
Analytical Techniques for Debugging Pervasive

Computing Environments
by

Atish Nigam

Submitted to the Department of Electrical Engineering and Computer Science in
partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2004 cu 'We) Q

© Atish Nigam, MMIV. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part.

Author.........
Department 4 Electrical Engineering and Computer Science

May 20, 2004

C ertified by
Larry Rudolph

Principal Research Scientist
Thesis Supervisor

Accepted by
Arthur C. Smith

Professor of Electrical Engineering and Computer Science
Chairman, Department Committee on Graduate Students

MASSACHUSETT.S INS
OF TECHNOLOGY

JUL 2 0 2004

LIBRARIES BARKER

Cl

Analytical Techniques for Debugging Pervasive Computing

Environments

by

Atish Nigam

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2004, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

User level debugging of pervasive environments is important as it provides the ability
to observe changes that occur in a pervasive environment and fix problems that result
from these changes, especially since pervasive environments may from time to time
exhibit unexpected behavior. Simple keepalive messages can not always uncover the
source of this behavior because systems can be in an incorrect state while continuing
to output information or respond to basic queries.

The traditional approach to debugging distributed systems is to instrument the
entire environment. This does not work when the environments are cobbled together
from systems built around different operating systems, programming languages or
platforms. With systems from such disparate backgrounds, it is hard to create a
stable pervasive environment. We propose to solve this problem by requiring each
system and component to provide a health metric that gives an indication of its
current status. Our work has shown that, when monitored at a reasonable rate,
simple and cheap metrics can reveal the cause of many problems within pervasive
environments.

The two metrics that will be focused on in this thesis are transmission rate and
transmission data analysis. Algorithms for implementing these metrics, within the
stated assumptions of pervasive environments, will be explored along with an analysis
of these implementations and the results they provided.

Furthermore, a system design will be described in which the tools used to an-
alyze the metrics compose an out of bound monitoring system that retains a level
of autonomy from the pervasive environment. The described system provides many
advantages and additionally operates under the given assumptions regarding the re-
sources available within a pervasive environment.

Thesis Supervisor: Larry Rudolph
Title: Principal Research Scientist

3

4

Acknowledgments

I would like to acknowledge the help of my advisor Larry Rudolph for his assistance,

patience, and guidance during the course of our work together. His knowledge and

creative ideas provided me many avenues to explore.

Through out my year the other members of the Oxygen Research Group provided

me with support and good times during the past year. Albert Huang was never far

away with a solution to my computer woes.. .I guess I never gave him a chance to run

away. Debbie Wan, Nancy Kho, and Jessica Huang always provided a respite from

the work day. I appreciated the constant supply of candy furnished by Sally Lee and

the hilarious conversations and Texas hold'em tactics I exchanged Chris Leung.

It is impossible to acknowledge all of my friends who have helped me this past

year and during my time at MIT, but I would like to acknowledge a few people who

have been part of my life this past year: Alex DeNeui, the most illustrious individual

I will ever let live on the floor of my room for three months. My apartment-mate Josh

Juster who's penchant for gadgets provided me with an outstanding HD TV, and a

superb 18th green on which to practice my putts, and for not being a hater. The man

who was one step ahead of me, Ajay Sudan, I've finally caught up.. .now we get to go

work jobs that we have absolutely no training for. I'd also like to acknowledge Pat

McCaney, although he may have had issues with his sleep schedule, we were clearly

on the same level at prioritizing our time. I would also like to acknowledge my pledge

brothers in the class of 2003 at ATO. I would also like to acknowledge all those who

were part of my life here at MIT for 5 years.

Finally, I would like to thank Jerry Seinfeld for producing the Seinfeld show for

9 years, and FOX for playing it every day at 7pm (and 11pm in case I was working

late).

I would also like to thank my parents Anil and Reshma for giving me more support

and love than I could ever imagine. Thanks for making me who I am today.

5

6

Contents

1 Introduction

1.1 Background

1.2 Problem Description

1.3 Traditional Solutions

1.4 Assumptions About the Environment

1.5 G oal

1.6 User Interaction

1.7 Outline

2 Related Work and Background

2.1 Middleware Pervasive Environments

2.2 Related Analysis Work

2.2.1 Previous Environment Analysis Work

2.2.2 Analytical Techniques

3 Transmission Analysis

3.1 Transmission Rate Analysis

3.2 Transmission Rate Technique and Results .

3.3 Transmission Data Analysis

3.4 Transmission Rate Technique and Results .

4 System Design

4.1 Health Instrumentation .

7

11

. 12

. 14

. 15

. 16

. 19

. 19

. 2 1

23

. 23

. 25

. 25

. 27

29

. 29

. 32

. 39

. 40

49

49

4.2 Health Monitoring . 52

4.3 health monitoring System Design . 54

4.4 Other Metrics to Explore . 56

5 Conclusion 59

5.1 Problems During the Course of Work 60

5.2 Future Work . 61

8

List of Figures

1-1 In a typical pervasive computer environment, a collection of devices,

applications, and even users work together. When there is a faulty

device or system, how can a user identify the source problem? 13

3-1 The transmission rate analysis calculates a windowed standard devia-

tion over the past 6 arrival rate windows. Each of the boxes on the

arrival rate signify an arrival rate window, the standard deviation of

the past 6 windows create the entry for the standard deviation window

at that tim e. 34

3-2 Transmission rate data for a normal run of the vnc application. The

darker line indicate the arrival rate at the time window while the lighter

line is the standard deviation of the past 10 time windows. 35

3-3 A graph of the average bits per second for the vnc transmission rate

analysis implementation. The drop in data rate denote the time that

the server became ide, the subsequent increase was when the server

was made active again. 36

3-4 A graph of the outgoing rate of data from the vnc server to the vnc

client in the vnc application. The darker line indicate the arrival rate

at the time window while the lighter line is the standard deviation of

the past 10 time windows. 38

9

3-5 A graph of the arrival rate of data to the vnc client from the vnc server

in the vnc application.The darker line indicate the arrival rate at the

time window while the lighter line is the standard deviation of the past

10 tim e windows. 38

3-6 A graph of the results of the distinct element counter. The estimate al-

ways yields a number less than the actual number of distinct elements.

In this graph the darker lines are the actual number of elements while

the lighter graph is an estimate of this using the described algorithm. 43

3-7 A graph of a normal run of the distinct element counter. The darker

line is the estimate of the distinct elements sent while the lighter line

is the standard deviation of this for a recent set of time windows. . . 44

3-8 This is a graph of the vnc application were a single program dominated

the screen of the vnc server for a period of time and only a few screen

changes were sent to the vnc client. 45

3-9 This is a graph of the vnc application that kept track of the size of

elements that were sent from a vnc server. The spikes indicate times

where there was a burst of data transmitted. 47

4-1 This is a screen shot of a speech enabled flash demo that allows users

to send chat messages to an health monitoring monitoring server that

provides information about the system. 54

4-2 A system design for a pervasive environment. The system design-

ers provide the process monitoring components for each process. The

health monitoring monitoring device then queries these systems and

processes the data....... 56

5-1 This graph shows an overlay of data leaving a CORE device and travel-

ling to another CORE device. The data gives indication to the causal-

ity of the transmission. 62

10

Chapter 1

Introduction

A fundamental problem in current pervasive computing environments is the inability

to quickly and accurately identify faulting agents or devices. This thesis explores

methods to identify changes that have occurred in a pervasive environment to give

the user a better idea of how the environment is functioning, in order to rectify

malfunctioning components.

As pervasive environments continue to be come more prevalent, it will be necessary

to provide some notion of user level debugging. Systems can misbehave or act in an

unexpected manner causing many problems in pervasive environments [33]. User level

debugging will enable users to rectify problems created by borderline issues that are

not necessarily in the scope of an environment designer's specification, but still occur.

By detecting changes in a system's behavior or performance, it empowers users to fix

the problem but additionally places less burden on the environment designers, as they

no longer have to create an environment that can handle any possible inconsistency

that may arise.

In particular this thesis focuses on an inexpensive analysis of transmission streams

and the information that can be understood from monitoring the data that passes

between systems, and the rate at which this transmission occurs.

11

1.1 Background

Modern day computing technologies have started progressing beyond the desktop to

become interwoven into other parts of life [18]. Pervasive computing is the study

of all aspects of these ubiquitous computing technologies, from their design to their

deployment. These technologies will continue to become more popular in the coming

years as computers move towards embedded designs that will be a part of everyday

components. Such environments will have new design difficulties that will have to be

overcome as they become more prevalent in society [36]. Pervasive environments can

range from smart homes that allow a user to remotely control the multiple systems in

their home such as the heating, entertainment, and laundry systems; to a pervasively

enabled jacket with a single system that controls the user's body temperature.

Pervasive environments are generally constructed by combining different systems

that individually do different things. Thus, a smart home for example, will have sep-

arate systems for heating, communication, and entertainment, which work together

to create the entire smart home environment [6]. Likewise a heating jacket would

be composed of sensor systems and heating systems working in conjunction to fulfill

the users needs [22]. As a result, pervasive computing techniques increasingly rely

on incorporating many disjoint systems to create an environment that accomplishes

more than the sum of its pieces.

The problem with creating environments from distinct systems is that each system

is not built to handle the nuances of each of the other systems. Take the example of

a smart home environment, one could imagine that in your home if your fire alarm

went off it would send your cellphone a message alerting you, it may signal your

sprinklers to turn on, and may signal all of your appliances to power off. This would

be a fairly comprehensive fire prevention plan that would effect multiple systems

including your cell phone, sprinklers, and every appliance in your house. Common

fire alarms now have a feature that they beep whenever the batteries are low. In a

pervasive environment each of the systems dependent of the fire alarm may not have

been built to handle the difference between a fire alarm beep and an actual fire alarm,

12

Whahappened to
my sysem t wored
correctly 10 mirutes
ago and no# nothing
worksl

(Ilk

@~

Figure 1-1: In a typical pervasive computer environment, a collection of devices,
applications, and even users work together. When there is a faulty device or system,
how can a user identify the source problem?

thus if a user's fire alarm beeped to tell them to get a new battery, they could instead

end up getting a periodic cell phone page, their appliances would stop working, and

even their home sprinklers could may come on repeatedly throughout the day[26].

This situation is problematic not only because it could happen, but one could

imagine being totally dismayed when entering a home where the appliances don't

work, the sprinklers are turning on and off, and not being able to rectify it quickly [30].

Without a system for obtaining knowledge about the environment, the debugging

process would be arduous. A simple solution to this problem that is commonly used

is to reboot the environment, however, one many environments have no mechanism

to reboot an entire house, while ensuring that the systems start at the correct time

in the correct order. The ideas presented in this thesis can play an important role

in pervasive environments that are created out of disparate systems not created to

handle the individual nuances of every other possible system they could interface

with.

13

For the context of this thesis, systems will refer to the component systems of a

pervasive environment and environment refers to the collection of systems working

together.

1.2 Problem Description

Attempting to create a pervasive environment from various distinct systems not cre-

ated to work together introduces many new problems into system design. These

problems arise from a number of different causes including:

1. Dependent systems may not know how to react when a system they depend on

fails or goes offline.

2. A system may start sending unexpected data (i.e. error messages or invalid out-

puts), but may still be operating according to specification, and other dependent

systems may not know how to react to the unexpected data they receive.

3. A system may be in a corrupt state and be sending out incorrect information

4. Links could be added or removed between processes that create unexpected

dependencies in the environment.

5. Changes could be made to one system that propagate to other systems, or

problems that occur with interactions between the sub-systems of a system

could cause problems in the overall functionality of a pervasive environment.

6. Race conditions may arise between different systems that cause an inconsistent

state for the environment.

The main issue with these types of problems is not that the systems are acting

incorrectly, but rather that a system is not acting as the other systems in its current

environment would expect it to act. Therefore, a system could be causing problems

in a pervasive environment, but need not be failing itself. With a plethora of possible

14

problem causing situations in every environment, it is virtually impossible for an

environment designer to anticipate and provide solutions to every problem that could

occur. A solution is necessary to allow the user to understand the possible sources of

a problem in their environment and provide direction for rectifying these problems.

1.3 Traditional Solutions

There are many traditional solutions for debugging environments. These traditional

solutions can range from a simple restart of the entire environment [30] to analyzing

log files of a system and understanding the structure of what happened while the

system was running [20]. Some of these solutions, such as rebooting, are based on

simply ignoring the problem and restarting the system in the hopes that the issue

will not arise again. Other systems are based on the assumption that the system will

need to be shut down or stopped to analyze the log files and understand what exactly

transpired in the system before making the necessary changes.

While these methods proved effective thus far, in pervasive environments that run

for long periods of time with many different systems, analyzing system performance

logs can get time consuming and difficult to understand. Furthermore, rebooting a

system may not be an option. Thus, there is a need for a new solution that would

enable users to quickly ascertain the problems in their environment and move to

rectify these in an efficient manner.

This thesis focuses on analysis of transmission streams, which may generate a

great deal of data. There is a need to analyze this data quickly and efficiently, using

many techniques common in the mathematics and database analysis field. A few of

these techniques have been in use for many years, yet are new within the field of

pervasive computing. Database analysis techniques are particularly useful because

database analysis often involves looking over a great deal of information a few times,

many times only once, and attempting to deduce some relevant information from the

data [37]. These techniques will be discussed in the course of this thesis.

15

1.4 Assumptions About the Environment

This thesis seeks to identify methods by which systems in a pervasive environment

can be easily analyzed to facilitate debugging problems that may occur in the envi-

ronment. More specifically this work focuses on exploring metrics by which systems

in an environment can be ranked based on the largest change in their behavior, or

health. Each of these health metrics will be analyzed with respect to a set of as-

sumptions that are made about the structure of the pervasive environment and the

resources available to calculate and retain these metrics.

The first assumption that will be made about pervasive environments is that they

will be composed of a collection of systems. Many of the systems that compose

a pervasive environment will not have been built to work with each other. Thus,

these systems will have to be adapted to work together while still working according

to their specifications [22]. Creating an environment that is essentially a system of

systems introduces problems in that each system cannot be expected to handle each

possible characteristic or output of every other system in the environment. At best,

the systems will be designed to handle a majority of situations that the other systems

may have. However, the borderline cases that occur will not be handled and can cause

serious problems in pervasive environments.

Furthermore, creating an environment out of a system of systems introduces var-

ious communication inconsistencies. There is currently no predominant communica-

tion protocol in pervasive environments and the range of possible protocols includes

TCP, Bluetooth, Firewire, IR, and Serial to name a few. With no standard proto-

col, it is difficult to create a single solution that would monitor the communication

between these systems on all the different communication protocols and platforms.

There are multiple reasons making monitoring systems on these low level protocols

difficult, some platforms may restrict the protocols to certain users or access to the

protocol on the platforms may be very difficult. Furthermore, with each protocol

having different characteristics, there are different aspects to be monitored for each

protocol. This not only makes monitoring difficult, but it also increases the complex-

16

ity in comparing the protocols. Given the various problems with creating a system

of systems, it is important to understand how each of the metrics, for measuring

transmission, that will be discussed can operate independently of the communication

protocol and environment topology that is used.

The next assumption that will be made about pervasive environments pertains

to the existence of a centralized server or control point. Some environments have

a central point through which all communication occurs, while others may have a

central control point from which to modify the environment and the systems within

the environment. It is increasingly popular to develop environments that do not have

a central focal point and are essentially distributed systems with autonomous nodes

[35]. The advantage of a distributed environment is that there is no central server

that needs to stay running correctly to support the environment. Additionally, each

node can make decisions on what to do given a situation without having to wait for a

centralized server to tell it what to do or affirm what it wants to do. This autonomy

is important as systems can also be added or removed from an environment without

having to make changes to any central server or control point.

With no central control point two distinct issues arise when considering pervasive

environments. Primarily, it is extremely hard to monitor an environment if there is

no central place that can be used as a monitoring point. As such, the metrics must

be designed so that they need not be run on a single entity within the pervasive

environment. Additionally, with no central location, the idea of rebooting a system

is almost impossible as there is no way to reboot or reset all the systems in an

environment at the same time or in a specified order by which they will operate

correctly. It is necessary to build a series of metrics that enable a user to identify

the problem systems within an environment so each of these can be reset or restarted

independently as opposed to restarting the entire system.

The next few assumptions will be based on the systems themselves and what they

can contribute to the overall monitoring and debugging effort. The first of these

assumptions is that each system can monitor itself and provide information regarding

a specific metric. This thesis will outline the metrics that will be used under the

17

assumption that the various systems will be able to compute these metrics easily,

with minimal resources, and report the status of these metrics when asked. With no

centralized monitoring utility, it will be the responsibility of the individual systems to

keep track of their own behavior and report this metric when queried. It is assumed

that this query will be contained in a simple API with a very small set of methods,

and it will be the responsibility of the system designer to implement these methods.

One of the important advantages gained by having systems provide these metrics

using their own implementation is that environment designers need not attempt to

collect this data themselves. If designers were asked to collect this data it would entail

a considerable amount of effort in modifying communication and software protocols

such as the Bluetooth protocol or the java socket SDK. By placing the implemen-

tation on the system designer the environment designer need not worry about the

implementation details or constantly having to create patches and updates whenever

changes are made to the standard communication protocols.

The final assumption that will be made about the systems in an environment is

that when computing the metrics, the systems will have a low overhead of processing

time and storage space to work with. With a small amount of processor time, ideally

logarithmic with respect to the output of the system, devoted to computing the

system behavior metric, the metrics must be simple to compute and easy to monitor.

Additionally, with a small amount of storage space, again logarithmic with respect

to the system output, the systems will not have much space to store data related to

the metric calculations.

Finally, the systems must calculate these metrics in real time. This will ensure

that users are getting updated and current information about the state of their en-

vironment while the environment is still online and functioning. Furthermore, it will

ensure that users need not wait to examine the functionality of their system by these

metrics as they will be constantly calculated and updated. Each of these assump-

tions have been designed to minimize the effect of tracking system behavior, but at

the same time allow the metrics to maximize the knowledge gained from a pervasive

environment.

18

1.5 Goal

This thesis has specifically focused on metrics to identify the largest change in a

system's behavior, as this is a useful characteristic to understand how characteristi-

cally or uncharacteristically a system may be performing. Systems that exhibit large

changes from their normal behavior are more likely to be acting uncharacteristically.

Subsequently, in attempting to identify problem points within an environment, it is

helpful to look at the systems that have deviated from their behavior the most and

start by exploring how these systems are performing individually. Using such metrics

one could then rank systems in an environment by which had the largest change in

their behavior. A user could then take this data and have a clearly defined path by

which to start debugging the environment.

The metrics that will be explored in this thesis are based on a few basic assump-

tions, which will be described in depth in later chapters:

1. The environment will be composed of a system of systems.

2. The environment will not necessarily have a central focal point from which all

communication passes or from which the environment control is run.

3. Each component will be able to provide a specified metric of its relative behavior.

4. Each component will have a limited amount of processor and storage capabilities

to track the metric.

The metrics that will be explored in the context of these assumptions will be

thoroughly discussed in the course of this thesis and center around transmission rate

analysis and transmission data analysis between the systems in an environment.

1.6 User Interaction

To develop a solution that will enable users to find and rectify problems in a system,

there are multiple scenarios and sub-scenarios that a solution should satisfy. The

19

following is a small list and explanation of the scenarios such a system would need to

provide discovery mechanisms for:

1. The Data that a System Sends Changes

(a) The system could have gone offline: For this to happen the system could

have shut off or hung, or the communication mechanism between itself and

its dependent systems could have become interrupted.

(b) The system could be sending out different data: The system could have

changed the data it was sending or it could have started sending invalid

data. Invalid data refers to data that a system would not typically send

out, such as error messages, data caused by failure, or valid data that

another system does not expect.

(c) The system configuration could have changed: Many times a system un-

dergoes specific changes as a result of its environment. These changes can

be a result of changes in other systems or simply valid changes made by

the user that other systems do not know what to do with.

2. The Environment Configuration Changes

(a) The environment throughput could have changed: A system could have

gone into a sleep mode, or the communication network could have become

congested, all of which would cause problems in the workings of the overall

system.

(b) Links between systems could be modified: Many times in an environment

links between systems are modified, by either adding or removing links

between two systems or modifying an already existing link.

(c) An environment error could occur: In centrally controlled pervasive en-

vironments errors in a central or controlling server can manifest in many

unique ways to the environment. Thus it becomes important to observe

the effects that changes in a server have on the environment.

20

1.7 Outline

This thesis will spend chapter 2 discussing the context of prior and current work

in pervasive computing analysis, and will also discuss some of the current analysis

techniques from which some of the metrics were built. Chapter 3 will go on to

an analysis of the transmission rate and transmission data metrics and will discuss

the implementation and results of the metrics with respect to the aforementioned

assumptions. In chapter 4 we will evaluate the metrics in terms of system interaction

and will also propose methods by which to keep a higher degree of autonomy and

longer degree of analysis for pervasive environments. The thesis will conclude in

chapter 5 which will include a description of areas for future work.

21

22

Chapter 2

Related Work and Background

This chapter presents the assumptions made about pervasive environments and the

systems that compose them. This discussion is useful in structuring the analysis of

the various metrics that were used. Furthermore, a description of current pervasive

environments and their design is given followed by some background into related

analysis work that will be used in implementing the metrics used in thesis.

2.1 Middleware Pervasive Environments

To further understand the scope and requirements of these analytical metrics it helps

to understand the pervasive environments and infrastructures currently in develop-

ment. There are a large number of pervasive environments that are in development

[10, 15, 32, 1], we will focus on a few representative samples for this background

discussion.

A number of software based pervasive computing infrastructures, have been devel-

oped among these is the agent-based approach to structuring pervasive environments

[17]. The agent model is focused on allowing many different software systems, in the

same environment, to locate each other and communicate over a common medium.

The environment isolates different systems as individual agents that can perform spe-

cific function. For example, a projector is a resource to display an image to a group,

23

and a speaker is a resource to project sound. Using these various agents, commands

can be developed which specify a set of agents that work together to perform a task.

When one wants to give a presentation, the controlling agent will turn on the cor-

rect software and alert the devices it deems necessary, such as a projector and set

of speakers. The projector will project the computer's output, and the speakers will

project the sound coming from the computer's speakers. To implement this idea a

few systems have been implemented among these are Rascal [14], a high level resource

management system that allocates specific agents for use based on a command, as

well as Metaglue [7], an extension of the Java programming language, that allows

systems to communicate with each other within this agent based framework.

Another pervasive environment, the Gaia Operating System [29], extends the tra-

ditional operating system model to physical spaces. Similar to the way an operating

system manages resources on a computer, in the Gaia environment, applications share

a common kernel, file system, and event manager. Individual pervasive applications

then integrate with the Gaia OS when they enter the physical space controlled by

Gaia, and use the Gaia OS infrastructure as the platform on which to run. These

applications will use the provided infrastructure to perform their tasks as if they were

part of an operating system distributed among different systems. All of the resource

allocation, load balancing, and communication is then structured using techniques

similar to the way an operating system performs these tasks.

Another approach to infrastructure in pervasive computing environments is a goal-

oriented mechanism [27], by which a user specified goal is defined and the environment

then satisfies this goal. The environment is structured as a set of pebbles, each of

which can perform a specific function. The pebble system involves creating a wrapper

around different processes that conforms to a standard API. The goal oriented nature

of the system then enables the environment to allocate pebbles to a user based on

their goals at that time. Since each pebble has a standard API, the communication

is standard among all applications in the system. This defers from the agent based

approach where each agent has a specific method of communicating with the other

agents in the system.

24

These are a few of the many pervasive infrastructures currently being developed.

Each of these infrastructures is able to give a solution to resource allocation, commu-

nication, and functionality within a pervasive environment. Many of the assumptions

that were discussed earlier apply to these systems and thus these systems provide solid

groundwork from which to analyze the metrics used to determine pervasive environ-

ment behavior. A cohesive solution that can be applied universally to each pervasive

environment is necessary, and will be fleshed out during the course of this thesis.

2.2 Related Analysis Work

The metrics explored in this thesis are based on a set of general analytical techniques,

some of which are used in other fields such as mathematics or database management.

There are a large number of performance debugging tools that each have their own

merits [9, 34]. This section will first cover some of the work that is being done to

analyze current distributed environments, and will then move on to exploring some of

the general analytical techniques that will be explored in the course of this thesis. The

internet can also be considered similar to a pervasive environment in that individual

nodes do not have any control over the entire environment. As such many of these

current analysis projects will center on the internet as the source of a pervasive

environment.

2.2.1 Previous Environment Analysis Work

There has been some work done in analyzing and monitoring pervasive environments,

much of this work has centered around distributed computing environments. An on-

going project at Stanford University, the Pinpoint project has focused on determining

problems in large, dynamic internet services [25] . This system involves tagging and

monitoring client requests as they pass through an environment and then applying

data mining techniques to the logs of these requests so that the failures and successes

can be correlated with the performance of the system.

25

This system is beneficial in the sense that by tagging the information as it passes

through the environment the system can gain relevant information about the envi-

ronment and analyze this information to get an idea of what systems are failing and

where problems may lie. The problem with this system is that an environment with

such a monitoring implementation must be built with such a system in mind. In the

case of Pinpoint, the authors modified the J2EE platform to incorporate their mon-

itoring tools and then build the system using this modified platform. By essentially

instrumenting the applications themselves to work in the monitored environment, the

system designers are able to accurately understand what is happening in a pervasive

environment.

Another environment was designed to debug a system of black boxes [24], and in-

stead of instrumenting the systems themselves, the environment designers choose to

instrument the environment within which the systems would be run. In this environ-

ment, messages passed between the environment are traced, similar to the Pinpoint

environment. However, this environment seeks to discover the causal path patterns

within the environment and give the user information about the latency within a sys-

tem and the topology of the system. This system does a beneficial job of monitoring

the transmission data that passes between systems, and does an especially good job

of treating the systems as black boxes, so that they need not be built using a specific

platform or toolset.

This implementation is an advantage over the previous Pinpont environment in

that it treats each system as a black box. Unfortunately, this environment model

doesn't perform the functions to be discussed, that give an indication about the

performance of the environment. Simply observing the causal relationships in the

environment does not give an indication of how the systems are performing or even

how the environment as a whole is functioning. The system described in this thesis

will address these issues and will not only treat the systems as black boxes, but will

move on to discussing other relevant metrics that would be useful in analyzing the

environment.

Researchers the University of Western Ontario have also done research on making

26

distributed applications manageable through instrumentation [21]. Their motivation

was to provide a central a coordinated view of the entire environment, this research is

relevant as it shows a need to monitor the status of a system and provide a monitoring

service that can give an indication of the status of the system. This system however,

depends on the existence of a central coordinating server that can monitor and con-

trol the environment, this idea is contrary to one of the first assumptions that has

been made about pervasive environments. This thesis will discuss a plan to monitor

pervasive environments that is not dependent on a central, controlling system.

2.2.2 Analytical Techniques

The metrics explored will be based on an analysis of the data that passes between

the different systems of the environment and the characteristics of this data. In many

of the systems previously discussed and especially in the system implemented for

this thesis, there is a large amount of data that is to be monitored and understood,

as a result it is much more efficient to do the analysis as the data is produced,

so that one always has a current understanding of the system at that time. To

analyze the data, various techniques will be used, including data stream analysis and

clustering techniques. This section will review some of these techniques and they will

be described in depth later in this thesis. Some implementation work has already been

done in this area and includes building off of probabilistic counting mechanisms as

described by Flajolet and Martin [13], data stream calculations described by Manku

and Motwani [23], and counting distinct elements in a data stream as described

by Bar-Yossef [3]. Most of these applications have been explored in the database

management space where time and space resources do not come close to the size

of the data being analyzed. These techniques offer a mechanism for maintaining

statistics of data with minimal space and time lag, since space and time efficiency is

an important feature in reducing overhead to individual systems.

There has been other work done specifically on analytical techniques that can be

used in pervasive and distributed systems. Graham Cormode designed a system that

27

dynamically monitors the most frequent items in a system and keeps records of the

performance of these items [8]. The advantage of this system is that it keeps track of

these items dynamically and has been designed for a one pass view of the data that

is being analyzed. Rebecca Isaacs also discussed some of the benefits of performance

analysis in distributed systems, and spoke about the benefits of doing this from a data

driven approach. Much of the same concepts descried by Isaacs will be discussed in

the context of this thesis [19], including monitoring throughput versus response time

and the discussion about offline processing of data.

28

Chapter 3

Transmission Analysis

This chapter will discuss in depth the metrics that were explored for monitoring

system behavior. There were two main areas explored: transmission rate analysis

and transmission data analysis. This chapter will describe these metrics, discuss how

they meet the previously stated assumptions, explore their implementations, and how

they performed.

By monitoring transmission data in a system there are a few characteristics of the

data that is of importance. One of the most relevant things is understanding what

exactly is being transferred while the other is understanding how well this transferring

is happening. Each of these areas offer numerous possibilities for monitoring what is

happening in a pervasive environment. This thesis has focused on specific means for

gathering this data in ways that maximize the benefit while ensuring cheap operation

costs.

3.1 Transmission Rate Analysis

The first metric is transmission rate analysis, which involves analyzing the rate of

transmission of data between systems in an environment. There are many unique

factors about an environment which can be discovered from this analysis, such as

the active, static, or idle status of a system; or the causal relationships in a system.

29

These advantages will be discussed in the next section.

There are many advantages of having information about transmission rate anal-

ysis. By monitoring the communication in an environment, one can gain an idea of

what devices are communicating with each other and more importantly how often this

communication occurs. With this communication information one can then passively

observe what systems may have gone offline, or what the environment configuration is.

Monitoring these environment characteristics are integral in understanding changes

that have happened within the environment.

An important characteristic that transmission data gives is the ability to under-

stand the system state. There are various states that a system or component of a

system can be in: active, listening, sleeping, offline, to name a few. Many communica-

tion systems that have multiple states will transmit a certain amount of information

based on their state, thus, by tracking a system's transmission data, one can monitor

the state of a system. For example, if a system is inactive it will output less infor-

mation than an active system would output. Through this information gathering,

transmission rate analysis can give rich information regarding the status of a system,

the status of an environment, and additionally the topology of an environment.

Given the assumptions about pervasive environments, transmission rate analysis

comprehensively meets each of these requirements. In recording the rate of data

transmission between systems, the environment is treated as a collection of disparate

systems. There is no need for a centralized server to monitor transmission rates as

each system can monitor its own transmission rates. Furthermore, each system can

easily keep track of the rate of data it sends and receives from other systems in the

environment using a simple algorithm that will be discussed later. Finally, it will be

shown that this algorithm requires a constant amount of storage and processing time

on the order of the localized range in which transmission data is needed. As such,

analyzing the transmission rate between systems provides rich information and can

be accomplished within the scope of the stated assumptions.

The two techniques were used in analyzing the communication between a VNC

environment [11]. A VNC application allows users the ability to remotely view and

30

manipulate the desktop of a remote computer. In this environment a communication

channel is setup through TCP/IP allowing a user with the correct password to the

vnc server to connect to this server using a vnc client running on a remote machine.

The servers and clients are built for many different operating systems making it easy

to use on virtually any computer.

In this environment a VNC server and a VNC client [2] were run on sperate

computers and connected as nodes to a CORE [5], a common oriented routing envi-

ronment, which essentially allows a user to route TCP/IP socket connections between

two nodes that are ambivalent of each other's network connection. The advantage of

doing this is so that each node need not be hardcoded to know exactly where all the

other nodes it is connecting to are located. By setting up a core to listen and send

on a common, established port it allows different devices to connect to this port and

send information to the core. Nodes simply connect to a predefined socket on a core

server and then communication can be routed to and from the node. There also exists

a control connection to a core that provides configuration information to the core.

Using this control connection one can route information from one node connected to

the core to another node connected to the core. Thus, one node that is setup to send

information to a core and another node that is setup to receive information from a

core can communicate with each other.

For this implementation a core was setup on a single server. A vnc server was

setup on another computer and was connected to the listening port of the core. Thus,

the vnc server was constantly sending the core screen shots of the server's desktop,

under the assumption that the core was a vnc client. Additionally, the vnc server

was listening for the core to return mouse and keyboard events to send to the vnc

server's desktop environment. A vnc client was then setup on another computer and

was connected to the listening port of the core. The client was listening to receive

screenshots from what it believed was the vnc server, but what really was the core.

The vnc client was also ready to send mouse and keyboard events to the core whenever

they were activated on the vnc client's computer.

This architecture was chosen for a few important reasons. The vnc environment

31

provides a rich, real-time mechanism that involves a network connection. Addition-

ally, the setup of the core in the middle of the vnc connection is a bit counter-intuitive,

given the stated assumption that the metrics would be designed so that no central

server was needed. However, there are two motivations behind choosing a centralized

core setup. The primary reason was that it allows for use of vnc which is a common

and widely used system and an application that is common within the scope of perva-

sive computing. Secondly, since this is a testing implementation, it was desired that

an easy mechanism be built to quickly modify and change the analytical metrics and

algorithms used.

Had actual changes to the vnc software been made, it would have been a time

consuming task to constantly rebuild the client and server whenever a small tweak

was necessary to a given algorithm. After sufficient testing was completed with the

algorithm, a final algorithm could then be implemented into the vnc environment for

use as implied in this thesis. Additionally, at the onset of this research it was not

clear what type of API would be necessary to view the metric data, thus, by simply

modifying one core server a useful API could be decided upon at leisure.

Overall this vnc and core environment is a small but interesting pervasive envi-

ronment to analyze various things that could happen: the client or server could crash;

the link between the two could break; or either side could go idle. Tests exhausting

all of these properties were performed and very interesting results were gathered.

For this implementation the core essentially acted as a wrapper around the indi-

vidual nodes, in this case the vnc client and vnc server. All the analytical metrics

were implemented within the core and an API was built within the core to access the

necessary data from the metric calculations.

3.2 Transmission Rate Technique and Results

There is a trivial method for calculating the rate of data transmission between two

systems. This involves periodically counting the total amount of data passing through

a communication channel and then dividing this by the total time over which the data

32

was gathered. This implementation is sufficient for an environment that does not have

volatile communication speeds. Unfortunately, pervasive environments do not enjoy

this luxury, often systems will vary drastically in the amount of data they transfer,

depending on what they contribute to the overall environment. As such, a system

that averages the data transmitted over the entire duration of monitoring is often

irrelevant when attempting to indicate what a system is transmitting at a given time.

An improvement over the trivial data transmission calculation is one where data

transmission rates are calculated for a given window of time. For example, the amount

of data transmitted every 10 seconds can be calculated and then stored. This infor-

mation proves useful as one can then use these small data windows to get an approx-

imation of how the transmission is proceeding. If the data starts getting smaller one

knows that the transmission is slowing down, and so on.

There is a downside to this windowed method of analysis. While one is given

a better idea of what is happening in the system at the current moment, it still

requires additional work to figure out what each of these small transmission rate

windows means within the scope of the entire system performance. Furthermore,

many communication protocols can be bursty over short periods of time, making it

hard to accurately gauge the properties of the transmission rate, using a small time

window. Unlike the trivial calculation, where there was too much forgiveness given to

volatile transmission rates, the windowed scenario is not forgiving enough for volatile

transmission rates.

To add some robustness to the analysis, it is helpful to look at the standard devi-

ation of the windowed transmission rates for a larger window of time. For example,

if there are windowed transmission rates taken every 10 seconds, then it is helpful to

look at the standard deviation for a given set of these windows (i.e. 6 or 12 windows,

or 1 to 2 minutes) to get an idea of what the transmission properties have been like

for a larger period of time. This windowed standard deviation clears up much of the

volatility in the transmission rates, but also gives a clear indication of what trends

there are in the transmission rates.

An algorithm for this is analysis is fairly straight forward, minimizes space con-

33

arrivalrate window t=1 2 3 4 5 6 7 8 9 10 11

standard deviation window t=1 2 3 4 5 6 7 8 9 10 11

Figure 3-1: The transmission rate analysis calculates a windowed standard deviation
over the past 6 arrival rate windows. Each of the boxes on the arrival rate signify an

arrival rate window, the standard deviation of the past 6 windows create the entry

for the standard deviation window at that time.

straints, and can be accomplished in constant time. For this algorithm we will assume

that it is trivially possible to monitor the amount of data transmitted over a commu-

nication channel between two systems in an environment for a small window of time.

The first step is to create a circular buffer, the size of the number of windows the

standard deviation is to be calculated over. For example, if one is hoping to calculate

the standard deviation at a given point for the two minutes prior to that point and a

windowed transmission rates of 10 seconds was used, the vector would be of size 12.

As each 10 second window of transmission data is recorded, it would be stored in the

oldest place in the buffer. This ensures that the buffer contains only the transmission

data relevant at a given time. To take the standard deviation of this data, a trivial

standard deviation algorithm can be used to calculate the standard deviation of all

the data within the current buffer. The standard deviation could also be taken every

time window and stored in a separate array.

After connecting the vnc server and client to a core, outfitted with the correct met-

rics, various tests were performed implementing the described algorithms for trans-

mission rate analysis. The average transmitted bits per second was recorded for 10

second intervals by both the client and the server. As mentioned this data was calcu-

lated within the core and was then accessed using a standard set of API's. In this case

the API consisted of two simple methods getRate() which returned the average arrival

rate of data for an interval of ten seconds and another method getStdDevRate) which

34

One Core- Active and Static Desktop

45mD -

40000 -

M 25m-

150m0

5000I -

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209 222 235 248 261 274 27 3 313 326 339 352 365 378 391 404

Sample

Figure 3-2: Transmission rate data for a normal run of the vnc application. The

darker line indicate the arrival rate at the time window while the lighter line is the

standard deviation of the past 10 time windows.

returned the standard deviation of the arrival rates within the vector of the past 10

ten second window sizes. These window size and standard deviations were recorded

by another computer that queried the client and server portions of the core for the

transmission rate information and kept a record the information that was reported.

The data that was found and stored by this other computer has been graphed to show

a few notable results.

The transmission rate data that was found proved highly valuable in evaluating

the state of a system, there are a few plots of data that will be presented to show the

variances in the data transmission rates.

The first plot is the transmission rate for the vnc application described above.

The vnc server application operates by sending the differences in screen shots of the

server to the client, thus when a large amount of activity happens between the client

and server desktop environment (i.e. the client opens and closes many files on the

desktop of the server), the transmission rate rises, and when there is less activity the

transmission rate falls. Figure 3-2 shows a standard run of the vnc application where

35

C=~I ~ 1 A - _

Idle Server

700-

500

400.

300

200

100

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 N 91 96 101 106 111 116 121 126 131 136

Figure 3-3: A graph of the average bits per second for the vnc transmission rate
analysis implementation. The drop in data rate denote the time that the server
became ide, the subsequent increase was when the server was made active again.

a client connects to the server and has an active and static section. The application

had active and static periods, these were created by having the client open and close a

lot of programs on the desktop, then letting the desktop go idle for a while, and then

activating the desktop again. As can be seen in the graph, the data is fairly active

in the beginning, but then dips when the client stops using the desktop, only to rise

again when the client reactivates the desktop. For this and all subsequent figures in

the next two chapters the two lines denote the two data points tracked. The darker

line is the arrival rate of the data over a ten second window, and the lighter line

is the smoothened standard deviation of this curve found using the getStdDevRate()

method.

To test out further features of the transmission rate analysis metric, a few other

tests were performed to gauge these results. The first of these tests was to see what

the effect of idling the server would be on the transmission data. When a computer

is not in use the computer can idle some of its components, including the monitor

36

to save energy. As figure 3-3 shows when the server went idle and the screen saver

started, less data was transmitted from the vnc server to the vnc client, which can

be seen by the dip in the two plots. Furthermore, when the server was made active

again, the transmission rates rose.

This idle test proved valuable because it showed that a difference could be detected

if a component of a pervasive system went idle but was still functioning correctly.

When a server goes idle and a screen saver is activated, less components are run-

ning, however the server is still functioning correctly and would respond positively to

keepalive or any other probes to test uptime. This transmission data analysis would

therefore prove useful if attempting to observe the active or idle state of a server.

Another observation that was interesting was to monitor the arrival and outgoing

rate of data through the environment. In this case the outgoing rate of data from the

vnc server was observed along with the arrival rate of data to the vnc client. Since

data passes directly between the two systems, one would assume that the curves

would look similar. This concept can be seen in figures 3-4 and 3-5 which plot the

outgoing rate of data from the vnc server and arrival rate of data to the vnc client

respectively. There is a strong correlation between the two graphs that can clearly

be seen.

There is indeed a correlation between data that is sent from a vnc server and data

that arrives at a vnc client. This concept could prove to be useful in observing many

other circumstances that plague pervasive environments. In other tests that were run

in a similar environment, when the communication link was broken between the vnc

client and vnc server, the vnc client side transmission rate dropped to 0 since it had

stopped receiving data, but the server side remained active as it was still sending

out data expecting the client to receive it. When the vnc client crashed in another

test, the vnc server side data reported similar characteristics, while the vnc client

side did not respond to any queries, and thus no plot was visible. By not responding

to queries the vnc client side clearly had issues, while in the previous example when

the vnc client responded with an average of 0 bits received, it indicated that the vnc

client was functioning and that a possible problem had occurred in the link between

37

Two Cores- First Core Arrival Rate

40000 -

10000

0
1 5 9 13 17 21 25 29 33 37 41 45 49 53 7 61 65 69 73 77 1 85 89 93 97 101 105 109 113 117 121

Sample

Figure 3-4: A graph of the outgoing rate of data from the vnc server to the vnc client
in the vnc application. The darker line indicate the arrival rate at the time window
while the lighter line is the standard deviation of the past 10 time windows.

Two Cores- Second Core Arrival Rate

35000 -

30000 i

25000 -

2000.

10000-

50

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105 109 113 117 121

Sample

Figure 3-5: A graph of the arrival rate of data to the vnc client from the vnc server
in the vnc application.The darker line indicate the arrival rate at the time window
while the lighter line is the standard deviation of the past 10 time windows.

38

the vnc client and vnc server. When the vnc server crashed the vnc client reported

receiving 0 bits but the vnc server did not report anything, indicating that it had

crashed.

Building on this concept is the idea that in passive systems where the direction of

communication is not known, one could observe the communication in a system and

deduce which systems are talking to each other by correlating the communication

between them. More on this subject will be discussed in the future work section of

this thesis.

It has been shown that monitoring the transmission rate between systems in a

pervasive environment lends to extensive information about the stability of individual

systems, the structure of the environment, the performance of the systems, and also

the performance of the environment as a whole. In this experiment, by simply having

the client and server monitor the data they individually received and sent over a

short period of time, a rich amount of information about the performance of the

environment was gained.

3.3 Transmission Data Analysis

The second area that was explored was in analyzing the data that passed through a

system. This metric was explored by examining the data that was sent and received

by each system, and recording the number of distinct elements that had been seen

in a given window of time. This analysis was able to yield some results about the

environment performance and individual system properties.

Keeping track of the number of distinct elements that have been seen yields many

clear advantages. The first of which is that by noting differences in the number of

elements that pass through a communication channel, one gets a better idea of how

the systems participating in that channel are functioning. Often, if a system hangs

or fails, it will repeatedly send out the same data over and over. Thus, the number

of distinct elements could drop from a larger number to 1, which would indicate

that the system has failed. If one was just doing a transmission rate analysis of this

39

communication path, the transmission rate may not have changed, but by analyzing

the actual data that passes over the system, one could get a better idea of how the

system is performing.

Furthermore, when a system is performing reliably it may output the same amount

of distinct elements over a period of time or process cycle. Thus, by monitoring the

number of distinct elements one could have a reliable bound on the performance of

a system. It is pertinent to note that this technique need not know the content or

context of the data that passes through the communication channel, but rather just

be listening to the bytes that passes through the environment.

Tracking the number of distinct elements transmitted in the environment gives

information about the performance of a system, while also meeting the previously

stated assumptions about the resources in an environment. Treating the environment

as a system of systems and tracking the data that gets passed between the systems

allows for the systems to be monitored as individual nodes in an environment and need

not entail treating the environment as a cohesive system. Furthermore, the algorithms

available to count distinct elements in a window operate with a low overhead and do

not require any centralized server or monitoring point. Thus, the distinct element

tracker meets all the assumptions that were made about pervasive environments.

3.4 Transmission Rate Technique and Results

The algorithm to count the number of distinct elements is fairly straightforward and

was discussed fairly concisely by Flajolet and Martin [13]. This algorithm is based

on the use of a universal hash function, a hash function that has an equal probability

of hashing a given key to each of the possible values in the range, to minimize on

hash collisions. Another feature is the bitmap vector which is the length of the binary

representation of the length of the numbers in the domain of the hash function and

will be used to approximate the solution.

The fundamental concept of this algorithm lies in the properties of the universal

hash function and some basic probability. If one had a number of things and was

40

randomly assigning these things to a set of possible options, there is a logarithmic

scale by which the distribution of things to options takes place. For example, if one

had n balls and n buckets, when the balls were randomly assigned to the bucket, one

would expect about 1/2 of the buckets to have at least one ball in them. If there

were 2n balls one would expect three quarters of the buckets to be full and likewise

if there were n/2 balls one would expect about one quarter of the buckets to be full.

Using this trend, if one didn't know how many balls they had, they could just

throw all their balls into a set of buckets and based on the number of buckets that

were filled, approximate the number of balls they had thrown. Taking this a step

further, if one threw the same number of balls into various groups of buckets, each

group with an increasing number of buckets. One could analyze each group and

see which group had half the buckets full and then approximate that the number

of buckets in this group was the total number of balls that they had. A further

optimization that one could do is choose a bucket and look at this bucket in each of

the groups. As one analyzed groups in an increasing fashion, the transition where the

bucket had a ball in it and the next larger group that didn't have a ball in it, then the

number of buckets in this smaller group is probably the number of balls the user had.

Now that we have gone over a basic description of the background of the algorithm,

we'll move on to a discussion of the actual algorithm and the implementation.

The algorithm begins by taking each transmitted piece of data and hashing it

to a binary number using a universal hash function. Next, take the position of the

least-significant one bit and set the corresponding bit in the bitmap vector, if it has

not already been set. The algorithm will continue to do this for the subsequent

data that enters the communication channel. The expected value of the number of

distinct elements that have passed through the communication channel since bitmap

was reset is lg On, where n is the position of the most-significant (leftmost) 0 in

the bitmap vector and 0=0.77351. By nature this algorithm doesn't yield an exact

number, but rather yields an estimate of the number of elements that have passed.

This estimate is within an order of magnitude of the correct value.

As was mentioned earlier it is important to have an idea of what elements have

41

arrived in a recent window of time. There is a simple solution to this problem, using

the current algorithm. Instead of using a vector of binary numbers to store the bitmap

vector, use a regular vector and keep a count of the number of elements that have

been seen. Whenever a new element arrives, mark the position of its least significant

1 in the corresponding place in bitmap with the timestamp of the element as opposed

to marking it with a 1. Thus, when considering the number of distinct elements that

have passed in the most recent window of time, all one needs to do is find the value

in bitmap that is less than the current time stamp minus the window size and use

this value as n.

This analysis gives an idea of how many elements have appeared in a given window

of time. The next step is to smooth out this curve as was done previously in the

transmission rate analysis section. To do this the number of distinct elements that

arrive is recorded in a vector which has a size of the number of windows that are wished

to be recorded. Thus, if one wanted the standard deviation of the past 10 windows

of distinct elements, this vector would have a size of 10 and again a trivial standard

deviation algorithm could be used to calculate this standard deviation. Furthermore,

the vector would have a counter that is constantly incremented whenever a new

number of distinct elements was added with every window size. This number n would

then be added at the location n mod 10, to ensure that the vector only held the 10

most recent distinct value calculations.

The implementation of the distinct element calculation was done in a similar way

as the implementation for transmission rate analysis. A vnc application was used in

conjunction with a core. The core acted as a wrapper around the vnc server and vnc

client, and gave the ability to monitor and access the data that was being sought.

A separate server monitored the core and queried it for information about the vnc

server and vnc client transmission.

Once again there were two methods as part of the API for the transmission data

analysis, getNumber() which returned the number of elements that had appeared in

a 10 second interval, and getStdDevNumber() which returned a standard deviation of

the number of elements that appeared in a given window of time.

42

Quantity of Distinct Elements

700

6W

400

.m

1 1516 3031 4546 6061 7576 9091 10605 12121 13636 15151 16666 18181 19696 21211 22726 24241 25756 27271 2876 3031 3181

Sample

Figure 3-6: A graph of the results of the distinct element counter. The estimate

always yields a number less than the actual number of distinct elements. In this

graph the darker lines are the actual number of elements while the lighter graph is

an estimate of this using the described algorithm.

The toughest part of the implementation for the distinct element counter was

choosing a window size that would yield relevant information over which to count the

number distinct elements. This exploration process took a bit of effort to pin down

and after thorough testing was able to yield relevant results. The window size that

was settled on was 10 seconds. Larger window sizes proved to have too little volatility

to show relevant results in the vnc system and smaller window sizes appeared to have

too much volatility.

Another issue that arose in the implementation of this algorithm was that the

estimate was always within an order of magnitude lower than the correct value. As

can be seen in the first graph of the transmission data results 3-6, the estimate is

less than the data transmitted. However as can be seen by the graph the estimate

still reflects the stability of the data. In this case, the data plotted is sent from a

vnc server with an active desktop. As can be seen in the graph there was not much

deviation in the amount of data that was sent out from the server and furthermore,

the estimate of the number of distinct elements moved closely with respect to the

43

Distinct Elements Transmitted

A1~E

0-

K . AN' p-a- 4-a

a-

-4-8.-ut

S....-,

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Sample

Figure 3-7: A graph of a normal run of the distinct
line is the estimate of the distinct elements sent while
deviation of this for a recent set of time windows.

43 45 47 49 51 53 55 57 59 61 63

element counter. The darker
the lighter line is the standard

actual number of distinct elements.

The reason that the estimate does not surpass the actual value comes from the

process of storing the most significant 1 in each distinct element that is recorded.

Since each element will probably actually be greater than 2" (where n is the most

significant 1), the actual value will be more than the estimate of the data. However

the actual value will never be 2 times the estimate, as that would indicate that there

was an even more significant 1 in its binary representation. The estimate yields an

interesting and relatively accurate gauge of the number of distinct elements, however

does not indicate the exact number.

The next figure 3-7 shows a normal run of the vnc server where it was both

active and idle. As you can see, when the server went active, there was a significant

drop in the number of elements transmitted. On the graph it appears as if there

were no elements transmitted when the server was idle. This is a bit deceiving the

number is in fact greater than 0, however, with respect to the other windows where

50-250K different elements were transferred, the number is effectively 0, since there

were probably just a few different numbers that were transferred when the server was

44

11 11 11 '1 1 00400!1!0 4 w - ! I

Distinct Elements Transmitted

700

600

500

400

A300E

100-

1 909 1817 2725 3633 4541 5449 6357 7265 8173 9351 9989 10897 1125 12713 13621 14529 15437 16345 17253 1161 11

Sampm

Figure 3-8: This is a graph of the vnc application were a single program dominated

the screen of the vnc server for a period of time and only a few screen changes were

sent to the vnc client.

idle.

In any case, the figure 3-7 with active and static aspects shows a considerable

amount of information about the system. When the graph stabilizes it shows when

a single application was dominating control of the desktop. Additionally, when the

number of distinct elements drops to near 0, it indicates when the server has gone

idle. It is worthwhile to note that this graph was created by running multiple different

applications on the desktop throughout the active period of the test.

Another test was done to see what the effect of having one application that domi-

nated the screen would have on the number of distinct elements that was transmitted.

For this test the server and client were setup as before, but after a while a simple

pinball game with a rich user interface was run on the desktop of the server. In this

game the background of the pinball game dominated much of the screen and as a

result the differences in the screen did not incorporate the entire screen.

As mentioned earlier the vnc server only sends the differences in the screen to

the vnc client at every transmission. Therefore, only a small segment of the screen

which reflected the differences in where the ball was currently located was transferred

45

to the vnc client. Given this rich user interface of this pinball application however,

each difference was still a considerable amount of data. The timeperiod that the

pinball system was activated can be seen in figure 3-8 by the dip in both the actual

and estimated distinct element plots, where the actual number of distinct elements is

lighter than the estimated number of distinct elements plot.

Another interesting test that was done was a variation of simply counting the

number of distinct elements transmitted from the vnc client to the vnc server. In

this experiment the size of each of the distinct elements was counted. This variation

provided a mechanism by which to monitor the types of communication that was

occurring over the connection. As can be seen in figure 3-9, whenever a large burst

of data was transmitted, there was a clear difference in the size of the data that was

transmitted. The two clear spikes in this graph were produced by streaming an audio

file from the computer running the vnc server to an independent computer on the

network.

In this experiment the low points of the graph indicate periods where just the vnc

screen shots were sent from the server to the client. The large peaks in the graph

indicate many interesting things. The initial burst was produced when the vnc server

initially connected to the vnc client and transmitted the preference and initial setup

information. The next two bursts happened when an audio file was streamed from

the server to the independent computer.

This streamed file was completely independent of the vnc application, but provided

some important information regarding the nature of the outgoing communication

from the vnc server. In many pervasive environments different nodes will be used

for different things and often more than one thing at the same time. Thus, it is

important to track the traffic a server sends out and how characteristic this traffic

is with respect to past performance. In this experiment it is clear that the server

had many different forms of communication which independently caused the server

to have different outgoing communication rates. Communication such as this, from

a pervasive system, could affect the performance of the system or more importantly

could affect the performance of systems that depend on this system for information.

46

Size of Distinct Elements

18M -

160000

14000

12[0M -

0000-

0
1 232 463 694 92 1166 1387 1618 184920362311 254227733004323534663697 3928416943904621 48625353145645577(

Sample

Figure 3-9: This is a graph of the vnc application that kept track of the size of

elements that were sent from a vnc server. The spikes indicate times where there was

a burst of data transmitted.

The past two chapters have provided a comprehensive look at the primary metrics

that were observed and implemented: transmission rate analysis and transmission

data analysis. As has been shown a good deal of information can be gleaned from

a pervasive environment without having to violate any of the assumptions that were

stated about the functioning and resources of a pervasive environments. Furthermore,

the data that was gathered from this implementation lends itself to further work in

other areas. The next chapter will discuss the merits of these methods with respect

to pervasive environments and will move on to a discussion of other techniques that

could be useful in gaining more information about the environment.

47

00

Chapter 4

System Design

This section will evaluate the applicability of the previously described metrics with

respect to pervasive environments, and will then move on to a discussion regarding

other methods of data aggregation and analysis that could prove useful when applied

to pervasive environments. The section will conclude with a discussion about the

overall effectiveness of the presented methods in the scope of pervasive environments.

4.1 Health Instrumentation

The two main techniques explored in the scope of this thesis were transmission rate

and transmission data analysis. As was shown, both proved to be very highly useful in

producing relevant and interesting information about a pervasive environment. While

additionally minimizing the amount of processing and storage needed and providing

a passive mechanism for calculating these metrics.

The passiveness of the system is the first positive that these metrics employ.

Using these metrics an observer need not know what exact data is being sent from

one system in an environment to another system in the environment. Additionally,

each system is allowed to track whatever metrics it chooses, and report these metrics

only when asked. Thus, a system need not be dependent on a central monitoring

system or constantly report to a system that is always up and running. This is a

49

fairly liberating idea as it allows for more freedom and flexibility when designing and

running a pervasive environment, since there are less dependencies to plan for and as

a result fewer problems will occur.

Another feature that these metrics give is they provide the user with a richer

understanding of the pervasive environment. Currently most systems do not have an

interface for providing the user with the status of the systems within an environment

or a status of the environment itself. The most a user understands is if a system in the

environment is working or not working. Including these metrics in an environment

will allow the user to have a better idea of what the individual systems are doing. If

a system is idling, overly active, or no longer running, these metrics will allow a user

to see the status and then be able to deduce problems in the system.

A further mechanism that these metrics provide for is change point detection.

Change point detection is important because in large pervasive systems that run

for long periods of time it becomes important to know when a system changed, to

determine if a system is faulting or if it is responding to a change in another system.

These metrics provide for a thorough change point detection system which enables

the user to have a good idea of what the problems with the environment are.

In the example of the fire alarm that was provided in the introduction, a user would

be able to enter the environment, examine what devices changed recently and then

easily deduce that since the fire alarm was the first thing to change, the fire alarm is

the primary target as initiator of the fault. This simple change point analysis would

lead to a much better understanding of pervasive environments, and additionally,

provides the user with a chronological list of changes that happened in a system from

which to start debugging problems that may have occurred.

Furthermore, by allowing the user to have more information about the pervasive

environment, environment designers need not worry as much about planning for every

possible fault in a pervasive environment they build. Currently, since environment

designers assume that the user will have very little knowledge of the environment, they

must plan accordingly and have checks and fixes for every single possible fault in an

environment. As environments get larger and more complex, it is almost impossible

50

to require an application designer to plan for every fault, mistake, or situation that

may arise in the environment. Placing some of this burden on the user to understand

and rectify a situation alleviates some of this burden from the environment designers

scope.

The fact that these metrics can be provided in real-time is a very rich resource in

a pervasive environment. As opposed to analyzing log files or understanding how a

system faulted after the environment is shut down, environment users can now have

real time understanding of the way the system is performing. This not only allows

users to immediately fix any problem they may have, but it also provides users with an

opportunity to rectify problems without having to shut down the entire environment

or analyze the logs of what happened.

Since each system provides an API by which to access its metrics, these metrics can

be utilized by any and all systems in the environment. This allows other systems in

the environment to monitor a system and make adjustments accordingly. A situation

where this may occur is that if two systems are communicating and another system

wants to communicate with these systems, that system could monitor the traffic of

the system it wanted to communicate with and only send its transmission when the

target system stopped communicating.

Along with the upsides of these monitoring metrics comes other issues and prob-

lems with them that must be addressed. The primary issue is that in using such a

technique the burden on monitoring an environment is placed solely on the user of

the system. In other words, it is the responsibility of the monitored to understand

what the system being monitored is doing. In some cases this is good, because it frees

the individual system from interpreting its performance. Unfortunately, this places

the burden of understanding what is happening in a system solely on the shoulders

of the monitorer, the system or user that is doing the monitoring. The monitorer

may not have the knowledge to understand what the system is doing and as such it

may be problematic to interpret the metrics. For this reason it is important that the

metrics chosen be inherently simple and easy to understand what changes may be

occurring. Having information about the transmission rate and transmission data are

51

fairly simple ideas to understand which permit the monitorer to build from a simple

base and deduce how the current situation leads to further understanding about the

system.

The fact that each system must contribute a specific API is a fairly restricting idea.

If each system must implement an API in a standard format for all other systems to

consume, it places the burden on a system designer to understand which metrics to

provide and how to implement these metrics. While the monitoring of these systems

itself does not affect the system, providing this API is a change in the current mindset

of system designers. Given the scope of this thesis, by shifting to providing this API,

designers will be able to provide their users with a rich amount of information that

they could use to understand the system itself irrespective of the environment that

the system is in.

As with any system there are positives and negatives that characterize this system

of calculating metrics. However, these metrics have been shown to give rich informa-

tion about the environment and additionally, lead to a better understanding of the

systems in an environment. The next section will move onto discussing methods to

actually monitor these metrics that have been discussed.

4.2 Health Monitoring

Within the given requirements it is important to note that storage and access of

the data is relevant to the performance of these techniques. To provide a real-time

analysis of a pervasive environment, one does not have much opportunity to perform

an in depth analysis of logged data or to create large storage databases. Many of

the possible monitoring points will have limited storage and processor requirements.

As such it is important to save on the necessary data and additionally provide some

mechanism with which to access this data easily and in a consumable manner.

A method to monitor each of these systems in a comprehensive fashion is to have

a separate system in the environment whose sole job is to query the other systems

and analyze the data that is sent back. It would be the responsibility of this system

52

to interpret these metrics and provide some useful information from this.

Having a separate system as part of the pervasive environment is a powerful idea

that has a good deal of merit with respect to pervasive environments. If a separate

system is developed it can be its own independent entity and need not depend on

other systems. Additionally, by not being an integral part of the environment, it can

be free from things that effect the environment and provides a common place from

where to gain information within a system.

This idea of having an health monitoring system that monitored the other systems

in an environment was tested using a flash application as described by Hana Kim[16].

In this application many different systems are used including a speech interface, speech

parser, and flash animation. In the application, a user can say things that trigger

events in the flash animation. For the purpose of this thesis, a simple demo was

designed by which each of the parts of the system monitored a few metrics such

as the transmission rate and transmission data metrics that have been described.

Then this system had a chat interface attached to it that allowed a user to send a

chat message to the monitoring system and view how the system was performing. A

screen shot of the system can be seen in figure 4-1.

This health monitoring system proved useful in understanding how parts of the

flash application were performing and was especially useful as it provided a simple

real-time method to evaluate the specified metrics.

Another advantage of having health monitoring analysis of the metrics is that

it provides a storage point for the data reported by the systems. In each of the

implementations presented in this thesis did not provide for any long term storage

of data beyond a few time windows. Providing a longer term storage area allows for

further analysis of the data over a period of time.

Another very important factor is the ease of access to this metric information. A

separate monitoring server could serve this environment in many ways, including a

way to provide user information in a consumable format. The flash animation imple-

mentation provided a chat based solution to delivering information. Other methods

could be speech based or graphical user interface tools that provide the metrics in a

53

Figure 4-1: This is a screen shot of a speech enabled flash demo that allows users to
send chat messages to an health monitoring monitoring server that provides informa-
tion about the system.

consumable fashion where they can be interpreted by the user.

Finally, such a system devoted to storing and providing interpretation methods

for these metrics could not only be independent from the environment, this system

would be able to provide this data in real time to the user as that would be its only

function. As each of the systems are providing real time data, this system can also

simply aggregate the data and provide it in a consumable fashion.

There are many positives for an health monitoring storage system to keep track

of the various metrics that have been previously discussed.

4.3 health monitoring System Design

An health monitoring monitoring system would provide numerous benefits to perva-

sive environment monitoring. This section will review a design plan for a pervasive

environment and the features it could provide. This description can give environ-

ment designers a starting point from which to design a pervasive environment with

54

the previously described techniques.

The system will essentially be composed of two different aspects. The first of these

aspects is the pervasive systems that compose the environment and the second aspect

is the health monitoring monitoring system itself. As was mentioned earlier, each of

the pervasive systems will have a process monitoring system that not only monitors

the metrics to be tracked, but does so for each pervasive process on a system. Thus,

if a pervasive system has multiple processes each doing different things, this monitor

will observe each of these different processes and differentiate these processes within

the environment.

Furthermore, the monitor will have a simple API which will return the results of

the metric in question for multiple different time windows. These time windows will

be of increasing magnitude and each of the metrics will be stored until it is superseded

by another time window. For example, a system may have time windows of 10ms, Is,

10s, and 100s, in this case the system would retain the 10 most recent 10ms window

metrics, the 10 most recent Is metrics and so on. Thus, the monitorer will be able to

determine the level of monitoring granularity required by the pervasive environment

and look at only those metrics of relevance. Additionally, as mentioned earlier, the

burden will be on the monitorer to query and process this metric data, the system

itself will only need to provide the metric and have a simple API for accessing these

metrics.

The health monitoring monitoring system has the responsibility of querying the

various systems for their metrics and processing this data into a consumable format

for the user. Within this space there are many possible variations that are yet to be

resolved. The primary variation is the frequency of which the data should be queried.

This frequency is important because it determines the rate at which the system is

monitored. If the frequency is too high the system may show excessive volatility while

if it is not queried often the system may show no change if a change occurs. As a result,

it is important to note that the frequency of querying will depend on a number of

different factors including the metrics being monitored, the performance of the system,

and the properties of the environment. It may be necessary for a monitorer to use

55

U -

Pervasive Environment

Pervasive . Pervasive
System System

Middleware Pervasive Environment

Environment Monitoring System

Figure 4-2: A system design for a pervasive environment. The system designers
provide the process monitoring components for each process. The health monitoring
monitoring device then queries these systems and processes the data

artificial intelligence techniques such as machine learning or clustering to correctly

analyze the environment given the data it receives.

Additionally, since each process is being monitored, it gives the monitoring device

the ability to monitor numerous things. If the monitoring device wants to explore

only a few of the systems it can choose to do that, if the device wants to monitor the

environment at the system level, it can group all the processes from a given system.

This monitoring flexibility affords the monitoring device a great deal of freedom with

which to explore the metrics within the environment. The described system design

provides many of the characteristics that are necessary as described earlier in this

thesis.

4.4 Other Metrics to Explore

Given these metrics there are many other areas to explore within this space. This

section will describe a few of these methods including clustering and streaming data

analysis.

56

In a similar vein to the distinct element counter, clustering techniques provide

means to more information about a system. By clustering the data that passes

through a communication channel one can get a better idea of the system's perfor-

mance. If data starts arriving into a system that is not close to any of the current

data clusters, it could indicate a change in the system's behavior.

There are numerous clustering algorithms that can be used to divide data up

into meaningful clusters, based on size requirements of the clusters, or the distance

between elements in each of the clusters. Thesis the various clustering algorithms

that can be used will not be discussed but rather a focus on how to use clustering

methods to aid in discovery of the properties of a system will be presented. For further

references regarding clustering see Fasulo's analysis on recent work in clustering [12]

or Berkhin's survey of data mining techniques [4]. A comprehensive look at clustering

and machine learning techniques can also be found in Russell and Norvig's book [31].

Clustering data that passes through a communication channel gives an idea of

the range of communication that occurs in a system. As a new cluster is created or

eliminated within a system, it provides understanding on how the system is changing,

if it is changing at all. Furthermore, while the transmission rate analysis and trans-

mission data analysis metrics give values by which to quantify the communication

channels, clustering allows a view of the data from a less rigid, numerical perspective

to identify how elements are related on more than a single property.

There has been much work done on streaming data analysis [23], mostly stemming

from the database community where there is often a need to analyze large databases in

minimal time. The algorithms used in this streaming data analysis also have relevance

to pervasive environments. In large database analysis and pervasive environments

the analytical tool is only allowed one look at the data, and furthermore the tool is

required to run with minimal storage and processing requirements. As such, many

database algorithms are useful for pervasive environments and are possible areas to

explore to gain further understanding of the systems. Additionally, if applied to

the individual metrics, clustering and database analysis techniques may provide an

interesting method by which to interpret these metrics.

57

58

Chapter 5

Conclusion

This thesis has outlined the background, needs, assumptions, and arguments in favor

of identifying change points and more importantly keeping track of system metrics

within a pervasive environment. As has been shown, a rich amount of data can be

gathered with only a limited amount of storage or processor requirements on the

individual systems within the environment. This gathered data has proven to be

effective in understanding the status and performance of a system.

This thesis explored two interesting metrics for exploring the performance of sys-

tems in an environment: the rate of transmission of information and the actual infor-

mation that was transmitted. Both of these metrics provided interesting and unique

information about the environment and about the individual systems. This informa-

tion can subsequently be used to accomplish many things including having systems

understand how the other systems in their environment are performing, understand

what state the systems are in, or simply gauge how the environment is performing.

Another advantage that these systems give is the ability to be used in conjunction

with each other. The metrics have been built to be low cost in both storage and pro-

cessing power, thus allowing them to feasibly be used in conjunction with each other.

Additionally, the metrics were designed with the idea that the systems themselves

would provide the metrics whenever queried. This is a powerful idea that permits

the system designer to participate in the system in what ever way is most feasible

59

given the design of the system. This allows the system to be platform, hardware, and

environment independent, as opposed to other monitoring systems. Additionally, un-

der the assumption that the environment will be a system of systems, there is the

idea that no central server exists. Many pervasive environments have a central server

from which communication and coordination begin from. This environment does not

operate under the assumption that a central server exists.

Furthermore, this thesis also went on to explore the mechanisms behind an out

of band storage device that would monitor each of the systems and provide some

notion of the performance of the environment while remaining independent of the

actual system. Such an out of band system design would separate the monitoring

and execution purposes within the environment and would create an environment

within which to accurately and effectively monitor the systems. Furthermore, this

system would allow users to easily consume the data in an understandable format

and would provide a common monitoring point for the environment.

While this thesis has explored many of the metrics and opportunities surrounding

pervasive environment analysis and subsequent user level debugging, there are still

many areas that can be explored for further analysis. The subsequent section will

elaborate further on other areas within which to explore on this current track.

5.1 Problems During the Course of Work

There were various problems during the course of this work. The primary problem

was attempting to understand what window of time slices to use. Finding out this

information was extremely problematic as different systems had different performance

cycles and would show different results. Finding out these window sizes to lend

relevant results was probably the most problematic situation we ran into.

Another area of work that did not lead to good results was attempting to use

clustering methods as a performance metric. The implementations of clustering used

on the distinct elements did not lend useful information and a different, thorough

implementation of clustering may be necessary. The implementation that was used

60

once again attempted to minimize processor and storage capabilities, making it harder

to optimize and create multidimensional clusters.

Finally, another major problem that was encountered was attempting to modify

existing systems. As this implementation depends on having the system designer

actually modify the system code to implement the API, without access to the system

code to implement this API, many of the tests had to be run using external moni-

toring implementations that only served to increase the number of problems in the

environment.

5.2 Future Work

The primary area that has been explored is in introducing new metrics such as clus-

tering or machine learning techniques. These techniques were explored in very brief

detail earlier in this thesis, but other analytical areas with promise can be found

in database analysis or in other dynamic statistical analysis work. Some of these

other techniques may include monitoring peak to peak times in the transmission rate

analysis; observing if systems are communicating via RPC, stream, or other form of

transmission; or additionally understanding the topology of an environment based on

the transmission properties.

Another area that can be explored relates to the system design aspect of this

work. A single system was designed to function with this metric structure. Other

techniques that can be explored are methods by which system design can have a

different topology. Furthermore, depending on the structure of the transmission there

are circumstances by which metrics will not give a clear indication of the performance

of a system. Often queries may happen in the middle of a transmission cycle or too

far apart to have relevance. In such scenarios a different query system needs to be

explored to fully understand the scope of the system. Designing this query system

and the subsequent monitoring analysis tool is another area with plenty of future

work.

A final area that could be discussed is the idea of monitoring transmission data

61

Overlay of Arrival Rates

Duuuu -

5M00 -

40000 -

-- -BPS
30000- -a- First Core

Second Core

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 B1 86 91 96 101 106 111 116 121

Sample

Figure 5-1: This graph shows an overlay of data leaving a CORE device and trav-
elling to another CORE device. The data gives indication to the causality of the
transmission.

to find correlations among different transmission streams. This subject was broached

during the discussion of transmission rates in chapter 3. 1, however, no work was done

in this area for the scope of this thesis.

As can be seen in figure 5-1, where two COREs were setup between a VNC

server and client setup, there is a clear causal relationship between the data sent by

the first CORE and the data received by the second CORE. With no information

about the structure of transmissions in an environment, it would be easy to monitor

all the transmissions in an environment and correlate these transmissions with each

other to determine where a specific transmission is going and what the latency of

this transmission is. This would give more information about the structure of the

environment and would allow a monitorer to learn a good deal about the structure

of an environment.

Such techniques would be useful in exploring more monitoring techniques for per-

vasive environments, and building upon the work of this thesis.

62

Bibliography

[1] Mobisaic. http://www-cse.ucsd.edu/users/voelker/mobisaic/mobisaic.html.

[2] Cambridge AT&T Laboratories. Virtual network computing.
http://www.uk.research.att.com/vnc/index.html.

[3] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan.
Counting distinct elements in a data stream.

[4] Pavel Berkhin. Survey of clustering data mining techniques. Technical report,
Accrue Software, San Jose, CA, 2002.

[5] Lawrence J. Brunsman. The application and design of the common oriented
routing interface. Master's thesis, Massachusetts Institute of Technology, 2003.

[6] Ali Axarbayejani Christoper Wren, Trevor Darrell.

[7] Michael Coen, Brenton Phillips, Nimrod Warshawsky, Luke Weisman, Stephen
Peters, and Peter Finin. Meeting the computational needs of intelligent envi-
ronments: The metaglue system. In Paddy Nixon, Gerard Lacey, and Simon
Dobson, editors, 1st International Workshop on Managing Interactions in Smart
Environments (MANSE'99), pages 201-212, Dublin, Ireland, December 1999.
Springer-Verlag.

[8] Graham Cormode and S. Muthukrishnan. What's hot and what's not: Tracking
most frequent items dynamically. In PODS 2003.

[9] Mark E. Crovella and Thomas J. LeBlanc. Performance debugging using parallel
performance predicates. In Proceedings of A CM/ONR Workshop on Parallel and
Distributed Debugging, pages 140-150, San Diego, California, 1993.

[10] G. Olson D. Agarwal and J. Olson. Collaboration tools for the global accelerator
network.

[11] Glen Eguchi. Extending core for real world applications. Master's thesis, Mas-
sachusetts Institute of Technology, 2003.

[12] D. Fasulo. An analysis of recent work on clustering algorithms, 1999.

63

[13] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data
base applications. In Journal of Computer and System Sciences. Winchester,
United Kingdom, 1985.

[14] Krzysztof Gajos. Rascal - a resource manager for multi agent systems in smart
spaces. In Proceedings of CEEMAS 2001, 2001.

[15] Armando Fox George Candea. A utility-centered approach to building depend-
able infrastructure services.

[16] Emily Yan Hana Kim, Nancy Kho and Larry Rudolph. commanimation: Creat-
ing and managing animations via speech.

[17] Nicholas Hanssens, Ajay Kulkarni, Rattapoom Tuchinda, and Tyler Horton.
Building agent-based intelligent workspaces. In ABA Conference Proceedings,
June 2002.

[18] Andrew C. Huang, Benjamin C. Ling, and Shankar Ponnekanti. Pervasive com-
puting: What is it good for? In MobiDE, pages 84-91, 1999.

[19] Rebecca Isaacs. Performance analysis loosley-coupled distributed systems: the
case for a data-driven approach.

[20] David Johnson and Willy Zwaenepoel. Recovery in distributed systems using
optimistic message logging and checkpointing, 1998.

[21] Michael J. Katchabaw, Stephen L. Howard, Hanan L. Lutfiyya, Andrew D.
Marshall, and Michael A. Bauer. Making distributed applications manageable
through instrumentation. The Journal of Systems and Software, 45(2):81-97,
1999.

[22] Eric McDonald Lucy Dunne, Susan Ashdown. Smart systems: Wearable inte-
gration of intelligent technology.

[23] G. Manku and R. Motwani. Approximate frequency counts over data streams,
2002.

[24] Janet Wiener Patrick Reynolds Athicha Muthitacharoen Marcos Aguilera, Jef-
fery Mogul. Performance debugging for distributed systems of black boxes.

[25] Eugene Fratkin Armando Fox Eric Brewer Mike Chen, Emre Kiciman. Pinpoint:
Problem determination in large, dynamic internet services.

[26] Erik Demaine Seth Teller Nissanka B. Priyantha, Hari Balakrishnan. Anchor-free
distributed localization in sensor networks.

[27] Justin Mazzola Paluska, Jason Waterman, Chris Terman, Steve Ward, Umar
Saif, and Hubert Pham. A case for goal-oriented programing semantics.

64

[28] David Patterson, Aaron Brown, Pete Broadwell, George Candea, Mike Chen,
James Cutler, Patricia Enriquez, Armando, Emre Kcman, Matthew Merzbacher,
David Oppenheimer, and Naveen Sastry. Recovery oriented computing (roc):
Motivation, definition, techniques, and case studies.

[29] Manuel Roman, Christopher K. Hess, Anand Ranganathan, Pradeep Mad-
havarapu, Bhaskar Borthakur, Prashant Viswanathan, Renato Cerqueira, Roy H.
Campbell, and M. Dennis Mickunas. GaiaOS: An infrastructure for active spaces.

[30] Larry Rudolph. When rebooting is not an option. Technology Review.

[31] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 2003.

[32] Joao Pedro Sousa and David Garlan. Aura: an architectural framework for user
mobility in ubiquitous computing environments.

[33] Edward Tenner. Why Things Bite Back : Technology and the Revenge of Unin-
tended Consequences. Vintage, 1997.

[34] Jeffrey S. Vetter and Patrick H. Worley. Asserting performance expectations.

[35] Roy Want, Bill N. Schilit, Norman I. Adams, Rich Gold, Karin Petersen, David
Goldberg, John R. Ellis, and Mark Weiser. The parctab ubiquitous computing
experiment. Technical report, 1995.

[36] Mark Weiser. The computer of the 21st century, 1991.

[37] Peggy Wright. Knowledge discovery in databases: Tools and techniques, 1998.

65

