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Abstract

I present a novel approach to creating structured diagrams (such as flow charts and

object diagrams) by combining an off-line sketch recognition system with the user

interface of a traditional structured graphics editor. The system, called UDSI (user-

directed sketch interpretation), aims to provide drawing freedom by allowing the

user to sketch entirely off-line using a pure pen-and-paper interface. The results of

the drawing can then be presented to UDSI, which recognizes shapes and lines and

text areas that the user can then polish as desired. The system can infer multiple

interpretations for a given sketch, to aid during the user's polishing stage. The UDSI

program offers three novel features. First, it implements a greedy algorithm for

determing alternative interpretations of the user's original pen drawing. Second, it

introduces a user interface for selecting from these multiple candidate interpretations.

Third, it implements a circle recognizer using a novel circle-detection algorithm and

combines it with other hand-coded recognizers to provide a robust sketch recognition

system.

Thesis Supervisor: Robert C. Miller
Title: Assistant Professor
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Chapter 1

Introduction

Structured diagrams (e.g. flow charts, module dependency diagrams) are commonly

created using an editor such as Visio or XFig. These applications are powerful and

expressive, but they are cumbersome to use, and they make it difficult to communicate

drawing styles and shape sizes. Realizing the shortcomings of the user interfaces

of these applications, recent research has focused on sketch understanding systems

that recognize hand-drawn structured diagrams [3, 8]. These systems use stroke

information collected on a tablet computer to recognize parts of the diagram as the

user sketches them. While these systems are more natural to use than the menu-

and mouse-driven editors, they have subtle deviations from an actual pen-and-paper

interface. For example, adding an arrowhead to a line segment that was drawn much

earlier may confuse the system since the recognition depends on temporal information.

The user must delete the line segment and redraw it with the arrowhead.

UDSI (User-Directed Sketch Interpretation) is a new system for creating struc-

tured diagrams that is based on understanding hand-drawn sketches of structured

diagrams. Unlike existing systems that require devices that can capture stroke infor-

mation while the user sketches the diagram, UDSI uses scanned images of sketches.

The user presents a scanned pen sketch of the diagram to UDSI and guides the ap-

plication's interpretation of the sketch. The final result is a structured diagram that

can be incorporated into technical documents or refined in an existing structured

graphics editor. The user can therefore iteratively create the diagram using a pure
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Figure 1-1: Original pencil sketch (scanned)

pen-and-paper interface until she is satisfied with the style, layout, and position of

the components of the diagram.

The power of this system is that the user can use the pen-and-paper interface

where it is natural and convenient (e.g. sizing shapes, placing arrows, and routing

line segments) and then can use a mouse and keyboard where it is more appropriate

(e.g. typing in text, selecting colors, choosing fonts).

The UDSI system combines standard algorithms from the machine vision liter-

ature for filtering, segmentation, and shape detection [5] with novel algorithms for

extracting text regions and recognizing arrowheads. These algorithms produce (pos-

sibly conflicting) interpretations of the scanned sketch that are combined using an

elimination algorithm to produce not only the best candidate interpretation, but

also multiple alternative interpretations. These alternatives are presented to the user

16



Figure 1-2: User editing a recognized sketch in UDSI

through a novel user interface that allows the user to effectively select alternative

interpretations that the system has generated.

The motivation for this work is similar to other sketch recognition systems (see

Related Work below): to provide the user with a more natural interface for creating

structure diagrams. Many of the sketch recognition systems reviewed below are on-

line systems that require an instrumented tablet PC to properly recognize the user's

strokes. UDSI eliminates this restriction and allows the user to create sketches off-line.

17



The rationale is that though tablet computer represent an extraordinary opportunity,

the adoption rates continue to lag, while adoption rates for low-cost image acquisition

devices (scanners, digital cameras, and camera phones) continue to soar. Therefore, I

believe it is still worth investigating off-line recognition, even though it might sacrifice

some amount of accuracy and precision. It is worth noting that my recognition

approach should be immediately usable on a tablet PC, since it is vision-based instead

of stroke-based.

1.1 Thesis Contributions

This thesis makes the following contributions:

" It presents an off-line sketch recognition system that is capable of interpreting

scanned pencil sketches of box-and-line diagrams. The recognition system in-

corporates standard algorithms from the machine vision literature with novel

algorithms for circle recognition, shape filtering, and automated generation of

alternative interpretations.

" It describes the design and implementation of a user interface for correcting

recognition errors.

" It describes a method for testing the usability of the entire system and it ana-

lyzes results from a controlled experiment that quantitatively and qualitatively

compares the system to existing structured graphics editors.

1.2 Thesis Overview

Chapter 2 discusses the substantial existing literature and related work. Chapter

3 details the motivation for this work, and how it fits into the existing literature.

Chapter 4 discusses the design and implementation of the user interface. Chapter 5

discusses the recognition module, including the novel algorithms for recognition and

18



filtering. Chapter 6 presents the alignment module. Chapter 7 analyzes the quan-

titative and qualitative results of the user study. Chapter 8 concludes and presents

future work.
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Chapter 2

Related Work

This section briefly reviews related work in sketch understanding and image editing.

Previous research in sketch understanding has generally chosen one of two paths: (1)

on-line interfaces that require an instrumented drawing surface that captures stroke

information. or (2) off-line interfaces that allow the user to sketch using pen-and-

paper.

2.1 On-line Interfaces

On-line sketch recognition systems have been developed for a wide range of diagrams.

Smithies [15] and Zanibbi [17] created systems to interpret handwritten mathemati-

cal expressions. Smithies developed a system that used on-line feedback to guide the

understanding of hand drawn mathematical expressions. The system had a user in-

terface that allowed the user to make corrections when the system misinterpreted an

expression. The user made these corrections using gesture recognition. For example,

to tell the system to reinterpret an equals sign that had been misinterpreted as two

minus signs, the user first switches to "regroup" mode and then the user draws a

line through both lines in the equals sign. Analogous strokes can be used to regroup

symbols that were mistakenly interpreted as separate expressions. The goal of this

system was to allow LaTeX and Mathematica novices to easily input complex mathe-

matical expressions. During time trials, novices still took a long time to enter simple

21



mathematical expressions, and experienced LaTeX and Mathematica users were able

to create the expressions in much less time than experienced users in the sketch-based

system.

Lank, et. al [8] and Hammond [3] independently designed systems that recog-

nize hand drawn UML diagrams. Lank used on-line stroke information to recognize

UML "glyphs". The interface to this system was similar to the system described in

the Smithies research paper. The user was able to indicate when the system would

interpret the sketched diagram, and the user could also force the system to regroup

or degroup expressions, and reinterpret them, if necessary. The UI allows the user

to correct the system at each stage of understanding: acquisition, segmentation, and

recognition.

Hammond also designed a system to recognize sketches of UML diagrams. The

system was on-line, like the Lank system. The differences are that the Hammond

system does not attempt to use character recognition, whereas the Lank system pro-

vided a correction mechanism to ask the user whether the interpreted glyph was

character data or UML data. Hammond also uses different heuristics to determine

which UML component was drawn. In addition to stroke information, collections of

strokes ("gestures", they are called) are used to define UML component classes. A

nice feature of the Hammond system is that it is non-modal: users can edit and draw

"without having to give any explicitly advance notification." This presumably leads

to a more natural interaction, since the user can focus on the UML design, and not

giving directions to the application. Also, the system avoids a gesture recognition

interface entirely.

Sezgin, et. al [14] have created a sketch understanding system that recognizes

geometric primitives. Using stroke information, as well as shape and curvature infor-

mation, they have created a three phase system (approximation, beautification, basic

recognition) that transforms sketches into sharpened diagrams. Sezgin also mentions

four key components for on-line sketch understanding interfaces: (1) it should be

possible to draw arbitrary shapes with a single stroke, (2) the system should do au-

tomatic feature point detection, (3) the system should be non-modal, and (4) the

22



system should feel natural to the user.

Landay developed a tool called SILK to allow users to sketch a user interface [7].

The sketch could then be converted into an interactive demo of the sketched GUI.

The system used gestures (single strokes, in this case) to allow the user to indicate

various actions (deleting widgets, ungrouping widgets, etc.)

Igarashi, et. al developed a "Flatland" user interface that supported stroke-based

interaction on an augmented whiteboard [7]. The goal was to create an enhanced

whiteboard that still had the same physical advantages (e.g. persistent strokes).

The modal system supports several behaviors (to-do list, map drawing, 2D geometric

drawing, calculator) that are selected by the user.

Jorge and Fonseca present a novel approach to recognizing geometric shapes in-

teractively [6]. Using a digitizing tablet, they provide a recognition algorithm to

recognize multi-stroke sketches of geometric shapes through the use of fuzzy logic

and decision trees.

2.2 Off-line Sketch Understanding Systems

All of the sketch understanding systems discussed above are on-line systems that

require that the user be present at the computer when she is sketching her design.

There is also existing research on interpreting sketches that were created with pen-

and-paper, which is closer to the UDSI system.

Valveny and Marti discuss a method for recognizing hand-drawn architectural

symbols [16]. Their method operates on 300 dpi bitmaps and therefore works as an

off-line system. Their recognition rates are around 85%, but they do not discuss how

the user might correct an incorrect recognition. The method of deformable template

matching, however, should extend beyond hand-drawn architectural symbols to other

types of hand-drawn symbols (such as chemical structures or flow charts).

Ramel, et. al discuss a new strategy for recognizing handwritten chemical for-

mulas [10]. They utilize a text localization module that extracts text zones for an

external OCR system. They also use a global perception phase that incrementally

23



extracts graphical entities. Their system achieves recognition rates of 95-97%, but as

in Valveny and Marti, there is no discussion of how the user can correct recognition

errors.

2.3 Sketch Editing

There has been recent research investigating novel image editing interfaces for infor-

mal documents such as scanned sketches or handwritten notes [11], [13]. This work

has introduced novel user interface techniques for selecting image object material

from a static bitmap. These tools attempt to fill the current void in computer editing

tools that provide support for perceptual editing of image bitmaps. UDSI is similar

to this line of research in that the input documents are informal, rough sketches, but

UDSI differs in the functionality it provides. While ScanScribe allows users to edit

the bitmap directly, UDSI provides an interface for the user to gradually transform

the rough image bitmap into a structured diagram.
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Chapter 3

Motivation

Consider the following scenario: a small team of engineers is conducting a design

discussion in a meeting room. People take turns turns editing a high-level diagram

(perhaps an abstract problem object model) on a dry-erase board. One of the mem-

bers sketches the resulting diagram on her legal pad. She then returns to her office,

where she re-creates the diagram in a structured graphics editor and then sends it to

the team along with the meeting notes. The engineer's task is essentially taking a

sketch of an abstract diagram and creating a digital version that can be edited in a

structured graphics editor.

This task adequately summarizes the problem I am trying to solve. UDSI should

allow the user to convert sketches of structured diagrams into recognized forms that

can be refined in existing structured graphics editors. Motivation comes from two

sources: (1) frustration with the cumbersome interfaces of existing structured graphics

editors, and (2) belief that vision-based approaches to sketch recognition expands the

set of recognizable diagrams. This chapter discusses and expands on this motivation.

3.1 Task Analysis

I conducted a task analysis1 of structured diagram creation using a common exist-

ing structured graphics editor, Microsoft PowerPoint. I recruited several graduate

'For an excellent introduction to user and task analysis, see [2].
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teaching assistants and observed them completing a task that asked them to create

a module dependency diagram from a code sample. Graduate teaching assistants

were chosen so that they would have no problem completing the task. As the users

completed the assigned task, I observed some interesting behavior: users did not plan

how the diagram would be laid out. Instead the users immediately started creating

shapes in PowerPoint. As figure 3-1 shows, often users had to re-organize the layout

of their diagram. Because these users did not user PowerPoint frequently enough to

learn any of the special features that would help in this process (such as grouping and

alignment), the users would manually move each shape around and around until they

were satisfied. As discussed in the Evaluation section, users often produced cleaner

diagrams if they were told to sketch the diagram beforehand. This suggests that

users are overconfident (or not sufficiently risk-averse) and therefore they believe that

immediately using PowerPoint before thinking is an optimal strategy 2

Figure 3-1: Screenshots from task analysis of user producing a diagram in PowerPoint.

Note the considerable re-organization. Total task took 12 minutes to complete. These

screenshots are taken at 0:59, 2:22, 4:53, 7:29, 9:08, and 10:52.

In addition to the constant moving and aligning of components, I observed many

mode errors as the users tried to select and/or create elements. This mode error

2This myopic behavior reminds me of the notion of "bounded rationality" that is currently an

active research area in psychology and economics. Like the utility-maximizer who doesn't know

what's best for him, it is certainly difficult to design an interface for the user who doesn't know (and

doesn't bother to think about) the best way to solve the problem.
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has also been observed by [12]. Finally, the users seemed to find the user interface

cumbersome to use. Because the subjects in the task analysis used structured graphics

editors infrequently 3 , they did not remember how to do many of the tasks needed to

modify their diagram (e.g. change line endpoints or modify line styles to create

dotted lines). Even when the users figured out how to execute their tasks, they were

presented with dialogs like in Figure 3-2. This dialog slows the task completion time

because users must scroll through all possible line endpoints to select the appropriate

endpoint. There is no way for the user to immediately indicate the user's intended

line endpoint.

37:
38: -- *I

-- 39:
40:1 ....D

41:1
42:1 01
43:| >> |
44:1 i>
4s:1

Figure 3-2: Editing line endpoints in Microsoft Visio.

By contrast, when I observed users completing this task (during the user study) by

sketching the document with pen and paper, users were able to immediately indicate

the intended line endpoint by simply drawing the type of line endpoint that they

wanted. There were also no mode errors; users could effortlessly switch between

creating shapes and lines. When users struggled, they found that their initial layout

was unsatisfactory, and they had to delete and re-create the elements, either by erasing

or starting over again.

Recall the introductory software engineering lesson of "Think Before You Code!".

3Presumably because these types of diagrams are generally "afterthoughts" and not maintained

like they should be. Perhaps if these diagrams - and code documentation in general - were updated

more regularly, the problem would look different.
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Similar advice seems warranted for creating diagrams in structured graphics editors

("Think Before You Draw!"). In addition to the Task Analysis conducted, I also

collected several homework assignments from students in the introductory software

engineering laboratory course at MIT 4 . The homework assignments asked them to

create module dependency diagrams, three examples of submissions are shown in

figures 3-3, 3-4, and 3-5. Figure 3-3 was created in Microsoft Visio; figure 3-4 was

created in Dia, a structured graphics editor for UNIX; and figure 3-5 is a scanned

pencil sketch.

Figure 3-3: Module dependency diagram created in Microsoft PowerPoint. Note how

the auto-routing of the connectors has ensured that lines do not needlessly cross,

but the student has allowed that feature to substitute for the student's own thinking

about the layout of the diagram.

These figures show that users seem to be more able to communicate their diagrams

using pencil and paper than using existing structured graphics editors. In figure 3-3,

the user has let Visio automatically route the connectors, instead of thinking about

how to arrange the shapes so that the relationships between classes is clearest. In

figure 3-4, the diagram is more clear, but again the user was either too lazy, or could

not figure out how to route the connectors between shapes in order to clearly present

the dependencies. By contrast, figure 3-5 clearly expresses the relationships between

4 Many thanks to the students who agreed to let their work be used.
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Figure 3-4: Module dependency diagram created in Dia. The user has used both

automatically routed connectors, as well as basic lines to create connections (depen-

dencies) between classes.
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Figure 3-5: Module dependency diagram sketched by hand.

the classes in the diagram. This student likely created one or more drafts until the

layout below was decided, but since pencil sketches are much easier to re-create than

structured diagrams, such re-starting is not costly.

The dialogs in figure 3-2 (and others like it) and the students' figures represent

a strong motivation to consider moving away from menu-, mouse-, and keyboard-

driven user interfaces for structured graphics editing applications. If a user wants

to add a certain endpoint to a line, the natural interface is not typing in a string
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describing the endpoint, or selecting the endpoint from a list of options, but simply

drawing the endpoint that you wish to add on the end of the line. The argument

that diagram creation is more naturally accomplished through sketch recognition

interfaces is central to much of the research discussed in the previous chapter on

sketch understanding systems. UDSI has the same motivation of providing the user

with drawing freedom. I hope that the resulting interface is less cumbersome and

more natural to the user.

Instead of building on the existing research of on-line sketch recognition systems,

I have decided to focus on off-line recognition. As discussed in the Introduction,

part of the motivation is that adoption rates of tablet computers continue to lag,

while adoption rates for low-cost image acquisition devices (scanners, digital cameras,

and camera phones) continue to soar. Also, as argued in the next section, off-line

recognition offers interesting insight into how to approach the non-gesture-based and

non-stroke-based recognition problem.

3.2 Towards a Vision-Based Approach

By restricting the system to off-line sketch recognition, the user should have complete

drawing freedom during the sketching stage. The pencil-and-paper interface imposes

no restrictions on the type of strokes the user can make and no restrictions on the

order of the strokes. The off-line approach also allows the user to easily "overtrace"

- to re-draw the shape over itself. Overtracing has proven difficult for many of the

on-line recognition systems 5 , but the system may handle overtraced images without

difficulty (the gaussian filtering stage, discussed in the Recognition section, smoothes

overtraced shapes so that the resulting edge points are almost identical.

Many on-line systems have tried to move towards recognition systems that are

invariant to stroke order instead of requiring rectangles to be drawn in a fixed number

of strokes in a fixed order (e.g. four strokes starting at the top and going clock-

wise). In Hammond's system for recognizing hand-drawn UML diagrams [3], for

5From conversation with Metin Sezgin.
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example, rectangles can be drawn using one, two, three, or four strokes in arbitrary

order. The only requirement is that all the strokes from the shape must be drawn

sequentially; in other words, the user cannot draw two lines for the rectangle, then

go and draw a circle, and then complete the drawing of the rectangle. This might

seem to be a harmless assumption, but many times users will want to change aspects

of components after they have already been drawn. One example could be filling

in an open triangle arrowhead that has already been drawn much earlier. In fact,

recognizing "filling" may be difficult because systems often interpret jagged strokes

as "delete" gestures. With an off-line approach, the user is interacting with only

a pencil-and-paper interface while sketching, so the user can fill the arrowhead at

any time, using any stroke sequence. Figure 3-6 shows a sketch from the mozilla

documentation page that illustrates several features that were discussed above (filled

shapes, filled arrowheads).

Hopefully, UDSI can demonstrate that in restricted domains, off-line sketch recog-

nition is robust enough to be practical. I believe this would show that a vision-

based approach to sketch recognition is promising. By "vision-based", I mean using

only information about the final image to be recognized, not information that might

have been collected while the image was being created. Vision-based recognition may

broaden the class of recognizable shapes (e.g. filled arrowheads), and it also has the

potential to increase the usability of sketch recognition systems, both on-line and

off-line.
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Figure 3-6: Sketch from mozilla documentation. This sketch would be difficult to
create in an on-line recognition system because stroke-based recognition makes filled
triangle arrowheads difficult. The filled areas would also be difficult strokes to cate-
gorize.
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Chapter 4

User Interface

This chapter describes the novel graphical user interface that allows the user to correct

recognition errors. The first section of this chapter discusses the general model of the

task, and the second section discusses the design of the user interface.

4.1 UDSI Task Model

The task model when using UDSI is as follows: first, the user sketches a diagram

using pen and paper. This sketch should be reasonably clean and should adequately

represent the user's intended layout and positioning. If not, the user can erase and

re-arrange the sketch or simply re-create a new sketch from scratch. Second, the user

creates an image bitmap from the pen sketch. Currently, I use a scanner to scan

and crop the pen sketch, but one could also use a digital camera or a camera phone,

assuming adequate resolution. Finally, the image bitmap is presented to the UDSI

application, which recognizes lines, shapes, and text regions. The user then corrects

recognition errors within the application until the user is satisfied with the structured

diagram.
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-> sketch -- a__ scan/crop -+edit/correct -- >

Figure 4-1: Task model of UDSI. Note that this diagram was produced using UDSI.
The original image bitmap and initial interpretation are in Appendix B.

4.2 Design

The UDSI graphical user interface combines many features from standard graphics

editors (move-to-back/front, drag-select, multiple-selection, connection points) with

a mediation interface to select from alternative interpretations. The result is a GUI

that looks and feels like a standard graphics editor (e.g. Visio, XFig) that has been

slightly instrumented to take advantage of recognition information to help guide the

user's editing process. The user interface was implemented entirely using Java Swing.

When the recognition module is accurate, the users should only need to edit text

regions to contain appropriate text (see figure 1-2). When there are recognition errors,

the users should consider the mediation interface that presents alternate interpreta-

tions (see figure 4-2). These choices can save the user time because they will present

consistent alternatives. The alternate interpretation is shown in more detail in figure

4-3.

Using the work of Mankoff, et. al, [9] as a guide, I implemented a choice-based in-

terface to resolve ambiguity. Because all of the recognition is done off-line, however, it

is important to recognize shapes and discover alternate interpretations after the user

has drawn all of the shapes in the diagram (as opposed to in real-time). To use the di-

mensions discussed in [9], I decided that the instantiation of the choice-based mediator

would be simply selecting the shape that contains multiple interpretations. Describing

to the user which recognized shapes have alternate interpretations is an open problem

that is left for future work. One solution that is currently being implemented is an

"orange bubble" around shape(s) that the system has multiple interpretations for;

though this might be disorienting to the user, especially if the initial interpretation
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is correct, since then the user might have to take action to tell the system to ignore

the alternatives (and remove the orange bubble). The current implementation simply

pops up the alternatives any time it has alternates, and the user can just ignore them

on the right-hand side of the screen.
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Figure 4-2: User selection of ambiguous shape triggering display of alternate inter-

pretations.

4.2.1 Iterative Design and Prototyping

The user interface was developed by iterative design. I was unsure about what kind of

user interface would allow the user to guide the interpretation of the scanned sketch,

so I began the design process by creating and evaluating several low fidelity (paper)

prototypes (see figure 4-4). Evaluating the lo-fi prototypes generated two important:

first, like many existing structured graphics editors, the proposed interface suffers

from serious mode errors. For example, when the user was in Create Rectangle mode

and clicked to place a rectangle on the screen, the rectangle was created and the user

then moved the 'mouse' and clicked to place another rectangle on the screen. How-

ever, the system had (by default) switched to Pointer mode after the first rectangle
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abc

Figure 4-3: User selecting an alternate interpretation in UDSI. Note that the alternate
interpretations are consistent: the lines segments that previously existed are now
subsumed by the larger circle in the new interpretation.

had been created; therefore, the user experienced a mode error. This mode error

required that the user explicitly switch back to Create Rectangle mode, increasing

the amount of time it would take to create the desired set of rectangles. When I

changed the prototype to instead remain in Create Rectangle mode after a rectangle

had been placed, a different set of users made a different mode error. This time the

users intended to click to select the recently created rectangle, but instead the sys-

tem created a second rectangle in a similar position. As before, the user needed to

explicitly change modes to recover. This mode error problem has also been noted by

Lank & Saund [12].

Second, I learned that users were unwilling to test out the experimental features,

specifically the choice-based mediator that was designed to assist the user in inter-

preting the scanned sketch. In the paper prototype there was a Reinterpret Shape

mode where the user could click on a shape and be presented with a list of reinterpre-
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tations. I believed that users would prefer to choose other interpretations from a list

of alternatives to having to delete an incorrect interpretation and create the correct

shape. To use the language from Mankoff, et. al, [9], I believed users would prefer

a choice-based mediator to a repetition-based mediator in a different modality. The

rationale was that the repetition-based mediator was cumbersome: the user needed

to delete the misrecognized shape, change mode to be able to create correct shape,

and finally place new shape at correct location. Users offered two explanations for

why they stuck to the repetition-based mediator: (1) they knew it would work, (2)

they weren't sure how they would use the Reinterpret Shape mode once they were in

it.

Assuming sufficiently accurate initial recognition, there should be no huge effi-

ciency loss for users who only use Delete and Create operations to resolve interpreta-

tion errors. The Delete and Create model is also a simple one for users to understand;

a user immediately grasps it when first encountering the application. I believe, how-

ever, that when the recognition is less than stellar, the user might be able to receive

assistance from the stored alternative interpretations generated during the greedy

elimination algorithm, particularly for a set of related misinterpretations (see figure

4-3).

The remaining prototypes attempted to refine a user interface that allowed the

user to respond to presentations from the application of alternative interpretations.

Several heuristic evaluators provided feedback on how to present this interface to the

user. They concluded that it was difficult to understand the purpose of a labeled

button or a mode that said Modify Interpretation or Reinterpret Shape. In the final

design, therefore, I decided to make the presentation of alternative interpretations

a more active part of the diagram editing process. Now when the user clicks on

a shape that the system (based on heuristics) believes might have been incorrectly

recognized, a non-modal dialog opens on the side of the application that allows the

user to select from alternate interpretations. The user can simply ignore the window

if either the original interpretation is correct or if the user prefers to execute the

previously described Delete-Create loop instead.
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Figure 4-4: Paper prototype of UDSI. The interface used transparencies and dry-erase

markers to easily indicate modes to users and also to allow the "computer" running

the prototype to easily update the status of the interface.
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File Edit Style Help

Modify Interpretation

OK Cance

Select Group Add Group Modify Interpretation

Figure 4-5: Computer prototype of UDSI written in Flash. This prototype was

evaluated by heuristic evaluators. The interface, however, was not completely static.

By using Flash's built-in support for easy mouse-over mapping, it was possible to

evaluate different types of mouse-over feedback easily using this prototype.
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Chapter 5

Recognition

This chapter describes the recognition module. The module was written entirely

in Java; it extensively uses the Java image API (java. awt. image .*) and the Java

geometry package (java. awt. geom.*).

5.1 Overview

The purpose of the recognition module is to take an image bitmap and convert it to a

set of geometric primitives (lines, shapes) and text regions that are presented to the

user in the GUI.

The sketch recognition proceeds sequentially through several steps: image smooth-

ing, segmentation, text/shape recognition, and generation of alternatives. At the end

of this process, the system contains an initial interpretation and a set of alternative in-

terpretations. The initial interpretation is then aligned appropriately (see Alignment

section below). The first two steps of the sketch recognition process are implemented

using standard algorithms from the machine vision literature [5]. The image bitmap

is passed through a Gaussian filter, and then the segmentation step is implemented

using a Canny line detector and algorithms to split and merge line segments. The

final step in the recognition process uses hand-coded recognizers for arrowheads, cir-

cles, rectangles, diamonds, and text regions. The remainder of this chapter discusses

each of the steps of the recognition process in greater detail.

41



5.2 Segmentation

The first step in the recognition process is segmentation. The segmentation phase

starts with the original scanned image and produces a set of segments, grouped by

contour. All of the other recognizers in the system use the output of this phase to

recognize higher-level structure (e.g. shapes, text, alignment). Early prototyping

of UDSI convinced me that in order to achieve acceptable performance, algorithms

needed to scale with the number of segments, as opposed to algorithms that scaled

with the number of edge pixels in the image. This influenced the decision to imple-

ment shape recognizers that depend on segmentation results, instead of implementing

algorithms that use edge pixels (e.g. template matching).

The segmentation process is accomplished through the following sequential steps:

gaussian filtering, line detection, contour following, line splitting, and segment merg-

ing. These steps are discussed in more detail below.

5.2.1 Gaussian Filtering

Existing image acquisition devices (e.g. scanners, digital cameras) introduce some

noise into the sampled image bitmap of the original sketch. Because of this, an image

filter preprocesses the image bitmap before passing it to the core of the segmentation

process. We chose to use a discrete gaussian filter because it is rotationally symmetric

and therefore will not bias subsequent edge pixel detection in any particular direction

(as discussed in [5]). I empirically determined the optimal filter size based on the

sample of images collected from the pilot user study, and found that the optimal

filter size is 3x3. This optimal filter size is dependent on the size of the image,

and also the dpi at which the image was scanned. For all of the experiments, the

sketches were scanned at 100 dpi, and the images were all drawn on 8.5x11 paper. The

reason the optimal filter size is small is because the scanned images are already highly

thresholded; therefore, not much smoothing is needed to aid the line detection. For

comparison, figure 5-1 shows an image being passed through various discrete gaussian

filters. The trade-off when choosing filter size is that the larger filter smoothes out
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more of the noise, but at the expense of image detail. The small filter chosen enables

preservation of much of the image detail that is useful for later stages of recognition

(e.g. arrows, text). The output of the Gaussian filter is an image bitmap representing

a smoothed version of the original image. This image bitmap is presented to the

Canny line detector to compute the line pixels of the image.

Figure 5-1: Resulting images after applying different discrete Gaussian filters. Origi-

nal image is at left, followed by 3x3, 7x7, 15x15 Gaussian filters.

5.2.2 Canny Line Detector

The Canny line detection algorithm is a standard algorithm from the machine vision

literature that takes, as input, an image bitmap and produces a set of pixels rep-

resenting line points. At an abstract level, the algorithm is the following (see [5],

section 5.7):

1. Compute the gradient magnitude and orientation using finite-difference approx-

imations for the partial derivatives

2. Apply nonmaxima suppression to the gradient magnitude

3. Use double thresholding algorithm to detect and link line pixels

The second derivative should be used in step 1 when approximating partial deriva-

tives in order to find line pixels. Using the first derivative will instead find edge pixels.

To visualize why this change to step 1 results in line detection instead of edge de-

tection, think of an edge in an image as a step function, and a line in an image as
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an impulse function - which is the derivative of a step function. Once the approxi-

mations for the second partial derivatives (in both the x and y directions) have been

calculated, gradient magnitude M[i, j] and orientation values 0[i, j] are easily derived

(P2 is an array of first-difference values in the x-direction; Py, is an array of second

partial derivative approximations in the y direction):

M[ij] = VIPX1iI j?2 + PiI j?2 (5.1)

0[i, j] = arctan(Pyy [i, j], Pxx [i, j]) (5.2)

A Sobel operator (see [5], section 5.2.2) is used to calculate the finite-difference

approximations in step 1. I empirically determined it was best operator to use, after

testing the Roberts, Sobel, and Prewitt operators. It is not immediately clear why

this operator performs best, but I see two possible explanations: First, the Sobel and

Prewitt operators avoid calculating finite-differences about an interpolated point,

which increased segmentation accuracy for the sample set of images. Second, the

Sobel operator places emphasis on pixels horizontally and vertically bordering the

current pixel, which is where neighboring line pixels are often found, since the shapes

and lines in the diagram often contain some horizontal and vertical alignment.

In Step 2 of the Canny line detection algorithm, nonmaxima suppression thins

broad ranges of potential line pixels into "ridges" that are only one pixel wide. This

helps the segmentation process only produce one line segment per sketched line. Be-

fore nonmaxima suppression, however, the array of orientation values 6[i, j] is buck-

eted into an array L[i, j] according to figure 5-2. The sector array L[i, j] is used by the

nonmaxima suppression algorithm, as described below (N[i, j] is the result array):
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Figure 5-2: Converting gradient values to sectors.

NONMAXIMASUPPRESSION(i,j,M[,],L[,],N[,]) {

//horizontal gradient

if (L[i,j]=O & M[i,j]>M[i+1,j] & M[i,j]>M[i-1,j])
N[i,j]=M[i,j]

//45-degree gradient

else if (L[i,j]=1 & M[i,j]>M[i+1,j+1] & M[i,j]>M[

N[i,j]=M[i,j]

//vertical gradient

else if (L[i,j]=2 & M[i,j]>M[i,j+1] & M[i,j]>M[i,

N[i,j]=M[i,j]

//135-degree gradient

else if (L[i,j]=3 & M[i,j]>M[i-1,j+1] & M[i,j]>M[

N[i,j]=M[i,j]

else // suppress

N[i,j]=O

i-1,j-1])

j-1])

i+1,j-1])

}

The final step in the Canny line detector is the double thresholding algorithm

that uses the resulting image array from the nonmaxima suppression, N[i, j]. This

algorithm uses two threshold values, T1 and T2 (with T2 >= T1 ), chosen a priori,

to determine the line pixels. The double thresholding algorithm is straight-forward:

any N[i, j] value below T is set to zero; any N[i, j] value above T2 is immediately

marked as a line pixel; a N[i, j] value between the threshold values is marked as

a line if-and-only-if there exists a marked line pixel in the 8-neighborhood of pixel

(i, j). Figure 5-3 shows the Canny line detection on a sample image; the line pixels

are shown in white. Note the performance around the arrowheads. Because of loss

of image detail imposed by the Gaussian filter, the arrow recognizer (see below) uses
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the original image and not the Gaussian smoothed image. This gives slightly more

detail which improves arrowhead detection.

Figure 5-3: Result of Canny line detection. Line pixels are shown in white in image

at right; at left, the input (Gaussian smoothed) image.

5.2.3 Contour Following

After the Canny line detector has finished, the array N[i, j] contains the set of line

pixels found in the image. The next step in the segmentation process is to aggregate

these line pixels into contiguous sets, or contours. The contour following algorithm

simply includes a line pixel as part of a contour if it is within the 8-neighborhood

or 16-neighborhood' of another pixel in an existing contour. Line pixels are marked

after they have been assigned to a contour; therefore, this algorithm scales linearly

with the number of pixels in the image.

5.2.4 Line Splitting

Once the line pixels have been grouped into contours, the next step is to split each

contour into a set of connected lines. This is accomplished using a recursive sub-

division algorithm that creates polylines from contours. The algorithm requires a

constant parameter, d E (0, 1), that is used to determine the maximum tolerated

'The 16-neighborhood is the band of pixels around the 8-neighborhood; this second band is

included to improve performance of subsequent recognizers. Circle detection, in particular, benefits

from accurate contour information.
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deviation from the line fit. The algorithm begins by assuming that the contour is

a single line segment between the two endpoints of the contour. The algorithm re-

cursively splits the line a pixel in the contour set is beyond the maximum tolerated

deviation. The polyline splitting algorithm is described graphically in figure 5-4.

Figure 5-4: Description of line splitting algorithm. The contour is split into a set of

line segments.

5.2.5 Noto's Segment Merging Algorithm

The final step in the segmentation process merges line segments together. After the

line splitting step, the contours have been split into segments. Before passing this

set of line segments to the recognizers, a segment merging algorithm is used to merge

line segments that are aligned and close together, regardless of contour. This step

is included because the Gaussian filter sometimes introduces holes in shapes, and

this merging algorithm merges line segments straddling the hole so that the shape

recognizers can be more accurate.

Unlike some of the merging algorithms discussed in the machine vision literature

(see [5], section 6.4.2), this merging algorithm is not based on previously marked

contours; in other words, in the algorithm, all other line segments are candidates for

merging. Lines are merged if and only if they have an approximately equal angle

(within a threshold, 0m), and one line's endpoint is within a distance, di,, of an

endpoint of the other line.
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This algorithm is inefficient, but seems to converge quickly in practice. It has been

very helpful in creating elongated edges from lines that have been split from different

contours, which increases the accuracy of the shape recognizers. The result of the

line merging algorithm is shown in figure 5-5. Note how the edges of the rectangles

and diamonds have been merged successfully.

Once the line merging algorithm terminates, the resulting set of line segments

is preserved and used by the recognizers. The next section discusses each of the

recognizers in detail.

Figure 5-5: Resulting images of contour following, line splitting, and segment merging.
At left, result of contour following step. Line pixels that are part of the same contour
are colored the same. The center image shows the result after the polyline splitting
algorithm. The right image shows the result after the merging algorithm. Note how
the top line of the rectangle has been merged into a single segment.

5.3 Recognizers

After the segmentation step, the recognizers are executed to recognize shapes, text

regions, and line endpoints (arrowheads). The recognizers are largely independent,

but some of them require output of other recognizers (e.g. the rectangle and diamond

recognizers require output of the corner recognizer). The recognizer dependencies are

graphically presented in figure 5-6.

All of the recognizers are feature-based, as opposed to statistical. This means

that the rectangle recognizer asks questions like "Are there corners parallel and per-
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Figure 5-6: Overview of recognizer dependencies. Note that this diagram was pro-
duced using UDSI. The original image bitmap and initial interpretation are in Ap-
pendix B.

pendicular to me?" instead of questions like "How similar am I to this known shape,

s?" The recognition design, however, should be modular enough so that statistical

recognizers could be substituted for the hand-coded recognizers. The decision to use

feature-based recognition was based largely on simplicity.

Currently, UDSI recognizes text regions, rectangles, diamonds, circles, and arrow-

heads. These recognizers are discussed in more detail in the following subsections.

5.3.1 Text Recognition

Dense regions of short line segments are assumed to be text regions. The system does

not implement character recognition, but it does localize and recognize text regions

that it presents to the user as editible text fields. The extraction of text regions

proceeds using a simple merging algorithm. For each small line segment, the system
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scans for other similar segments that are within a small neighborhood of the given

segment. If the two segments are close enough, then the system merges the two

segments into a single text region. This algorithm continues until the system can no

longer merge any recognized text regions. Finally, the algorithm drops text regions

containing fewer segments than a fixed threshold. This threshold was determined

empirically to be at least three segments per text region, but this value seems to

be very sensitive to the text size and the resolution (dpi) of the input image. The

runtime2 for this algorithm is O(n'), where n is the initial number of eligible segments.

This algorithm is summarized below:

allLines[] = //set of lines from segmentation step
linesE] = //filter allLines with length < Ttext
textRegions[] = / init with one text rectangle

// for each line in lines

didMerge=true

while(didMerge) {
didMerge=false

for each t in textRegions

for each t' in textRegions

if (t != t' and t is close to t')
t=merge(t,t')

remove t' from textRegions

didMerge=true

}
textRegions[] =

//filter text regions of more than N segments

5.3.2 Corner Detection

Corner detection is accomplished by finding segments that end at approximately equal

points and testing that the angle between them is approximately 90 degrees. Corners

are then classified as "axis-aligned" or "non-axis-aligned". A double-threshold is used

so that a corner can be classified as both types if it is in between the threshold values

2 There may be a tighter upper-bound, but as the Performance section (see below) describes,
polynomial-time algorithms that operate in segment space are adequate.
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Figure 5-7: Recognition of text rectangles. Original image shown with recognized

text rectangles (and constituent segments) drawn in.

(see Figure 5-8). This classification is useful so that the set of corners used to detect

rectangles is disjoint with the set of corners used to detect diamonds. The runtime

for this algorithm is 0(n 2 ), where n is the initial number of eligible segments.

5.3.3 Rectangle Recognition

Rectangles are detected using the following algorithm: if a corner is (approximately)

horizontally aligned and (approximately) vertically aligned with two other corners,

then a rectangle exists that spans the area of the three corners. This algorithm can

generate false positives since it only requires three corners to produce a rectangle

interpretation, but it generally produces all true positives. False positives are filtered

out by the heuristics and/or greedy elimination algorithm described below. The

approach to shape recognition, in general, follows the same approach: try to generate

ALL true positives, even if it involves generating a fair amount of false positives as

well. There are two reasons for doing this: (1) if the true positive is missed, then there

is no way subsequent steps can ever achieve perfect recognition, and (2) users can

more easily delete a false positive than create a (missed) true positive. The runtime

for this algorithm is 0(n3 ), where n is the number of recognized corners.
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Figure 5-8: Results of corner detection. Corners that will only be used by the rectangle

recognizer are shown in blue; corners that will only be used by the diamond recognizer

are shown in green; corners that will be used by both recognizers are shown in red.

In order to improve the accuracy of the rectangle recognizer, two modifications to

the simple algorithm described above were made. The first is described in figure 5-9.

This figure shows two sets of corners. The set of (unfilled) red corners are aligned

appropriately, but a rectangle is not recognized because the interpolated midpoint

of each corner would not lie within the bounding box of the rectangle (one of the

corners points outward). The set of (filled) green corners, on the other hand, will be

used to construct a recognized rectangle. This rectangle, however, will not make it

into the initial interpretation because a pre-filter is used. As shown in figure 5-10,

when rectangles overlap, the smaller rectangle is chosen, and the larger, overlapping

rectangle is discarded.

Figure 5-9: Description of rectangle recognition. The red corners constitute a rect-

angle that is not recognized because one of the corners is facing outwards. The green

corners constitute a rectangle that is recognized.
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Figure 5-10: Results of rectangle detection. The images show the results of corner

detection, initial rectangle recognition, and pre-filtering of overlapping rectangles,
respectively.

5.3.4 Diamond Recognition

Diamond recognition is analogous to rectangle recognition: if a corner is (approxi-

mately) aligned with another corner along the y=x axis and is also (approximately)

aligned with a corner along the y=-x axis, then a diamond exists that spans the area

of the three corners. As with the rectangle recognizer, the diamond recognizer gener-

ates some false positives (though less frequently than the rectangle recognizer), but

it generally generates all possible true positives, as well. Choosing among the false

and true positives is deferred until the filtering stage. The runtime for this algorithm

is 6(n 3 ), where n is the number of recognized corners.

5.3.5 Circle Recognition

Circle recognition is done by an augmented Hough transform algorithm. The major

modification of the algorithm is that it uses segments (produced from segmentation)

instead of edge pixels. The accounting step is borrowed from the Hough transform

(to find center points and radius values), but instead of using gradient values, the

algorithm interpolates along each segment's perpendicular bisector. This algorithm

seems to work well in practice. To visualize what the algorithm is doing, imag-

ine segmenting a circle, and then drawing infinitely long lines along each segment's

perpendicular bisector. Areas of close intersection correspond to approximate circle

center points, and the average distance from the center point to each of the segments

is the approximate radius of the circle.
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Figure 5-11: Description of augmented Hough transform. This algorithm recognizes

circles by using perpendicular bisectors of constituent segments.

5.3.6 Arrow Classification

Arrow recognition is implemented using a modified version of the algorithm described

by Hammond [3]. The algorithm is pruned for simplicity to recognize only line ar-

rowheads and filled triangle arrowheads (but not open triangle arrowheads).

5.3.7 Performance

The algorithms described above are essentially search algorithms where the search

space is the set of segments generated from the segmentation step. These search

algorithms are not efficient, but we have found the inefficiency to be negligible in

practice. The reason is that these algorithms search in segment space instead of pixel

space, and there are orders of magnitude fewer segments than pixels in a sketched

diagram. The time spent in the Gaussian filter and segmentation phases (which are

algorithms that scale linearly with the number of pixels in the image) is approxi-
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mately equal to the time spent in the remainder of the recognition module (where

the algorithms scale quadratically or cubically with the number of features).

5.4 Global Interpretation

After the recognition phase, the system has generated a set of recognized shapes,

segments, arrowheads, and text regions from the original image. The final step is

to filter the set of recognized objects to create an initial interpretation and a set

of alternative interpretations. Because all of the recognizers have a very low false

negative rate (meaning that they rarely miss true positives), this step can be effective

as purely a filtering process. There are two types of filtering that occur: (1) heuristic

filtering that uses domain-specific information to eliminate global interpretations that

do not satisfy domain constraints, and (2) greedy elimination to choose the best

interpretation among competing local interpretations. These two types of filtering

are discussed in greater detail below.

5.4.1 Heuristic Filters

Recognition rates improve with the use of heuristic filters - domain-specific filters

that use domain-specific constraints to discard non-conforming interpretations. As

an example, the domain of box-and-line diagrams does not allow overlapping shapes;

therefore, if the shape recognizers independently recognize the same area to contain

two different shapes, then a heuristic filter (representing the heuristic "shape areas

cannot overlap") can choose the shape with higher confidence and relegate the other

shape to an alternate interpretation. I have found three heuristics to be useful in in-

creasing the recognition rates. These heuristics, however, have become less important

as the shape recognizers (described above) have been tuned and the greedy elimina-

tion algorithm (described below). Nevertheless, the heuristic filters are kept in the

system in order to maximize the probability of an adequate recognition.

The first heuristic filter implements the "shape areas cannot overlap" heuristic.

Figure 5-12 graphically describes how this filter behaves. Shapes that overlap are
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not allowed in the domain; therefore, if shape areas overlap the system chooses the

shape with a higher confidence value. Each of the recognizers, even though they are

all feature-based, still assign a confidence value for each recognized shape. For some

recognizers (e.g. Rectangle, Diamond), this value will be the same for all shapes; for

others (e.g. Circle), the value will vary.

Figure 5-12: The "shape areas cannot overlap" heuristic filter. Here the circles are

recognized with lower confidence values than the rectangle and diamond; therefore,

they will not be included in the initial interpretation.

The second heuristic filter implements the "line segments cannot intersect shape

areas" heuristic. This is similar to the previous filter, except that instead of comparing

shape confidence value, it just looks for recognized line segments within recognized

shape boundaries. Because of the way the greedy elimination algorithm behaves (see

next section), and because of the imperfect results of the merging algorithm, this

filter will "clean-up" so that no line segments are left around inside the boundaries

of shapes. In figure 5-13, the cyan segments represent segments that will be thrown

out by this heuristic filter. The dark blue segments will be thrown out during greedy

elimination because they are part of the corners that make up the recognized diamond.

Figure 5-13: The "line segments cannot intersect shape areas" heuristic filter.

The final heuristic filter implements the "line segments cannot intersect text rect-
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angles" heuristic. This heuristic ensures that mid-length segments that are inside

text rectangles are not included. In pilot tests, users reported that they had trouble

seeing these extra segments and that they were frustrated that they had to delete

them.

Figure 5-14: The "line segments cannot intersect text rectangles" heuristic filter.

These heuristic filters were simple to create, and they can be easily disabled (to

allow for diagrams in a different domain). The fact that they are helpful at all means

that the lower-level recognizers are not optimal, and that more work could be done to

produce better filtering logic that does not rely on these hard-coded heuristics. For

future work, developing perceptual filters using Gestalt principles might help for this

kind of shape recognition.

Some of these filters are executed before the greedy elimination algorithm, while

others are executed after. The before/after decision was made after looking at the

results from the pilot study, and analyzing when the filters would be most effective.

For example, the line segments cannot intersect shape areas heuristic filter is executed

after greedy elimination because at that point the system is most confident about the

set of shapes remaining. It would not make sense to execute that heuristic filter

before greedy elimination because a shape that would otherwise be eliminated during

greedy elimination would be used to incorrectly eliminate line segments.

5.4.2 Greedy Elimination Algorithm

The final stage of the sketch recognition module selects the best global interpretation

and generates alternative interpretations. Each of the shape recognizers described

above proceeds independently, and assigns a confidence value when it recognizes a
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shape, as well as marking each recognized shape with the constituent segments that

were used to form the hypothesis. A straightforward greedy elimination algorithm is

used that first sorts all interpreted shapes by confidence and then selects shapes as

part of the best interpretation as long as a previously selected shape does not share

any segments with this shape.

This algorithm can clearly be modified along several interesting dimensions. In-

stead of greedily eliminating a shape that shares any segments with a previously

chosen shape, the algorithm can eliminate a shape only if all of its segments are

shared with previously recognized shapes. There are also interesting possible steps to

take if only some of the segments are not shared by previously chosen shapes. This

analysis is left for future work.

The greedy elimination algorithm provides an effective filter among the false and

true positives because, in general, the true positives are recognized with higher con-

fidence levels. They are therefore selected first, and the false positives are eliminated

because their segments overlap with previously chosen shapes.

5.5 Alignment Module

Once the recognition module has generated interpretations of the sketch, but before

loading the initial interpretation into the graphical user interface, the application

attempts to sensibly align the components. The purpose of this alignment module

is to make lines and shapes that the user has approximately aligned in her original

sketch exactly align in the initial interpretation. We developed heuristics for when

lines close to shapes actually represent connection points, and also found thresholds

for when to decide to make lines vertical/horizontal.

Because it is important to maintain connection point relationships while align-

ing lines and shapes, the alignment module must efficiently solve systems of linear

constraints. The UDSI application uses the simplex solver in Cassowary [1]. The

following are a sample set of constraints automatically generated (and then solved)

to align a line segment connecting two shapes (the variables are described in Figure
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5-15):
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Figure 5-15: Visual description of alignment module.

(rx + WI/2, ry + Hr) = (Ixj, Iyi) (5.3)

(dx + Wd/2, dy) -- (U2, 1y2) (5.4)

1 = 1x2 (5.5)

1y2 - lyi = L (5.6)

The equations above represent the following constraints: (1) One end of the line

must remain at the midpoint of the bottom edge of the rectangle, (2) the other end of

the line must remain at the midpoint of the top of the diamond, (3) the line must be

vertical, (4) the length of the line must be constant. These four constraints together,
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when solved, align the shapes and line in such a way that the vertical line connects

the diamond to the rectangle at the specific connection points. Figure 5-16 shows a

recognized sketch without automatic alignment of shapes and lines, while figure 5-17

shows the results of executing the alignment module. In general, when the system

detects connection points, the automatic alignment seems to have a positive impact

on the quality of the image. This is discussed more in chapter 6.

abcab abc

ab abc - abc

Direased Skeh interpretation, Vo.1

Figure 5-16: Recognized sketch without automatic alignment of shapes and lines.
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acab

Directed Sketch Interpretation, v.1

Figure 5-17: Recognized sketch with automatic alignment of shapes and lines.
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Chapter 6

Evaluation

This section describes the results from two separate evaluations of the UDSI system.

The first is a controlled experiment that attempted to compare and contrast the

effectiveness of the system versus an existing structured graphics editor. The second

evaluation estimated the accuracy of the recognizers of the system, using the corpus

of images collected from various user studies.

6.1 User Study

I carried out a user study to evaluate the utility of UDSI and to compare it against

an existing commercial application, Microsoft PowerPoint. I recruited users by ad-

vertising on campus, and users were compensated for their participation.

6.1.1 Usability Indicators

There are two main parameters of usability that I wished to measure. The first is

simply the amount of time it would take users to create a diagram that was described

to them. This time would be measured for both PowerPoint and UDSI, and the

tasks were designed so it would be possible to use a within-subjects comparison of

time taken. The second parameter is the "cleanliness" of the diagram that was

produced by the user. This qualitative parameter should measure the quality of the
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layout, alignment, and spacing of the diagram. I created a controlled experiment that

measured these two parameters for both interfaces (UDSI and PowerPoint).

6.1.2 Controlled Experiment Design

All users filled out a pre-test questionnaire (see Appendix A) that asked their comput-

ing experience and artistic background. The small sample contained users of diverse

backgrounds and abilities (see User Profile section below).

After the pre-test questionnaire, the users completed three tasks. The first task

was a warm-up task that allowed me to describe the syntax and semantics of the

diagram language that would be used for the remainder of the study. This command

language describes diagrams that the user was instructed to create. This language is as

simple and domain-independent as possible so users would not spend time struggling

with translating the textual description into a diagram. The warm-up exercise asked

the user to sketch (with pen and paper) the diagram described by the following

commands:

Circle C1

Rectangle R1

Diamond D1

C1 points to R1

R1 is connected to D1 with label L2

There are two commands to describe connections between shapes: "points to"

means that an arrow should be drawn from the receiver to the operand, while "is

connected to" means that a line segment should be drawn between the shapes.

After the user completed the warm-up task, the users completed the next two tasks

in a random order. The two tasks both involved creating more complex diagrams

(described in the same language discussed above) using either PowerPoint or UDSI.

Users were told to work quickly and accurately because they would be timed, and

also that they should make their diagrams as crisp and clean as possible. I suggested

they imagine that their resulting diagram would be used in a business presentation
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slide. For the UDSI condition, the user was first told to sketch a clean version of the

diagram using pen and paper (and to iteratively create sketches to make the pen and

paper sketch as crisp and clean as possible). The user then handed in the paper, which

I then scanned and cropped; finally, UDSI loaded the scanned image. The decision

to scan and crop the image for the users was made to normalize the amount of time

spent between the Sketch stage and Application stage, since the controlled experiment

needed to compare the time spent using the two interfaces. When UDSI loaded, the

user was then presented with an initial interpretation of her sketch, generated from

the scanned image. The remainder of the task involved cleaning up this diagram:

fixing recognition errors, aligning components, and editing text regions. Because the

system only recognizes text regions and does no character recognition, users needed

to edit each text region to contain the appropriate text.

I hypothesized that (1) the users would create cleaner diagrams (better alignment,

layout, and spacing) using UDSI as compared to PowerPoint, and (2) that the users

would create the diagrams in less time.

To test these hypotheses, I stored all diagrams produced in every task by every

user. To test hypothesis (1), I recruited a set of judges to subjectively evaluate

a sample of the diagrams produced along various qualitative dimensions. To test

hypothesis (2), I simply measured the amount of time it took to complete each task.

For the PowerPoint task, I measured the total time it took the user to complete the

diagram. For the UDSI task, I measured the amount of time it took the user to create

the pen-and-paper sketch, the time it took to scan the image, and the time it took

the user to edit the recognized sketch in UDSI. I measured the times of the UDSI

sub-tasks separately so I could remove the scan time from the time comparison.

6.1.3 User Profile

Users were recruited by advertising on campus1 . The set of 22 users contained a mix

of men and women, students and non-students, and people with a variety of artistic

and technical backgrounds. One user did not have enough of a computing background

1f ree-moneyfmit .edu provided an excellent source of subjects.
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parameter sample set characteristics

gender men=11,women=11
age 1t = 23.3, min = 19, max = 33
PowerPoint experience none = 2, little = 5, some = 10, lots = 5
Artistic training none = 13, little = 6, some = 2, lots = 0

Table 6.1: Characteristics of users.

to complete either task; therefore there are only 21 users are included in the analysis.

The user characteristics are summarized in the table in figure 6.1.

6.1.4 Subjective Variables

Regressing the subjective post-test responses from users on the amount of time it took

to complete the task (dependent variable) on the actual amount of time it took to

complete the task (independent variable) gives an R 2 of 0.25. This suggests that users

were able to somewhat accurately perceive the amount of time it took to complete

each task, and correctly perceived which task took longer. This suggests that users

will notice when the user interface allows them to complete their task in less time.

6.1.5 Experimental Results

The results of the user study are given in figure 6.2. The time for the UDSI task is sep-

arated into three sub-tasks. Sketch is the time spent sketching the diagram with pen

and paper (including erasing/iterating); scan is the time spent scanning/cropping;

and edit is the time spent using the UDSI application (including load time and recog-

nition time). The sum of all three times is also given, as is the time of only the first

and third time, sketch+edit. All values in the table are given in seconds.

First, some overall comments regarding the first two columns: the results show

that users, on average, spent less total time creating their diagrams using Power-

Point than using UDSI (326.3 < 443.5). Subtracting out the scan times, users still

spent less time completing the PPT task (326.3 < 368.3). The sample variance of

the UDSI times, however, is larger than the sample variance for PowerPoint users

({155.6, 160.5} > 119.8). In particular, the UDSI task times for 4 users are very large
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task All users -4 outliers
F a P I

PPT total 326.3 119.8 318.4 122.1
UDSI sketch 142.5 79.5 127.6 66.9
UDSI scan 75.2 27.5 79.5 28.5
UDSI edit 225.9 122.9 186.1 84.8
UDSI total 443.5 155.6 393.1 109.7
sketch + edit 368.3 160.5 313.7 107.4

Table 6.2: Results from user study. All times are in seconds.

relative to those users' PowerPoint task times.

All four of these users uncovered severe usability flaws in the UDSI interface that

swamped their UDSI task times. These errors are discussed in more detail in the next

section, and the results with these four users removed are also presented. The "-4

outlier" case, however, is not used for much of the statistical analysis; for one thing,

it's unfair. There are two other users, after all, who saved large amounts of time (> 70

s.) using USDI because they experienced serious mode errors using PowerPoint. As

discussed in the end of this subsection and in the Future Work section, a future study

might attempt to normalize for this by using the same structured graphics editor in

both tasks. The "-4 outlier" case, however, shows UDSI task times slightly closer to

the PPT times. Under both the "All users" sample and the restricted "-4 outliers"

sample, a two-tailed t-test fails to reject the null hypothesis at the 1%,5%, and 10%

confidence values (t-value for "all-sample" is -1.597, critical value for 5% is -2.086).

I therefore conclude that there is no statistically significant difference in PPT times

and UDSI task times.

It is important to note that 10 out of the 21 users saved time using UDSI. For these

users, the system recognized the bulk of the shapes, arrows, and segments/connectors,

with few errors. The users quickly corrected these errors and edited the text regions,

and were generally satisfied with the automatic alignment done by the system. As

mentioned above, however, the differences in execution time among these users is not

statistically significant.

From analyzing the data, I noticed that users who indicated "none" or "little"
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PowerPoint experience saved time using UDSI, in general. Results for this set of

users with little or no PowerPoint experience, are given in figure 6.3.

MS PPT UDSI (total) -
# total sketch scan edit total sk+ed (sk+ed)

5 629 208 59 375 642 583 46
7 368 87 61 239 387 326 42
15 369 101 73 143 317 244 125
16 505 307 95 121 523 428 77
19 303 183 81 257 521 440 -137
22 404 212 82 130 424 342 62
A 429.7 393.8
0- 118.0 117.3

Table 6.3: Descriptive results of users with little or no PowerPoint experience.

This table shows users saving, on average, more than 30 seconds using UDSI. Also,

5 out of the 6 users in this sample saved time using UDSI (positive numbers in the

rightmost column correspond to time saved in the UDSI task). It is a small sample

set, however, and no statistical conclusions can be drawn from it (a one-sided t-test

is not significant at even the 10% level; the t-statistic is 0.977 and the 5% critical

value is 2.57.

Taken together, these results suggest that one must reject hypothesis (1) that

asserted that UDSI would save time for users. The second hypothesis was that users

would produce higher-quality diagrams. We evaluated this by recruiting judges to

evaluate the diagrams produced by the users. As with the user study, judges were

recruited by advertising on-campus and compensating the judges for their time. The

only requirement for participation was that the potential judge did not participate

in the original user study. The judges evaluated the diagrams produced from the

PPT and UDSI tasks along 4 qualitative dimensions: alignment, spacing, layout, and

overall quality. The judges were not told what system was used to produce each

diagram, and every effort was made to conceal consistent differences between images

(for example, I took each PowerPoint diagram produced during the user study and

matched the fonts with the default font used in UDSI). The results of the 3 judges

are given below in figure 6.4.
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dimension PPT UDSI t-statistic I two-tailed P(T <= t)
alignment** 3.00 3.89 -2.204 0.042
spacing 3.78 3.89 -.306 0.726
layout 3.33 4.17 -1.34 0.197
overall quality* 3.22 3.89 -1.80 0.090

Table 6.4: Results from judging of user diagrams. All values are averages and are
drawn from a 1-5 scale. *t-test significant at the 10% level **t-test significant at the
5% level

These values show that the judges preferred diagrams produced in UDSI along

all qualitative dimensions. The "overall quality" measure is statistically significant

at the 10% level, with only 18 observations (17 degrees of freedom). These results

suggest that users create higher-quality diagrams in UDSI versus PowerPoint. The

"alignment" measure is also statistically significant at the 5% level. Also, all t-

statistics are negative, meaning that judges, in general, thought that the quality

of the diagrams produced using UDSI was higher than diagrams produced using

PowerPoint.

6.1.6 Analysis of Errors

For one user, there was a large usability flaw in the UDSI interface for editing text

regions that caused this user to be unable to figure out how to edit the default text in

text regions. The errors resulting from this serious usability flaw (which was quickly

fixed for subsequent users) swamped the time spent correcting recognition errors and

aligning components using UDSI. For another user, the initial interpretation was very

poor (the UDSI system did not recognize most of the shapes in the diagram), and

therefore the user spent a lot of time re-creating shapes that the system failed to

detect. This was caused by a bug in the circle recognizer that did not generate true

positives in a certain size range.

It is also interesting to note that I observed mode errors in both PowerPoint and

UDSI relating to creating and selecting objects. In UDSI, I tried to reduce these

mode errors by intelligently switching the mode based on some heuristics derived

from observing users (e.g. if a user clicks to place a shape inside another shape, UDSI
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switches over to selection mode instead of placing an identical shape inside an existing

shape). The changes, however, did not seem to significantly improve the frequency

of mode errors.

6.1.7 Discussion

Though it doesn't appear that UDSI saves users' time, the comparison of the quality

of diagrams produced using UDSI to those produced using PowerPoint revealed that

the diagrams produced using UDSI were higher quality. A user's PowerPoint diagram

is shown in Figure 6-1, and that same user's UDSI diagram is shown in Figure 6-

3. In general, the UDSI diagrams were better aligned (because of the automated

alignment), and they often had a clearer layout. Because some of the users iteratively

sketched copies of the diagrams during the UDSI task, they were able to choose a

better layout. Observing users laying out the diagram within PowerPoint, describing

layout was very time-consuming, and users appeared to just stop and give up when

their image no longer had intersecting segments and connectors.

Ll RI R2
C1

. D2 Dl

C2

Figure 6-1: PowerPoint diagram from user 6.

Finally, note that only one user used the novel user interface for selecting alterna-

tive interpretations. I propose two explanations: (1) that users are more comfortable

with the Delete and Create task, and that no amount of automatic assistance will

lead them away from that plan, or (2) that users do not really notice or comprehend
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Figure 6-2: Pencil sketch from user 6.

L2 C3
Li D1

Cl

R1
C2 D2

Figure 6-3: UDSI diagram from user 6.

the popped-up panels of alternative interpretations because these alternatives are

presented outside of the user's locus of attention. Recognizing this, the user interface

has been modified so that when a user clicks on a shape for which the system has

multiple interpretations, a line is drawn from that shape to the panel representing

the multiple interpretation. This was implemented using the Magpie toolkit [4].

6.2 Analysis of Recognizers

Using the sketches collected from pilot studies and the user study, I used the set of

25 image bitmaps to analyze the accuracy of the recognition module. This section

discusses how I calculated the accuracy values and discusses the results.

6.2.1 Recognition Accuracy

For each image, I loaded the image bitmap into UDSI and counted the total number

of shapes that were recognized by UDSI but did not appear in the original sketch,
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as well as the total number of shapes that appear in the original sketch but do not

appear in the recognized structured diagram. Table 6.5 presents the false positive

and false negative rates for shapes, lines, and text regions. The false positive rates

fP are calculated by dividing the number of false positives (shapes that appear in the

recognized diagram but did not appear in the original sketch) by the total number of

shapes that appear in the original sketch. The false negative rates f, are calculated

by dividing the total number of shapes that were not recognized by the system (but

occurred in the original sketch) by the total number of shapes that appear in the

original sketch. These values are calculated for each image in the sample, and the

averages and standard deviations of these values are reported in table 6.5.

dimension fp fn

shapes .102 .129 .073 .108
lines .254 .309 .032 .095
text regions .707 .273 .021 .050
overall .358 .182 .043 .064

Table 6.5: Results of analysis of recognition module.

The chart in figure 6-4 displays the false positive and false negative rates for each

image in the sample. This chart re-iterates that the false positive rates are much

higher than the false negative rates. Also, this chart shows that the false negative

rates are zero for several images. When the false negative rate is zero, this means

that any time a shape, line, or text region appeared in the original sketch, it also

appeared in the recognized diagram. This does not mean that recognition was perfect

- indeed, recognition was never perfect because every recognized diagram contained

false positives - but it does mean that filters can potentially filter the recognized

diagram to produce a correct diagram.

6.2.2 Discussion

Both kinds of errors from the recognizers (false positives and false negatives) require

effort from the user to correct the error. In the case of false positives, the user must
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Error Rates in UDSI
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Figure 6-4: Accuracy of recognition module. The blue bars represent the false positive

rate, f,; the red bars represent the false negative rate, fn.

delete the shape from the diagram. In the case of false negatives, the user must

create the shape at its appropriate location. The total amount of effort that the

user must exert to correct the recognized diagram is a weighted sum of the false

positive correction rate and false negative correction rate. Future work can attempt

to actually estimate the weights, but from observations made during the user study,

I believe that false positives are easier to correct than false negatives.

The actual error rate averages presented above show that the false negative rates

are, in general, much lower than the false positive rates. This means that the system

rarely misses shapes that occur in the original sketch, but it generates a fair amount

of false positives (that must be deleted by the user). Text recognition is particularly

bad; for every text region correctly recognized, there are .707 text regions that are

also recognized, but do not appear in the original diagram. This suggests that better
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recognition and better filtering are needed to improve the performance of the text

recognition module. One possible improvement would be to include more domain-

specific information (for example, a heuristic that text regions cannot intersect shapes

and/or lines). During the user study, however, most users simply deleted these un-

necessary text regions. Also, note that the text recognizer generates a large number

of false positives, but it has the lowest rate of false negatives.

Overall, the false negative rate for all recognizers is quite low. The system was

intentionally designed to have a low false negative rate because the task analysis

concluded that it is easier for users to remove existing components than to create new

components. Therefore, it was very important that the recognizers rarely miss true

positives. Through the use of heuristic filters and the greedy elimination algorithm,

the recognition module could filter out false positives before presenting the results

to the user. It would not be possible given the recognition architecture, however, to

produce a correct interpretation of all of the shapes in the original image if the system

did not first generate all true positives.

One (simplified) way to look at these data is that the false negative values represent

the quality of the recognizers while the false positive values represent the quality of

the filters. Since the low-level recognizers will often be confused without any domain-

specific information, one would only ask that they generate very few false negatives.

Since the filters should have domain-specific information to help arrive at a reasonable

global interpretation, one would expect them to filter out as many false positives as

possible.
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Chapter 7

Conclusion and Future Work

I presented a novel approach to creating structured diagrams by combining an off-line

sketch recognition system with the user interface of a traditional structured graph-

ics editor. The current system recognizes geometric shapes, lines, text regions, and

arrowheads, and it provides a user interface to modify interpretations and edit com-

ponents. For future work, there are several possible paths. The remainder of this

section discusses these options in greater detail.

7.1 A Vision-Based On-Line Sketch Understand-

ing System

It would be interesting to evaluate the effectiveness of UDSI's vision-based approach

of recognition within an on-line system on an instrumented tablet computer. Since

the system is not on-line, there is no need for image acquisition (no scanning/cropping

time), and it will also allow UDSI to provide some real-time feedback if users begin

to draw shapes that the system will be unable to recognize at all (a constant risk of

the purely off-line approach). Bringing this feedback on-line will hopefully increase

recognition rates even further.

UDSI should work immediately as an on-line system that just uses pixels created

on an instrumented tablet computer as line pixels, and dispenses with all early-stage
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image processing (Gaussian filtering, Canny line detection). An on-line UDSI system

would pass the stroke-created input image directly to the contour following step (see

Recognition chapter) and proceed from there.

This approach would differ in some interesting ways from many existing on-line

systems (see the Related Work section for a discussion of existing on-line systems).

Since the recognition module is vision-based, the stroke ordering would be completely

unimportant. In fact, the strokes themselves would not be important, only the result-

ing pixels created from the stroke. An on-line UDSI would also allow users to erase

in the middle of a previously drawn stroke to create two distinct lines. All reviewed

on-line systems use strokes as primitives, so that erasing a previously drawn stroke

removes the entire stroke from the image.

7.2 Character Recognition

Several of the users in the user study wrote that they would be more inclined to

use UDSI regularly if UDSI explicitly recognized sketched text, instead of merely

recognizing text regions. Given sufficiently accurate character recognition, this would

allow users to avoid having to type in character into text regions. Although I was not

able to find suitable off-the-shelf character recognition systems to use, since a handful

of users expressed a desire for UDSI to include it, it would be worth incorporating

into UDSI.

7.3 Pre-segmentation Image Processing

The recognition results are sometimes sensitive to the image pre-processing (Gaussian

filtering) that is done before the Canny line detection. It would be interesting to

investigate if it is possible to determine an adequate filter, a priori, by scanning

the original image. The ScanScribe [13] system uses a novel foreground separation

algorithm that would likely be useful for this purpose, as well.

Also, I only investigated using a scanner for image acquisition. As shown in figure
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7-1, digital cameras can also be used to acquire images of sketched diagrams. The

thresholding characteristics of these images are quite different than scanned pen-and-

paper sketches, and therefore would not be immediately usable within UDSI.

Figure 7-1: Images of sketched diagrams acquired using digital cameras.

7.4 Other Usability Experiments

One experiment that would be very insightful would attempt to measure the harm

done by a PowerPoint diagram that was poorly created. This experiment would ask

students to create a diagram in PowerPoint (much like the task in the user study

presented in this thesis), but then it would ask them to change the diagram. The

changes would involve moving shapes, connections, and modifying text. The hy-

potheses I have are the following: (1) that this process will take a long time, perhaps

even close the amount of time it took to originally create the diagram, and (2) using

connectors and grouping components in the initial creation step will speed the time

of the second task.
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7.5 Comparing Circle Recognizer to Hough Trans-

form

UDSI recognizes circles using an augmented Hough transform algorithm. It would be

interesting to quantitatively compare the performance of this augmented algorithm

with the standard Hough transform algorithm. In the small sample set of images

collected in the user study, the augmented algorithm has equal specificity, but a

substantial increase in sensitivity (that is, much fewer false positives). This result

should be verified in a larger experiment.

7.6 Extending UDSI to Different Diagram Domains

Lastly, to test the robustness of UDSI, it is important to consider other diagram

domains besides simple box-and-line diagrams. UML diagrams, circuit diagrams,

and simple chemical structures are potential domains to consider. To allow UDSI

to recognize sketches of these domains, new recognizers and filters would need to be

created and plugged into the recognition framework.
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Appendix A

User Study Materials

This appendix contains the following materials used in the user study:

e The pre-test questionnaire

* The description of the diagram syntax and the set of tasks

e The post-test questionnaire
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PRETEST QUESTIONNAIRE

1. How would you describe your level of experience with the following applications?

Program None Little Some Lots
(never used (used once (used enough to (use
it, or don't or twice) be comfortable) regularly)
know)

Microsoft Visio
Adobe Illustrator
XFig
Dia
Corel Draw/Corel Flow
Microsoft PowerPoint
Microsoft Paint

2. How would you describe your level of experience with the following features included
in some drawing programs?

Feature None Little Some Lots
(never used (used once (used enough to (use
it, or don't or twice) be comfortable) regularly)
know)

Multiple Selection
Move-to-Front
Connection Points
Lasso Selection
Snap To Grid

3. What is your
paper?

None

Little

Some

Lots

formal training or job experience in art, drafting, or other drawing on
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4. Your job is:

If you are a student, your major is:

5. Is English your first language?

6. Your gender is:

Yes

Female

No

Male

7. Your age is:
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Overview of Diagram Syntax
For this study, we will be using a simple syntax to describe the diagrams in text that we would
ike you to create. The syntax is the following:

Circlo myLabell - draw a circle with the label, myLabell, inside.
Rectangle MyLabeIZ - draw a rectangle with the label, myLabel2, inside.
Diamond myLabeL3 - draw a diamond with the label, myLabel3. inside.

myLabell is connected to myLanel2 - draw a line connecting the shapes labeled mylabell and
mytabcl2
myLamell is connected to myLazei2 with Label nyLatei3 - draw a line connecting the shapes
labeled myLabell and myLabel2 and label that line segment with my Label3

myLaball arrow points to myLanoi2 - draw a line with an arrowhead from the shape with label
myLabell to the shape with the label myLAbel2
myLabell filled points to nyLabei2 - draw a line with a filled triangle arrowhead fmm the
shape with label myLabell to the shape with the label myLabel2

KEY:

* connected to:

" arrow points to:

- filled points to:

Tasks

Task 1: Warm-Up

Using the rovided pencil and paper, draw a clean sketch of a diagram according to the
followng desniption. Feel free to sketch a draft quickly, and then sketch a cleaner draft. Let
the investigator know when you have completed this task.

Circle CI
Rectangle RI
DiaNond Dl
CI filled points to R1
RI is connected to 01 with Laral L
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Task 2: Using Nicrosoft PowerPoint

Working quickly and accurately. create a diagram according to the following description within
Microsof PowerPoint. You should work to make the diagram crisp and clean. You should
imagine this diagram is going to be used in a business presentation slide.
Circle Cl
Rectangle R
Rectangle R2
Dianond 01
Dianond 02
Circle C2
CI filled points to RI
R2 is connected to Cl with Label LI
R2 is connected to 02
D2 arrow points to C2
DI filled points to A2

Task 3: Using UDSI

Working quickly and accurately, create a ciagram according to the following description using
UDS First. you should create a clean sketch of the diagram according to the description. You
will then place your diagram on the scanner and press the leftmoas button on the scanner. Your
image should be loaded in UDSI, and you may then complete the task within the application.
You should imagine this diagram is going to be used in a business pSntation slide, (NOTE:
when sketching on paper. try to use straight lines, but feel free to alow the lines to cross)

Rectangle RI
Circle Cl
Circle C2
Dianond 01
Diarond 02
Rectangle RZ
CI filled points to RI
DI filled points to RI
C2 is connected to C2 with label LI
02 is connected to CI
D2 arrow points to RI
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POSTTEST QUESTIONAIRE

1. Please rate the two interfaces for creating diagrams on ease-of-use:

Interface Very Hard Somewhat Average Somewhat Very Easy
Hard Easy

UDSI

Commercial
Application

2. Please rate the two interfaces for time taken to complete the tasks:

Interface Very Long Somewhat Average Somewhat Very Short
Time Long Time Time Short Time Time

UDSI

Commercial
Application

3. Please rate the two interfaces based on your overall experience and satisfaction:

Interface Very Somewhat Average Somewhat Very
Unsatisfied Unsatisfied Satisfaction Satisfied Unsatisfied

UDSI

Commercial
Application

4. If available for your regular use, would you use the application for your own tasks?

Interface Very Somewhat Neutral Somewhat Very Likely
Unlikely Unlikely Likely

UDSI

Commercial
Application
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5. How much did you trust that the UDSI application would correctly interpret your
sketch?

Interface Very Somewhat Neutral Somewhat Very
Distrusting Distrusting Trusting Trusting

UDSI
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Appendix B

Sketches and Screenshots

Two diagrams in this thesis were produced using UDSI (figures 4-1 and 5-6). The

original pencil sketches of these diagrams and the screenshots containing the initial

interpretations are included here to give a sense of the performance of the UDSI

system.
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Directed Sketch Interpretation, vO.1
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