l), and the cycle property remains
satisfied after the swap. (We know that i ∉ W, and l ∉ W, because W is valid.) In case 5, the A-node j
has its incoming arc changed from (i, j) to (k, j), and the B-node l has its incoming arc change from (k, l)
to (i, l), and the cycle property remains satisfied after the swap. (We know that j ∉ W, and l ∉ W, because
W is valid.) Finally, in case 6, the B-node i has its outgoing arc changed from (i, j) to (i, l), and the A-
node k changes its outgoing arc from (k, l) to (k, j), and the cycle property remains satisfied after the
swap. (We know that i ∉ W, and k ∉ W, because W is valid.) This completes the proof of the theorem.♦

 15

3.5 Identifying A-B swaps

In the last section, we have shown that we can identify A-B swaps by identifying valid cycles in
the A-B improvement graph. However, identifying valid cycles in a graph is an NP-complete problem (see
Appendix II). Fortunately, this problem was typically solved in a fraction of second using CPLEX in our
benchmark cases. We will next model the problem of finding a union of node-disjoint valid cycles as an
integer programming problem.

We first introduce some notation related to the integer program. Let N′ = N(GAB(x, y)) denote the
set of nodes and E′ = E(GAB(x, y)) denote the set of arcs in the A-B improvement graph. We associate a
binary variable wij with each arc (i, j) ∈ E′. This variable takes value 1 if arc (i, j) is present in some valid
cycle, and takes value 0 otherwise. We give the IP formulation next followed by its explanation.

Minimize
(,)

ij ij
i j E

c w
′∈

∑ (2a)

 subject to

{ :(,) } { :(,) }
0, for ,ji ij

j j i E j i j E
w w all i N

′ ′∈ ∈

′− = ∈∑ ∑ (2b)

(),
{ :(,) \{(, ())}} { :((),) }

1, for ,ij mate i j
j i j E i mate i j mate i j E

w w all i N
′ ′∈ ∈

′+ ≤ ∈∑ ∑ (2c)

{0,1}, for (,)ijw i j E′∈ ∈ . (2d)

In the above formulation (2), the constraints (2b) and (2d) imply that the solution is a 0-1
circulation. This 0-1 circulation can be decomposed into unit flows along directed cycles. The constraints
(2c) ensure that the flow passing through each node i plus the flow passing through the node mate(i) is at
most 1, which implies that the resulting flow will not pass through both the nodes i and mate(i). An
exception to this rule occurs when flow takes place over the arc (i, mate(i)) in which case both the nodes i
and mate(i) can be visited. It is easy to see that a feasible solution of (2) gives a set of valid cycles. If the
improvement graph does not contain any negative cost valid cycles, then w = 0 will be an optimal solution
of (2). If the improvement graph contains a negative cost valid cycle, then an optimal solution w* of (2)
will give a collection of valid cycles with the minimum total cost. Using flow decomposition (see, for
example, Ahuja, Magnanti, and Orlin [1993]), we can decompose w* into a set of node-disjoint cycles.
Each of these cycles has a negative cost or a cost of 0. The negative cost cycles include an associated
profitable A-B swap.

3.6 Neighborhood Search Algorithms

We are now in a position to describe our neighborhood search algorithm for ctFAM. Figure 7
describes the generic version of our algorithm. Our neighborhood search algorithm for ctFAM performs
passes over all fleet pairs A and B and performs profitable A-B swaps. The algorithm terminates when in
one complete pass it finds that no profitable swap exists for any pair of fleet types A and B.

 16

algorithm ctFAM neighborhood search;
begin

solve FAM to determine the optimal fleet assignment y;
solve TAM to determine the optimal connections x for the fleet assignment y;
repeat

for each pair of the fleet types A and B do
begin

construct the A-B solution graph SAB(x, y);
construct the A-B improvement graph GAB(x, y);
while the A-B improvement graph GAB(x, y) contains negative cost valid cycles do
begin

determine a set W of negative cost valid cycles in the A-B improvement graph;
perform A-B swaps corresponding to W;
update the A-B solution graph SAB(x, y);

end;
end;

until for every pair of fleet types A and B, GAB(x, y) contains no negative cost valid cycle;
end;

Figure 7. The neighborhood search algorithm for ctFAM.

4. IMPLEMENTATION DETAILS

We now describe some important details of the implementation of our neighborhood search algorithm.

Identifying Negative Cost Valid Cycles: To identify a negative cost valid cycles in the A-B
improvement graph, we solve the IP problem (2) using the commercial solver CPLEX 6.5 and do not run
it up to optimality as it takes too much time. The solver solves the IP problem using a branch and bound
algorithm. We keep track of the number of integer solutions found by the branch and bound algorithm and
stop it as soon as it finds an optimal solution or finds 10 integer solutions, whichever occurs earlier. We
use the best integer solution found, decompose it into node-disjoint profitable valid cycles, and perform
A-B swaps corresponding to each valid cycle. Our neighborhood search needs only one negative cost
valid cycle to improve the current solution and it need not be the best valid cycle. Consequently, we may
terminate the IP whenever it has found a negative cost valid cycle.

Updating Flight Connections: Our neighborhood search algorithm starts with a solution where the flight
connections (given by the solution x) are optimal for the specified fleet assignment (given by the solution
y). Each A-B swap performed by the algorithm changes the fleet assignment of some flight legs and may
also change flight connections. After this change, the modified flight connections x′ may not be optimal
for the modified fleet assignment y′. Hence, a possibility to improve the solution value exists by changing
connections without changing the fleet assignment. Our algorithm checks for these possibilities and
makes switches when improvements are possible. It solves a TAM for the fleet types A and B at every city
where A-B swap has changed the fleet assignment. This step takes only a small proportion of the overall
computational time, and occasionally improves the solution value substantially.

 17

Handling Additional Constraints: In Section 2, we noted that the solutions of ctFAM also need to
satisfy three additional set of constraints (A1) – (A3) described in Appendix I. To incorporate these
additional constraints, we first added these constraints to FAM and to TAM so that the initial solution
constructed by using these models satisfies these constraints. Subsequently, we ensured that each A-B
swap performed by the algorithm maintains these additional constraints. We considered the
straightforward approach of directly incorporating the constraints into the integer program in (2).
Unfortunately, this method makes the integer program (2) substantially much more difficult to solve, and
not practical for a neighborhood search approach. However, we also made the following fortuitous
discovery: approximately half of all improving valid cycles for our previous model satisfy constraints
(A1) - (A3). Accordingly, we solved (2) using the IP solver with no additional constraints. We performed
an A-B swap as determined by the solution of the integer program when it also satisfied constraints (A1)
– (A3).

Tabu Search: The algorithm described in Figure 7 is a pure local search algorithm. We also implemented
a tabu search algorithm. (See Glover and Laguna [1997] for details on tabu search). We implemented a
version of the tabu search that incorporated the short-term memory aspect of tabu search; that is, we used
tabu lists. To ensure that the tabu search approach would generate at least one valid cycle at each

iteration, we added the constraint Σ(i,j)∈E wij ≥ 1 to (2). In order to cut down on some of the unproductive
searching, we restricted our search to a small subset of “promising” A-B pairs of fleet types. In addition,
when we solved (2) by the IP solver, we enumerated 100 integer solutions only and the best solution
among them determined the set of A-B swap performed. Each flight involved in an A-B swap is made tabu
for the next 5 iterations. For any pair of fleet types A and B, we apply the tabu search algorithm for 100
iterations and record the best solution found.

5. COMPUTATIONAL TESTING

In this section, we present computational results of our neighborhood search algorithms. We
programmed our algorithms in the C programming language and on a Pentium 4 1.4 GHz processor
computer with 512MB RAM and a Linux operating system. We tested our algorithms on the data
provided by United Airlines.

We tested our local improvement and tabu search algorithms on four problems whose data was
provided by United Airlines: (i) FAM without maintenance constraints; (ii) ctFAM without maintenance
constraints; (iii) FAM with maintenance constraints; and (iv) ctFAM with maintenance constraints. The
starting solutions for these problems were obtained by solving integer programming problems. The
integer programming problems were run up to 30 minutes as is the practice at that airline. The best integer
solution obtained became the starting point of our neighborhood search algorithms. The table shown in
Figure 8 gives the changes in FAM and through contributions by the use of neighborhood search. Our
objective in the neighborhood search algorithms was to maximize the total fleet assignment and through
contribution. The improvements obtained are reported on an annual basis. We observe both the local and
tabu search algorithms improve the integer programming solutions quickly in a fairly reasonable time.
The following additional conclusions can be drawn from the table:

 18

• The local improvement algorithm is efficient and terminates quickly. It also improves the FAM
solution. The reason that it can improve the FAM solution is that the FAM solution was not
solved to optimality, but terminated with a nearly optimal solution. The neighborhood search
algorithms found the possible improvements quickly. This suggests that neighborhood search
algorithms can be used as a supplement to the integer programming techniques.

• Our algorithms for ctFAM with maintenance constraints improved the integer programming
solution by a substantially larger amount than ctFAM without the maintenance constraints.
Maintenance constraints make the integer programming problem harder and the solution
produced by the IP software leaves more room for possible improvement which our
neighborhood search algorithm is able to obtain.

• Our local improvement algorithm terminates in a matter of a few seconds. Our tabu search
algorithm takes substantially longer then the local improvement algorithm, and is able to obtain
somewhat better solutions. Our tabu search implementation was a straightforward
implementation. We believe that greater savings can be obtained by a better and more
sophisticated implementation of the tabu search.

We performed some additional computational results to assess the behavior of our algorithms.
Figure 9 shows the statistics we noted for our four models.

6. CONCLUSIONS

In this paper, we study the combined through and fleet assignment model (ctFAM) which
integrates the fleet assignment model (FAM) and the through assignment model (TAM). We give an
integer programming formulation of ctFAM which, unfortunately, is too large to be solved to optimality
or near-optimality using the state-of-art commercial IP solvers. We propose a swap-based neighborhood
search algorithm for ctFAM that proceeds by swapping the fleet types of flights flown by two fleet types.
Our swap based neighborhood structure generalizes the previous neighborhoods suggested by Berge and
Hopperstad [1993] and Talluri [1996]. We searched our (exponentially large) neighborhood heuristically
using an integer programming solver. We implemented two versions of our basic algorithm – a local
improvement algorithm and a tabu search algorithm.

Preliminary computational results of our algorithms are quite encouraging. On the data provided
by United Airlines, both our local improvement algorithm and our tabu search algorithm obtained
substantial improvements in savings and computational times. The airline is currently converting the
prototype into a full-scale application for use in the scheduling department. There are plans to expand the
approach for solving more complex mutli-criteria optimization problems by incorporating other
downstream criteria in the schedule planning process. In conclusion, a comprehensive framework has
been developed for the airlines to model and solve advanced planning problems.

 19

ACKNOWLEDGEMENTS:

The authors gratefully acknowledge support through NSF Grants # DMI-9900087 (at the
University of Florida) and DMI-9820998 (at MIT) and a grant from United Airlines. We also thank Raj
Sivakumar and Ram Narsimhan at United Airlines for their help and support during the course of this
project.

REFERENCES:

Aarts, E., and J.K. Lenstra. 1997. Local search in Combinatorial Optimization. John Wiley.

Abara, J. 1989. Applying integer linear programming to the fleet assignment problem. Interfaces 19, 20-
28.

Ahuja, R.K., J.B. Orlin, D. Sharma. 2001a. Multi-exchange neighborhood search algorithms for the
capacitated minimum spanning tree problem. Mathematical Programming 91, 71-97.

Ahuja, R.K., J.B. Orlin, D. Sharma. 2001b. A composite neighborhood search algorithm for the
capacitated minimum spanning tree problem. Submitted to Operations Research Letters.

Ahuja, R.K., O. Ergun, J.B. Orlin, and A.P. Punnen. 2002. A survey of very large-scale neighborhood
search techniques. To appear in Discrete Applied Mathematics.

Ahuja, R.K., T.L. Magnanti, and J.B. Orlin. 1993. Network Flows: Theory, Algorithms and Applications.
Prentice Hall, New Jersey.

Bard, J.F., and C.A. Hopperstad. 1987. Improving through-flight schedules. IIE Transactions 19, 242-
251.

Barnhart, C., N.L. Boland, L.W. Clarke, E.L. Johnson, G.L. Nemhauser, and R. Shenoi. 1998. Flight
string models for aircraft fleeting and routing. Transportation Science 32, 208-219.

Barnhart, C., and K.T. Talluri. 1997. Airlines operations research. Design and Operation of Civil and
Environmental Engineering Systems, Edited by A. McGarity and C. ReVellepp, 435-469.

Berge, M.E., and C.A. Hopperstad. 1993. Demand driven dispatch: A method for dynamic aircraft
capacity assignment, models and algorithms. Operations Research 41, 153-168.

Clarke, L. W., C.A. Hane, E.L. Johnson, and G.L. Nemhauser. 1996. Maintenance and crew
considerations in fleet assignment. Transportation Science 30, 249-260.

Glover, F., and M. Laguna. 1997. Tabu Search. Kluwer Academic Publishers, Norwell, MA.

Gopalan R., and K.T. Talluri. 1998. Mathematical models in airline schedule planning: A survey. Annals
of Operations Research 76, 155-185.

Hane, C. A., C. Barnhart, E.L. Johnson, R.E. Marsten, G.L. Nemhauser, and G. Sigmondi. 1995. The fleet
assignment problem: Solving a large-scale integer program. Mathematical Programming 70, 211-
232.

 20

Jarrah, A.I.Z., and J.C. Reeb. 1997. An optimization model for assigning through flights. Technical
Document, United Airlines.

Subramanium, R., R.P. Scheff Jr., J.D. Quillinan, D.S. Wiper, and R.E. Marsten. 1994. Coldstart: Fleet
assignment at Delta Air Lines. Interfaces 24, 104-120.

Talluri, K.T. 1996. Swapping applications in a daily fleet assignment. Transportation Science 31, 237-
248.

Thompson, P.M., and J.B. Orlin. 1989. The theory of cyclic transfers. Working Paper No. OR 200-89,
Operations Research Center, MIT, Cambridge, MA.

Thompson, P.M., and H.N. Psaraftis. 1993. Cyclic transfer algorithms for multivehicle routing and
scheduling problems. Operations Research 41, 935-946.

 21

APPENDIX I

In this appendix, we briefly discuss three kinds of additional constraints that are enforced on a
fleet assignment, and are closely related to constraints faced in other fleet scheduling problems as well.
They are related to maintenance and crew scheduling. The rational behind these constraints is discussed in
detail in Clarke et. al. [1996]. Our ctFAM includes these additional constraints and solutions obtained by
our algorithms satisfy these constraints.

1. Service Maintenance Constraints. For each fleet type f, the service maintenance constraints specify a
set of maintenance stations at which a certain desired percentage of aircraft of fleet type f must be on the
ground at midnight. These constraints can be easily incorporated into the ctFAM formulation. Let Sf
denote the set of connection arcs such that a plane using one of these arcs is on the ground at midnight at
one of the maintenance stations for fleet type f. Let pf denote the desired percentage of aircraft of fleet f at
its maintenance stations. Using this notation, we can write the service constraint for fleet type f in the

integer programming formulation (1) as:
(,)

().
100f

ff
ij

i j S

p
x size f

∈

≥∑

2. Aircraft Balance Check Constraints. These constraints model the longer balance check maintenance
(10-12 hours) done on the aircraft. An aircraft balance check constraint specifies a station s, an interval of
the day (a, b), duration of the check D, a list L of fleet types, and a number K such that K planes from the
fleet type list L must receive balance check of duration D within the interval (a, b) at station s. In order to
incorporate this constraint in the integer program (1), let Q denote the set of connection arcs such that a
plane taking any of the connections in Q is on the ground at station s for a duration of at least D units
between the interval (a, b). The aircraft balance check constraint can then be specified
as: (,) .f

iji j Q f L x K
∈ ∈

≥∑ ∑ There may be several such constraints, one per type of balance check

constraint.

3. Crew Block Hour Constraints. The block hour of a flight is the time that elapses between the flight
leaving the gate at the departure city and entering the gate at the arrival city. The crew block hour
constraint requires that the total block hours of all the flight legs that are assigned to a given subset of
fleet types should be bounded. Since each crew is typically trained for a subset of aircraft types, these
constraints ensure that none of the crews is over or under-utilized. For each flight node i, let bi denote the
block time of the flight leg associated with it. Let L represent the set of fleet types involved in the crew
block hour constraint and m, M, respectively, denote the lower and upper bounds on the total block hours
allowed for all the planes belonging to the fleet types in L. The crew block hour constraint can be
incorporated in the formulation (1) as .c

f
i if L i Nm b y M

∈ ∈
≤ ≤∑ ∑ There may be several such constraints,

one per type of balance check constraint.

 22

APPENDIX II

In this appendix, we show that the problem of finding a negative cost valid cycle in a graph is
NP-complete.

Negative Cost Valid Cycle Problem:

Input: A graph G = (N, A), arc costs c: A → R, and a function mate: N → N such that for i ∈ N, (i,
mate(i)) ∈ A and mate(i) ≠ mate(j) for j ≠ i.

Question: Is there a negative cost valid cycle W in G (that is, is there a cycle W such that for every node i
∈ W: mate(i) ∉ W unless (i, mate(i)) ∈ W)?

We refer to an input instance of the problem as a yes instance if the answer to the question is yes.
It is easy to see that the negative cost valid cycle problem is in NP since a negative cost valid cycle is a
succinct certificate for the yes instances. In order to prove the NP-completeness of the negative cost valid
cycle problem, we shall provide a polynomial time transformation from another problem called the path
through forbidden pairs, which is known to be an NP-complete problem (see, for example, Garey and
Johnson [1979]).

Path through Forbidden Pairs Problem:

Input: A graph G′ = ({1, 2,…, 2n}, A′) with 2n+1 nodes for some n > 0.

Question: Is there a path P from node 1 to node 2n+1 in G′ satisfying the following property: for each k
= 1, 2, …, n-1, the nodes 2k, 2k+1 can not simultaneously belongs to the path P?

Given an input graph G′ for the path through forbidden pairs problem, we construct an input
instance of the negative cost valid cycle problem as follows. The input graph for our instance is G = (N,
a), where N = {0, 1, 2, …, 2n}, A = A′∪S∪{(2n, 1)}∪{(0, 2n)}) and S = {(2k, 2k+1): k = 1,…, n-
1}∪{(2k+1, 2k): k = 0,…, n-1}. The arcs in the set S and the arc (0, 2n) are added so that we can define
the mate function in the desired manner. For k = 1, 2, …, n-1, we define mate(2k) = 2k+1 and mate(2k+1)
= 2k. We set mate(0) = 2n, mate(2n) = 1, and mate(1) = 0. The reader can verify that our mate function
satisfies the required conditions. We define the arc costs c as follows:

0 if (,)
1 if (,)
1 if (,) (2 ,1)

ij

i j A
c i j S

i j n

′∈
= ∈
− =

It is easy to see that the instance above can be constructed in time polynomial in the size of G′.

Theorem 2. The instance (G, c, mate) is a yes instance for the negative cost valid cycle problem if and
only if the graph G′ is a yes instance for the path through forbidden pairs problem.

 23

Proof: If a path P exists in G′ from node 1 to node 2n such that it satisfies the required condition for path
through forbidden pairs problem, then by the definition of c, the cost of the path P is 0 in the instance (G,
c, mate). Further, by the construction of the mate function, the cycle obtained by adding the arc (2n, 1) to
path P is a valid cycle. Hence, if G′ is a yes instance of the path through forbidden pairs problem, then (G,
c, mate) is a yes instance of the negative cost valid cycle problem.

Conversely, if W represents a negative cost valid cycle in the instance (G, c, mate) then it must
contain the arc (2n, 1) and none of the arcs (i, j) ∈ S can be in the cycle W. By the construction of the
mate function, this implies that for k = 1,…, n-1, the nodes 2k and 2k+1 cannot be in the cycle W
simultaneously. Hence, the path obtained by removing the arc (2n, 1) from the cycle W satisfies the
condition for the path through forbidden pairs problem in the graph G′. This proves our result. ♦

Using the previous theorem and our construction of the instance (G, c, mate), we observe that
there is a polynomial time transformation from any instance of the path through forbidden pairs problem
to an instance of the negative cost valid cycle problem. Therefore, the negative cost valid cycle problem is
an NP-complete problem.

 24

 Figure 1. Our approach for solving ctFAM.

ctFAM
Outputs

FAM
Inputs

FAM Outputs

TAM Inputs

FAM Outputs

TAM Outputs

FAM TAM ctFAM

 25

Figure 2. Part of the connection network at a city with the inbound flights 1, 2, and 3, and
the outbound flights 4, 5, and 6.

1

2

3

4

5

6

 26

Figure 3. Illustrating an A-B swap.
 (a) Part of the solution graph before the A-B swap.
 (b) Part of the solution graph after the A-B swap.

1

4

2

3

(b)

5

7

6

8

9

10

4

2

3

(a)

5

7

6

8

9

10

1

 27

Figure 4. Effect of swaps on the number of planes used.
(a) Four flights and two connections. (b) a possible swap which increases the number of
planes used for type A and decreases the number of planes used for type B; (c) a possible
swap which decreases the number of planes used for type B.

1

4

2

3
3 PM 5 PM

4 PM

(c)

2 PM

1

4

2

3
3 PM 5 PM

4 PM

(b)

2 PM

1

4

2

3
3 PM 5 PM

4 PM

(a)

2 PM

 28

Type

of Arc
Before the

change in the
solution graph

After the change
in the solution

graph

Corresponding
arc in the

improvement
graph

Cost of the arc in the
improvement graph

Type 1

cij = (B
ic + B

ijd)

 – (A
ic + A

ijd)

Type 2

cji = (A
jc + A

ijd)

 – (B
jc + B

ijd)

Type 3

cil = (B
ic + B

ild + A
kjd)

 – (A
ic + A

ijd + A
kld)

Type 4

cli = (A
lc + A

ild + B
kjd)

 – (B
lc + B

ijd + B
kld)

Type 5

cik = (B

ic + B
ild + A

kjd)

 – (A
ic + A

ijd + B
kld)

Type 6

cjl = (A

jc + B
ild + A

kjd)

 – (B
jc + B

ijd + A
kld)

Figure 5. Different types of arcs in the A-B improvement graph.

i k

lj

i k

l j

i k

lj

i k

lj

i k

l j

i k

l j

i k

i

l

i

l

i

j

i

j

i

j

i

j

i

j

i

j

j l

i k

l j

i k

lj

 29

4 3

(b)

6

Type 6

Type 1

Type 3
Type 2

8 71

10
Type 2

Type 5

4

2

3

(a)

5

7

6

8

9

10

1

11 12

 30

Figure 6. Valid cycles and A-B swaps.
 (a) Part of the A-B solution network.
 (b) A valid cycle in the improvement graph.

 (c) Part of the A-B solution network when the corresponding A-B swap is performed.

1

4

2

3

(c)

5

7

6

8

9

10

11 12

 31

Model Local Improvement Algorithm Tabu Search Algorithm

Changes in
fleeting
contribution
(in millions)

Changes in
though
contribution
(in millions)

Changes in
total
contribution
(in millions)

Running
time
(sec.)

Changes in
fleeting
contribution
(in millions)

Changes in
though
contribution
(in millions)

Changes in
total
contribution
(in millions)

Running
time
(sec.)

FAM
without
maintenance

0.55 0 0.55

3 1.77 0 1.77

144
FAM with
maintenance

3.84 0 3.84

10
3.88 0 3.88

299
ctFAM
without
maintenance

-5.25 22.40 17.15

10
-10.00 35.20 25.20

1543
ctFAM with
maintenance

-0.94 27.80 26.86

9
-2.12 31.77 29.65

380

Figure 8. Improvements obtained by the local improvement and tabu search algorithms.

 32

Model
of

iterations

Average
cost of the

cycle

Average
length of
the cycle

Total # of
flights

changed
of

passes
FAM without
maintenance 4 -382 3.5 13 2
FAM with maintenance 40 -263 8.0 200 3
ctFAM without
maintenance 34 -956 10.4 222 3
ctFAM with maintenance
 39 -1154 10.5 246 3

 (a)

Model
Total # of
iterations

Improving
iterations

Worsening
iterations

Average
cost of the

cycle

Average
length of
the cycle

of
flights

changed
of

passes
FAM without
maintenance 4163 1676 2487 279 4.7 41 3
FAM with
maintenance 1963 619 1344 1201 5.8 215 3
ctFAM without
maintenance 15354 4752 10602 1084 5.6 306 5
ctFAM with
maintenance
 4998 1253 3745 1471 6.2 267 4

 (b)

Figure 9. Some statistics of the local search and tabu search algorithms.
(a) Local improvement algorithm; (b) Tabu search algorithm.

