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Abstract

Three-dimensional route maps, which depict a path from one location to an-
other, can be powerful tools for visualizing and communicating directions. This
thesis presents a client-server architecture for generating and displaying accu-
rate, usable route maps between locations on MIT's campus. Two exemplary
clients of this architecture - MITquest, a web based Java applet, and location-
aware active signage - demonstrate the flexibility and power of this model for
route generation. Additionally, we provide a framework for displaying a set of
campus-wide, public events of interest to an MIT visitor, including methods for
inferring events from public sources and automatically selecting events of inter-
est.

Thesis Supervisor: Seth Teller
Tile: Associate Professor of Computer Science and Engineering
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Chapter 1

Introduction

As computer resources become ubiquitous, inexpensive, and increasingly power-

ful, computing in the future will be pervasive - computer software and hardware

will become an even greater part of our everyday lives, assisting in tasks both sim-

ple and complex. A common task we are faced with every day is the problem of

route-finding: "How do I get from point A to point B as quickly as possible?" This

thesis presents a client-server architecture for generating and displaying efficient

routes between locations on MIT's campus, as well as techniques for visualizing

these routes in two and three dimensions. We further provide two exemplary ap-

plications of this architecture - location-aware active signage and MITquest, a

web-based Java applet.

1.1 Thesis Overview

This chapter discusses the motivations for the creation of the location-aware ac-

tive signage and MITquest, as well as the contributions these applications make.

This chapter then presents an overview of these applications and motivating sce-

narios for their respective use. The second chapter presents background material

and related efforts. The third chapter focuses on the software design and archi-

tecture used in the creation of our client-server model and exemplary applica-

tions, discussing design choices and alternatives. The fourth chapter is about the
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user interface for both active signage and MITquest, and our methodology for

route presentation. The fifth chapter touches on the physical requirements of ac-

tive signs, and the subsequent design chosen. Finally, the sixth chapter presents

conclusions and offers suggestions for future work.

1.2 Motivation

Pervasive, pose-aware applications (e.g. [8]) let users interact with the real world

in new and interesting ways. As we acquire and develop more complete models

of physical spaces - which can be augmented with information about furniture,

people, and objects - we need more sophisticated ways of organizing and pre-

senting these models.

This thesis is motivated primarily by a desire to provide useful methods of

route-finding and map visualization for these pervasive applications. Extensive

related work done by MIT's Building Modeling Group (discussed at length in Sec-

tion 2.3) has produced accurate models of MIT's campus, but without methods

for searching and displaying these models they are of limited use. We have thus

attempted to provide techniques and software which demonstrate the substan-

tial efforts of the BMG in a useful manner.

A second motivation for this work is to create a set of useful services for visi-

tors to MIT, who might wish to explore MIT in person through a location-aware

active sign, or via the Internet using MITquest. This thesis has endeavored to

provide usable, simple applications that assist visitors in finding out about inter-

esting events and how to find them.

Specifically, the work presented in this thesis enables the following scenarios:

1. A visitor to MIT's campus enters Lobby 7, looking for information about a

public lecture being given in a few minutes in building 38. She sees a wall-

mounted active sign, shown in Figure 1-1, cycling through events on cam-

pus, and notices the information about the lecture on display. She walks up

14



Active Sign --Text

Location-Aware Active Signage

Physics Lecture hW

Event Location, 13--233
Event Tnbm 2112104 6:00 AM

16 Days, 8 Hours, 24 Minutes

The LHbeagues lcture on PbISK n 13-233 frsls 8

Active Sign -- Map

Figure 1-1: Using Active Signage. The user is presented with community events,
which cycle through the active sign display. Each time a new event is displayed,
a map to its location is presented on an adjacent sign.

to the sign and is presented with a 3D route map from her current location

to the lecture.

2. A student needs directions to his advisor's office. He points his web browser

to the MITquest website and enters his dorm as the start location, and his

advisor's building as the destination. He also notes on the web form that he

would prefer a rolling route to accommodate his wheelchair. He submits

his query, and is presented with a route, as seen in Figure 1-2.

3. A visiting professor has an appointment with a Course VI faculty member

in her office in building NE43. The professor parks on Main Street and
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Figure 1-2: Using MITquest To Get Directions. To get directions between two
buildings, the user specifies the start and end buildings in a web form, as well as
the type of route. After entering the route query, the user is presented with a map
showing the quickest route between locations.
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enters NE43, but has forgotten the faculty member's office number in his

car. He walks up to a sign in the main elevator lobby of the building, and

presses the "LCS Directory" button. A list of faculty members and their re-

spective offices pops up. He selects an office and is presented with a three-

dimensional map of NE43, as well as the quickest route to the office. Before

heading to his meeting, he presses the "Leave A Comment" button on the

sign and offers some feedback on how to make the sign easier to use.

1.3 Contributions

This thesis makes the following contributions:

" A client-server architecture for providing a useful, abstracted route-finding

and map display service

" Methods for encapsulating a two- or three-dimensional map as a Java class

that can intelligently visualize routes through a standard interface

" A framework for representing campus events, for inferring them from pub-

lic event calendars on the World Wide Web, and for sending them to a set of

distributed clients.

" A framework for representing routes at different levels of abstraction, con-

strained by temporal and physical factors

" Substantial improvements to the Location-Aware API developed by Bell [2],

including performance optimizations, a streamlined approach to route gen-

eration, and the addition of inter-building route-finding

" The hardware and software required to construct and deploy a set of dis-

tributed, networked active signs around MIT's campus.

" MITquest, a web-based Java applet for performing constrained route and

map generation

17



1.4 Location Server Overview

The Location Server is a network-accessible Java RMI program which provides

raw campus geometry and route-finding capabilities to client applications through

a general API. The location server provides these services to active signs (see Sec-

tion 3.5) and MITquest (see Section 3.6), as well as other clients.

The location server obtains campus geometry through the Building Modeling

Group (BMG) pipeline, a series of applications which convert a central corpus of

MIT floor plans and a campus-wide 'basemap' into a collection of spaces with

known geometry and adjacencies. After this processing is complete, the location

server provides access to this geometry information, and can additionally gen-

erate constrained routes between spaces and locations when requested by client

applications.

1.5 Active Signage Overview

Active signs are inexpensive, portable wall-mounted computers that have been

endowed with three pieces of information: knowledge of surrounding geometry,

knowledge of the sign's physical location and orientation within that geometric

context, and knowledge of a set of public events happening on campus. Using

this information, signs intelligently select and display events to show to passers-

by, and provide custom maps from their present location to the event in ques-

tion. The software infrastructure supporting this project is designed to scale to

hundreds of networked signs distributed across campus, all accessing a central

source of geometry and event information.

Knowledge of campus geometry is furnished by a Location Server, a concept

first explored by [2] and substantially expanded in this work. Both pure physical

geometry (e.g. the contours of a room) and routes between spaces (e.g. the path

between one room and another) are provided through a network-transparent

Java RMI interface from a central Location Server to individual signs. The Lo-

18



cation Server is discussed in greater detail in Section 3.3.

Knowledge of campus events is furnished by an Event Server, which obtains

event data by crawling public MIT community websites and inferring events di-

rectly. Events are broadly construed to include occurrences like lectures, pre-

sentations, and emergencies, all of which have both a time and a location. The

central event server is accessed via a network interface, and distributes events

as they are created to all registered active signs. More information on the Event

Server and related components can be found in Section 3.5.3.

Finally, knowledge of location is furnished either manually (it is entered into

a sign by a human), or is actively acquired from the environment from an exter-

nal source such as Cricket [7] or GPS. Signs that obtain their location in such a

manner can perform real-time, accurate mapping - allowing a traveling sign to

continuously display its location, bearing, and surroundings.

1.6 MlTquest Overview

MITquest is a web-based Java applet that provides custom maps of and routes

on MIT's campus, using the same data sources and algorithms found in active

signs. MITquest is designed to assist campus visitors in the common task of find-

ing their way from one place to another, with the additional ability of specifying

route constraints. For example, a visitor might wish to only view routes that are

wheelchair-accessible, do not require an MIT ID card, or that minimize time or

path length outside of buildings. MITquest provides an interface for specifying

the source and destination of routes, as well as a host of constraints upon route

generation.

MITquest uses a Location Server to obtain geometry and route information,

using the same abstractions and methods as active signs. Providing a web inter-

face to the same information serves to establish the flexibility of the underlying

software design powering the active signs, as well as serving a useful function

for members of the MIT community. MITquest's features and design are further
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explored in Section 3.6.
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Chapter 2

Background

This chapter explains background material relevant to this thesis, including ef-

forts by previous researchers and related work. In particular, this chapter dis-

cusses the MIT Building Modeling Group (BMG) and the pipeline the BMG has

developed to provide accurate geometry data of MIT's campus. The Location

Aware API and the initial implementation of this API is then discussed, as are im-

provements subsequently made to the API. The basis for 2D and 3D route-finding

is presented, including a brief discussion of triangulation, Dijkstra's algorithm,

and iterative shortening.

2.1 Introduction and Related Work

This thesis links substantial work which has been done on two fronts: the con-

struction of interesting pervasive applications, such as intelligent electronic kiosks,

and efforts to create highly-usable route-maps.

2.1.1 The Ki/o Kiosk Platform

Both the physical design and the software of active signs has been influenced by

the work of Max Van Kleek [10] in his development of Ki/o, an interactive elec-

tronic kiosk. Ki/o shares design goals that are similar to active signage (such as

21



educating visitors about events and locations), and correspondingly the lessons

learned in the development of Ki/o have not been lost in our design of active

signs.

2.1.2 LineDrive and Usable Maps

Conveying information through route maps is a challenge. The visual cues peo-

ple find most effective in route maps vary from task to task, and the most usable

kinds of route maps are rarely those with the highest physical fidelity. The work

done by Maneesh Agrawala [1] in developing systems like LineDrive has inspired

much of the route display work presented in this thesis. The observation that

routes and physical geometry can be effectively conveyed with less, rather than

more, information is a point we have considered and tried to incorporate in our

presentation of routes in both active signage and MlTquest.

2.2 Primary Sources of Physical Campus Data

The methods for route-finding we present would be of little value without a large,

complex data set to test them on. Obtaining a physically accurate, meaning-

ful model of MIT's campus, however, is a challenging proposition. Although we

had the option of creating our own models of MIT's campus using standard tools

such as AutoCAD, the task of creating physically accurate representations of over

10,000 rooms in over 150 buildings was intractable. Rather, we have based our

efforts on the work of others (namely the BMG pipeline) to extract meaningful

3D models of campus from existing data sources.

These data sources are primarily a set of CAD DXF floor plans maintained by

MIT's Department of Facilities. There are two such sources:

1. Individual buildingfloor plans with known conventions, uniquely named

spaces, and implied adjacency information. These floor plans are publicly

22



available on the web at http://floorplans.mit.edu and are regularly updated

as MIT buildings change over time.

2. A campus basemap specifying global building position and orientation, as

well as physical campus layout, including the location of roads, sidewalks,

ramps, and other physical infrastructure.

In practice, extracting a meaningful model of campus requires substantial ef-

fort due to inconsistency in the representation and layout of buildings in these

CAD files, as well as errors in the files themselves. Methods for extracting this

information have been implemented as a non-interactive pipeline of programs,

explained in greater length in Section 2.3.

2.3 The Building Modeling Group

The Building Modeling Group (depicted in Figures 2-1 and 2-2) is a research effort

within the MIT Computer Graphics Group to extract 3D models of MIT's campus

from a vast corpus of CAD DXF files maintained by MIT's Department of Facili-

ties. The BMG pipeline is a set of non-interactive applications which sequentially

extract information from input DXF files, process the extracted information to re-

move errors and inconsistencies, and output clean, well-formed data in known

file formats.

Thus, the BMG pipeline serves as a mechanism for acquiring detailed, physically-

accurate geometry of MIT's campus. The pipeline makes use of both a set of DXF

building floor plans and a global campus basemap, which specifies building po-

sition and general exterior campus geometry.

Each building's geometry is contained in a set of CAD files with a local coor-

dinate system. We process the basemap to determine where buildings should be

located and aligned using the "state plane" coordinate system, a standard estab-

lished by the commonwealth of Massachusetts.
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DLFiles

CAD files

acad2ug

.ug files 4

F dejunk2 J

cleaned .ug files

Zi3KZ
Swalls2

3D building models

transformug.pyJ

Downloads CAD DXF files from
http://floorplans.mit.edu

Converts CAD floorplans
into Unigrafix file format

Removes errors and extraneous
geometry from .ug files

Extrudes 2D floorplans into 3D models
and generates contour data

Transforms buildings from local to
campus coordinate space

Figure 2-1: Stages of the Building Modeling Group (BMG) Pipeline. A set of non-
interactive programs download CAD DXF files from floorplans.mit.edu, remove
errors, extrude the floor plans into 3D, and finally transform each space from
local to global space.

Additionally, we extract information about outdoor spaces (such as streets,

sidewalks, and outdoor ramps) so that inter-building routes can be generated.

The campus basemap has a limited amount of information, as it specifies bound-

aries between different kinds of campus space types, such as building/sidewalk

and sidewalk/street boundaries. Like the campus floor plan files, the basemap is

replete with errors and inconsistencies. We have developed methods for dividing

the basemap into "patches" and coloring them as different space types using a

randomized approach [4].

The final product of the pipeline is a set of text files which are read by a Loca-

tion Server and represented as a set of Java objects. The actual representation of

campus geometry and adjacency is discussed in greater length in Section 2.4.
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Java Location Server
(Java RMI Server)

Pr CAD floorplans in DXF format

3D Campus Models in UG format

Spaces and Portals
over Java RMI

MITquest Web Interface
(Java RMI Client)

Location-Aware Active Sign
(Java RMI Client)

Figure 2-2: The BMG Pipeline and Location Aware API. The BMG pipeline con-
verts MIT's corpus of CAD DXF files into a set of text files which are read by a
location server, which furnishes spaces and portals over Java RMI.
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2.4 Location Aware API

Our representation of the physical world emphasizes geometry and adjacency

using Spaces and Portals. [9] Specifically, these objects are:

" Spaces - Closed locations bounded by an ordered polyline of 3D points.

Each space has a globally unique name, following the convention: BUILD-

ING#FLOOR#ROOM#TYPE. For example, MIT room NE43-253 would be

named mitNE43#2#253#OFE The Space naming convention is explored in

greater depth in Appendix C.1.

* Portals - Named entities representing an adjacency relationship between

two Spaces. Portals are directional, indicating that one can physically move

from Space S, to an adjacent Space S2, though not necessarily from S2 to

S1 This convention captures the physical fact that security doors, for ex-

ample, only allow exit and not reentry. Like Spaces, Portals have a globally

unique name and an associated type. Portals are physically represented by

a quadrilateral, which indicates the shape of the door or elevator shaft to

which the Portal corresponds. The Portal format and naming convention is

further discussed in Appendix C.2.

The details of the location server file format and API are discussed in greater

detail in Appendix C. This model of the world - as a set of Spaces connected by

Portals - is visually depicted in Figure 2-3. The Location Aware API represents

Spaces and Portals as Java objects of the same name, and makes these objects -

as well as the route-finding methods discussed in Section 2.5 - available over a

network interface via a Java Location Server.

Geometry and adjacency data is provided to the location server by the BMG

pipeline, with two text files per building - one providing room geometry, and the

other portal and adjacency information.
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Adjacent
Space T4

P6 P5 T3

T1
T2

P1 P2

Figure 2-3: A Sample Space and Portal. Spaces are defined by a polyline of points
P1.. .P6, which define the outline of the space, and the set of triangles T1.. .T4
which correspond to the space's Constrained Delaunay Triangulation. [5] Portals
are defined by a set of four points corresponding to their 2D footprint, and the
two spaces they connect.

2.5 Route-finding Algorithms

We have subdivided the problem of generating indoor routes into two distinct

sub-problems: finding the path between two arbitrary positions within a space,

and finding the collection of spaces which optimally connect the source and des-

tination spaces. The problem of general route-finding is considered in Section

2.5.1, while our basic approach to finding paths within spaces in the focus of

2.5.2.

The fundamental algorithm we have selected for graph searching is Dijkstra's

algorithm, which can be applied to route-finding over a collection of Spaces and

Portals. This algorithm is applied to two searching tasks: finding a collection of

Spaces, connected by Portals, which link a named source and destination; and

finding the actual path through each Space in a known route. The first search is

done by considering Spaces to be "nodes" and Portals to be "edges" for the pur-

poses of graph construction and traversal. Generating paths between Spaces is

as simple as applying standard graph searching techniques to a graph consisting
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of Space nodes linked by Portal edges. The second search, the subject of Section

2.5.2, is done by breaking each space into a set of adjacent triangles and consid-

ering each triangle as a node with known adjacencies.

2.5.1 Dijkstra's Algorithm

Dijkstra's algorithm obtains the shortest weigh path from a source node s to every

other node in a graph G, which consists of weighed edges connecting nodes. It

uses an initialization method, INITIALIZE-SINGLE-SOURCE, which maps an initial

distance of infinity to each node, except for the source node, which has an initial

distance of 0 from itself. This method initializes d, the lowest-cost distance esti-

mate from the source to any other node in the graph, and -r, the previous node.

When the algorithm is complete, the shortest path from a source node s to any

other node n in the graph is obtained by recursively querying ir[n] until s is ob-

tained.

INITIALIZE-SINGLE-SOURCE(G, s)

1 for each vertex v E G

2 do d[v] -oo

3 7r[d] +-0

4 d[s] <- 0

The algorithm updates the distance estimate d with the RELAX method, which

takes two nodes u and v, and a weight function w. If the distance estimate to v

from the source is reduced by first travelling through u, the shorter distance value

is saved and r[v] is updated accordingly.

RELAX(U, V, W)

1 if d[v] > d[u] +w(u,v)

2 then d[v] <- d[u] + w(u,v)

3 7r[v] +- u
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Finally, DIJKSTRA maintains a priority queue Q containing nodes to explore

and a set S of spaces for which the minimum cost path has been computed. The

queue is ordered by the distance estimate of each node from the initial source,

and supports an EXTRACT-MIN method which returns the least distant node. The

algorithm repeatedly relaxes edges between neighboring nodes, buiding a set of

least-cost paths from the start node s to all other connected nodes.

DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S-0

3 Q-V[G]

4 while Q # 0

5 do u <- EXTRACT-MIN (Q)

6 S- SU {u}

7 for each vertex v adjacent to u

8 do RELAX(U, V, W)

2.5.2 Space Triangulation

To generate route maps we must determine the physical path taken through a

discovered set of spaces for several reasons. First, it is not always obvious when

moving between spaces which portal should be used - for example, a long corri-

dor with many doors could afford a traveler many ways to move from one space

to another, thus making a route which consisted only of spaces ambiguous. Sec-

ond, when visualizing routes people often prefer a physical trail to follow through

twisty, winding corridors. A street map which merely displayed adjacencies with-

out marking the actual physical path taken conveys much less information than

its standard counterpart to the confused traveler.

Additional work must be done to determine the physical path taken through

a collection of spaces. For convex spaces, a simple straight line from an entry

portal to an exit portal represents the shortest possible path through the space.
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Figure 2-4: Route-finding in a 2D space with and without triangulation. In the
first example, a straight line in the space results in an illegal path. In the second
example, searching through the triangulated space yields a valid, if twisty path.
This can be compared to a more natural path in the third example.

For concave spaces, such as the one shown in Figure 2-4, a straight line can result

in an illegal path.

A solution to this problem is to triangulate concave spaces and to thus sub-

divide each space into a set of adjacent triangles, which are conveniently con-

vex shapes. [5] We can then consider the set of triangles as nodes in a graph with

known adjacency relationships and use the techniques mentioned in Section 2.5

to find the shortest path inside a space. Once a set of triangles is obtained, a valid

path can be constructed by connecting the centroids of each triangle in the path,

via the midpoint of the face shared by each pair of connected triangles.

It is important to note that this method produces valid, if not optimal, routes

through spaces. Figure 2-4 shows three paths - an illegal straight line connecting

the entry and exit portals for an L-shaped space, a valid path found using triangu-

lation, and finally a more "natural" curved path. The second and third paths can

be contrasted; while the triangulated path doesn't clip any of the space's bound-

aries, it also looks unnatural compared to the kind of path a person would likely

draw when producing a map by hand. A major challenge we examine in this work

is what kinds of routes look realistic, and what essential features paths should

contain to compactly express the most desirable path between locations. These

considerations are more deeply explored in Section 4.
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Chapter 3

Software Architecture

This chapter discusses the software architecture and design choices used to im-

plement location-aware active signage and MITquest, and provides insight into

the route-finding services offered by the location server. We present an imple-

mentation of an optimized location server and a set of generic, flexible 2D and

3D graphical components which can connect to a location server for route and

map visualization. Then, we show how both active signage and MITquest have

been built using this client-server architecture.

3.1 Software Architecture Overview

We have designed and implemented a client-server architecture for route-finding

and display, building from the efforts of others.[2] As shown in Figure 3-1, our

architecture makes use of a network-available location server sharing geometry

and route data over the Java Remote Method Invocation (RMI) protocol.

This architecture is motivated by a desire to make route-finding a useful ser-

vice for a wide range of target applications and devices. The computational power

and memory required to generate routes is beyond the current capabilities of

mobile devices like cellular phones and handheld computers, so we have cor-

respondingly pushed the effort of generating routes from the client to the server,

a change from the model proposed by Jason Bell. [2] Further, the implementa-
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tion effort required for a client application to make use of the services offered by

a location server is greatly reduced using our model, making it easy to rapidly

develop applications like MlTquest.

Our goal is to enable route-finding over the entire MIT campus, which con-

sists of over 10,000 rooms distributed across 150 buildings, with routes returned

to client applications in a few seconds. Correspondingly, we have implemented a

number of performance optimizations in the Location Server, discussed in Sec-

tion 3.3.4, in order to enable searching across such a large data set as quickly as

possible. We have further designed our event inference and distribution system,

the subject of Section 3.5.3, to distribute hundreds of events to distributed net-

works of dozens of signs spread throughout MIT's campus.

3.2 Fundamental Data Structures

We make use of several new data structures, including:

" Portals - Physical connections (such as doors, elevator shafts, and stair-

wells) between Spaces. Each Portal has pointers to exactly two Spaces, rep-

resenting one direction of the physical connection between the two. Portals

also have a type (e.g. stair, elevator, door, window, ramp, etc) and a quadri-

lateral representing its physical "footprint" in the xy plane.

" Spaces - Individual rooms on the MIT campus. Each Space contains an or-

dered, closed polyline defining its outermost boundary, the CDT triangula-

tion of the space, a list of the Portals exiting the Space, and pre-computed

paths between the each pair of Portals in the Space. In addition to rep-

resenting numbered rooms in buildings, Spaces are also used to represent

sections of the campus basemap to enable route-finding between build-

ings.

" Routes - Constrained routes between two Spaces. Routes can have con-

straints represented by the Route type, such as "rolling" routes, which can-
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not use stairs. Routes also have a initial and destination space, as well as the

set of connected Spaces, Portals, and physical 3D positions which best con-

nect the source and destination spaces following constraints on the Route.

The Route data structure, and its use, is explained in greater detail in Sec-

tion 3.3.3.

" Events - Detailed descriptions of events on the MIT campus. Event objects

contain the name of the Space where the event will occur, as well as a type

(such as a lecture or emergency), a start time, a title, and a detailed descrip-

tion. Events are inferred from public MIT community event calender (see

Section 3.5.3 for more details), and are distributed by a central event server

to a network of distributed active signs.

" EventQueues - Data structures that intelligently queue and deliver Events

to client applications. Each active signage client maintains a collection of

active Events, but must decide which Events to display based on the event

type, its physical proximity, and the current time. EventQueues, the sub-

ject of Section 3.5.4, place events into different buckets and use a weighted

randomized function to select appropriate Events to display.

3.3 Location Server

We have chosen to provide a general route-finding and geometry service through

a location server, whose methods are discussed in Section 3.3.1, as a Java RMI

application running on a remote server. The location server reads in a set of text

files provided by the BMG pipeline and instantiates Space and Portal objects cor-

responding to the physical rooms, doors, corridors, etc. found on MIT's campus.

After loading and pre-processing this data, the location server publishes itself on

the network and can be accessed over Java RMI by client applications.
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Location Server =Raw Campus
Geometry Data

SERVER

Spaces, Portals, Routes CLIENT

Active Signage MlTquest Applet

Figure 3-1: Location Server Overview. A networked location server with local ac-
cess to raw geometry and adjacency information serves this data, as well as re-
quested routes, to client applications over Java RMI.

1. public interface LocationServer {
2. public Space getSpace(Position position);

3. public Space getSpace(String name);
4. public Portal getPortal(Position position);

5. public Portal getPortal(String name);
6. public Route getRoute(Route route);

7. }

Figure 3-2: LocationServer Interface

3.3.1 LocationServer Interface

The location server interface (shown in Figure 3-2) is designed to present the lo-

cation server as a geometry discovery resource which clients can query for dis-

tinct spaces, portals, and routes. The model we present is that route generation

is done by a powerful server rather than a client, but this is not a strict require-

ment, as all of the methods presented in this interface let a client implement its

own algorithms for route-finding in lieu of predefined server methods.

We envision clients querying the location server an initial space, using either

a known space name or a physical position obtained from a service like Cricket.
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Figure 3-3: Constrained Inter-building Route Generation. We can constrain
routes by filtering the relaxation step in Dijkstra's algorithm to accommodate dif-
ferent route types. In this example, the walking route (right) can cut through
a grass field to reach the destination more quickly than the rolling route (left),
which is confined to sidewalks and roads.

Then, a client can build a local map by querying the location server for spaces ad-

jacent to its current location, and thus use a breadth first search (BFS) to discover

its surrounding geometry.

3.3.2 Route-finding Algorithms

Route-finding is implemented in location server using Dijkstra's algorithm (dis-

cussed in Section 2.5), but can be reimplemented in a client application, as men-

tioned in Section 3.3.1. Route constraints are represented as a field in a Route

object, and these constraints are used to alter path weights (Section 2.5.1, Line

??) or selectively relax the scene graph (Section 2.5.1, Line ??).
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We implement route constraints by restricting the relaxation step in Dijkstra's

algorithm, and by adding large weights to undesirable portals and spaces. Fig-

ure 3-3 shows an example of an inter-building, constrained route, with a walking

route juxtaposed with a rolling route. The walking route cuts across the MIT ath-

letics field, and is consequently shorter than the rolling route, which is confined

to roads, sidewalks, and ramps.

3.3.3 Route Representation

We consider routes at many levels of abstraction. Figure 3-4 shows a route be-

tween two spaces, which we could describe in a number of ways, including:

" As some known path defined by its source and destination

" As a collection of Spaces traversed from start to finish

" As a collection of Portals passed through while moving between spaces

* As a collection of ordered, connected physical points in a polyline path

With the exception of the first item in the list above, any one of these descrip-

tions of a route could provide sufficient information for a person to follow the

route. For a simple path, knowing which Spaces (rooms) to pass through might

be sufficient. For a complex path, some combination of the data above is required

to easily traverse the route.

We have explicitly chosen to represent routes as rich objects containing all of

the above information so that as much information as possible about a path is

preserved. Our architecture delegates the task of route generation to a central

location server, and the task of route display to a client application. This method

of route representation lets different kinds of client applications appropriately

visualize routes based on need and desired functionality. Section 3.4 discusses

the use of the Java Route object in the task of map and route visualization.
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Figure 3-4: Interpretations of a Route. A route between two locations can be
viewed by its source and destination locations, or as the collection of spaces, por-
tals, or points one passes through while traveling between locations.

Java RMI

Start, Finish, Constraints

{S1, S2, Route.WALKINGROUTE}

Vector of Spaces

{51,52,...SN)

Vector of Portals

{P(S1, S2), P(S2, 53),... P(SN-1,SN)}

Polyline of Positions
{P1,P2,... PN}

Figure 3-5: Route Passing Between Client and Server. A Route object, contain-
ing source and destination spaces and route constraints, is passed to the Loca-
tionServer over Java RMI. The Route is augmented with the Spaces, Portals, and
Positions a path between the source and destination would cross before being
returned to the Client.
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3.3.4 LocationServer Optimizations

One requirement of the Location Server is the ability to quickly generate routes

between locations. In order to facilitate this objective, we have substantially al-

tered the Java RMI Location Server as initially developed by Bell [21 with a number

of optimizations. We have consciously chosen, when possible, to move as much

of the computational effort of route-finding as possible into a set-up phase of the

location server. Correspondingly, although the location server has a more lengthy

start up time, the speed of route searching is generally improved and this com-

putational cost is amortized across the many routes requested by many attached

clients.

Accordingly, we have implemented a number of optimizations in the location

server which pre-compute useful intermediate data that speeds up route gener-

ation. For example, when Spaces are instantiated the shortest length paths be-

tween each pair of the space's portals is computed and stored. This allows for the

speedy generation of routes, which can be constructed by simply appending the

set of precomputed paths inside individual spaces once a high level set of portals

has been obtained.

We further optimize this initialization by determining space convexity. If a

given space is convex, we skip triangulation and just connect portal pairs using

straight lines. For concave spaces, we use the methods discussed in Section 2.5.2

to generate paths between pairs of portals. This optimization is show in Figure

3-6, with the pre-computed paths for a convex and concave space shown.

A final optimization added to the location server is route memoization - af-

ter the location server is queried for a route, it is cached and quickly returned if

queried again. Although there are an extremely large number of routes that could

be potentially cached (for N spaces there are at most N 2 pairs of spaces for routes

to connect - and for MIT's 10,000 spaces there are 10,000,000,000 such routes),

even a relatively small cache is extremely useful. This is because the set of routes

requested is likely to be a very small subset of the set of all possible routes, which
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Figure 3-6: Portal-path Pre-computation With Convex Space Optimization. We
pre-compute paths between portals for all spaces. Paths in the concave space
at left are found by searching through the triangulated space, while paths in the
convex space at right are simply straight lines.

is true for two reasons.

First, clients are likely to request routes from a relatively small number of pub -

lic spaces. Most of the rooms on MIT's campus are private offices and low-traffic

lobbies, and stationary clients - such as location- aware active signs - will only be

positioned in a small number of public spaces. Second, the bulk of space destina-

tions are likely, again, to be a small number of public spaces. There are a limited

number of public locations where large events can be held, so memoizing routes

to this reduced set of destination spaces further reduces the number of routes

likely to be requested in practice.

These optimizations dramatically improve the average time required to gen-

erate a route on campus. On a full campus model with 20,000 Spaces and 80,000

Portals, we executed 1000 queries between randomly selected locations of the

MIT campus. We found that the average query time for an unoptimized loca-

tion was 301.2 seconds, while query time with all optimized loaded was 950 mil-

liseconds. When looking up routes which have been previously computed and

cached, the average query time was only 20 milliseconds. These results show

that these optimizations and route memoization, in combination, substantially

reduce the average time required to generate routes between locations.
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1. public interface DisplayLayer {
2. public DisplayLayer(LocationServer is, Space initial);

3. public boolean drawRoute(Route r);

4. public boolean markSpace(Space s, String text);

5. public void clearAll();

6. }

Figure 3-7: DisplayLayer Interface

3.4 A Generic Map Display Layer

Directions without a map are of little value. We have defined a high-level model

for route and map visualized using the DisplayLayer interface, which is a client of

a location server. Objects implementing the DisplayLayer interface are generic

Java components which can be used in a wide variety of applications. Here, we

present two such components, for 2D and 3D route display respectively.

3.4.1 DisplayLayer Interface

The DisplayLayer interface provides an abstract interface for applications which

visualize routes and maps. The interface, shown in Figure 3-7, provides basic

methods for creating a DisplayLayer object rooted in an initial space with an

associated LocationServer, as well as for marking individual spaces and routes.

There are two canonical applications which implemented the DisplayLayer

interface - Canvas2D and Canvas3D, which display two- and three-dimensional ge-

ometry respectively.

3.4.2 2D Route Display

We have implemented a two-dimensional DisplayLayer in the Java Canvas2D class,

which itself extends the Java Canvas class. As shown in 3-8, Canvas2D can visu-

alize 2D maps and routes, using color, line thickness, and shading to indicate

geometry and route data. Canvas2D is initialized with a single starting space, and

builds a complete map by querying its initial space for adjacent spaces, and re-
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cursively querying those spaces for further adjacencies. Canvas2D is used by the

GraphicsSign application (see Section 3.5.2) to display two-dimensional routes.

3.4.3 3D Route Display

In addition to the two-dimensional implementation discussed in Section 3.4.2,

we have also implements a three-dimensional DisplayLayer component: Canvas3D.

Canvas3D builds its scene graph using the same approach as Canvas2D, and is sim-

ilarly used by the GraphicsSign application (presented in Section 3.5.2 to display

three-dimensional routes. More information about the specific techniques used

to make maps visually accessible and usable is presented in Section 4.1.2.

3.5 Location-Aware Active Signage

Location-aware active signs are wall-mounted tablet PCs which cycle through a

set of events on campus and selectively display maps to those events. We have

implemented active signs using three applications: TextSign, which selects events

and displays then, GraphicsSign, which displays maps to events as directed by a

master TextSign, and EventServer, which creates and distributes events to a net-

work of signs. We have chosen to implement active signs in pairs, with one sign

running TextSign, and a physically adjacent sign running GraphicsSign. Each

GraphicsSign is slaved to a single TextSign, which is in turn connected to both

a location server and an event server. This architecture is visually presented in

Figure 3-9.

3.5.1 TextSign

The TextSign application presents events and provides interactive sign function-

ality. The user interface of the application, shown in Figure 3-10, has two main

components: a windowing area where event information is displayed, and a set
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Figure 3-8: 2D Route Display. The figures above show routes and maps generated
by the location server and displayed in Canvas2D. The figure at left shows an un-
adorned route; the figure at right shows the same route with space triangulation
made visible.
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Event Server Location Server Cricket / GPS

Events database, Spatial geometry, Physical position

times, locations portals, spaces, routes in world space

Text Sign

, Route + Event to be displayed

Graphics Sign

Figure 3-9: Active Signage Software Overview. The TextSign component aggre-
gates event data, campus geometry, and the sign's physical location, passing
commands to a slaved GraphicsSign.
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of buttons which users can click to access additional features, such as an LCS

personnel directory and a pop-up dialog to leave comments.

The TextSign application makes a connection to an event server, and obtains

a copy of the server's cached events. The TextSign also listens for connections

from GraphicsSigns, to which it delegates map display. The TextSign periodically

selects events to display, instructed attached clients to display routes from its

known location to the event currently on display. The TextSign user interface is

discussed and explored in depth in Section 4.2.2.

3.5.2 GraphicsSign

The GraphicsSign application presents maps as instructed by a master TextSign,

delegating map display to either a Canvas2D or Canvas3D component embedded

in the main GraphicsSign frame. The display itself is extremely simple, as seen in

Figure 3-11.

3.5.3 EventServer

A set of campus "events" are inferred and maintained by a central event server,

implemented in the Java EventServer class. The event server maintains a collec-

tion of Java SignEvent objects, which correspond to public events such as lec-

tures. Each event has an associated time, location, type, and an optional descrip-

tion. Events include more than just lectures, however - we have additionally im-

plemented an "Emergency" event type, which corresponds to emergencies like

fires or chemical spills. EventServer is accessed by clients over a network inter-

face, and also has an interactive graphical user interface, shown in in Figure 3-12.

Events are inferred by a central event server, which periodically probes known,

public event calendars on the web. Specifically, we have implemented probes

which recover elements from the MIT community events calendar' and the MIT

'Available on-line at http:/ /events.mit.edu.
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Location-Aware Active Signage

Mondiaan Memory Protection

EventLocadon:NE45-518
EventTine: 1211f2003 3:00 PM

19 Hours 21Minutes

Mondriaan memory protection (MMP) provides
fine-grained memory protection that has an efficient
hardware implementation and is useful to software.
Computer architects have attempted several designs for
fine-grained memory protection (e.g., segmentation,
capabilities), but none have gained widespread
acceptance, due to poor hardware performance, or an
inconvenient usage model for software, or both.

Because of incredible gains in computer performance,
reliability and security are quickly becoming user's
biggest concern, MMP brings a powerful tool to
developers who wish to build systems in unsafe
languages that are modular, and make them robust to
failures in
individual modules. MMP has the further benefit of
working with linear addresses, so it is compatible with
existing instruction sets and operating systems.

We model the MMP hardware in a simulator and modify a
version of the Linux 2.4.19 operating system to use it. We
add hardware enforcement to the module boundaries
already present in Linux, increasing its resistance to
programmer error (and exposing two kernel bugs). Across
several benchmarks where MMP was in heavy use, we
measure the space cost of the MMP data structures as
less than 11%, and a performance degradation of less
than 11%, according to a simple performance model.

Figure 3-10: TextSign Screenshot. Event information, including the time, loca-
tion, and description, are displayed in a panel on the left side of the main win-
dow. Buttons revealing different TextSign features are available in a panel on the
right side of the main window.
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Displaying: Path from NE25- 275 to 13- 2033

Figure 3-11: Graphics Screenshot.
controlled by a master TextSign.

The map displayed on the GraphicsSign is
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Figure 3-12: The EventServer GUI. Using this graphical user interface, public
event sources can be probed manually, event databases saved and loaded, and
events can be manually created.

Laboratory of Computer Science events page2. Although the general task of gen-

erating well-structured event descriptions from unformatted text can be a very

challenging problem, it is thankfully one we did not face in our implementa-

tion. Rather, these two listed event sources publish events in regularly-formatted

HTML and XML feeds, which are easily parsed and turned into SignEvent objects.

The event server thus maintains a set of events, obtained by probing and pars-

ing public event calendars. When a client application (such as the TextSign ap-

plication of Section 3.5.1) connects to the event server, the entire set of the event

server's events are distributed as serialized Java objects to the client application.

The client then decides locally which events to display, a task discussed at greater

length in Section 3.5.4. The event server maintains a reference to each client, so

that new events (which can be added through the interactive event server inter-

face) can be distributed to clients. Periodically, the event server also prunes its

2Available on-line at http://www.lcs.mit.edu/calendar.
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XML __ H HTML

EventServer

Events

client Application

Figure 3-13: EventServer Architecture. The EventServer infers events from two

sources: an XML feed from the MIT community events calendar, and HTML web

pages from the LCS events calendar. The EventServer creates Event objects from

these sources and distributes them to client applications.

internal set of events to discard those which have expired.

3.5.4 Event Selection

A central event server creates and maintains a central repository of events, dis-

tributing them to a network of client applications. Different clients should dis-

play different events, however, and thus make use of an event queue (imple-

mented in the Java EventQueue class) to appropriately select events for display.

Inferring event relevance is based on two pieces of knowledge: physical locality

(how close the client physically is to the event in question) and temporal local-

ity (how close the starting time of the event is to the current time). Obviously,

clients should display events which are close and start soon more prominently

than events which are distant and start in many days. We have implemented an

event queue which assigns a weight to events based on this temporal and phys-

ical locality to an event. Client applications such as active signs use this event

queue to manage events and extract the most relevant event for public display.

To implement this weight function, the event queue separates events into one
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Figure 3-14: Event Queue Buckets. A set of events A, B, C, D is inserted into the
event queue, with each event assigned to one of 16 buckets. Events are selected
using a randomized nextEvent 0 method which is biased toward events which
are close in time and space.
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Figure 3-15: MITquest Applet Overview. Users enter route parameters, such as a
start and end space, into an HTML form. The route constraints are passed over
HTTP POST to the MITquest Applet, which generates the route and map with the
assistance of a Location Server.

of 16 buckets, as show in in Figure 3-14. Each bucket is assigned a probability,

and events are selected at random from the queue for display, with the selec-

tion function biased toward elements which are close in both time and space.

This randomized selection method has the convenient property of rarely select-

ing duplicate methods for display, keeping an active sign from getting "stuck" on

a single event for an extended period of time. At the same time, this scheme tends

to present more relevant events more often.

3.6 MITquest

MITquest is implemented as a Java applet which is controlled by an HTML form

embedded in a PHP script. As shown in Figure 3-15, users enter map and route re-

quests into an HTML form, and submit the forms to the MITquest applet, which

in turns connects to a location server running locally to obtain route and map

data. The applet then constructs and displays the relevant image, displaying it in

a client browser. Map and route display is delegated to an embedded Canvas2D

or Canvas3d object.
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3.7 Other Applications: GraphBuilder for Cricket

The location server and client-server approach we present in this thesis can be

easily extended for other uses. One application we have developed is Graph-

Builder, a location server client which is used to test Cricket self-configuration

algorithms.

Cricket [7] is a location positioning system that uses a distributed network

of beacons, and is designed to supplement systems like GPS for indoor use. One

challenge in Cricket development is self-configuration algorithms for a large, dis-

tributed network of beacons. Ideally, once a network of beacons is seeded with

position data, a newly-placed beacon should be able to determine, by "listening"

to other Crickets, its own location and configure itself accordingly. As Cricket

is designed for use indoors, such algorithms should be tested against real-world

geometry, and GraphBuilder furnishes this geometry and test data.

GraphBuilder generates floor maps using the interface and methods presented

in Section B.1, recursively querying the location server for spaces adjacent to an

intial space. After generating a simple map, the application distributes Cricket

beacons across the map according to a density parameter. Finally, the applica-

tion links each Cricket to every other Cricket within the ideal range of the Cricket

positioning system. This data is then saved to disk, where it can be viewed in In-

ventor format (sample output is shown in Figure 3-16) or used as input to test a

Cricket self-configuration algorithm.
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Figure 3-16: GraphBuilder Output. The GraphBuilder application distributes ide-

alized Cricket beacons across a 2D map and then links beacons which are within

range of each other. Rooms are shown in green, while Cricket-Cricket links are

shown in red. A low-density Cricket distribution is show at left, a medium-density

distribution in the center, and a high-density distribution at right.
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Chapter 4

User Interface Design

This chapter presents our approach for making map and route display, as well as

the TextSign application from Section 3.5.1, highly usable. We contrast the dif-

ficulties inherent in visualizing two- and three-dimensional routes, and present

methods for approaching these two modes of map display.

4.1 Route Visualization

Conveying map and route information effectively is a challenging problem which

has been considered in great detail for driving directions, which are often ob-

tained through web sites like Mapquest and MapBlast. [1]. The problem of vi-

sualizing routes inside buildings, however, presents specific challenges which we

have attempted to address in the 2D and 3D cases.

4.1.1 Techniques for 2D Route Display

A general problem with route display is determining the appropriate scope of the

route. To show a route between two spaces, at the very least one must display the

origin and destination spaces of the route, as well as the route path itself. As seen

in Figure 4-1, showing too little information (path one) or too much informa-

tion (path three) reduces map usability. The trick is to display an "appropriate"
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Figure 4-1: Three Paths in a Map. The first path, top left, shows very little ex-
traneous information. The second path, top right, shows more information, but
emphasizes more relevant spaces in the route. The third path, bottom, shows all
local geometry.

amount of information.

We use several techniques to display two-dimensional route maps effectively.

First, we use the bounding box of the route itself to clip local geometry in order to

restrict the number of rooms shown on the map. Second, we use color and line

thickness to emphasize important regions of a map. The contours of the path

itself, for example, are shown in a brighter, thicker color than other lines. Spaces

which are part of the route are filled, drawn with a thicker outline, and have dis-

tinctive colors relative to less important geometry which is still presented to give

the route context.

4.1.2 Techniques for 3D Route Display

The same challenges and techniques discussed in Section 4.1.1 apply to three-

dimensional route maps, with one additional challenge: a third dimension. Tra-

ditional maps rarely make use of height information, and when they do the result

is most often a projection of feature height onto (e.g. isoclines on a topology

map) a plane. Occasionally illustrators use a 3/4 view of buildings with clipped

walls and separated floors to show building interiors, but such views are difficult
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and time-consuming to manually produce. Thus, in our everyday experiences

we rarely see and use three-dimensional maps.

The primary challenge in displaying a three-dimensional route map is occlu-

sion: three-dimensional spaces often block each other when a building is exter-

nally viewed. For a route between two spaces in the same building, it is usually

impossible to see most of the route's length - especially given that vertical adja-

cency structures in buildings (such as elevator shafts and staircases) are usually

in the center of a building, resulting in a necessarily occluded path.

We have devised several techniques to attempt to display three-dimensional

paths. First, we selectively shade lines and spaces using the techniques discussed

in Section 4.1.1. Further, we selectively display spaces in a map using bounding

volumes to restrict the view of campus presented. Finally, we selectively display

intermediate spaces to present a most-relevant subset of a building in order to

show a route. For a route between two floors of the same building, for example,

we only display rooms on the floor of the source and destination space, and se-

lectively shade rooms the route passes through. Transparency is further used to

display the route path inside spaces. These techniques can be seen in Figure 4-2,

where a the middle image uses the techniques described to more clearly display

a route in three dimensions.

4.2 Location-Aware Active Signage User Interface

This section discusses the user interface for the EventServer application in Sec-

tion 4.2.1 and for the TextSign application in Section 4.2.2.

4.2.1 EventServer User Interface

EventServer, the central application which acquires and distributes a collection

of campus events, is controlled by the simple user interface shown in Figure 4-

3. As shown in the figure, EventServer is controlled by a set of buttons in the
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Figure 4-2: 3D Route Depiction. The map at top shows only the outlines of rooms
in gray and a marked route in red. The map in the middle colors intermediate
route spaces, and highlights the start space (green) and end space (blue). The
map at bottom shows all spaces shaded, with the route partially occluded.
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Figure 4-3: EventServer User Interface. Pressing the "Acquire Events" button
probes the LCS events calendar and events.mit.edu for community events, which
are displayed in the top half of the user interface. Pressing "Load Events DB"
brings up a dialog to load an events database from file. Pressing "Save Events
DB" saves the current set of events to a local file.

bottom half of the user interface, while the top half of the window is dedicated the

displaying sets of events. Using these buttons, the user can enter custom events

(specifying the event title, description, time, and type), direct the application to

acquire events from known data sources, and load or save events to disk.

4.2.2 TextSign User Interface

Users interact with location-aware active signage primarily through the TextSign

user interface, detailed in Figure 4-4. The interface has been designed to ac-
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commodate the touch-screen display found on tablet PCs (the physical design

of active signs is considered in Section 5.1); consequently users interact with the

TextSign application by pressing large buttons or by leaving voice messages.

Through the TextSign users can browse through a list of campus events, leave

comments on the sign, and browse through an MIT LCS directory to obtain di-

rections to a professor's office. If the sign is left unattended for a few minutes

it goes into a "cycle" mode, cycling through its internal database of events and

selectively displaying them, using the EventQueue data structure discussed in

Section 3.5.4. Users can also direct the TextSign to enter cycle mode by pressing

the "Cycle Events" button, shown in Figure 4-4.

4.3 MITquest User Interface

MITquest has three major components: the HTML and PHP pages used to re-

quest routes and maps, map display mode, and route display mode. Here we

consider each of these user interfaces.

4.3.1 Route and Map Requests

Users request maps and routes through an HTML/PHP web form, shown in Fig-

ure 4-5. When requesting a map the user enters an MIT building and room through

a simple drop down menu. When requesting a route, the user can specify the start

and end locations through drop down menus, as well as the type of route (rolling

or walking) required.

4.3.2 Map Display

A typical map is shown in Figure 4-6. The selected feature is displayed on a cam-

pus map with its outline inked in red, with surrounding campus geometry dis-

played.
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Figure 4-4: TextSign User Interface. Pressing the "Where Am I" button displays
the sign's current location, and produces a map marking this location on an ad-
jacent GraphicsSign. Pressing the "Leave Comments" button pops up a dialog
which the user can use to record comments or a brief message. Pressing the "List
Events" button displays a list of all the events stored in the TextSign, formatted
into an HTML table. Finally, pressing the "LCS Directory" button pops up a di-
alog with the entire MIT Laboratory for Computer Science listed. Selected an
individual name displays the person's office number, as well as producing a map
from the sign's current location to the office on the adjacent GraphicsSign.
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Figure 4-5: MlTquest User Interface. Users can request either maps (centered
on one location) shown at left, or routes (between two locations), shown at righn-t.
Map and route parameters are entered through a simple web-based form.

4.3.3 Route Display

A typical route is shown in Figure 4-7. An overview of the entire route is shown

at the top of the results page, which detailed views of the start and end of the

route are shown in smaller windows below. Further, the start and end spaces are

labeled to increase usability. The path itself is shown as an overlaid thick red line,

which contrasts with the campus basemap.
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aservice of the MIT Computer Graphics Group.
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Figure 4-6: MITquest Map Display. The requested building is shown in red, with
streets, sidewalks, grass, and other buildings in its vicinity displayed.
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Figure 4-7: MITquest Route Display. The whole route is shown at top, with de-
tailed views of the start and end of the route shown below.
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Chapter 5

Active Signage Physical Design

This chapter addresses the physical design of location-aware active signs. We

present the physical requirements for the hardware and infrastructure of active

signs, discuss the tablet PC platform we chose, and explore alternative designs.

5.1 Design Requirements

The task of designing a physical form for an active sign requires the considera-

tion of aesthetic and sociological factors, as well as more practical physical, bud-

getary, and technical constraints. [10] Our objective was to find a single universal

physical design which could be constructed at minimal cost and placed in many

location across MIT's campus. Correspondingly, we considered the following fac-

tors when selecting a hardware platform for active signs:

" Cost - An obvious objective was to minimize the cost of platform, with a

target price of under $1000 per sign.

" Size - We wanted to select a platform with sufficient screen resolution to

display detailed maps and routes, but was physically small enough to be

easily mounted on walls.

" Hardware - All of the route-finding algorithms and methods discussed in
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this thesis require sufficient RAM and CPU capacity to load and display

maps and routes.

" Connectivity - The client-server architecture we have chosen for route gen-

eration requires at least an Ethernet network interface, and preferably wire-

less Ethernet connectivity.

" Interactivity - Users need a way of interacting with the active sign, as show

in Section 4. We considered many mode of interaction, including keyboards,

mice, and touch screens.

Based on these requirements, we evaluated a number of physical form factors,

including:

1. Wall-mounted laptops

2. Wall-mounted table PCs

3. Wall-mounted plasma/LCD displays, with an attached PC

4. Digital projectors with an attached PC

After considering these options, we selected the tablet PC form factor, pur-

chasing two ViewSonic ViewPad 1000 tablets [12] as initial sign prototypes. The

ViewPad combines a number of attractive features for use as an active sign, in-

cluding wireless Ethernet, a 10.4" touch pad screen, on-board camera, micro-

phone, and a small physical footprint. We found the ViewPad to be a reasonably-

priced, fully functional hardware platform for location-aware active signage.

5.2 Physical Design

Active signs are physically embodied in wall-mounted tablets PCs. As seen in

Figure 5-1, maps, routes and events are displayed on the 10.4 inch touchscreen

display. Users can interact with signs in a number of ways, primarily by touching

64



Figure 5-1: Front View of Active Sign. Note the custom aluminum frame, touch-
screen display, and embedded digital camera.

Figure 5-2: Profile View of Active Sign. Note the backside of the custom alu-
minum frame and the double-hinged joint mounted to the wall.
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buttons on the screen, which does not require a special stylus or other input de-

vice. Each sign also has a set of speakers, microphone, and web cam as additional

interface mechanisms.

Signs are physically mounted on the wall with a custom aluminum frame

made in the MIT CSAIL machine shop. The frame serves a both a mounting

harness to physically attach the sign to the wall and a theft-prevention device,

with signs secured between a set of screws.' The frame is mounted to the wall

using a double-jointed housing as shown in Figure 5-2. The armature lets users

pivot the sign horizontally and vertically, comfortably accommodating those in

wheelchairs while maintaining a minimal horizontal sign footprint.

5.3 Software Security

A final "physical" consideration for sign design was locking down access to the

software, files, and operating system running on the sign. Unfortunately, the only

operating supported on the ViewPad 1000 is Microsoft Windows XP, which has

limited capabilities for totally securing the physical machine from a malicious

user. We found that by creating a custom user with limited file and application

permissions we could suitably restrict most users from tampering with the soft-

ware running on the active signs. If a large number of signs were to be deployed in

a widespread physical network, however, more effort would need to be invested

in totally locking down illicit, unintended use of the signs.

'A determined thief could, of course, either remove the screws or cut through the aluminum
frame with a saw. For more public installations of active signs (the models shown are in the MIT
Computer Graphics Group lab), we would use more secure methods of affixing signs to the wall.
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Chapter 6

Future Work and Conclusion

This chapter presents areas of future work for this thesis, including suggestions

for enhanced route-finding, event aggregation, map usability, and thoughts for

deploying a large network of distributed active signs. This chapter and this thesis

are concluded with closing remarks.

6.1 Shortcomings

Location-aware active signs in their current form suffer from a number of short-

comings. Two major shortcomings - the problem of campus data generation and

position acquisition - are discussed below.

One problem area is the acquisition of physical campus data, which is man-

ually derived from a corpus of centrally-maintained MIT floor plans. Obtaining

physically-accurate models of campus is a time-consuming, difficult task which

has required the development of numerous custom tools, and which has yielded

imperfect campus data. A further complication is that although we can continu-

ously hone our automated tools, the real world is in constant flux. The MIT De-

partment of Facilities updates a central corpus of floor plans, and these changes

ultimately filter down through a pipeline of programs to update our virtual repre-

sentation of the MIT campus. Unfortunately, our approach (at best) lags behind

the real world by several weeks, as it takes time for these centrally-maintained
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CAD files to be updated with new construction information. Thus one major

shortcoming of our approach are the difficulties inherent in using a secondary

source of data (CAD files) to generate models when they are not always up-to-

date and often contain flaws.

A second issue is that there is currently no way for a client application to auto-

matically obtain its position from the environment; at present this must be spec-

ified by user either per route query (as with MITquest), or at start-time (as with

a location-aware active sign). In the future, position systems like Cricket [7] will

provide both position and orientation, but such capabilities have been deployed

only in limited portions of campus.

6.2 Future Work

There are a number of fronts on which this thesis can be extended. Here, we

consider a few areas of such future work, including enhanced route-finding, im-

proved map usability, and more extensive event aggregation.

6.2.1 Enhanced Route-finding

There are a number of optimizations which could increase the speed and fidelity

of route-finding in the location server.

The fundamental algorithm used to find routes is Dijkstra's algorithm (dis-

cussed in Section 2.5), which tends in practice to have poor performance when

searching for routes between distant spaces. New MIT students use a very simple

algorithm when divining routes between classrooms - if their destination is in a

different building than their current location, they typically exit the building as

quickly as possible and then locate the building of their destination.

The methods presented in Section 2.5 rely on brute-force searching of a cam-

pus graph to arrive at the same result. One heuristic we could add to route gen-

eration in the location server is to break paths into distinct components, and ap-
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pend the results of searches on these smaller sub-queries. For example, consider

a route which goes between two buildings. We could break such a route into a

number of smaller routes:

" From the start space to the building exit

" From the start space's building exit to the destination space's building en-

trance

" From the destination space's building entrance to the destination building

A number of heuristics could speed up each of these smaller searches, en-

abling better route generation overall.

6.2.2 Map Usability

We have touched on the differences between merely valid routes and usable maps

in Sections 2.5.2 and 4.1, and there is much more work to be done on this front.

Research [1] shows that maps and routes with high fidelity are often less usable

and useful than stylistic representations of the same data. We have presented

methods for extracting essential information from routes, but many extensions

can be made to the simple techniques explored in this thesis.

In particular, selectively clipping walls in 3D route maps could greatly en-

hance usability. Magazines and newspapers often use a standard 3/4 cutaway

view of buildings to display both interior and exterior structure - an approach

which could greatly enhance the usability of our 3D route-finding techniques.

6.2.3 Event Aggregation

As discussed in Section 3.5.3, we currently infer events from two sources: the

MIT events calendar, and the LCS events page. Although many public events are

published on convenient, well-formatted sources like the aforementioned two,

many campus events are distributed through another electronic medium: email.
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One viable extension to the event server is to set up an email account, subscribe

the account to a number of popular campus event mailing lists, and to thus infer

events from emailed event descriptions sent to the account. While addressing the

challenges of inferring basic event data from emailed descriptions poses many

challenges, adding this feature would greatly expand the set of events available

to the EventServer, making active signs useful community tools.

6.3 Conclusion

We have presented an architecture and methods for generating two- and three-

dimensional route maps, a collection of general Java classes for constructing such

maps, and provided exemplary applications that provide useful services to the

MIT community.

We have implemented route-finding in a client server architecture, building a

Java location server with substantial performance optimizations, including route

memoization, space convexity checking, and portal path pre-computation in-

side spaces. By using a rich route model, we further enable constrained route

generation in Dijkstra's algorithm, letting client applications specify constraints

to accommodate a variety of needs.

Map display is implemented in two Java classes that make map and route dis-

play abstract for developers and accessible for end-users. We have built client

applications using our base classes, including location-aware active signs and

MITquest, which provide maps and other services. Active signs have been fur-

ther endowed with knowledge of events around MIT's campus, enabled through

a central event server and methods for inferring events from MIT community

web pages.

We hope that the methods, applications, and improvements presented in this

thesis are of use to members of the MIT community and motivate the further

development of location-aware applications. This thesis stands as a useful proof-

of-concept for a set of location-aware, active signs.
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Appendix A

Project Build Instructions

This chapter describes how to checkout, build, and execute the applications we

discuss in this thesis, including the LocationServer, EventServer, TextSign, Graph-

icsSign, and MITquest applications. These instructions assume an account with

the MIT Computer Graphics Group, and membership in the graphics and city

groups. These instructions also assume a Linux command-line environment,

running under the tcsh shell.

A.1 Checkout and Build Instructions

First, check out the CVS source tree of the walkthru/mit project. Do this with:

% setenv CVSROOT /d9/projects/

Make sure that this environment variable is set by checking the environment, do

this with:

% env I grep CVSROOT

and verify that the CVSROOT environment variable is properly set. Next, move

to the directory where the walkthru source tree will be hosted. To checkout the

entire directory, type:

% cvs checkout -P walkthru/mit
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A.2 Invoking Applications

A.2.1 LocationServer

The location server is invoked with the following command-line arguments:

% LocationServer mode file buildingi ... buildingN

The mode parameter specifies which mode the location server is run in; there are

either "batch processing mode" with the parameter BATCHOUT or "quick start"

mode, with the parameter QUICKSTART. In batch processing mode, the location

server load and pre-processes the list of named buildings, and then outputs its

pre-processed state to the specified f ile before binding to Java RMI port. The

building parameter is simply the path to the root building name for one or more

building data files. For example, /scratch/pnichols/bmg/mit_13 is the root name

for mit_13. spaces and mit_13. portals, the two files containing all room geome-

try for building 13. The actual format of these space and portal files is the subject

of Appendix C.

To actually compile and invoke the location server, first move to the root di-

rectory where the walkthru source tree has been installed. Then:

% cd walkthru/mit/src/LocationAware/locationserver

% rmiregistry &

% make ; make full

The location server will then load campus data from the local file system, pro-

cess campus floor plans, and then publish itself on port 5432 (the default Java

RMI port). The set of buildings to load, and their locations, is in the Makefile it-

self. Making the location server network-accessible may require that the server

hosting it explicitly open port 1099 to the outside world depending on firewall

and other security settings. Compilation requires that the Java programs j avac

and rmic are both installed and accessible. To check whether these applications

are in the path, type:
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% which javac

If javac is not found, try:

% locate javac I grep bin

This should locate the appropriate directory to add to the PATH environment vari-

able.

A.2.2 EventServer

To invoke the event server, first move to the root directory where the walkthru

source tree has been installed. Then:

% cd walkthru/mit/src/LocationAware/

% setenv CLASSPATH {$PWD}

% javac eventserver/*.java

% java eventserver.EventServer INTERACTIVE

The event server will not compile or run without the Java CLASSPATH environment

variable set to walkthru/mit/src/LocationAware.

These instructions run EventServer in "interactive" mode, which displays the

GUI referred to throughout this thesis. To run the EventServer as a background

process, replace INTERACTIVE with SERVER when invoking the application from

the command line. Once the EventServer application is running, press the "Probe

Events Database" button to automatically acquire a set of events from LCS events

web page and the MIT community events calendar. Event databases can also be

saved to disk and loaded using the corresponding GUI buttons.

A.2.3 TextSign

Invoking a TextSign requires an available, accessible event server and location

server. The TextSign application must also have the physical location of the sign
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entered as an initial command-line parameter. This physical location is specified

as a space name, using the naming convention adopted in this thesis, discussion

in Section 2.4.

In the future, this will alternately be provided by a system like Cricket, and will

likely be specified as a pose, including both position and orientation. Should this

change, the getPhysicalPosition() method should be modified appropriately.

TextSign is called with:

% TextSign location eventserver locationserver

To run the TextSign application (for example) with an event server running locally

and a location server running on graphics.csail.mit.edu:

% cd walkthru/mit/src/LocationAware/

% setenv CLASSPATH {$PWD}

% javac textsign/*.java

% java textsign.TextSign mit-38#1#OOLA#LOBBY localhost

graphics.csail.mit.edu

A.2.4 GraphicsSign

The GraphicsSign component requires that Java3D be locally installed and in the

PATH environment variable. GraphicsSign takes three command-line arguments

- the location of a master TextSign, and the LocationServer to provide geometry

information.To run GraphicsSign, type:

% cd walkthru/mit/src/LocationAware/

% setenv CLASSPATH {$PWD}

% javac graphicssign/*.java

% java graphicssign.GraphicsSign localhost graphics.csail.mit.edu

In this example, the application would run with a location server running on

graphics .csail .mit . edu and a textsign running locally.
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A.2.5 MlTquest

Installing and running the MITquest applet requires a web server such as Apache

with PHP4 installed. To obtain and compile MITquest, type:

% cd walkthru/mit/src/LocationAware/

% setenv CLASSPATH {$PWD}

% cd MITquest/

% javac *.java

To access MITquest from the web, create a symbolic link to the MITquest direc-

tory from a web accessible directory. For example, on the graphics server one

would:

% cd /citypub/www/city/bmg/

A 1n -s /walkthru/mit/src/LocationAware/MITquest mitquest

This would make MITquest available on the web at

http://city.csail.mit.edu/bmg/mitquest
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Appendix B

API Documentation

This chapter briefly discusses the LocationServer and DisplayLayer interfaces,

providing high-level insight into their use and purpose. It then provides the out-

line for a reference client which makes use of these components to provide route-

finding services to an end user.

B.1 The LocationServer Interface

The LocationServer interface, shown in Figure B-1, exposes high-level geometry

and route-finding capabilities to client applications.

This interface is implemented by the JavaLocationServer application, which

is a Java RMI server. Any clients making use of a location server must instantiate

this class locally by using the Java lookup method to locate a network-accessible

1. public interface LocationServer {
2. public Space getSpace(Position position);
3. public Space getSpace(String name);
4. public Portal getPortal(Position position);
5. public Portal getPortal(String name);
6. public Route getRoute(Route route);
7. }

Figure B-1: LocationServer Interface.
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LocationServer bound to the machine at server (such as graphics .csail. mit .edu).

1. try {

2. String name = "//" + server + "/LocationServer";

3. this.locationServer = (LocationServer) Naming.lookup(name);

4. } catch (Exception e) {

5. e.printStackTrace();

6. }

Once a client has instantiated a local copy of the LocationServer class, the

client then uses the API in Figure B-i to build maps and display routes. Typi-

cally, a client must first build an internal map by specifying an initial space (using

the getSpace 0 method), then recursively query for spaces adjacent to the initial

space. Each space maintains a list of the names of its adjacent spaces, so a client

may obtain the actual adjacent spaces by recursively querying the LocationServer

with the getSpace () method. Clients can restrict maps by selectively adding new

spaces, such as by only adding spaces on a certain floor of a certain building.

Once a client has built a map by collecting a set of spaces and portals, it can

request routes from the LocationServer. This is done with the Route class, which

specifies a set of constraints on a route, as well as various collections of points,

spaces, and portals which satisfy the route constraints. The Route constructor

takes:

1. public Route(Space source, Space dest, String type);

Where source is the starting Space, dest in the destination Space, and type spec-

ifies Route constraints, represented as a static String in the Route class. To gen-

erate a valid route, clients must first create a local Route object, and then call

the getRoute 0 method, saving the returned route. For example, a client might

generate a route like this:

1. Space si = this.locationServer.getSpace(''mitNE43@20255@OFF'');
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2. Space s2 = this.locationServer.getSpace(''mitNE43@5@501@OFF'');

3. Route myRoute = new Route(sl, s2, Route.ROLLINGROUTE);

4. myRoute = this.locationServer.getRoute(myRoute);

The returned object contains the collection of points, portals, and spaces which

optimally satisfy the route constraints. If no valid route can be found by the

LocationServer, the returned object is null.

B.2 The DisplayLayer Interface

The DisplayLayer interface, shown in Figure B-2, is used to instantiate and con-

trol very general 2D and 3D map and route display objects, which themselves ex-

tend the Javax.Swing.JPanel class. Implementors of the DisplayLayer class promise

basic map and route display functionality, and can be used interchangeably in

applications like MITquest and active signage.

1. public interface DisplayLayer {
2. public DisplayLayer(LocationServer ls, Space initial);

3. public boolean drawRoute(Route r);

4. public boolean markSpace(Space s, String text);

5. public void clearAll();

6. }

Figure B-2: DisplayLayer Interface.

DisplayLayer classes are instantiated with references to an initial space (which

serves as the initial space used to build an initial map, as detailed in Section B.1)

and a LocationServer to provide geometry information. Clients are must also

provide methods for displaying routes, marking spaces with optional text, and

for clearing all displayed routes and markings.
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Appendix C

LocationServer File Format

This chapter documents the file format used as input by the LocationServer ap-

plication, which is discussed at length in Section 3.3. The location server takes

a set of file names, passed as command-line arguments, as arguments to load

and process rooms and portals. The location server is passed the full path to a

root filename for each room to be loaded; a sample set of this data is located on

the graphics file system at /scratch/pnichols/bmg/. Section A.2.1 contains more

information on invoking the LocationServer application.

Each building has two associated files - a file containing a room geometry

(which has the extension .spaces) and a file containing room connectivity in-

formation (which has the extension .portals). For example, MIT building 13

would have all room data stored in mit-13. spaces and all room connectivity data

in mit-13 .portals.

C.1 Room File Format

Building room geometry is stored in a simple, plain text format. Each space is

represented as a single line in the file, in the following format:

SPACENAME CONTOUR-POINTS I SPACE-TRIANGULATION

The SPACE-NAME follows the format:
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BUILDINGNAME#FLOORNUMBER#ROOMNUMBER

The CONTOURPOINTS for a space represent the the 2d footprint of the space, rep-

resented as an ordered list of 3d points. The list should close, e.g. the last point

of the ordered points should be the same as the first point. For a space with n

points, the format is:

{Px1 py1pz1 }... -{ponPynPzn }

The SPACETRIANGULATION for a space is the CDT triangulation of the space, rep-

resented as sets of points enclosed by braces. For a space with m triangles, the

format is:

{ {tii t1 ,I t }...{t1,3t1,3 }}... {{tm 1 tMy1 tmz }... {tmx 3 tmy3 t Mz}}

C.2 Portal File Format

Space adjacency information is also stored in a plain text file. Each portal is rep-

resented as a single line in the file, in the following format:

PORTAL-NAME PORTAL.TYPE SPACEA1 SPACE_2 PORTALSHAPE

The PORTALNAME is simply a globally unique string identifying the portal, which

in practice is usually a non-negative integer.

The PORTALTYPE represents what type of space portal connects the two named

Spaces. Legal portal types include STAIRUP, STAIR-DOWN, ELEVUP, ELEV-DOWN, OUTSIDE,

WINDOW. All portal types are public, final member variables of the Portal class.

Each portal connects two spaces, whose ids are listed as SPACE_1 and SPACE_2.

These adjacencies are one-way only, which means that most (but not all) portals

have a twin which connects the two spaces in the other direction. This reflects

the fact that some doors (such as emergency exit doors) are one-way only.

Each portal also has a physical footprint, as represented by the PORTAL-SHAPE,

which is a set of four points representing the quadrilateral outline of the portal.

This takes the form:
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