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Abstract

In this thesis we propose a vision-based robot navigation system that constructs a
high level topological representation of the world. A robot using this system learns to
recognize rooms and spaces by building a hidden Markov model of the environment.
Motion planning is performed by doing bidirectional heuristic search with a discrete
set of actions that account for the robot's nonholonomic constraints. The intent of
this project is to create a system that allows a robot to be able to explore and to
navigate in a wide variety of environments in a way that facilitates goal-oriented
tasks.
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Chapter 1

Introduction

A robot navigation system is a system that allows an autonomous robot to move

throughout its environment under constraints, such as avoiding obstacles, estimating

location, building an accurate map or attaining some goal location. In this thesis we

present the groundwork for a vision-based topological navigation system.

Many current robot navigation systems make restrictive assumptions about the

environment the robot will navigate in, such as assuming a two-dimensional world

or assuming the world consists of hallways and lobbies. Vision provides a rich set

of features that should allow a robot to navigate and map a larger variety of envi-

ronments. Many robot navigation systems also focus on producing a detailed metric

map of the world using expensive hardware, such as a laser scanner. After this map is

built the robot then has to solve a complicated path-planning problem. An abstract

topological representation simplifies the task of planning a path to a goal and does

not require expensive, high accuracy range sensors.

Humans can readily demonstrate the ability to navigate visually without the sup-

plement of metric information [9]. This ability has inspired the development of view-

based robot navigation systems, which represent an environment as a set of snap shots

and also a set of control sequences or algorithms for navigating between those snap-

shots. View-based approaches have been shown to be effective for both exploration

and navigation tasks [2].

View-based approaches operate well in static environments but are inherently not
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Figure 1-1: Gerry: A visually navigating robot.

robust to a dynamic environment. View-based approaches also scale poorly since

the topological representation tends to be fine grained and therefore requires storing

many views. Experiments on humans indicate that people do not represent space as a

collection of views but instead reason about landmarks in an environment at a higher

level of abstraction [8]. A more abstract model-based approach has the potential to

deal with dynamic environments and to compress the information stored in collections

of views.

The navigation system presented in this thesis was implemented on an ER1 robot

from Evolution Robotics (see Figure 1-1). The software was developed using the

ERSP robotic development platform from the same company. The ERi robot runs

off of a standard laptop with USB peripherals including infrared distance sensors and

a gripper arm (not used for this system). The robot has a differential drive mechanism

and a third passive caster wheel. We added a stereo camera to the robot to perform

the localization functions and to also provide range data for obstacle avoidance.

14



Chapter 2

Localization

Any robot navigation system that intends to tell a robot how to move will need

to know where the robot is. Localization is the process of estimating the robot's

state within its environment and is one of the primary pieces of any robot navigation

system. Gerry's localization system operates at the level of abstraction of a room

or space, which makes the localization system extremely reliable. The input to the

localization system is also purely visual, which makes the system ammendable to a

variety of environments.

Gerry's navigation system relies on a vision-based localization system developed by

Murphy, Torralba and Freeman [12]. The robot determines its location by calculating

what room or location the images from its video camera appear most similar to.

The system models the different locations in its environment as states in a hidden

Markov model (HMM). The robot observes the environment using one of its video

cameras and then calculates the probability that it is in any given state given all

past observations using its HMM. The topology of the environment is accurately

represented in the HMM's state transition probability matrix which allows the robot

improve its localization estimate by considering the connectivity of the space.
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2.1 Image Processing

The localization system first performs a series of image processing steps on the images

to extract a small set of features that are reasonably invariant to illumination changes

and affine transformations. The image representation used by the system is designed

to capture global texture properties while keeping some spatial information.

The image is first converted to a grayscale image and is then decomposed using

a steerable pyramid filter bank with 6 orientations and 4 scales on the intensity val-

ues of the image. An excellent tutorial on steerable pyramids with implementation

code can be found in [11] and on Eero Simoncelli's web site.1 Steerable pyramids

are linear, multi-scale, multi-orientation image decompositions. The basic operators

are directional derivatives performed at multiple scales and orientations. The result

is an image format that is translation and rotation invariant. The representation is

overcomplete by a factor of 4k/3 where k is the number of subbands, however its prop-

erties make it a reasonable choice for our localization task. Similar localization results

using Gabor filters are reported in [12] although we did not peform any experiments

in this direction.

In order to reduce the dimensionality of the image representation, but still pre-

serving global spatial and textural information, each subband of the filter output is

divided into an M by M grid and only the mean value of the magnitude of each cell

is kept (we used M = 4 as was done in [12]). The result is a 384 dimensional (6

orientations x 4 scales x 16 grid cells) feature vector. The feature vector is further

reduced in dimensionality to 80 dimensions using principal component analysis.

2.2 Modeling the Environment

We model the locations in the environment and their interconnectivity using a hidden

Markov model (HMM). An excellent tutorial on hidden Markov models and their

applications can be found in [10] from which relevant topics are discussed here.

A hidden Markov model can be used to describe an observation sequence 0 =

lhttp://www.cis.upenn.edu/ eero/steerpyr.html
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0102... OT taken over a set of T timesteps. An HMM consists of a set of N states

denoted as S = {S1, S2, .- , SN} and a state transition probability distribution A =

{ajj} where

aij = P[qt+1 = Sjlqt = Si], I < i, ) N

An HMM also defines a set of probability distributions B = { bi, b2, ... , bN }, where bj

defines the probability distribution over observations made in state S3 . The current

state is denoted qt. If the observations are continuous vectors, then the observation

probability densities can be represented as a finite mixture of the form:

M

bj (O) = cjSM[O, pjMI En], 1 <j < N
m=1

where cjm is the mixture component for the mth mixture in state j and IR can be any

log-concave or elliptically symmetric density, although it is typically Gaussian. The

mixture components satisfy the constraints

M

cjm=, 1 j N
m=1

cjm ;> 0, 1< j N, 1 < m < M

so that the pdfs are properly normalized.

Once the HMM has been constructed, the probability of being in state q at time

I is given by the recursive equation:

P(Qt = q1O = 01:t) cc p(Otl= q)P(Qt = q1O = 01:t-i)

- p(Ot|Qt q) S A(q', q)P(Q_1 = q'O =O1:t-1)

where p(OtIQt = q) is the likelihood of an observation given the state, and A(q', q) is

the transition probability from state q' to state q.

The localization system is trained by recording sequence of images from the robot

as it initially explores the environment and then labeling the images with the name
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of the location where the image was taken. These labels could also be determined

automatically using expectation maximization, although we did not attempt this.

The observation probability densities are estimated by randomly selecting K pro-

totype observations from each location and then setting the mixture component vari-

ance to be a constant, up-, where p stands for "prototype." The parameters K and

up were set to 100 and 0.05 respectively using cross-validation as explained in [12].

Each mixture component is weighted equally, resulting in what is essentially a Parzen

window density estimator.

The state transition probability matrix is estimated by counting transitions be-

tween states in the training data. A Dirichlet smoothing prior is added to the count

matrix so that zero likelihoods are not assigned to transitions which do not appear

in the training set. The prior probabilities are calculated by assuming that the robot

is equally likely to start in any location.

Because the space of the feature vectors is significantly larger than the number of

locations, the observation likelihoods tend to overwhelm the transition probabilities.

To compensate for this, we rescale the likelihood terms to be:

bq = p(Ot|Qt = q)-
qf p(Ot|Qt q)-

where -y is set by cross validation as described in [12]. This rescaling improves per-

formance at the cost of increasing the latency of the localization system. A higher

latency means that there is a longer time lapse bewteen when Gerry enters a location

and when that location is recognized. In practice, the system latency remained less

than a few seconds.

2.3 Robot Implementation and Performance

We implemented the localization system on Gerry and trained the system on the

rooms and hallways surrounding our lab. A map of the seven rooms trained on can

be seen in Figure 2-1. We drove the robot around our lab and recorded four sequences

of images from the left imager of the robot's stereovision camera. The images were
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Reading Room

Hallway1

Robot Arena Office

NHallway2

Stairs

Hallway4 Hallway3

Figure 2-1: Map of the room locations used to train the localization system for testing.

recorded at roughly 5 Hz for a total of 1676 images in the first sequence, 776 in the

second, 617 in the third, and 332 in the forth. Each sequence visits all locations and

all transitions between locations. The number of images per sequence decreases only

because the robot driver became increasingly efficient at moving the robot through

the locations.

Figure 2-2 shows the performance of the localization system by plotting the belief

state of the localization system for each frame in the testing set. The plotted line

shows ground truth and the gray circles indicate a belief. A large dark circle indicates

high confidence and a smaller circle indicates ambiguity and confusion between states.

The system is correct with high confidence for almost every frame in the training set

except for a brief error around frame 360. This error is likely to labeling ambiguity

in the transitions between the states Hallwayl, Hallway2, and the Reading Room.

The system runs in real time on our robot. The HMM is updated at a rate of

approximately 5Hz on a 1000MHz Intel processor with 256Mb of memory. We only

tested an environment with eight rooms, but in tests reported in [12] up to 63 possible

locations are recognized with similar performance.
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Figure 2-2: Localization performance over seven states.

We tested the system using different percentages of the training data, and per-

formance was virtually unaltered even at 12.5% of the training data. Precision-recall

curves generated through cross-validation are in Figure 2-3 for different percentages

of the training data. We generated these curves by subsampling the training se-

quence. The same sequences were used for training and testing for all tests. The

precision-recall curves show the percentage of the testing set labeled by the system

correctly as the confidence threshold of the system is decreased. We can see that the

topological constraints imposed by the HMM improve the performance of the system,

although the mixtures of Gaussians by themselves are already very accurate in this

environment.

20

-. -.. .... ....

- - ......-.-. .- -.-. .- -

- -. .- -.-.-. - . -. --

- - - --7 - - -

-.- ...- ...- - -.. ....... - .- .--.-----

-. ...--.-.-- -.-.- .- .

-. .........--' ---- .-...-



100% Data

.. . .. . .

. . .. . .... ....
0

0
. . .. . ... ...

0

LL

-0- HMM
-- No HMM

0 0.2 0.4 0.6 0.8 1
Fraction Labeled

25% Data
- -. . -. . - ..- .

- - -- -- -

*a)

0

LL

-- HMM
-U- No HMM

0.8

0.6

0.4

0.2

0

-e- HMM
-U- No HMM

0 0.2 0.4 0.6 0.8 1
Fraction Labeled

12.5% Data
1

0.8 - -

0.6 - - - -

0.4 [

0.2

0
0 0.2 0.4 0.6 0.8 1

Fraction Labeled

-I-
-U-r

HMM
No HMM

0 0.2 0.4 0.6 0.8 1
Fraction Labeled

Figure 2-3: Precision-recall curves showing the performance of the localization system
as the amount of training data is decreased.
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Chapter 3

Motion Planning

Techniques for performing motion-planning with obstacle avoidance range in complex-

ity from simple behavior-based approaches to complex global path-planning schemes.

The simplest approaches are reflexive in nature. Some examples include backing up

and spinning in a random direction if the robot bumps into something, or turning

left if an obstacle is detected on the right, and turning right if an obstacle is de-

tected on the left. These reactive approaches tend to be very robust and adaptive to

unstructured environments, but also tend to be inefficient and non-optimal.

On the other end of the spectrum, generalized motion-planning solutions attempt

to find optimal paths through a carefully measured environment. Motion planning can

find optimal paths through complex environments, but also tends to be brittle and to

not scale well to large environments. For Gerry's obstacle avoidance system we tried

to find an optimal compromise between complexity with efficiency, and simplicity

with robustness. Gerry performs local motion planning using bidirectional heuristic

search over a discrete action set in a grid world representation.

3.1 Mapping the World

Gerry uses an off-the-shelf stereovision camera (from Videre Design) to see obstacles

in the world. The stereovision camera consists of two video cameras set in a fixed

geometry. Software can then be used to calculate the disparity between the pixels in
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the images from the two cameras and infer the three-dimensional geometry. We chose

to use data from a stereovision camera because we required a vision-based system and

because it allows Gerry to see obstacles in all three dimensions: length, width and

height. This allows Gerry to see things such as tabletops, which might appear only

as four thin posts to a laser range finder or other distance sensors.

At a regular time cycle, Gerry's path planning system receives a set of three-

dimensional points from the stereovision camera that are then used to create an

occupancy grid. An occupancy grid (also called an evidence grid) is a world repre-

sentation which lays a two dimensional grid over the world and then labels grid cells

as either obstructed or free. The robot can readily traverse a free cell but obstructed

cells are impassable.

The occupancy grid is created by flattening the stereocamera data along the z-

dimension into what would look like a floor plan. The points are binned in a memory

array equal in size to the occupancy grid where an array element represents an occu-

pancy grid cell. Only those points that are within the height of the robot and within a

fixed square area surrounding the robot are considered when building the occupancy

grid. A cell is considered obstructed if the bin count is above a given threshold that

is set by the user. The value for the threshold will depend on the area covered by a

grid cell and the amount of noise in the data.

The coordinate frame used to build the occupancy grid is a Cartesian coordinate

system in the robot's frame of reference. By convention, the x-axis is in the direction

that the robot is facing, the y-axis is to the robot's left and the z-axis points up. The

robot's orientation, 0, is measured counter-clockwise from the x-axis. Since Gerry

is a differential-drive robot, we set the origin of the robot's coordinate system to be

the midpoint of the robot's drive-wheels. We choose to center the occupancy grid on

the robot to maximize the chance that a goal point will remain within the bounds

of the grid even as the robot turns. We consider all points outside of the grid to be

obstructed.

We conducted tests on the stereocamera data and the motion-planning system in

a simple world consisting of two boxes acting as obstacles. For these experiments,
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Robot bounding box

Small box

Drive wheels
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Figure 3-1: Test world setup for stereo and motion-planning experiments.

the robot and the boxes were positioned as shown in Figure 3-1. The small box is

6" x 8 " x 14" (15.2cm x 22.2cm x 35.6cm) and the large box is 20!" x 8 " x 15"4 2 4

(50.1cm x 22.2cm x 38.1cm). We positioned the boxes using the carpet on the floor,

which is laid out in convenient 1!' x 1!' squares. The midpoint of the robot's drive2 2

wheels is positioned as shown, and the robot is facing along the x-axis.

We modeled the robot's geometry using a rectangular bounding box with dimen-

sions 56cm x 50cm x 78cm. The robot's stereocamera is mounted on its neck so it

can see the tops of the boxes, but also tilted downward at a slight angle so that the

bottom of the images see just above the front of the robot. The stereocamera lenses

have a focal length of 4.8mm, which equates to a 900 horizontal field of view and a

730 vertical field of view.

3.2 Filtering the Stereo Data

The stereo data can be very noisy, which causes virtual clutter to appear in front of

the robot. Figure 3-2 shows an example 64 x 64 occupancy grid constructed from

the stereocamera data in the setup described in Section 3.1. The origin is located at

the middle with the robot facing right. The first image highlights all of the bins in
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Figure 3-2: An occupancy grid constructed from the stereo camera data.

the occupancy grid that have values in them. As you can see, the data is somewhat

messy. The second image is after applying a static threshold and the third image is

after performing a median filtering. These operations are described below.

To determine the best threshold to use, we collected a set of 47 sample occupancy

grids with the robot in the configuration shown in Figure 3-1. Then we constructed

the Reciever Operating Characteristic (ROC) curves shown in Figure 3-3 using three

different filtering techniques: time integration, median filtering, and combined. The

curves have been truncated to highlight the interesting regions near the y-axis.

An ROC curve is a plot of the false positive rate versus the true positive rate for a

binary classifier. The area underneath the ROC curve, called the discrimination value,

identifies how well the the binary classifier would discriminate between two entities

chosen at random from two different populations. We constructed these curves by

gradually lowering the threshold and then counting the number of true positives and

true negatives. Median filtering was performed over a 3 x 3 neighborhood and time

integration was performed by summing over three time steps. The descrimination

values were calculated using a trapizoidal approximation and are given in Table 3.1.

Median filtering has the effect of removing outliers by replacing pixels with the

median of their surrounding pixels. This helps to cut back on noise in the stereo data

Filter Discrimination

None 0.887
Time 0.907
Median 0.883
Both 0.893

Table 3.1: Discrimination values after applying different filtering techniques.
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Figure 3-3: Stereo data threshold ROC curves for different filtering techniques.

and to stabilize edges. We can see the effects of the median filtering in the higher

true positive rates that can be achieved at a much lower false positive rate. Median

filtering has the unfortunate side effect, however, of making all obstacles that are one

grid-cell wide invisible. This is evidenced by the lower discrimination value of 0.88

after performing median filtering.

Time integration allows the robot to see obstacles better because it can remember

what it has seen before. Time integration results in a significantly higher discrim-

ination value of 0.91. However, because the noise is not removed the false positive

rate remains high. Combining time integration and then median filtering appears to

have the benefits of both techniques. Using the ROC curve for time integration and

median filtering combined, we selected a threshold of 21 which gives a false positive

rate of 0.028 and a true positive rate of 0.753.

3.3 Calculating the Configuration Space

When performing path planning, it is generally easier to consider the robot's config-

uration space. Configuration space is a representation of all the valid states of the
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robot. In our case, the robot's state consists of its position and orientation: (x, y, 0).

A free point in configuration space represents a state where the robot is not colliding

with any obstacles. By using the robot's configuration space, the motion-planning

problem is reduced to finding a trajectory through configuration space from an initial

state to a goal state along which all points are free and valid state transitions can

be made between all consecutive pairs. Such a trajectory is said to be admissible.

Not all trajectories through configuration space are necessarily admissible if there are

constraints on the robot's kinematics. For example, Gerry cannot translate sideways.

In general, calculating the configuration space is a non-trivial problem. Efficient

and optimal solutions exist for robots and obstacles that are polygonal [7]. An al-

ternative is to represent the robot and the world as binary bitmaps and the then

convolve the two [4]. The result is an approximation to the configuration space and

can be computed quickly by performing the convolution in the frequency domain. The

bitmap of the robot and the world can be transformed into the frequency domain by

applying the fast Fourier transform to both bitmaps. Multiplying the corresponding

elements in the two transformed bitmaps then performs the convolution. The result is

transformed back into the spatial domain by using the inverse fast Fourier transform

and then taking the magnitudes where are less than one.

If we wish to consider all points outside of the bounds of the occupancy grid as

being obstructed, a simple trick is to draw a line around the border of the occupancy

grid before performing the convolution [4]. If a more accurate approximation is needed

then the resolution of the bitmap representations can be increased, although some

fast Fourier transform implementations are most efficient when the dimensions of the

input signal are a multiple of 2.

A single convolution is all that is needed to calculate the configuration space for

a circular robot. If the robot is not circular, then the robot's orientation can be

accounted for by calculating the configuration space for the robot at different discrete

orientations. Again, if finer resolution is needed, then the number of orientations can

be increased at the cost of computational time and space.

For Gerry, we calculate the configuration space at a resolution of 128 x 128 over
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Figure 3-4: Configuration space calculated using binary bitmap representations and
fast convolution.

16 evenly spaced orientations. Since the bitmap of the robot does not change, we

can precompute the FFT's for the robot orientations offline which helps improve

performance. The configuration space for the test world introduced in Section 3.1 is

shown in Figure 3-4.

3.4 Robot Model

Gerry is a differential-drive robot with two parallel independently driven wheels and a

passive caster wheel. A differential-drive robot has the advantage of being very simple

to build and control, but tends to have difficulty going in straight lines. Differential-

drive robots also are subject to nonholonomic constraints, which are constraints on the

robot's kinematics that involve the configuration parameters and their derivatives, but

are non-integrable. For example, the robot cannot translate sideways. Nonholonomic

constraints complicate the motion-planning problem because they restrict the set of

admissible trajectories in configuration space. The motion planner needs to be able

to rule out these inadmissable trajectories.

For Gerry, we describe the kinematics of the robot's drive system using a simple

bounded-velocity robot model, where the robot's left wheel velocity, v, and the right

wheel velocity, v, are constrained such that v1, v, < Ivma. We give no bounds on the

acceleration of the wheels and we even allow discontinuities in the wheel velocities

as described in Balkom and Mason [1]. Given that the distance between the robot
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wheels is 2b we then have:
1

V (Vr + vi)

2b

and
iCos (0) 0

sin(O) v+ 0 w.

0 0 V

At a given time instant, we can think of a differential drive robot as moving in a

circular arc of radius:

b(v, + vi)
r=2(vr - vj)

where the sign of r is the same as the sign of 0. When v, = v, we can consider the

radius to be infinite and the robot moves in a straight line.

Time-optimal paths for bounded-velocity differential-drive robots in free space

(spaces without obstacles) can be enumerated as combinations of pivots and straight

line segments which are derived in [1]. There is no known algorithm for calculating

time optimal paths in obstructed spaces, although a variety of techniques exist for

planning reasonable paths with nonholonomic constraints for a variety of different

robots [6]. Most of these techniques involve a three-phase procedure. The first phase

is to compute a path while ignoring the nonholonomic constraints. The path is then

broken up into subpaths that can be replaced by short admissible paths. Finally,

the path is smoothed and optimized. An example of such a planner for a fixed, fully

observable workspace can be found in [5].

Rather than incur the computational expense and complexity of smoothing an

approximate path through configuration space, we instead choose to limit the action

set of the search algorithm used by the motion planner to only construct admissible

paths. In particular, we chose to only allow the robot to move forward, backward,

pivot, and traverse 900 circular arcs. Doing so drastically simplifies the planner and

the task of converting the path into a set of controls that can be executed.
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3.5 Searching for a Path

We can find an unobstructed path through configuration space by discretizing the

configuration space and then employing some form of search algorithm. Considering

all possible actions and all possible states to which the robot can transition is un-

realistic because the size of the search space would be too large or infinite. Instead

we chose to represent the world as a set of discrete states and we select a subset of

the robot's actions that correctly transition the robot between those states while not

limiting the robot's capabilities too severely.

Methods for discretizing the configuration space take on two general forms: skele-

tonization and cell decomposition. Skeletonization reduces the configuration space to

a one-dimensional space consisting of a network of connected curve segments through

free space, collectively called a skeleton. Cell decompositions break the configuration

space into adjacent chunks. For our system we chose a uniform grid cell decomposition

at multiple discrete orientations for its flexibility and simplicity.

We create discrete states in the configuration space by laying a two-dimensional

grid over the world and then considering only a discrete set of orientations. The

discrete coordinates and orientations used for path planning need not correspond

directly to the discretization used to calculate the configuration space. For example,

it might be advantageous to search through a very simplified state space but then

check whether an action is obstructed at a much higher resolution. For Gerry, we only

search over actions that transition Gerry between states with cardinal orientations,

but we check that these actions are possible by examining the configuration space

over a finer set of 16 evenly spaced orientations. We can map between the states in

the search space and the configuration space by computing continuous state values.

Search is the process of exploring sequences of actions to determine a sequence

that leads to a desired goal state. An action performs a transition from one state to

another. A sequence of actions from the initial state is called a search node. The

search nodes form a search tree, where the fringe of the search is at the leaves. In

robot motion-planning the goal state is some desired point in configuration space

and the actions represent motions for the robot to perform. We approximate the
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initial state and the goal state by converting them to the nearest discrete state in the

discretization of the configurations space being used, and then search for a sequence

of unobstructed actions that, when completed, end at the goal state.

The search algorithm is initialized by placing the goal state in a priority queue.

The algorithm then proceeds by removing the first node on the priority queue and

checking if the goal state has been reached. If it has not, the node is expanded into

its neighboring nodes, which are in turn placed on the queue. The search continues

until the goal state is found, the search space is exhausted, or some other stopping

criterion occurs, such as a timeout.

Depending on the position of the robot, the position of the goal, and the positions

of the obstacles in the world, there may not be a legal path from the robot's initial

state to the goal. This condition can be detected by checking whether or not the

search queue is empty when the search terminates, and it should be reported to the

procedure's caller.

Different priority queue implementations yield different search behaviors. A pri-

ority queue that orders search nodes based on the cost:

ft (n) = g(s, n) + h(n, t)

where g(s, n) is the cost of the path from the start node s to a node n, and h(n, t)

is the estimated cost from a node n to the goal node t yields the efficient heuristic

search algorithm called A*. A* returns an optimal path sequence if the heuristic used

to estimate the cost to the goal is admissible,

h(n,t) < g*(nt)

or in other words, if the heuristic function h from node n to the goal node t is always

an underestimate of the optimal cost g*(n, t) from n to t (the "*" stands for optimal

or shortest). A commonly used admissible heuristic in motion planning is the straight

line distance to the goal, although other heuristics are possible.

Search is computationally expensive, as it is generally exponential in the depth of
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the search in both space and time. A perfect heuristic would change the running time

to be linear, but perferct heuristics are difficult to come by. We can speed up the A*

algorithm and reduce the size of the search problem to the size of the state space by

eliminating loops from the search tree. In other words, we want to avoid considering

the same actions from a given state multiple times, and also stop pursuing multiple

action sequences that all lead to the same state. The search space for Gerry's actions

is inherently loopy, since Gerry can drive forwards, backwards, and in circles. We

can eliminate these loops by keeping the search tree in memory and only expanding

a search node taken from the queue if its state has not been expanded before. The

nodes that have already been expanded are sometimes called the closed list or the

expanded list. The nodes still on the queue are called the open list, visited list, or

the fringe.

Changing the search algorithm to only expand nodes that have not been expanded

before changes the optimality condition on the search heuristic. The heuristic must

also be consistent, which means it must obey the triangle inequality:

h(m, t) g(m, n) + h(n, t)

for an intermediary node n. Fortunately, admissible heuristics that are not also

consistent appear to be somewhat rare, and the straight line distance heuristic is

both admissible and consistent.

Keeping the entire search tree in memory is expensive but feasible for reasonably

sized local path planning problems. We can reduce the space cost by only keeping in

memory one node per state, and then also checking whether a node to be put on the

queue represents a state that has been put on the queue before. If a node representing

the same state has already been put on the queue, then the cost of the node must

be checked. If the cost of the node already on the queue is less than the cost of the

new node, then the new node need not be put on the queue as well. Otherwise the

cost of the node in memory should be updated with the smaller cost, and the new

node should be put on the queue and the old node should be taken off. Removing

the old node may not be practical depending on the priority queue implementation,
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Figure 3-5: An example action set of size 12.

but leaving it on the queue does not effect the order of node expansion so we do not

bother with this step in our implementation.

We limit Gerry to only move in 900 arcs with radii that are a multiple of the grid

resolution. Allowing more general arcs would cause the size of the search space to

explode. An alternative would be to tessellate the world with equilateral triangles

and allow the robot to make 60-degree arcs. Of course, a triangular discretization

complicates the data structures used to represent states, so we chose to stick with the

grid representation.

We select a finite set of 90'circular arcs by allowing the user to specify the max-

imum speed for the robot's drive wheels, and the number of different evenly spaced

wheel speeds to use to generate the action set. We then calculate a set of arcs that

always drive at least one wheel at the maximum speed and the other at the closest

speed to the speeds specified by the user that allows the robot to make a discrete

state transitions. For an example action set of size 12 on a grid with cells of size 10

see Figure 3-5.

We can improve on the heuristic used in A* by taking into account constraints

imposed by our limited action set. Gerry cannot move in a straight line from point
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to point, but must instead move along grid lines or diagonally across grid lines by

traversing a 900 circular arc. The shortest path that Gerry can possibly take bewteen

two states, therefore, is either a straight line or a combination of a single straight line

and a single 90' arc:

h = max(|dx|, Idy|) - min(fdxf, Idyl) + min(Idx!, Idyl) * 7r/2

Gerry must translate at least this distance. Furthermore, Gerry must rotate at least

the minimum angle difference between the start and goal state. We can translate this

angle into a distance by taking into account Gerry's wheel base length, bheerls:

h = max(IdxI, Idyl) - min(IdxI, Idyl) + min(dxI, Idyl) * 7r/2 + 6 min * 7r/2

We call this heuristic the line-curve-pivot heuristic.

By searching for action sequences that correspond directly to actions that can

be performed by the robot, we have made the problem of deriving a plan from the

discovered path trivial to solve. The actions used to build the search tree are exactly

the actions that make up the execution plan. Since every action in our action set is

reversible, it is convenient to search backwards from the goal state to the initial state

so that the plan actions can be read in order from the search tree by following backup

pointers.

3.6 Searching from Both Directions

Unidirectional A* from the goal to the start is elegant and efficient but has several

shortcomings. Unidirectional A* searches for the optimal path and only the optimal

path. There may exist a path to goal at a much shorter depth in the search tree

than the optimal one, and this path may be nearly the same length as the optimal

path, but A* will ignore this path completely and continue searching until it finds

the optimal solution. We would like a search algorithm that can take advantage of

these short paths if an optimal solution is not found in a reasonable amount of time.
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Another problem with a unidirectional search is that searches tend to fail most

often because an obstacle is very near the start or goal state and is obstructing access

to that state. There tends to be much more flexibility in moving around obstacles

that are away from the start and goal states. If unidirectional A* starts at the goal

state and the start state is blocked, the search will have to flood nearly the entire

search space to determine that no path can be found. A failed search is very expensive

and may last several seconds even for small search spaces.

Rather than use just a single A* search we instead perform a bidirectional heuristic

search starting from the goal and the start states searching in opposite directions.

Bidirectional heuristic search has the advantage of finding possible solutions very

quickly. These solutions may not be optimal, but their error can be bounded. As

a result, bidirectional search can often be stopped much earlier than standard A*

once a solution that is close to being optimal has been found. Bidirectional search

will also fail very quickly if either the start or goal states are blocked, because the

corresponding search queue will become exhausted and the search will terminate.

For historical reasons, discussed fully by Kaindl and Kainz [3], bidirectional heuris-

tic search has traditionally been labeled as having questionable performance, because

the heuristics may push the search fronts past each other. A common analogy used is

that bidirectional heuristic search is like trying to shoot a missle with another missle.

This turns out to not be the case at all. While it is true that bidirectional heuristic

search may theoretically expand nearly twice the number of nodes as A*, in practice,

the bidirectional search fronts pass through each other and typically have their first

encounter early in the search process. The main bulk of the computation time spent

by bidirectional heuristic search is spent on satisfying the termination condition:

Lmin < max[ min fst(x), min fts(x)]
XeOpen,± XeOpent,

where Lmin is the cost of the best solution found so far, and Open,,t, refers to the

open list for the search from s' to t'. Intuitively, bidirectional heuristic search will

terminate with the optimal solution if it has determined the best solution so far and

there are no more possible better solutions on the search queues.
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The termination condition for bidirectional heuristic search provides an upper

and lower bound on the optimal path cost. We can therefore use a new termination

condition:

Lmin * e < max[ min ft (x), min ft,(x)]
xeOpens± xEOpent,

where 0 < e < 1. This new condition guarantees that the cost of the optimal solution

will be no less than e times the cost of the best solution found.

We implemented and tested a variant of the BAA-add algorithm discussed in [3]

where BAA stands for Bidirectional-A*-A* and the word "add" refers to a constant

term added to the heuristic used. While BAA-add used the non-traditional technique

of running one search until it filled its memory allowance and then switching directions

once, we instead chose to use the more traditional cardinality criterion:

if jOpenstj < 1Opent then Opent else Opent,

which selects a node to expand from the smallest queue. This helps to keep the search

balanced.

The BAA algorithm is sped up using the Add method. The Add method makes

use of the fact that the error made by heuristic for the search in the opposing direction

can be used to increase the value of the heuristic function dynamically be a constant

term. Let d(t, bi) for all nodes bi on the fringe of the search from t to s be the error

of the heuristic function from the fringe nodes bi to t:

d(t, bi) - g*(t, bi) - h(bi, t).

The new heuristic function:

dmin(t) = min(d(t,bi))

H(a, t) h(a, t) + dmin(t)

for all nodes a outside of the search frontier from t to s is also an admissible and

consistent heuristic [3]. A similar heuristic H(b, s) also exists in the opposite direction.
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Traditional BAA-Add

Figure 3-6: Nodes expanded by A* and tradition BAA-Add.

This new heuristic does not change the order in which nodes are removed from the

queues; it only adds a constant term. However, it does help satisfy the stopping

condition more quickly and provides a tighter lower bound on the optimal path cost.

A comparison of the traditional BAA-Add algorithm against A* shown in Table 3.2

confirms that BAA-Add spends an excessive amount of time validating that a solution

is optimal. In some cases more than half of the search time is spent after the optimal

solution has already been found! See Table 3.2. The disparity between A* and

non-traditional BAA-Add was not as great in the experiments cited in [3]. This is

probably due to the fact that the line-curve-pivot heuristic is almost perfectly accurate

for several interations of the search algorithm, so dmin is zero and the Add method

does not help as much.

Although traditional BAA-Add does not perform well when it is required to guar-

antee the optimal path, it does, however, find a solution path well before A* does,

and quite often this solution is the optimal path anyway (as was the case shown in Ta-

ble 3.2). We therefor chose to use traditional BAA-Add as our search algorithm with

Search Algorithm I Error Bound [ Node Expansions Path Cost

A* NA 517 563.58
trad. BAA-Add 1 854 563.58
trad. BAA-Add 0 408 563.58

Table 3.2: Comparison of the number of nodes expanded by A* and traditional BAA-
Add.
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Data : s,t
Result: L m'in

Create priority queues: qs, qt;
Lmin <- Fail ;
Cost (Lmin ) +- oc;
while -,Empty(q,) A -iEmpty(qt) do

if Cost ( Lmin ) -e < max[minxEopent Ft(x), minx opent, Fts (x) v
Time ) - start > tmax then

return Lmin
end
n <- Pop(q,);

if Contains (qt, n) then
Lmin <- min(L(n),Lmin)

end
if -,Contains (Closed, n) then

q, - Expand (n)
end
n <- Pop (qt);

if Contains (q, n) then
Lmin <- min(L (n),Lmin)

end
if -,Contains (Closed, n) then

qt -+ Expand(n)
end

end

Algorithm 1: Traditional BAA-Add.
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an additional time bound tma, after which the search is forced to quit. If no solution

path has been found then a failure is returned, otherwise the best solution available

is returned. The search may terminate before tmax if the error bounded termination

condition is met. The pseudocode for our algorithm is shown in Algorithm 1.

In Figure 3-6 we show a comparison of our algorithm and A* by highlighting the

states in configuration space that have been expanded. The configuration space is

the same one that was build from the setup described in Section 3.1. The brightest

pixels represent states that have been expanded for all four orientations. Dark pixels

have not been touched. There are spaces between pixels because the search can jump

states by performing a circular arc action. The two branches of traditional BAA-Add

reach almost directly toward each other.

3.7 Directing the Search

Searching for optimal paths has the undesirable side effect of generating paths that

scrape along obstacles on the way to the goal state. Slight errors in path execution

could cause the robot to collide with the obstacle. As is discussed in the Plan Ex-

ecution section, Gerry checks the path that he is currently following to see if it has

become obstructed, and if it has, a new motion plan is requested. Noise in the sensor

data can make the obstacle appear to jitter slightly such that a path which appears

clear at one time step becomes obstructed on the next time step. As a result, the

robot searches for new paths at an unnecessary rate.

To avoid generating paths that scrape along obstacles we can bias the search to

look for wide paths, or paths that have a significant error margin. This is accomplished

by adding a penalty to the cost of a given action that is inversely related to the

distance to the closest obstacle:

f = length + p(w - Omin)

where w is a positive integer specifying the maximum distance of the path of an action

to its closest obstacle that need not be penalized and p is a constant specified by the
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Figure 3-7: Visualization of distances to obstacles lookup table.

user.

We can calculate a look-up table that approximates the distance to obstacles by

using a variant of the dilation algorithm used in graphics applications. First we create

an array that is the same size as the configuration space and then initialize free cells

to w and obstructed cells to 0. We then set all array elements in the neighborhoods

of the 0 array elements to 1, then the elements in the neighborhoods of the 1 array

elements to 2, etc until the procedure has been performed w - 1 times. Figure 3-7

visualizes this lookup table, where brighter pixels are further away from obstacles.

We can also bias the search against backwards actions. Backwards actions are

generally undesirable because many robots, including Gerry, only have sensors that

face forward and are blind to obstacles behind them. However, we don't want to

completely disallow backwards actions, because they may be necessary to find a path

to the goal, especially when the robot has nonholonomic constraints (for example,

imagine that the robot is along a wall facing a corner). Biasing the search against

backwards actions can be done by adding another penalty term, b, to the action

length:

Cbackwards = length + p(w - Omin) + b

where b is some number specified by the user. The advantage of adding penalty terms

to the action cost is that a path will still be found even if a path with the desired

properties does not exist.
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Planned Paths for Different Path Widths
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Figure 3-8: Paths found for different values of w.

The path-planning algorithm was tested in a simulation in a simple world with

two box-shaped obstructions. The robot's initial state is (0, 0, 0) and the goal state

is (250, 0, 0). For these tests, we discretized the configuration space using a 128 by

128 grid with a grid cell size of 5cm and 16 discrete evenly spaced orientations. For

motion-planning we used a 64 by 64 grid with 10cm cells and 4 orientations. The

robot was modeled as a rectangular bounding box of dimensions 78cm by 50cm by

56cm where the center of the bounding box was offset -14cm along the x-axis from

the midpoint of the drive wheels and positioned even with the ground. The search

algorithm used the set of 12 actions shown in Figure 3-5. The resultant paths for

1 <w < 4 and p = 50 are shown in Figure 3-8.

3.8 Plan Execution

Plan execution is the process of taking a motion plan from the motion planning

subsystem and then sending the correct control sequences to the robot so that it

follows the desired path. The plan execution unit must execute the planned actions

as accurately as possible and also deal with failure conditions.
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Gerry's path planning subsystem generates plans that consist of a sequence of

linear and angular velocities and the corresponding amount of time that the robot

should be driven at those velocities. The plan execution system starts executing a

plan by removing the first action from the plan, commanding the robot to drive at

the linear and angular velocities specified, and then marking the completion time for

that action. The plan execution unit then repeatedly checks if the action completion

time has passed. If it has, the plan execution unit continues with the next action in

the plan. Execution continues until the plan is empty.

Plan execution must be robust against the following sources of error:

1. Latency

Since the plan execution unit can at best check if the action completion time

has passed at some interval At, there is some latency between when the action

was supposed to end and when the plan execution unit actually sends the next

appropriate command. If this latency is too large, the robot overshoots on all

actions and will drift from its intended path.

2. Obstructed Path

Even if the motion-planning unit initially finds a valid path to the goal, this

path may become obstructed due to an unobserved obstacle becoming visible,

dynamics in the environment, or discretization error.

3. New Goal Location

The user may at any time change the goal location. When this occurs the plan

execution unit must abandon any currently executing plans, and request a new

one to the new goal location.

4. Lost Goal State

As the robot moves along a path to the goal, it may have to at first move away

from the goal. This may cause the goal to go out of range. Since we consider

all points out of range to be obstructed, the goal then may become perpetually

obstructed.
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By supplying the robot with some state estimation information, the robot can

recover from execution error due to latency. State estimation data may directly

originate from some sensor, such as odometers on the wheels or GPS, or it may come

as a result of a state estimation algorithm such as Kalman filtering or particle filtering.

State estimation allows the robot to compare where it currently is with where it should

be. If there is a discrepancy, the plan execution unit can then attempt to perform a

repair to the plan. When the plan execution unit detects that the robot has drifted

too far from the expected path to still arrive at the goal location, it requests a new

plan from the motion-planning subsystem.

For Gerry, we used the odometry sensors to estimate the robot's location. While

odometry sensors are susceptible to multiple error sources, they are reasonably ac-

curate over short distances. The plan execution unit also uses the odometry data to

check the planned path to make sure that it is still free of obstacles. If the path has

become obstructed, the plan execution unit requests a new path from the motion-

planning unit.

3.9 Replanning

Since Gerry's path planning unit is designed to be fast and light weight, Gerry's

default failure handing procedure is to request a new plan. Frequent re-planning can

be problematic, however, as the robot may enter locally stable states that prevents it

from approaching the goal. A simple example is as follows:

Consider the case where the robot is approaching a single hypothetical point

obstacle straight on and the robot wishes to navigate to the other side to the star

marker (see Figure 3-9. The robot is represented by the small square, and goal state

is the grid cell marked by the diamond. For this example, the robot can only pivot

or move forward. From its initial position there are two symmetrically equivalent

optimal paths, which the robot arbitrarily picks from. As the robot executes its first

action, which is to pivot, the goal location moves relative to the robot. Since the

goal is further from the robot than the obstacle, it appears to move faster, and it
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Figure 3-9: An example of situation with a single point obstacle that causes the robot
to remain indefinately in a locally stable state.

transitions to a different state location before the obstacle does. As a result, there is

a new shortest path that requires the robot to pivot in the opposite direction. The

robot may stay at the same location pivoting back and forth indefinitely.

A couple of ways to fix this situation are to either stick with the original plan,

or to compare the length of the current plan with the length of the new one. The

new plan is only adopted if its length is the shorter than the current plan. This

technique allows the plan execution unit to be opportunistic when a new, shorter

path is encountered that could not be seen from the start state.

However, there are additional unstable states to consider. The data from the

stereovision camera only gives a partial view of the world. The stereovision camera

only provides information about the robot-facing boundary of obstacles that are in

clear view. Other obstacles or parts of obstacles may be obstructed from view. As

a result the robot can enter states where it oscillates without making any progress.

The test setup described in Section 3.1 generates this behavior.

Over reasonable short periods of time, we can integrate the stereocamera data in

an attempt build a more complete map of the world and thus avoid stability traps.

The idea is similar to the time integration that was done to clean up the strereo data.

The robot remembers a set of n processed occupancy grids and uses them along with

the odometry data to reconstruct a world map. The solution was tested in simulation

and worked well. Care must be taken, however, to avoid ghost images from moving

objects in the environment.
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Chapter 4

Topological Navigation

Here we describe a method for performing topological navigation using the localization

and obstacle avoidance systems described previously. Although this method has not

yet been implemented, we present it here as a possible direction for future work.

4.1 A View-based Approach

A topological navigation system represents the world as discrete states and transitions

between those states. The hidden Markov model used for localization already provides

a convenient discretization of space. However, it does not define the transitions, or

in other words, a method to get between states. The obstacle avoidance system can

navigate between (x, y, 0) states in the world, but the localization system as it stands

does not store any spatial data with the locations.

To make transitions possible between locations, we adopt an approach similar in

flavor to the view graph approach described in [2]. A view graph is a topological

representation of a space consisting of local views and their spatial relations. Past

view graph implementations have used single processed snapshots for the local views

and a simple homing strategies to maneuver between views. In our system we have

built a more abstract model for places and we will attempt to employ a similarly

abstract model for performing transitions.

Intuitively, we want to build a set of models that we can use to calculate how
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much a given image appears like it is on the path to a neighboring location. We

wish to use sequences of images similar to those that were used to train the hidden

Markov model for localization. Instead of labeling the images with the location that

they were taken from, we propose to label them with the location that the robot is

heading in the direction of. The training process is then virtually the same as it was

for the localization system. For each location we train a model that calculates the

probability that given the robot is in that location and given all observations since

the robot entered that location the robot is heading towards a neighboring location.

These new models, which we call the location transition models, can then be used

determine if the robot is heading in the right direction to transition to a desired

neighboring state.

We wish then to solve the problem of navigating between locations by driving the

robot in the direction that looks most like it will lead to the desired location. The

problem is analogous to trying to approach an invisible infrared beacon using a single

infrared sensor. A single sensor reading does not by itself tell you in which direction

to move, but multiple readings over time can be used to estimate a gradient that we

can ascend.

We could attempt to ascend this gradient by driving forward only when the proba-

bility that the robot is facing the direction of the desired location is above a threshold

specified by the user. If the current view does not sufficiently look like it will take

the robot in the right direction, the robot can search for a better direction to travel

in by spinning or wandering. Once the robot has found a probable direction, it again

moves forward and the process repeats. Spinning to determine a good direction is an

undesirable behavior that could be mediated or eliminated by using a pan tilt camera

mount or an omnidirectional camera.

Searching for a sequence of locations to the goal location is a simple graph search

problem. There remains the question as to what the arc weights should be. Location

can vary in size and how easily they can be traversed, so a uniform arc weight over

all arcs might not be the most desirable choice. It is proposed that this information

could be learned from the training data.
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While this is certainly not a complete treatment of the range of avenues to persue

in building a topolocal navigation system based on vision, we hope it provides some

"food for thought" and helps to lead to some exciting discoveries in this area.
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Chapter 5

Conclusions

In this thesis we laid the ground work for a fully vision-based topological robot navi-

gation system. We demonstrated the efficacy of vision-based localization using super-

vised HMM learning and global image features. Using stereocamera data we built a

local motion-planning system using fast, robust search algorithms. In particular, we

experimented with a novel use of bidirectional heuristic search to permit fast, semi-

optimal searches. Finally we presented some ideas for combining spatial planning and

topological localization into a complete system.
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