
TIOA and UPPAAL

by

Christine Margaret Robson

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2004 L2u0 2c *I

© Christine Margaret Robson, MMIV. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute
publicly paper and electronic copies of this thesis document in whole or in

part. MASSACHUSE TS INS E
OF TECHNOLOGY

JUL 2 O2004

Author...... L.... .BRARIES
Department of Electrical Engineering and Computer Science

20 May, 2004

Certified by
Stephen Garland

Principal Research Scientist
Thesis Supervisor

Certified by ..
Dilsun Kaynar

PopAoctoral Research Associate
7Oesis Supervisor

Accepted by ...
Protessor Arthur C. Smith

Chairman, Department Committee on Graduate Students

BARKER

2

TIOA and UPPAAL

by

Christine Margaret Robson

Submitted to the Department of Electrical Engineering and Computer Science
on 20 May, 2004, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Computer Science and Engineering

Abstract

This thesis presents a tool that assists in the development of timed systems, giving users
simulation and verification capacities to guarantee timing properties in computer programs.
The IOA Toolkit, a toolset for developing distributed systems, is extended to permit time-
dependant properties to be described using a subset of the Timed IOA (TIOA) language.

This thesis also includes a translator from TIOA into UPPAAL, another toolset. This
translator allows the simulation of IOA and TIOA programs in UPPAAL's easy-to-use in-
terface, and the checking of their properties with UPPAAL's model checker. This thesis
lays the framework for an extension of the toolkit to utilize the full TIOA language, and to
allow composed automata to be simulated. A scheme for translating composed automata
into UPPAAL is also presented.

Thesis Supervisor: Stephen Garland
Title: Principal Research Scientist

Thesis Supervisor: Dilsun Kaynar
Title: Postdoctoral Research Associate

3

4

Acknowledgments

Many people have contributed to this project, and it would not have been possible without

them. My advisors, Dilsun Kaynar, Stephen Garland, and Nancy Lynch have provided

guidance, support, and advice throughout this project. I would like to thank them for their

help. Thanks also to Josh Tauber for his patient explanations on the inner workings of the

IOA Toolkit.

My thanks also go to Karen, Mom, Dad, and Josh, for their invaluable support.

5

6

Contents

1 Introduction 13

2 Background 17

2.1 Input/Output Automata (IOA) 17

2.1.1 Language . 18

2.1.2 T oolkit . 20

2.2 Timed IOA (TIOA). 21

2.2.1 Specification........ 21

2.2.2 Language 22

2.3 U PPA A L . 23

2.3.1 Sim ulator . 23

2.3.2 Program Specification 24

2.3.3 File Form ats . 25

2.3.4 XTA Specification 27

2.3.5 Model Checking . 28

3 IOA to UPPAAL Translation 31

3.1 O verview . 31

3.2 Requirements on IOA . 31

3.2.1 Variable Restrictions . 32

3.2.2 Operator Restrictions . 32

3.2.3 Program Restrictions . 32

7

3.3 Translation Scheme . 34

3.4 Implementation 34

3.4.1 UPPAAL package . 34

3.4.2 Translation . 35

3.5 Testing the Translation . 37

3.6 Examples . 38

3.6.1 Squareroot . 38

3.6.2 Integer Division . 38

3.6.3 Channel . 42

3.6.4 Peterson Exclusion . 44

4 Timed IOA (TIOA) 47

4.1 Overview . 47

4.2 UPPAAL-Oriented Restricted Language . 50

4.2.1 Variables and Operators . 50

4.2.2 Trajectories . 50

4.2.3 Zones of time . 52

4.2.4 Syntax . 52

4.3 Toolkit Extension for TIOA . 53

4.4 Translation Scheme . 53

4.4.1 Variables . 53

4.4.2 Transitions . 53

4.4.3 Pseudo Code . 55

4.5 Implementation . 55

4.6 Testing the Translation . 57

4.7 Examples . 58

4.7.1 Train . 58

4.7.2 Door . 58

4.7.3 Skilift . 62

8

4.7.4 Fischer Mutual Exclusion . 65

5 Translating Composite Automata into UPPAAL 71

5.1 O verview . 71

5.2 M ethod .. 71

5.2.1 Synchronization Channels . 72

5.3 Translation Scheme 72

5.4 Channels and Nodes Example . 74

6 Conclusions 79

6.1 Sum m ary . 79

6.2 Future W ork . 80

6.2.1 Toolkit Extensions . 80

6.2.2 Implementing Stopping Conditions 80

6.2.3 TAME and PVS Interface for TIOA 81

9

10

List of Figures

2.1.1 A simple IOA program, modeling a lamp switch

2.2.2 A TIOA program specifying a counter

2.3.3 Screenshot of the UPPAAL Simulator .

2.3.4 UPPAAL--Specified Program Structure

2.3.5 Example UPPAAL Code in XTA Format for a Counter

2.3.6 Resulting UPPAAL Program from Code in Figure 2.3.5

2.3.7 Syntax for Specifying Properties in UPPAAL Verification Tool

3.2.1 Permissable Operations for IOA Files Inputed to the ioa2xta Translator .

3.3.2 Pseudocode for translation from IA to XTA

3.4.3 Classes and dependancies in the uppaal packa

3.6.4 IOA Code for Squareroot

3.6.5 XTA Code for Squareroot

3.6.6 Invariants of Squareroot

3.6.7 IOA Code for Integer Division

3.6.8 XTA Code for Integer Division

3.6.9 Invariants of Division

3.6.1(IOA Code for a Channel

3.6.1IXTA Code for a Channel

3.6.12nvariants of Channel

3.6.130A Code for Peterson 2P

3.6.14KTA Code for Peterson 2P

ge of the IOA Toolkit

.

.

.

.

.

.

. I

.

. I

.

11

19

22

24

26

27

27

29

33

. 3 5

36

38

39

39

40

41

41

42

43

43

45

46

3.6.lTroperties of the Peterson 2P Program4

4.1.1 Train Exam ple . 48

4.1.2 IOA Code for Train Example . 48

4.1.3 Train Program in UPPAAL . 49

4.1.4 XTA Code for Train Example . 49

4.4.5 Pseudocode for translation from TIOA to XTA 56

4.7.6 TIOA Code for Door . 59

4.7.7 XTA Code for Door . 60

4.7.8 UPPAAL Representation of the Door Program 61

4.7.9 TIOA Code for Ski Lift . 62

4.7.I(KTA Code for Ski Lift . 63

4.7.1IUPPAAL Representation of the Ski Lift Program 64

4.7.12F1IOA Code for Fischer Algorithm (continued in Figure 4.7.13) 66

4.7.131IOA Code for Fischer Algorithm Begun in Figure 4.7.12 67

4.7.14KTA Code for Fischer Mutual Exclusion Algorithm 68

4.7.1,(TA Code for Fischer Algorithm Continued from Figure 4.7.14 69

4.7.l(Properties of the Fischer Mutual Exclusion Program 70

5.4.1 TIOA Code for a Channel . 75

5.4.2 TIOA Code for a Node . 76

5.4.3 Two Nodes Communicating Via Two One-way Channels 76

5.4.4 Composed Channels and Nodes in UPPAAL 77

5.4.5 XTA Code for Composed Nodes and Channels 78

12

. 46

Chapter 1

Introduction

Time is of the essence. This statement is as true in today's computer industry as when it

was first spoken. We rely on timely results from computer systems to manage many of the

important systems in the backbone of our society. From managing power grids to printing

letters, computer programs are entwined in much of our day-to-day lives, and we depend on

their timely operation.

The systems we rely on are also becoming increasingly complicated. Complicated systems

are naturally hard to trust; as a system gets larger, it is increasingly difficult to be convinced

that it operates on time under all conditions. Exhaustive testing is often impossible; as in a

game of chess, there are too many possible outcomes to examine every situation. When such

complicated programs are used, however, guaranteeing timely responses is often important

for safety, security, and performance.

The guarantee of timing properties in computer programs is the motivation for this thesis.

This thesis project is part of a larger project, called IOA, in the Theory of Distributed

Systems group at the MIT Computer Science and Artificial Intelligence Laboratories. The

TDS group maintains and develops a toolset for developing distributed systems, the IOA

Toolkit.

The IOA Toolkit is based on the formal Input/Output Automata model for program

specification, and includes a formal specification language, simulator, verification tools, and

13

interfaces to theorem provers. The IOA model for program specification was not designed

to represent time-dependant systems. As such, the IOA Toolkit was not, until this thesis,

usable for time-dependant systems. No timed systems could be verified or simulated, and

no timing properties could be guaranteed.

In response to this limitation of the IOA modeling language and the IOA Toolkit, a

new modeling language based on the formal Timed Input/Output Automaton framework

has been introduced. This language is called TIOA and is based on IOA, with additional

features to model time passage. A final version of a TIOA modeling language was decided

during the course of this thesis.

The goal of this thesis was to extend the IOA Toolkit to assist with the development of

timed systems. The IQA Toolkit was extended to parse a subset of the full TIOA language.

For simulation and verification of such time-dependent systems, this thesis also includes

an interface from the IOA Toolkit to UPPAAL, a model checking tool which models time

and time constraints. This interface allows the translation of programs written in IOA and

TIOA languages into UPPAAL. These programs must correspond to an UPPAAL-oriented

restricted subset of the IOA and TIOA languages.

The UPPAAL translator allows IA and TIOA programs to be simulated using UP-

PAAL's easy-to-use graphical interface. This translator ports primitive automata into UP-

PAAL. Primitive automata are distinct from composed automata, which are one or more

automata with matching input and output actions, which execute together. As part of this

thesis, the framework for simulating composed automata has been laid, and the methods

described.

This thesis is a first step towards a complete extension of the Toolkit, which would allow

the use of the full capacity of the IOA Toolkit's development tools in developing timed

systems. The tools developed in this thesis project are particularly useful to users as a

first-step check when designing time-dependant distributed systems, allowing them to catch

conceptual errors early.

14

Organization of the Thesis Document: The background (Chapter 2) gives an overview

of the three systems involved: Input/Output Automata (IOA), Timed IOA (TIOA), and

UPPAAL. Following that, in Chapter 3, the interface between the IOA Toolkit and UPPAAL

is described. Then, Chapter 4 describes the extension of the IOA Toolkit to allow TIOA,

and the translation from TIOA to UPPAAL. Finally the issue of composition is discussed in

Chapter 5, and the conclusion comprises Chapter 6.

15

16

Chapter 2

Background

To support the development of timed systems, this thesis presents an extension of the IOA

Toolkit to allow time and timing properties to be represented, following TIGA syntax. This

thesis also presents an interface between TIQA and UPPAAL. As a first step to providing a

translator between TIOA and UPPAAL, a translator from IOA to UPPAAL was developed.

As a background to this thesis, the three systems involved, IOA, TIOA, and UPPAAL,

are reviewed below.

2.1 Input/Output Automata (IOA)

As we have observed, the computer industry is awash with large and complicated systems,

which require far longer to test then they did to develop. Many of these large systems

employ distributed algorithms techniques- that is, the systems are made up of many similar

(smaller) parts, which must interact with one another. There are many examples of such

large distributed systems, a classic example being banks, with many similar branches and

ATMs.

Given the size and complexity of these systems, it is difficult to guarantee execution

properties. Complex systems are often impossible to test exhaustively, and exhaustive testing

does not always reveal any execution properties of a program. This was one of the challenges

17

which led to the IOA Project.

The IOA Project employs formal methods to rigorously analyze distributed systems with

the help of computers [11, 36], including both a specification language, IOA [13], and a

corresponding toolset [12].

The IOA language is a formal specification and programming language, which is based

on the I/O Automaton model proposed by Nancy Lynch and Mark Tuttle [27, 28, 29]. It is

particularly suited to distributed algorithms.

The IOA Toolkit is a toolset for developing distributed systems and includes verification

and simulation tools. These tools allow users to simulate I/O Automata, and help the user

to verify or disprove execution properties that the user wishes to test, by interfacing with

theorem provers.

2.1.1 Language

The IOA Language models program executions as an alternating sequence of states and

actions. Discrete steps in an execution are represented by transitions, which are tuples of

the form (s, a, s') where a is an action, s is the state before the action a is preformed and s' is

the new state after the action a has been performed. Modeling programs in this way makes

it easier to reason about their execution, and, more importantly, to demonstrate correctness.

[13]

This "state-action-state" model is simple yet versatile. In order to specify a program,

transitions can be described with preconditions and effects clauses. The precondition places

limits on the possible initial states for an action to take place, whereas the effects clause

specifies how the state will change once the action has taken place. A simple example of

an IOA program is shown in Figure 2.1.1. This program runs an autonomous light switch,

which turns on and off without human intervention.

Referring to Figure 2.1.1, there are three main sections in the specification of an automa-

ton: signature, states, and transitions.

The signature lists the possible actions of the program by type, where actions can be

18

automaton Switch

signature

input on

output off
states

burning: Bool := false

transitions
input on

eff burning := true

output off
pre burning true

eff burning := false

Figure 2.1.1: A simple IOA program, modeling a lamp switch

either input, output, or internal. In the light switch case, the program can accept an input

command, to turn "on", and outputs notification that it has turned "off'.

The states refer to the program variables, in which the state of the program is contained.

The light switch only has one state variable: a boolean which indicates if the light is on or

not.

The transitions describe the program's execution steps: each action described in the

transitions must correspond to an action in the signature of the automaton. Transitions

have optional precondition clauses, pre, which are predicates that need to be satisfied for

the action to be enabled. If a transition has no pre clause, it may take place at any time.

Input transitions are always enabled, thus they never have preconditions. For instance, in

the light switch case, the input transition "on" may take place at any time.

Transitions also have optional effects clauses, eff, which modify the programs state by

changing the value of state variables. Transitions with no eff clause make no change to the

programs state, and as such, are rarely used.

This language has great flexibility; complicated programs can be expressed by creating

multiple automata and "composing" them, so that the outputs of one automaton become the

inputs of another. In this way, distributed algorithms can easily be modeled using multiple

automata, one for each system component.

19

2.1.2 Toolkit

The IOA Toolkit provides a range of tools for developing distributed systems, with validation

methods including not only simulation, but also proof checking [12].

The simulator has been developed by a number of members of the Theory of Distributed

Systems group. Anna Chefter, as her Master's thesis [5] presented the initial design. Antonio

Ramirez, proceeded with the implementation as his Master's thesis and built a paired sim-

ulation capability into the toolkit [35]. Edward Solovey extended the simulator to allow the

simulation of composed automata, as part of his Master's thesis [37]. Dr. Stephen Garland

has supervised and contributed to the simulators development.

Michael Tsai, in his Master's thesis, presented a means for IOA Programs to be compiled

and simulated on a network of computers [39]. Josh Tauber, as part of his PhD thesis [38], is

developing a composer that takes composite automata as input and produces and equivalent

primitve automaton.

The toolkit is also connected to Daikon, a dynamic program analysis tool developed by

Michael Ernst [9, 7, 8]. This feature of the Toolkit was begun by Laura Dean as her Master's

thesis [6], and further developed by Toh Ne Win, as his master's thesis [30]. The Daikon

interface provides a means of invariant detection, which is important for proof development

in theorem provers, to guarantee program properties.

The IOA Toolkit also interfaces with theorem provers and model checkers. The interface

to the LP Theorem Prover was written by Andrej Bogdanov's as his Master's Thesis [4].

The interface with the TLC model checker; the translation was written by Stanislav Funiak

[10].

The validation methods available in the toolkit have been used to prove safety properties

of distributed systems [31, 21, 26, 32, 33]. One such distributed system was a model for a

bank. Other distributed algorithms that have been verified using the IOA Toolkit include

leader election algorithms, tree spanning algorithms, and communication protocols.

20

2.2 Timed IGA (TIOA)

The IOA Project has until now been limited to time-independent algorithms; the IOA lan-

guage as specified does not involve time. To address this issue, a new language, TIOA, has

been designed [20, 19].

TIOA separates the notion of state change into two categories: discrete transitions model

instantaneous changes to state, as in IOA, and trajectories model the evolution of state over

time. The behavior of a program is then modeled as a sequence of actions and time-passages.

Transitions take place instantaneously, so all time passage is modeled by trajectories.

The separate notions of actions and trajectories give TIOA the flexibility to model and

analyze a broad range of real-time systems. This thesis only uses part of the full capabilities of

TIOA. Specifically, only features of TIOA that can be harnessed for translation to UPPAAL

are used.

2.2.1 Specification

TIOA is based on IOA; correspondingly, many of the major elements of the language are

the same. The differences are the addition of trajectories to model time passage, and the

addition of variables that measure time.

Trajectories are the basic model for time passage. A trajectory is specified by means of

differential or algebraic equations that describe the evolution of continuous variables repre-

senting time [18]. It is possible to have continuous variables that change at varying rates.

This means of specifying time passage is highly flexible, allowing the execution of non-real

time systems with potentially very unusual time passages.

In this thesis, only real-time systems are considered. That is, systems in which time

passage is linear, with rate one. If the continuous variable representing time is t, then the

trajectory of the automaton must satisfy d(t) = 1, such that time is changing uniformly, at

rate one. See [20] for a detailed explanation of the d(.) notation.

Restrictions on time passage may be represented by stopping conditions or urgency pred-

icates. Stopping conditions are expressed in the trajectory definition of an automaton, as

21

automaton Counter

signature
internal reset, count

states

x : int := 0,
t : analog := 0

transitions
internal reset

eff x 0;
t 0

internal count
pre x < 20
urgent when t 5
eff x := x+1

trajectories
trajdef linear

evolve d(t) = 1

Figure 2.2.2: A TIOA program specifying a counter

they stop the trajectory from evolving. When a stopping condition is true, no time can pass

until it becomes false.

Urgency predicates serve a similar function to stopping conditions, but are expressed

differently, in the transitions of the automaton. When an urgency predicate in a transition

definition becomes true, no time can pass until some transition takes place. This thesis deals

only with urgency predicates, for reasons explained in Section 4.2.2. For a detailed discussion

on the semantics of urgency predicates, please refer to [18] and [14].

2.2.2 Language

This thesis involves an UPPAAL-oriented, restricted version of the TIOA language, which is

defined formally in Section 4.2. The language has an additional section to define trajectories,

allows analog variables (clocks), and includes urgency predicates. An example of this TIOA

code is shown in Figure 2.2.2. This toy example has 5 seconds to count as high as it can, up

until the point when x = 20.

22

2.3 UPPAAL

UPPAAL is a tool environment for modeling, validating, and verifying real-time systems

developed as a collaborative effort between Uppsala University, Sweden, and the University

of Aarhus, Denmark. [3, 22, 34, 25]

The UPPAAL tool is typically used for verification of real time controllers and commu-

nication protocols. The key ability of UPPAAL is the ability to model time-passage during

program execution. UPPAAL has the advantage of being able to verify time-dependant

properties of a program.

UPPAAL is a useful target for interface with TIOA because it has proven itself as a

model checking tool in the academic community. UPPAAL has been employed to verify

protocols developed by universities, as well as several corporate groups, including Philips

Audio [23, 2], Lego Mind Storms Systems [17], and Bang Olufsen[16, 15].

2.3.1 Simulator

UPPAAL is a popular model checking system, not only because of its verification and sim-

ulation capabilities, but also because of its well designed user-interface (see Figure 2.3.3).

Programs are represented in a graphical interface that models a state machine, where indi-

vidual states of the program are represented as nodes, called locations. Changes in state are

represented by arrows called transitions, which point from one location to another. These

transitions have preconditions and effects clauses similar to IOA.

UPPAAL also allows variables, such as clocks, integers, and booleans, which are not

represented graphically. The transitions may refer to these variables in preconditions and

effects clauses. When simulated, these variables are updated with each step of the program,

in a side window.

It is important to make a distinction between the IOA notion of state and the UPPAAL

notion of state. When we refer to state in the context of IOA, we are referring to a snapshot

of the program's state, including the values of all state variables. In UPPAAL, state refers

to a single location in the graphical interface. The values of the variables are independent

23

Figure 2.3.3: Screenshot of the UPPAAL Simulator

of these states. Thus an UPPAAL state may correspond to multiple IOA states, if there are

state variables which may take on different values [22].

One very useful graphical feature of UPPAAL is the execution trace: when simulating

execution of the program, the execution trace is shown graphically as a series of connected

boxes, representing the state the program has transitioned through to reach its current point.

This is shown in the UPPAAL screenshot in Figure 2.3.3.

2.3.2 Program Specification

All programs specified in UPPAAL conform to a basic structure. A "Project" contains all

the information about a single program. This project may contain one or more "Processes,"

24

which represent individual pieces of the program. Processes are described by a set of "Loca-

tions", with "Transitions" connecting them. Variables may be defined globally, within the

project, or locally, within each process.

To illustrate the structure of UPPAAL-specified programs, an inheritance diagram is

available as Figure 2.3.4. This diagram shows both how individual parts of the program are

represented in the graphical user interface, and also how the parts are linked to one another.

2.3.3 File Formats

UPPAAL employs two file formats to save UPPAAL programs: XTA and XML. These are

both plaintext file formats, which contain all the parameters of the program.

As of UPPAAL version 2K, the default file format is XML [34, 25]. The XML file format

contains embedded graphical information; the pictorial layout of the program is stored in

the same file as the program specification.

The older file format for UPPAAL is XTA, which breaks down all the parameters of the

program by type. XTA does not contain any graphical information; an accompanying file

in CGI format specifies the location of each state and transition, as well as all labels in the

graphical interface.

In the absence of a CGI file, it is still possible to load an XTA file. UPPAAL contains

an auto-plot function, which plots the XTA-specified program according to a grid, and can

then create the required CGI file. The resulting programs are easily readable.

To interface the IOA Toolkit with UPPAAL, the XTA file format for UPPAAL programs

was chosen as a target. This decision was made to avoid the difficulty of providing graphical

layout information for the UPPAAL programs. Since UPPAAL already contains an auto-plot

feature, there is nothing to be gained by re-implementing that system.

25

Variable Variable -
Int Initial I Coc
Clock Vluock
Bool Va.u e] Bool
etc... etc...

Process
Variable

Int Initial
Clock Value
Bool
etc...

Location (State)

Invariant

Transition

Guard

Assign

Variable
mnt
Clock
Bool
etc...

Location

Transition

j

rProcess

Figure 2.3.4: UPPAAL-Specified Program Structure

26

Project

M a -

V

clock time;
process Counter{

clock t;

int x := 0;

state reset{t<0}, count{x < 20 && t < 5};

init reset;

trans

count -> count{guard x < 20; assign x:=x+1; },
count -> reset{guard x < 20; assign x:=x+1; },
reset -> count{assign x:=0 , t:=O; };

}
system Counter;

Figure 2.3.5: Example UPPAAL Code in XTA Format for a Counter

Counter

x==-. 20

1ix:= x+1
R eset X:= 0 C ount

x <= 20

Figure 2.3.6: Resulting UPPAAL Program from Code in Figure 2.3.5

2.3.4 XTA Specification

XTA is not a file format meant to be read by humans. However, it provides an easy way to

import IOA programs into UPPAAL. Figure 2.3.5 contains a small example which demon-

strates the format, and Figure 2.3.6 shows the resulting graphical rendition of the program.

The program in these figures is the counter from Figure 2.2.2, which has 5 seconds to count

as high as it can, up until the point when x = 20.

Taking a closer look at the XTA specifications, we see that the file format is broken down

into several sections. First the global variables are defined:

clock time;

Then the processes, that is, single programs that may interact with one another, are

defined. This example has only one process. The processes contain local variables, as well

27

as states and transitions:

process Counter{
clock t;

int x := 0;
state reset{t < 0}, count{x < 20 && t < 5};
init reset;

trans

count -* count{guard x < 20; assign x:=x+1; },
count -+ reset{guard x < 20; assign x:=x+1; },
reset -* count{assign x:=0 , t:=0; };

}
system Counter;

The "init" flag indicates the initial or start state of the program. All programs have an

initial state. In this example reset is the initial state. Transitions are specified directionally

between two states, with "guard" and "assign" clauses corresponding to the preconditions

and effects of the action, respectively.

Invariants on states are specified in brackets after the state is declared. Invariants conform

to a few specifications when they involve time; these requirements are discussed in Section

4.2. In this example, the invariant of count is x < 20&&t <= 5, indicating that counting

can only take place if x < 20 and t <= 5.

2.3.5 Model Checking

UPPAAL includes a verification tool which allows model checking of UPPAAL programs.

This tool checks all possible execution paths of the program, and reports if specified invariants

hold true. To use this verification tool, users must enter properties to check in a specified

format, as outlined in Figure 2.3.7.

From Figure 2.3.7, p and q are typically UPPAAL states, declared by ProcessName.LocationName,

or conditions on variables, such as t < 10 [22].

Referring to Figure 2.3.5, the counter which has 5 seconds to count as high as it can, up

until the point when x = 20, we can confirm the following invariants:

A[] x < 20 : the program never counts higher then 20

A[] t <= 5 : the program never counts longer then 5 seconds

28

E <> p there exists a path where p eventually holds

A[] p for all paths p always holds

E[p there exists a path where p always holds

A <> p for all paths p will eventually hold

p - - > q whenever p holds, q will eventually hold.

p imply q whenever p holds, q holds.

Figure 2.3.7: Syntax for Specifying Properties in UPPAAL Verification Tool

29

30

Chapter 3

IOA to UPPAAL Translation

3.1 Overview

As a first step towards extending the IOA toolkit to accommodate TIOA, and to creating

a portal between TIOA and UPPAAL, this project included a translation from IOA to

UPPAAL. Since IOA does not involve time, this chapter does not involve the translation of

any timing constraints or properties.

The translation of IOA to UPPAAL began with the selection of some IOA programs to

translate into UPPAAL. Three programs were selected: Squareroot; Integer Division; and

Channel, a message channel. These programs were initially hand translated into UPPAAL.

The translation of these three programs was used to generate a translation scheme for

IA to UPPAAL. This translation scheme was used to create the translator from IA to

XTA. This ioa2xta translator was used to translate the original three programs, as well as

the Peterson exclusion algorithm for two processes, for assessment of the translator.

3.2 Requirements on IOA

The ioa2xta translator is implemented for a subset of the complete IOA language; some

restrictions were necessary to accommodate UPPAAL, and to limit the scope of this initial

31

project. The bread-and-butter aspects of the language are preserved; however some language

constructs whose translation would not be paractical in UPPAAL are not permitted by the

translator. For example, conditional statements, choice statements, and for loops.

3.2.1 Variable Restrictions

When compared to I0A, UPPAAL has a limited vocabulary of variables. The only variables

that both IOA and UPPAAL allow are integers, booleans (represented as integers 1 and

0), and arrays of integers or booleans. Enumerated variables are allowed, since they are

translated into integers, with possible values between 1 and n, for an enumeration of n

elements.

These variables, and no others, are permitted in the restricted IOA language which is

used by the translator.

3.2.2 Operator Restrictions

Logical and arithmetic operators are only permitted if they exist in both UPPAAL and IOA.

These operators are outlined in Figure 3.2.1.

3.2.3 Program Restrictions

The ioa2xta translator is used for primitive, closed automata only. UPPAAL allows no

inputs to programs during simulation. Thus, all bOA automata must be closed. This means

automata can not have input actions. If an automaton takes on an input during execution,

the automaton must be re-written so that the input is hard-coded. Moreover, transition

definitions are not allowed to have parameters.

Automatic translation of composite automata is outside the scope of this project, however

a preliminary scheme for translating composite automata is presented in Section 5.

32

IOA XTA Meaning

() () Parenthesis

[] [Array lookup

!, not Logical negation

- - Integer subtraction

+ + Integer addition

* * Integer multiplication

/ / Integer division

< < Less than

<= <= Less than or equal to

= == Equality operator

Inequality operator

>= >= Greater than or equal to

> > Greater than

/\ &&, and Logical and

or Logical or

Figure 3.2.1: Permissable Operations for IOA Files Inputed to the ioa2xta T ranslator

33

3.3 Translation Scheme

All variables in IOA become variables in UPPAAL.

Actions in IOA become transitions in UPPAAL. The IOA precondition maps to the guard

clause and the IOA effect maps to the assign clause.

Each program has a single Location. All transitions have this location as both their

source and target. This location is called default.

An alternative method of translation which was considered was using multiple locations,

when automata have enumerated variables. In this scheme, each location would represent one

value of an enumerated variable. This scheme provided accurate translations with easy-to-

read graphical representations in UPPAAL, for automata which had enumerated variables.

This alternate translation scheme was abandoned during research into the TIOA to UP-

PAAL translator. As explained later, in Chapter 4, in order to represent the urgency pred-

icates of TIOA in UPPAAL, it is necessary to use location invariants. The modeling of

multiple locations for enumerated variables would directly interfere with the representation

of urgency predicates. In order to use the ioa2xta translator as a basis for the tioa2xta

translator, the notion of multiple locations for a single I/O automata was abandoned.

Thus the final translation scheme chosen for IOA to UPPAAL employs a default location.

Pseudo-code for this final translation scheme is presented in Figure 3.3.2.

3.4 Implementation

The IOA Toolkit parses an IOA file describing an automaton, and creates a Java tree with

an automaton object at the root. The ioa2xta program makes use of this feature, by using

the IOA Toolkit parser to generate the Java tree.

3.4.1 UPPAAL package

To capture the information contained in an XTA file, a package was added to the IOA

Toolkit. This package, uppaal, models the objects in UPPAAL (i.e. states, transitions,

34

AutomatonStrip(Automaton a){

Project proj = new Project();

for all StateVariable s in a {
Variable v new Variable(s);

proj . add (v);

}
Process p new Process();

Location 1 new Location();

p.addLocation(l);

for all Transition t in a {
UppaalTransition ut = new UppaalTransition(t);
ut.setGuard(t.precondition);

ut.setAssign(t.effects);

p.addTransition(l, ut, 1);

}
proj . add (p);

}

Figure 3.3.2: Pseudocode for translation from IOA to XTA

processes, e.t.c.), in the proper hierarchy.

The structure of this package is diagrammed in Figure 3.4.3. Every UPPAAL program

has a project at its root. Projects can contain multiple processes; however, in the ioa2xta

translation, an automaton is modeled as one process. The model of one-process for one

automaton is further described in Section 5, Composition with UPPAAL. Similarly, each

process may contain multiple locations (UPPAAL states or UStates); however iao2xta, gen-

erates only a single UState. Locations may have invariants, a feature which is not used by

ioa2xta, but is used by the TIOA to UPPAAL translator.

Processes also have local variables and transitions. Transitions in turn have guards and

assigns, which correspond to preconditions and effects of an action.

3.4.2 Translation

As described above, the ioa2xta translator uses the existing features of the IOA Toolkit

to parse an IOA file into a Java tree, with an Automaton at its root. The translator walks

through this tree, creating a corresponding tree in the uppaal package. This translator called

35

Project

UVar

Process

UVal

UVar

Ustate

? Utrans UVal

* *
Invariant

Assign Guard

Figure 3.4.3: Classes and dependancies in the uppaal package of the IOA Toolkit

36

AutomatonStrip. Pseudocode for AutomatonStrip is presented in Figure 3.3.2.

Each class in the uppaal package contains a function called printXTA(. When print-

XTA() is called on a Project, it recursively calls printXTA() on all other objects in its tree,

and then returns a string that contains the specification of the project in XTA format.

This printXTA() function is used to output an XTA file that can be read by UPPAAL.

3.5 Testing the Translation

The Peterson exclusion algorithm for two processes, being a sufficiently complex algorithm

and a good example of a distributed system, was chosen as a test case for translation. The

translation is shown in Section 3.6.4. The IOA code for the Peterson program is shown in

Figure 3.6.13 on page 45.

The ioa2xta translator outputted an XTA file, shown in Figure 3.6.14. The resulting

program was run in the UPPAAL simulator and verifier. As described in Section 3.6.4, the

invariants of the Peterson exclusion algorithm were preserved.

37

automaton SquareRoot

signature

internal compute, halt

states
x: Nat := 225,
x: Nat := 2, z: Nat := 0,

w: Nat 1, done : Bool := false

transitions

internal compute

pre -done A w < x
eff z := z+1 ; u := u+2 ; w := w+u

internal halt

pre -done A w > x
eff done := true

Figure 3.6.4: IOA Code for Squareroot

3.6 Examples

3.6.1 Squareroot

This program operates by finding the biggest square number bigger then x, and outputting

that number in w, and the squareroot of w in z. The variable u is used for calculations.

Because UPPAAL programs cannot take any inputs during execution, x has been preset to

225. The IOA code for Square Root is shown in Figure 3.6.4, and the resulting XTA output

from the translation is shown in Figure 3.6.5.

This example is mathematical and does not have particularly interesting properties to

verify. It was chosen to model translation involving real numbers. Some properties of the

translated program were verified using the UPPAAL verification tools: the value of w is

bounded by 0 and X2 at all times and when done is true, w > x, and w = Z2. These

properties are shown in Figure 3.6.6.

3.6.2 Integer Division

This program calculates x/y = z, with remainder w. Since UPPAAL programs allow no

inputs during simulation, x and y must be preset. In this example, the program calculates

38

int x 225;

int u 1;

int w 1;
int z 0;

bool done := false;
process SquareRoot{

state default;

init default;

trans
default -+ default{guard done = false, w <x;

assign z := z+1, u := u+2, w := w+u;},
default --+ default{guard done = false, w >x;

assign done := true;};

}
system SquareRoot;

Figure 3.6.5: XTA Code for Squareroot

A[] w >= 0
A[] w >= x *x

A[] done = true imply w > x

A[] done = trueimplyw = z*z

Figure 3.6.6: Invariants of Squareroot

39

automaton IntegerDivision

signature

internal initialize, computel, compute2, halt

states
x : Int 313, w Int, initial : Bool := true,
y : Int 12, t Int, done : Bool false

transitions

internal initialize

pre initial

eff t:= x; z:= 0; w:= 0; initial false
internal computel

pre -initial A -done A t>0 A w+1 y
eff z:=z+1 ; w := 0 ; t := t-1

internal compute2

pre -initial A -done A t>O A w+1 y

eff else w := w+1 ; t := t-1

internal halt

pre -init A -done A t < 0
eff done := true

Figure 3.6.7: IOA Code for Integer Division

313/12. The IOA code for Division is shown in Figure 3.6.7, and the resulting XTA output

from the translation is shown in Figure 3.6.8.

Like squareroot, this example is mathematical. The UPPAAL verification tools were used

to verify the properties that x > w, if x > y then z > 1, and when done is true, z*y+w = x.

These properties are shown in Figure 3.6.9.

40

int x 313;
int y 12;
int z;
int w;
int t;
bool initial true;

bool done := false;
process IntegerDivision{

state default;
init default;

trans
default -+ default{guard initial=true;

assign t:=x, z:=O, w:=O, initial:=false;},
default -+ default{guard initial=false, donez=false, t>O, w+1=y ;

assign t := t-1, z := z+1, w:=0;},
default -+ default{guard initial=false, done=-false, t>O, w+1!=y;

assign t := t-1, w:= w+1;},
default -+ default{guard initial=false, donez=false, t<O;

assign done := true;};
}
system IntegerDivision;

Figure 3.6.8: XTA Code for Integer Division

A[]x >= w

A[] x > y imply z > 1
A[] done = true implyz*y+w = x

Figure 3.6.9: Invariants of Division

41

automaton Channel

signature
internal send

internal receive

states
queued: integer := 12,
sent: integer := 0,
intransit: boolean := false,
received: integer := 0

transitions

internal send

pre queued > 0 A -intransit

eff queued := queued - 1;
sent := sent + 1;

intransit := true

internal receive

pre intransit

eff received := received + 1;

intransit := false

Figure 3.6.10: IOA Code for a Channel

3.6.3 Channel

This channel program has a fixed queue of messages, since UPPAAL programs cannot take

any inputs during execution. This channel sends one message at a time and has 12 messages

to send. The IOA code for Channel is shown in Figure 3.6.10, and the resulting XTA output

from the translation is shown in Figure 3.6.11.

The channel example is a more useful example then Squareroot or Division, since channels

are common components of distributed systems. As such, channels are often modeled in the

IOA Toolkit. This channel was simulated in UPPAAL, and the properties in Figure 3.6.12

were verified using the UPPAAL verification tools.

42

int queued := 12;

int sent := 0;
bool intransit := 0;

int received:= 0;

process Channel{

state default;

init default;

trans

default -- default{

guard queued > 0, intransit == false;

assign queued := queued - 1,
default -+ default{

guard intransit true;

assign received := received

}

system Channel;

sent:= sent + 1, intransit := true;

+ 1, intransit := false; },

Figure 3.6.11: XTA Code for a Channel

sent = 12
false imply sent = received

= false imply queued + received = 12

= true imply sent = received - 1
= true imply queued + received = 11

Figure 3.6.12: Invariants of Channel

43

A[
A[
A[
A[
A[

queued +
intransit

intransit

intransit

intransit

3.6.4 Peterson Exclusion

The Peterson exclusion algorithm is a classic example of a distributed algorithm. In this ex-

ample we show it for two processes. The IOA code for the Peterson exclusion algorithm with

two processes is shown in Figure 3.6.13, and the resulting XTA output from the translation

is shown in Figure 3.6.14.

Unlike the previous examples, the Peterson algorithm was not initially hand translated

before it was automatically translated. Instead it was reserved as a test program to see

if the translation scheme developed by hand-translating the previous three programs was

successful.

The Peterson exclusion algorithm was simulated in UPPAAL, and the properties in Figure

3.6.15 were verified using the UPPAAL verification tools. The verification of these properties

serves as a successful test of the translator.

44

type PCType = enumeration of waitingO , tryingO,

tryingi, trying2, criticalO, criticall

automaton Peterson
signature

output trying-pO, trying-pl
internal setFlag-pO, setFlag-pl, setTurn-p0, setTurn_pl,

checkFlag-pO, check-Flag-pl, checkTurn-p0, checkTurn-pl

output critical-p0, critical-pl, release-p0, release-pl
states

p0 : PCType := waitingO,
p1 : PCType := waitingO,
flagO : Bool false,
flagi : Bool false,
turn : Int 1

transitions

output trying-pO
pre

p0 = waitingO
eff

p0 tryingO

output trying-p1
pre

p1 = waitingO
eff

p1 := tryingO

internal setFlag-p0
pre

p0 = tryingO

eff
p0 := tryingi;

flagO := true

internal setFlag-pl
pre

p1 = tryingO

eff
p1 := tryingi;

flagl := true

internal setTurn-po
pre

p0 tryingl

eff
p0 := trying2;

turn := 0

internal setTurn-pl

pre

p1 = tryingi

eff
p1 trying2;

turn := 1

internal checkTurn-p0

pre

p0 = trying2

turn = 1
eff

p0 := criticalO

internal checkTurn-pl

pre

p1 = trying2

turn = 0
eff

internal checkFlag-pO

pre

p0 = trying2

flagi = false

e ff
p0 := criticalO

internal checkFlag-pl

pre

p1 = trying2

flagO = false
eff

pI := criticalO

output critical-p0

pre

p0 = criticalO
eff

p0 criticall;

output critical-p1

pre

p1 = criticalO
eff

p1 := criticall;
p1 := criticalO

Figure 3.6.13: IOA Code for Peterson 2P

45

int flagO;
int p0;
int turn;
int flagi;
int p1;
process defaultProcess{

state defaultState;

init defaultState;

trans defaultState -* defaultState{guard p1=1; assign pl:=2, flagl:=1; },
def aultState - def aultState{guard p0=4; assign p0:=5 ; },
defaultState -* defaultState{guard turn=0, p0=3; assign pO:=4; },
defaultState -- defaultState{guard flagl=0, p0=3; assign pO:=4; },
defaultState -+ defaultState{guard p0=0; assign pO:=1; },
defaultState -- defaultState{guard p0=2; assign pO:=3, turn:=0; },
defaultState -+ defaultState{guard p1=5; assign pl:=O, flagl:=0; },
defaultState -> defaultState{guard p1=0; assign pl:=l; },
defaultState -+ defaultState{guard p1=3; assign pl:=3, turn:=1; },
defaultState -- defaultState{guard turn=0, p1=3; assign pl:=4; },
defaultState -+ defaultState{guard p1=4; assign pl:=5; },
defaultState -+ defaultState{guard p0=5; assign pO:=O, flagO:=0; },
defaultState -> defaultState{guard p0=1; assign pO:=2, flagO:=1; },
defaultState -- defaultState{guard flagO=0, p1=3; assign pl:=4; };

}

system defaultProcess;

Figure 3.6.14: XTA Code for Peterson 2P

E < > turn = 0: for some execution path, process 0 gets a turn
E < > turn = 1 : for some execution path, process 1 gets a turn
A[] p0 = 1 - - > turn = 0 : if process 0 is trying, it will eventually get a turn
A[] pl = 1 - - > turn = 1 : if process 1 is trying, it will eventually get a turn
A[] p0 = 3 impy turn = 0 if process 0 is critical, it gets a turn
A[] pl = 3 impy turn = 1: if process 1 is critical, it gets a turn

Figure 3.6.15: Properties of the Peterson 2P Program

46

Chapter 4

Timed IOA (TIOA)

4.1 Overview

This chapter describes the implementation of the project for time dependant systems: namely,

extending the IOA toolkit to accommodate TIOA, and creating a portal between TIOA and

UPPAAL.

The extension of the toolkit to allow TIOA is described in Section 4.3.

The translator from TIOA to XTA, tioa2xta, is based on the IA to XTA translator,

described in Section 3.3. Similarly to the development of ioa2xta, the development of tioa2xta

began with the selection of some TIOA programs to translate into UPPAAL. The translation

of these programs was used to generate a translation scheme.

Throughout this chapter we will refer to an example program, Train. The Train program

models a train approaching a crossing. The light is signaled, then the gate is lowered for the

train to cross (see Figure 4.1.1). Each of these actions takes place with a certain urgency.

The TIOA code for this train is presented in Figure 4.1.2 and the XTA code in Figure 4.1.4.

47

Figure 4.1.1: Train Example

type ControlType enumeration start , light, gate

automaton Train
signature

internal coming, approaching, passing
states

control : ControlType := start,
t : analog := 0

transitions
internal coming

pre t > 2 A control = start

urgent when t = 5
eff control := light; t := 0

internal approaching
pre t > 5 A control = light
urgent when t = 10
eff control := gate; t := 0

internal passing
pre t = 2 A control = gate
urgent when true
eff control := start; t := 0

trajectories

trajdef linear
evolve d(t) 1

Figure 4.1.2: IOA Code for Train Example

48

Train

t<=5 and control==0

t= , t>2,
control:=0 t<=5,

\control ==0
~2 .t=0

control:=n

gate 9ht
t<=2 and control==2 t<=10 ard contrd==1

contro[1=2 t<=10
control ==1

Figure 4.1.3: Train Program in UPPAAL

clock time;
int control :=O;
process Train{

clock t;
state light{t1o and control-1},

gate{t 2 and control==2},

start{t<5 and control=0};

init start;
trans gate -* start{guard t=-2, control-2; assign t:=O, control:=O; },

start -+ light{guard t>2, t<5, control=O; assign t:=O, control:=1; },
light -> gate{guard t>5, t<10, control=1; assign t:=O, control:=2; };

}
system Train;

Figure 4.1.4: XTA Code for Train Example

49

4.2 UPPAAL-Oriented Restricted Language

UPPAAL is specifically designed to model timed systems, and has most of the features of

TIOA built-in. Thus, a few simple restrictions are sufficient to map out a subset of the TIOA

language that is translatable into UPPAAL.

4.2.1 Variables and Operators

The variables and operators permissible in the ioa2xta translator are also allowed by the

tioa2xta translator. These variables and operators are outlined in Sections 3.2.1 and 3.2.2,

respectively.

In addition to these variables, variables with a newly created type, analog, are available.

An analog variable models time; it is a clock. In UPPAAL, all clock variables advance with

rate one. Thus analog variables can never be assigned non-integer values if they are to be

translated into UPPAAL.

The implementation of the type analog differs slightly from the TIOA language speci-

fication presented in [18]. The current TIOA language specification calls for all real non-

continuous variables to be defined with an additional modifier, discrete. Since UPPAAL

only allows a restricted class of continuous variables, for simplicity, this feature has not been

implemented in full. Instead, the new variable analog was created to specify the continuous

variables representing time.

4.2.2 Trajectories

As mentioned in Section 3.2.1, all clocks advance with rate one, and have only integer values.

To satisfy these requirements, only trajectories of the form d(t)=1 are allowed.

Urgency and Stopping predicates are also restricted; specifically, only urgency predicates

are allowed. Users who wish to translate a program involving stopping conditions must

change their program to use urgency predicates. This decision is not based on a restriction

in UPPAAL, but is reflective of the way in which TIOA will be translated. Later versions of

50

tioa2xta may include a function that creates urgency predicates out of stopping conditions.

As claimed in [14], stopping conditions are strictly more expressive then urgency predi-

cates. Stopping conditions have the ability to express global halts, where no more transitions

can take place after time has stopped evolving. Programs using only urgency predicates have

time reactivity, meaning that whenever time stops evolving, some transition is enabled. This

does not neccesarily mean that more time passes, only that some transition can take place.

Thus restricting TIOA programs to use only urgency predicates ensures that these pro-

grams are time reactive, and places no other limitations on the program. In addition, [14]

points out that changing stopping conditions into urgency predicates is usually possible, and

the resulting TIOA is often shorter and more natural, and presents a scheme for doing so.

Taking our Train example, the transition for approaching a crossing might be written

with stopping conditions:

transitions
internal approaching

pre t > 5 A control = light

eff control := gate, t := 0

trajectories
trajdef linear

stopCond (control = light A t = 10)
evolve d(t) = 1

The stopping condition can, however, be incorporated into the transition, as an urgency

predicate:

transitions
iternal approaching

pre t > 5 A control = light

urgent when t = 10

eff control := gate, t := 0

Requiring only the use of urgency predicates is reasonable for translation to UPPAAL,

since UPPAAL does not employ stopping conditions. In later versions of the tioa2xta transla-

tor, we will consider a feature whereby stopping conditions may be automatically translated

51

into urgency predicates. For the initial version, however, requiring urgency predicates pro-

vides a simple and easy solution.

4.2.3 Zones of time

Urgency predicates must not include multiple zones of time. Zones of time refer to continuous

windows of values for a variable that measures time. An urgency predicate including multiple

zones of time might be t < 5 \/ t > 10, to indicate that the transition is urgent before

t = 5 or after t = 10 but not in between. Such urgency predicates are not allowed in the

TIOA to UPPAAL translator. This is based on a restriction in UPPAAL. Multiple zones of

time are not permitted in invariant definitions in UPPAAL, therefore we must restrict them

from TIOA that will be translated into UPPAAL. [22, 34]

4.2.4 Syntax

The above restrictions make it possible to interface TIOA and UPPAAL. The extensions to

the IOA language that allow this UPPAAL-oriented restricted sublanguage of TIOA are as

follows:

The new variable type defined above in Section 4.2.1, analog, is permitted.

Transitions now have an additional, optional field, urgent when. This field is for the

urgency predicate. When both pre and urgent when are true, no time can pass until some

transition has been taken.

An additional field for trajectories is necessary if any clock variables or urgency predicates

are employed. Trajectories are declared in the following manner:

trajectories
trajdef T

evolve D

Here D is a a set of differential or algebraic equation specifying time passage of each

clock. Since we restrict this language to clocks of rate 1, D will always be d(t) = 1, for

analog variable t.

52

4.3 Toolkit Extension for TIOA

Two parts of the toolkit were extended to accommodate the TIOA additions: the parser and

the internal representation of automata.

The parser was extended to allow the additions described in Section 4.2.4. The parser now

accepts analog as a variable type, urgent when as an optional field for a transition definition,

and a trajectories section with multiple trajdef fields. The extended parser generates a Java

tree with the new internal automata representation.

The internal representation of timed automata was created by extending the relevant por-

tions of the automaton Java tree. Whenever an extension was made to accommodate TIOA,

the resulting class name was pre-pended with a T. For example, the extended Automaton

class is called TAutomaton.

Two entirely new classes were created: the Trajectory class, to represent trajectory defi-

nitions; and an Urgency class, to represent urgency predicates.

4.4 Translation Scheme

The TIOA to UPPAAL translation is modeled after the IOA to UPPAAL translation de-

scribed in Section 3.3. The major difference in the translation is the use of multiple locations,

and the use of location invariants to translate urgency predicates.

4.4.1 Variables

As in the ioa2xta translation, all variables in TIOA become variables in UPPAAL. Enumer-

ated variables with n values become integers, with possible values between 1 and n.

4.4.2 Transitions

Transitions in TIOA become sets consisting of: a single location and a group of transitions

that begin at that location. The reason for this is that the urgency predicate of the transition

53

becomes a location invariant in UPPAAL. In the IOA to UPPAAL translation, no transitions

were urgent, and thus only a single default location was employed.

It is important to note here that two possible methods for translating TIOA into UPPAAL

can be employed: each TIOA transition can map to a location in UPPAAL, or only those

transitions with urgency predicates could be mapped to locations, with all other TIOA

transitions mapping to UPPAAL transitions originating from a single default location. Both

of these translation methods produce valid UPPAAL programs which correctly implement

the TIOA program.

The translation method chosen for this thesis maps each TIOA transition to a location

in UPPAAL, even if no urgency predicate is declared. A non-declared urgency predicate is

assumed to be urgent when false, that is, the transition is never urgent. This method was

chosen because it makes better use of the graphical features of UPPAAL; users viewing a

graphical representation of their program can easily identify locations mapping to transitions

from the TIOA program, but the meaning of the default location in the program execution

is more ambiguous- it represents several actions taking place. Thus the one-transition one-

location translation method was adopted.

The UPPAAL transitions corresponding to the IOA transition have guard and assign

clauses as in ioa2xta; the TIOA precondition maps to the guard clause of each transition,

and the TIOA effects maps to the assign clause of each transition.

The UPPAAL transitions corresponding to the IOA transition must begin at the start

location corresponding to that IOA transition. There can be many of these transitions,

one pointing to every other location. However, some of these transitions cannot be ever

be taken; if the resulting program state would violate the invariant of the location the

transition transitions to, the transition will never fire. In practice, drawing an UPPAAL

transition from every location to every other location makes the graphical model cluttered,

with many extraneous transitions that can never be taken.

In order to simplify the graphical representation of the program, we eliminate those tran-

sitions that are obviously never possible, by comparing the effects clause of the transition

54

with the invariant of the location. This comparisson is done by a helper program, primi-

tiveSatisfies, as described in 4.4.3. The pruned graphical representation of the train example

is shown in Figure 4.1.3.

4.4.3 Pseudo Code

Pseudo code for the translation scheme is presented in Figure 4.4.5.

When the TimedAutomatonStrip program initially runs, it creates a map of all possible

transitions in the UPPAAL program, and the location they start from. Then, a helper

program to the translator, primitiveSatisfies, compares simple assignments to real number

values with the invariant of all possible end locations. Transitions from the start location to

the end location are only added to the UPPAAL process if they pass this check.

4.5 Implementation

Implementation of the tioa2xta translator was modeled after the ioa2xta translator. The

IOA Toolkit parses an TIOA file describing a Timed Automaton and creates a Java tree

with a TAutomaton object at the root.

The uppaal package created for the ioa2xta translator is used as a target for the transla-

tion. A parser, TimedAutomatonStrip, walks through the automaton's Java tree and creates

a corresponding tree in the uppaal package. Pseudo code for TimedAutomatonStrip is pre-

sented in Figure 4.4.5. The XTA file is generated using the printXTA() function; when

printXTA(is called on a Project, the function recursively calls printXTA() on all other

objects in its tree, and then returns a string that contains the specification of the project in

XTA format.

55

TimedAutomatonStrip(TimedAutomaton a){

Project proj = new Project();

Project.add(new GlobalClock("time"))

Process p = new Process();

for all State s in a {
Variable v = new Variable(s);

p.add(v);

}
Map transitions = new Mapo;

for all Transition t in a {
Location 1 = new Location();
l.setInvariant(t.urgency);
p.addLocation(l);

UppaalTransition ut = new UppaalTransition(t);

ut.setGuard(t.precondition);

ut.setAssign(t.effects);

transitions .add(1,ut);

}
for all pairs (Location start, UppaalTransition ut) in transitions {

for all Location end in p.locations {
if primitiveSatisfies(ut.assign,end.invariant) {

p.addTransition(start, ut, end)

}
}

}
proj.add(p);

}

primitiveSatisfies(AssignClause assign, InvariantClause invariant)
boolean returnValue = true;

for all assignStatement a in assign {
if (a.isSimpleAssignment() && a.value.isRealNumbero){

for all invariantStatement i in invariant {
if (i.variable = a.variable &&

(i.value.isRealNumber() && i.value != a.value)){
returnValue = false;

} } } }
return returnValue;

}

Figure 4.4.5: Pseudocode for translation from TIOA to XTA

56

4.6 Testing the Translation

The Fischer mutual exclusion algorithm, being a practical time-dependant example, was

chosen as a test case for translation. The TIOA code for the Fischer mutual exclusion

program is shown in Figure 4.7.12.

The tioa2xta translator outputted an XTA file, shown in Figure 4.7.14. The resulting

program was run in the UPPAAL simulator and verifier. As described in Section 4.7.4, the

invariants of the Fischer mutual exclusion algorithm were preserved.

57

4.7 Examples

4.7.1 Train

The train example is described in Section 4.1. The train program models a train approaching

a crossing. The light is signaled, then the gate is lowered for the train to cross (see Figure

4.1.1). Each of these actions take place with a certain urgency. The IOA code for this train

is presented in Figure 4.1.2 and the XTA code in figure 4.1.4.

4.7.2 Door

The door automaton represents an impatient person ringing a door bell. There are 4 transi-

tions: ringing the bell, the door opening for him to go in, him leaving and resetting, and him

getting impatient while waiting and resetting. The time it takes him to ring the doorbell and

to get impatient is bounded; those transitions have urgency predicates. The other actions

are not urgent.

58

type ControlType = enumeration ready, waiting, entered

automaton Door
signature

internal ring, open, impatient, leave
states

control := ControlTYpe := ready
t : analog := 0

transitions
internal ring

pre t>1 A control = ready
urgent when t = 3
eff control waiting, t := 0

internal open
pre control waiting

eff control := entered; t 0
internal impatient

pre control = waiting
urgent when t = 10
eff control := ready; t := 0

internal leave
pre control = entered
eff control ready, t:=0

trajectories
trajdef linear

evolve d(t) = 1

Figure 4.7.6: TIOA Code for Door

59

clock time;
process Door{

int control := 1;
clock t;
state

ring{control=1 and t<3},
open{control=2},
impatient{t<10 and control=2},
leave{control-3};

init ring;
trans

ring -+ ring{guard t>1,control=1; assign control:= 2, t:=O;},
ring -> open{guard t>1,control=1; assign control:= 2, t:=O;},
ring - impatient{guard t>1,control=1; assign control:= 2, t:=O;},
ring - leave{guard t>1,control=zl; assign control:= 2, t:=O;},
open -+ ring{guard control=2; assign control:=3, t:=0;},
open -- open{guard control=2; assign control:=3, t:=O;},
open - impatient{guard control=2; assign control:=3, t:=O;},
open -- leave{guard control=2; assign control:=3, t:=O;},
impatient -+ ring{guard control=2; assign control:=1, t:=O;},
impatient -+ open{guard control=2; assign control:=1, t:=O;},
impatient -* impatient{guard control=2; assign control:=1, t:=O;},
impatient -+ leave{guard control=2; assign control:=1, t:=O;},
leave - ring{guard control=3; assign control:=1, t:=O;},
leave - open{guard control=3; assign control:=1, t:=O;},
leave - impatient{guard control=3; assign control:=1, t:=O;},
leave -- leave{guard control=3; assign control:=1, t:=O;};

}
system Door;

Figure 4.7.7: XTA Code for Door

60

Door

open
control =2

cortrol:= 2; t-=O
t:nr1 control=1

impatient contro== rig

t;*1,cordtr==
t<=1 IrD contro ==-I
control==2 and t<=3

control:= 2, t:=0 control:=1 1t=0
control ==3

fI

contol==2

corndl:=3 1t:=0

leave
control =3

Figure 4.7.8: UPPAAL Representation of the Door Program

61

N

type PCType = enumeration coming, inplace

automaton SkiLif t

signature
internal approach, pickup, depart

states

pc PCtype := coming

t analog 0

passengers : int :=0

transitions

internal approach
pre pc = coming

urgent when t = 5
eff pc inplace; t := 0

internal pickup

pre pc inplace A passengers <2

urgent when t=5
eff passengers := passengers+1

internal depart

pre pc=inplace

urgent when t=5

eff pc := coming; t:=0; p:=O
trajectories

trajdef linear

evolve d(t) = 1

Figure 4.7.9: TIOA Code for Ski Lift

4.7.3 Skilift

The Ski Lift Automaton represents a two-seated chair that picks skiers up at the bottom of

a mountain. It can fit at most two people, but there are not neccesarily that many riders.

In this automaton, the empty chair approaches the pickup location, picks up people either

twice, once, or no times, and then departs. The interesting aspect to this automaton is that

the clock variable is not reset by the pickup transition; there is a total of 5 seconds for the

chair to pickup people and depart, so both transitions rely on the same urgency predicate.

62

clock time;
Process SkiLift{

int pc 0,
clock t,
int passengers :=0
state
approach{t<5 and pc=0},
pickup{t<5 and pc=1 and passengers<2},
depart{t<5 and pc=1}

trans
approach-->approach{guard pc = 0; assign pc 1, t :=0;,
approach->pickup{guard pc = 0; assign pc 1, t :=0;,
approach-*depart{guard pc = 0; assign pc := 1, t :=0;,
pickup->approach{guard pc = 1,passengers <2;

assign passengers := passengers+1;},
pickup->pickup{guard pc = 1,passengers <2;

assign passengers := passengers+1;},
pickup->depart{guard pc = 1,passengers <2;

assign passengers := passengers+1;},
depart-approach{guard pc=1; assign pc := 0, t:=0,p:=0;},
depart-pickup{guard pc=1; assign pc := 0, t:=0,p:=0;},
depart->departf{guard pc=1; assign pc 0, t:=O,p:=0;};

}
system SkiLift

Figure 4.7.10: XTA Code for Ski Lift

63

Ski~ift

approach

PC == 1

PCp:= 2, t:= 0

pc==2

depat

t<=5 and pc==2
p p+1

tc=5 and pc==1

PC == 1
pc:= 2,t;= 0

pc=-pand pc==2 and pe2
PC = 2 < <p2

pc= 2,p <2 p :=P+1

Figure 4.7.11: UPPAAL Representation of the Ski Lift Program

64

4.7.4 Fischer Mutual Exclusion

The Fischer Mutual Exclusion algorithm ensures mutual exclusion using timing constraints

and a shared variable, with time bounds on the exclusion period. This protocol has been

studied and verified using UPPAAL in previous case studies [24], and provides a good ex-

ample of a time-dependent algorithm.

Here we show the Fischer algorithm for two processes, adapted from the Fischer algorithm

for n processes in 4. This example has been adapted to use urgency predicates rather then

stopping conditions. In addition, the upper and lower time bounds have been hard coded

with values of 5 seconds and 3 seconds, respectively. The TIOA code is shown in Figures

4.7.12 and 4.7.13, and the XTA translation is shown in 4.7.14.

Unlike the previous examples, the Fischer algorithm was not initially hand translated

before it was automatically translated. Similarly to the use of the Peterson Exclusion Al-

gorithm for the ioa2xta translation, the Fischer algorithm was reserved as a test program

to see if the tioa2xta translation scheme developed by hand-translating the previous three

programs was successful.

The Fischer Mutual Exclusion algorithm was simulated in UPPAAL, and the properties

in Figure 4.7.16 were verified using the UPPAAL verification tools. See Section 2.3.5 and

corresponding Figure 2.3.7 for a description of the verification syntax. The verification of

these properties serves as a successful test of the translator.

65

type pcType = enumeration of rem, test, set,
check, leavetry, crit, leaveexit

automaton FischerME
signature

internal tryl, criti, exiti, remi, testi, seti, checki, reseti,
try2, crit2, exit2, rem2, test2, set2, check2, reset2

states
x : int 0,
pc: pcType rem,
pc2 pcType rem,
lastseti : int,
lastset2 : int,
firstchecki int,
firstcheck2 int,
t : analog 1

trajectories
trajdef linear

evolve d(t) = 2

Figure 4.7.12: TIOA Code for Fischer Algorithm (continued in Figure 4.7.13)

66

trainsitions
internal tryi internal try2

pre pci = rem pre pc2 = rem

urgent when t = lastseti urgent when t = lastset2

eff pci := test eff pc2 := test
internal criti internal crit2

pre pci = leavetry pre pc2 = leavetry
urgent when t = lastseti urgent when t = lastset2

eff pci := crit eff pc2 := crit

internal testi internal test2

pre pci = test; x=O pre pc2 = test; x=O
urgent when t = lastseti urgent when t = lastset2
eff pci := set; eff pc2 := set;

lastseti := t + 5 lastset2 := t + 5

internal exiti internal exit2

pre pci = crit pre pc2 = crit
urgent when t = lastseti urgent when t = lastset2

eff pci := reset eff pc2 := reset
internal seti internal set2

pre pci = set pre pc2 = set

urgent when t = lastseti urgent when t = lastset2
eff x := 1; pci := check; eff x := 2; pc2 := check;

lastseti := 0; lastset2 := 0;

firschecki := t + 3 firscheck2 := t + 3

internal reseti internal reset2

pre pci = reset pre pc2 = reset

urgent when t = lastseti urgent when t = lastset2
eff x := 0; eff x := 0;

pci := leaveexit pc2 := leaveexit
internal checkia internal check2a

pre pci = check A pre pc2 = check A

firstchecki < t A firstcheck2 < t A
x = 1 x = 2

urgent when t = lastseti urgent when t = lastset2
eff pci := leavetry eff pc2 := leavetry

internal check1b internal check2b

pre pci = check A pre pc2 = check A

firstchecki < t A firstcheck2 < t A
x #1 x $ 2

urgent when t = lastseti urgent when t = lastset2
eff pci := test eff pc2 := test

internal remi internal rem2
pre pci = leaveexit pre pc2 = leaveexit

urgent when t = lastseti urgent when t = lastset2

eff pci := rem eff pc2 := rem

Figure 4.7.13: TIOA Code for Fischer Algorithm Begun in Figure 4.7.12

67

clock time;
Process FischerME{

int x := 0;

int pc: rem;
int pc2 rem;
int lastseti;
int lastset2;
int firstchecki;
int firstcheck2;
clock t;
state

try1{t<lastset1}, crit1{t<Lastset1}, testl{t<lastset1},
exit1{t<lastset1}, set1{t<lastset1}, reset1{t<lastset1},
checkia{t<lastsetl}, check1b{t<lastset1}, rem1{t<lastset1},
try2{t<lastset2}, crit2{t<lastset2}, test2{t<lastset2},
exit2{t<lastset2}, set2{t<lastset2}, reset2{t<lastset2},
check2a{t<lastset2}, check2b{t<lastset2}, rem2{t<lastset2};

Figure 4.7.14: XTA Code for Fischer Mutual Exclusion Algorithm

68

trans
tryi-*testi{guard pci = rem; assign pci := test;},
criti-reseti{guard pci = leavetry; assign pci crit;},
testi-seti{guard pci = test, x=O;

assign pci set, lastseti = t + 5;},
exiti -reseti{guard pci = crit; assign pci := reset;},
seti->checkia{guard pci = set; assign x := 1, pci := check,

lastseti := 0, firscheck: t + 3;},

seti-checkib{guard pci set; assign x := 1, pci check,
lastseti := 0, firschecki := t + 3;},

reset1->remi{guard pci reset;
assign x := 0, pci := leaveexit;},

checkia-criti{guard pci check, firstchecki < t, x =

assign pci := leavetry;},
checkib--seti{guard pci check, firstchecki < t, x = i;

assign pci := test;},
remi->testi{guard pci = leaveexit; assign pci = rem;},
try2-test2{guard pc2 = rem; assign pc2 := test;},
crit2-+reset2{guard pc2 = leavetry; assign pc2 := crit;},
test2-*set2{guard pc2 = test, x=0;

assign pc2 := set, lastset2 = t + 5;},

exit2-reset2{guard pc2 = crit; assign pc2 := reset;},
set2->check2a{guard pc2 = set; assign x := 2, pc2 check,

lastset2 := 0, firscheck2 := t + 3;},
set2->check2b{guard pc2 = set; assign x := 2, pc2 := check,

lastset2 := 0, firscheck2 t + 3;},

reset2-+rem2{guard pc2 = reset;
assign x := 0, pc2 := leaveexit;},

check2a-+crit2{guard pc2 check, firstcheck2 < t, x = 2;
assign pc2 := leavetry;},

check2b->set2{guard pc2 = check, firstcheck2 < t, x != 2;

assign pc2 := test;},
rem2-test2{guard pc2 = leaveexit; assign pc2 = rem;};

}
system FischerME;

Figure 4.7.15: XTA Code for Fischer Algorithm Continued from Figure 4.7.14

69

E < > x = 1 for some execution path, process 1 gets a turn
E < > x = 2 for some execution path, process 2 gets a turn
A[] pci = test - - > x = 1 : if process 1 is testing, it will eventually get a turn
A[] pc2 = test - - > x = 2 : if process 2 is testing, it will eventually get a turn
A[] pcI = crit impy x = 1 : if process 1 is critical, it gets a turn
A[pc2 = crit impy x = 2 : if process 2 is critical, it gets a turn
A[] lastsetl <= t + 5 : process 1 gets no more then 5 seconds
A[] lastset2 <= t + 5 : process 2 gets no more then 5 seconds
A[] firstcheckl >= t + 3 process 1 gets at least 3 seconds
A[3 firstcheck2 >= t + 3 process 2 gets at least 3 seconds

Figure 4.7.16: Properties of the Fischer Mutual Exclusion Program

70

Chapter 5

Translating Composite Automata into

UPPAAL

5.1 Overview

The previous chapters have presented automatic translations of primitive automata from IA

and TIOA to UPPAAL. This chapter discusses a proposed method for translating composite

automata, using the tioa2xta translator, and features of UPPAAL.

5.2 Method

Multiple Timed I/O Automata are composed together by matching the input transitions of

one automaton with the output transitions of another. [20]

Each automaton in the composition will be modeled as a process in UPPAAL. The

composed automata will then become an UPPAAL project containing these processes and

the UPPAAL synchronization variables that are generated to connect transitions between

processes.

When dealing with a composition of composite automata, there is a question of how to

represent the programs in UPPAAL. For instance, when composing a closed pair of com-

71

posite automata with another, third automaton, there are two possible representations: all

three automata can become separate processes, or the closed pair of automata can be trans-

lated into a primitive automaton and represented as a single process. In more complicated

systems, the issue of representation becomes important for visualizing levels of abstraction in

a program. In developing a translator for composed automata, some mechanism to provide

a measure of control to users should be defined.

5.2.1 Synchronization Channels

UPPAAL supports synchronization of multiple processes using channels. A special type

in UPPAAL, chan, represents a channel variable. These channel variables can be used to

synchronize two or more transitions in different processes. This is accomplished by setting

the sync field of a transition to the desired channel variable.

When two or more transitions share a channel, they must fire at the same time. If any

channel does not have its guard clause (precondition) met, none of the transition sharing

that channel can take place.

In this way, the output transition of an automaton can be linked with the input transitions

of other automata. The output action of one automaton, represented by a transition in

UPPAAL, must fire at the same time as the transitions that represent the corresponding

input actions of the other automata.

5.3 Translation Scheme

In order to translate a TIOA program into an UPPAAL specification, the XTA format should

again be used. This takes advantage of the existing tioa2xta translator described in Section

4.

Throughout this section, it may be helpful to refer to the Channels and Nodes composition

example in Section 5.4.

Initially, each individual automaton should be translated using tioa2xta into a UPPAAL-

72

Java tree, with a Process at the root. The uppaal package for the IOA Toolkit is described in

Section 3.4.1. This Process represents all information from the automaton. In the Channels

and Nodes example, each node and each channel becomes a process; see Figure 5.4.4.

To compose the automata transitions representing matching actions, where the output

transition of one automaton matches the input action of another, must share a synchroniza-

tion variable.

Thus, for set of transitions where one automaton's output transition matches input tran-

sitions of other automata, generate a global synchronization variable, to be declared in the

parent Project. In choosing variable names, it might be good to use names that begin with

"sync." In the Channels and Nodes example, these variables are called "syncA", "syncB",

etc, for uniformity and easy reading. Synchronization variables are declared at the start of

XTA files, with all the other variables, such as the global clock:

clock time;
chan syncA;
chan syncB;

According to the translation scheme for the individual Timed I/O Automata, each action

taken by the automata will correspond to a location and a set of transitions in UPPAAL.

To each of these transitions, the synchronization variable needs to be added as a channel.

For example:

process NodeA{

trans
send -+ receive{

guard queued true;
sync syncA !;
assign queued false};

}

Synchronization variables are used by transitions with the syntax channelName! or chan-

nelName?, representing the transition speaking on that channel (!), or listening (?). Only

73

one transition can speak on a channel, but multiple transitions can listen. This corresponds

exactly to the notion in IOA that one automatons output action can correspond to mul-

tiple automatas input actions. Thus the output transition is the speaker, and the input

transitions are the listeners. The effect of the synchronization variable is to force all these

transitions to happen at once. The transitions may only take place if all the preconditions

are met. According to IOA specification, input transitions are always enabled, and have no

preconditions. Since only one transition will correspond to the output, only that transition

can have preconditions.

In the UPPAAL-Java tree, the composition with synchronization variables should be ac-

complished by creating a new synchronization variable in each transition. As in the tioa2xta

translation, the printXTA() function will take care of output details for the entire project.

5.4 Channels and Nodes Example

This example consists of a pair of nodes, communicating through two one-way channels.

This example was chosen to demonstrate composition because of its classic nature, and

ready application to distributed processes. The XTA code presented in Figure 5.4.5 was

hand-translated from the TIOA code in Figures 5.4.2 and 5.4.1, and represents the proposed

automatic translation scheme.

It is important to observe that although each node and each channel has the same TIOA

code, each becomes a separate process when instantiated. Each node and each channel in

the system becomes a process, for four processes total, see Figure 5.4.4. The resulting XTA

code is still one program, since it represents the entire composed project, see Figure 5.4.5.

Following along with Figures 5.4.4 and 5.4.3, the nodes are NodeA and NodeB, and

the channels are Channell and Channel2. NodeA sends a message through Channell, so

in the IOA composition, the send output transition of NodeA must connect to the send

input transition of Channell. Thus, in the UPPAAL representation, these transitions are

connected with a synchronization variable, syncA. The send transition of NodeA sets syncA!,

and the send transition of Channell listens on the same channel with syncA ?.

74

automaton Channel

signature
input send

output receive

internal wait
states

t : analog := 0,
intransit: boolean := false

transitions
input send

eff intransit true

output receive

pre intransit

urgent when t = 5
eff intransit false ; t := 0

internal wait

pre -intransit
trajectories

trajdef linear

evolve d(t) = 1

Figure 5.4.1: TIOA Code for a Channel

For these synchronized transitions fire, all preconditions must be met, that, NodeA.queued==

true, and all effects must occur, that is, Channel1.intransit== true, NodeA.queued:= false,

NodeA.ready:= true, and NodeA.t:= 0.

Similarly, Channells output action receive must connect to NodeBs input action receive,

completing the communication from NodeA to NodeB. Thus, in UPPAAL, these transitions

are synchronized with syncB. The receive transition of Channell sets syncBI, and the receive

transition of NodeB is synchronized with syncB?. All preconditions of these transitions must

be met for them to fire.

75

automaton Node
signature

input receive

internal compute

output send

internal wait

states

t : analog := 0,

ready: boolean := true,

queued: boolean := false

transitions

input receive

pre ready

eff ready := false

internal compute

pre -ready

urgent when t = 10
eff queued := true

output send

pre queued

urgent when true

eff queued := false ; ready := true ; t := 0
internal wait

pre ready

trajectories

trajdef linear

evolve d(t) = 1

Figure 5.4.2: TIOA Code for a Node

Channel 1
delay t<5.

Node A Node B
message message

p sing t<15.3 T C atng Vprocessing t<10

delay t<5

Figure 5.4.3: Two Nodes Communicating Via Two One-way Channels

76

Channell

syrcA?

send reoeive

C sv'rcB8
intransit == true

intransit == false intrtsit false, t= 0

Channel2

syrmC?
irdransit.:=tre

send receive

syrcD0
nrtransit ==truet<

irdit fase nirrrsit = fase, t:= 0

NodeA

synfiD?
ready == true ready == false

ready:= false queued =true
t<1 0

ready ==true queued == true syrc.m

queued:= false, ready:=. ase t,:=I)

NodeB

sy/rcB?
ready == true ready == false,

ready := false queued :=true
t<1 0

ready ==true queued == true sycQ!

queued false, ready: false, t 0

Figure 5.4.4: Composed Channels and Nodes in UPPAAL

77

chan syncA; chan syncC;
chan syncB; chan syncD;

process Channell{

clock t;

bool intransit := false;
state receive{t<5}, send;

init send;

trans

send -+ receive{sync syncA?;

assign intransit true; },
receive --+ send{

guard intransit true;

sync syncB!;

assign intransit false,
t := 0; },

send -+ send{

guard intransit false; };

}
process NodeA{

clock t;

bool ready := false;
bool queued := false;

state receive, send,

compute{t<10};
init compute;

trans

receive -+ compute{

guard ready true;

sync syncD?;

assign ready false; },
compute -> send{

guard ready = false;
assign queued := true; },

receive -+ receive{

guard ready = true; },
send -+ receive{

guard queued true;

sync syncA!;
assign queued false,

ready := false, t:= 0; };

process Channel2{

clock t;

bool intransit := false;
state receive{t<5}, send;

init send;

trans

send -+ receive{sync syncC?;

assign intransit true; },
receive -+ send{

guard intransit true;

sync syncD!;

assign intransit false,

t := 0; },
send -+ send{

guard intransit = false; };

process NodeB{

clock t;

bool ready := true;

bool queued := false;
state receive, send,

compute{t<10};
init receive;

trans

receive -- > compute{

guard ready true;

sync syncB?;

assign ready false; },
compute -> send{

guard ready = false;
assign queued := true; },

receive -> receive{

guard ready = true; },
send -+ receive{

guard queued = true;

sync syncC!;

assign queued false,

ready := false, t := 0; }

} }
system Channeli, Channel2, NodeA, NodeB;

Figure 5.4.5: XTA Code for Composed Nodes and Channels

78

clock time;

Chapter 6

Conclusions

6.1 Summary

This thesis presents a first-stage implementation of Timed IOA in the IOA Toolkit, to assist

with the development of timed systems. These extensions work for primitive automata that

have clock variables evolving at the same rate as real-time. This thesis lays the framework

for a complete extension of the toolkit, which would allow a broader range of automata,

including composed automata to be simulated. A scheme for translating composed automata

into UPPAAL is also presented.

This thesis also includes a translator from IOA and TIOA into UPPAAL, allowing the

simulation of IOA and TIOA programs in an easy-to-use interface, and the modeling of

time and time constraints. The project has connected two major toolsets for developing and

verifying distributed systems, thereby broadening the use of both.

The tools developed in this thesis project are particularly useful to users as a first-step

check when designing time-dependant distributed systems, allowing them to catch conceptual

errors early. This thesis makes it possible to verify time-related safety properties expressed

in the model checking language of UPPAAL.

79

6.2 Future Work

6.2.1 Toolkit Extensions

Now that the TIOA language has been formalized, it is time to extend the IOA Toolkit

in its entirety to allow timed automata. Translating composed Timed I/O Automata into

UPPAAL is the next logical step in this project. The work by Josh Tauber on composition

[38] would be a useful reference for this extension.

Aside from the issue of translating more complex programs into UPPAAL, extending the

composer is a necessary step towards extending the IOA Simulator to allow timed automata.

Further extensions should focus on broadening the functions and variables available under

TIOA.

The end goal should be a new TIOA Toolkit, which incorporates all the features of the

IOA toolkit, and works for timed automata.

6.2.2 Implementing Stopping Conditions

The current TIOA implementation is limited to urgency predicates as a means for specifying

time bounds. Urgency predicates are useful in localizing upper-bound conditions on time

passage by associating the timing constraints with individual transitions. On the other

hand, stopping conditions are better suited to the specification of global constraints on time

passage. Although in most examples that arise, urgency predicates are sufficient to specify

timing constraints, there will be some cases where stopping conditions are necessary, as

outlined in Section 4.2.2, and there may be some cases where stopping conditions are simply

prefered.

specify global While urgency predicates allow a wide range of programs to be simulated,

and provide very few practical limitations, some users may prefer to use stopping conditions.

Stopping conditions can be used to more easily specify program-wide halts, for example,

since urgency predicates localize stopping constraints whereas stopping conditions specify

global,

80

Extending the Trajectory definition in the IOA Toolkit's TIOA extension to allow stop-

ping conditions should be a future goal of this project. While it is not clear how stopping

conditions can be translated into UPPAAL, they should be implemented in the TIOA Toolkit,

to provide more complete flexibility of the language.

6.2.3 TAME and PVS Interface for TIOA

The Timed Automata Modeling Environment, TAME [1], is a project developed at the

US Naval Research Laboratory by Myla Archer. TAME provides an interface to the PVS

theorem prover for Timed I/O Automata [1]. Interfacing the TIOA Toolkit with TAME

would put the power of the PVS theorem prover at the disposal of distributed systems

developers using the TIOA Toolkit.

This project should be pursued in parallel with the extension of the IOA Toolkit to TIOA.

By using the requirements of TAME as a guide, the important features of the TIOA Toolkit

can be isolated, and developed first.

As this thesis has indicated, it's best to start small, with the minimum possible require-

ments, and expand from there.

81

82

Bibliography

[1] Myla Archer, Constance Heitmeyer, and Steve Sims. TAME: A PVS interface to simplify

proofs for automata models. UITP, July 1998.

[2] Johan Bengtsson, W. 0. David Griffloen, Kare J. Kristoffersen, Kim G. Larsen, Fredrik

Larsson, Paul Pettersson, and Wang Yi. Verification of an audio protocol with bus

collision using uppaal. In 8th International Conference on Computer-Aided Verification,

pages 244-256, New Brunswick, New Jersey, July 31-3 August 1996.

[3] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.

Uppaal - a tool suite for automatic verification of real-time systems. In 4th DIMA CS

Workshop on Verification and Control of Hybrid Systems, New Brunswick, New Jersey,

22-24 October 1995.

[4] Andrej Bogdanov. Formal verification of simulations between I/O automata. Master's

thesis, MIT Department of Electrical Engineering and Computer Science, 2001.

[5] Anna E. Chefter. A simulator for the IOA language. Master's thesis, MIT Department

of Electrical Engineering and Computer Science, 1998.

[6] Laura Dean. Improved simulation of input/output automata. Master's thesis, MIT

Department of Electrical Engineering and Computer Science, 2001.

[7] Michael D. Ernst. Dynamically Discovering Likely Program Invariants. PhD thesis,

University of Washington Department of Computer Science and Engineering, (Seattle,

Washington), 2000.

83

[8] Michael D. Ernst. Summary of dynamically discovering likely program invariants. In

ICSM 2001: Proceedings of the International Conference on Software Maintenance,

pages 540-544, Florence, Italy, November 6-10 2001.

[9] Michael D. Ernst and et all. Daikon Invariant Detector User Manual: Daikon version

3.0.4. MIT Computer Science and Artificial Intelligence Laboratory, 1 May 2004.

[10] Stanislav Funiak. Model Checking IOA Programs with TLC. MIT Computer Science

and Artificial Intelligence Laboratory, 2001.

[11] Stephen J. Garland and Nancy A. Lynch. Using I/O automata for developing distributed

systems. In Gary T. Leavens and Murali Sitaraman, editors, Foundations of Component-

Based Systems, pages 285-312. Cambridge University Press, 2000.

[12] Stephen J. Garland, Nancy A. Lynch, Joshua A. Tauber, and Mandana Vaziri. IOA:

User Guide and Reference Manual. MIT Computer Science and Artificial Intelligence

Laboratory, 2003.

[13] Stephen J. Garland, Nancy A. Lynch, and Mandana Vaziri. IOA: A Formal Language for

Input/Output Automata. MIT Computer Science and Artificial Intelligence Laboratory,

1997.

[14] Biniam Gebremichael and Frits Vaandrager. On Specifying Urgency in Timed I/O

Automata. Nijmegen Institute for Computing and Information Sciences, 2004.

[15] Klaus Havelund, Kim G. Larsen, and Arne Skou. Formal verification of a power con-

troller using the real-time model checker uppaal. In 5th International A MAST Workshop

on Real- Time and Probabilistic Systems, volume Lecture Notes in Computer Science Vol.

1601, pages 277-298, 1999.

[16] Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian Lund. Formal modelling

and analysis of an audio/video protocol: An industrial case study using uppaal. In

84

18th IEEE Real-Time Systems Symposium, pages 2-13, San Francisco, California, 3-5

December 1997.

[17] Thomas Hune, Kim G. Larsen, and Paul Pettersson. LEGO MIND STROMS systems -

control program synthesis and verification of rcxtm systems. In VHS Deliverable CS.5.2:

Report on VHS Case Study 5 Sidmar Steel Plant at Ghent, Belgium, 1999.

[18] Dilsun K. Kaynar, Nancy Lynch, Sayan Mitra, and Christine Robson. Design for TIOA

Modeling Language. MIT Computer Science and Artificial Intelligence Laboratory, 12

April 2004.

[19] Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. Timed I/O

automata: A mathematical framework for modeling and analyzing real-time systems.

In RTSS 2003: The 24th IEEE International Real-Time Systems Symposium, Cancun,

Mexico, December 2003.

[20] Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. The Theory

of Timed I/O Automata: Technical Report MIT-LCS-TR-917. MIT Computer Science

and Artificial Intelligence Laboratory, 2004.

[211 Dilsun Kirli Kaynar, Anna Chefter, Laura Dean, Stephen J. Garland, Nancy A. Lynch,

Toh Ne Win, and Antonio Ramirez-Robredo. Simulating nondeterministic systems at

multiple levels of abstraction. In CONCUR 2002 Tools Day, Brno, Czech Republic,

August 4, 2002.

[22] Kim G. Larsen. Formal methods for real time systems: Automatic verification & vali-

dation. In ARTES Summer School, August 1998.

[23] Kim G. Larsen, Paul Pettersson, and Wang Yi. Diagnostic model-checking for real-time

systems. In 4th DIMACS Workshop on Verification and Control of Hybrid Systems,

New Brunswick, New Jersey, 22-24 October 1995.

85

[24] Kim G. Larsen, Paul Pettersson, and Wang Yi. Model-checking for real-time systems. In

10th International Conference on Fundamentals of Computation Theory, pages 62-88,

Dresden, Germany, 22-25 August 1995.

[25] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. In Springer

International Journal of Software Tools for Technology Transfer, pages 1(1+2), 1997.

[26] Victor Luchangco, Ekrem S6ylemez, Stephen Garland, and Nancy Lynch. Verifying

timing properties of concurrent algorithms. In FORTE '94: Seventh International Con-

ference on Formal Description Techniques, pages 259-273, Berne, Switzerland, Octo-

ber 4-7, 1994. Chapman & Hall.

[27] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for distributed

algorithms. In Sixth Annual ACM Symposium on Principles of Distributed Computing,

pages 137-151, Vancouver, British Columbia, Canada, August 1987.

[28] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for distributed al-

gorithms. Master's thesis, MIT Computer Science and Artificial Intelligence Laboratory,

April 1987.

[29] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata. In

CWI-Quarterly, pages 2(3):219-246, Centrum voor Wiskunde en Informatica, Amster-

dam, The Netherlands, September 1989.

[30] Toh Ne Win. Theorem-proving distributed algorithms with dynamic analysis. Master's

thesis, MIT Department of Electrical Engineering and Computer Science, 2003.

[31] Toh Ne Win, Michael D. Earnst, Stephen J. Garland, Dilsun Kaynar, and Nancy A.

Lynch. Using Simulated Execution in Verifying Distributed Algorithms. MIT Computer

Science and Artificial Intelligence Laboratory.

[32] Toh Ne Win, Michael D. Ernst, Stephen J. Garland, Dilsun Kirli, and Nancy Lynch.

Using simulated execution in verifying distributed algorithms. In VMCAI, New York,

January 9-11, 2003.

86

[33] Tsvetomir P. Petrov, Anya Pogosyants, Stephen J. Garland, Victor Luchangco, and

Nancy A. Lynch. Computer-assisted verification of an algorithm for concurrent times-

tamps. In Reinhard Gotzhein and Jan Bredereke, editors, Formal Description Tech-

niques IX: Theory, Application, and Tools (FORTE/PSTV), pages 29-44, Kaiser-

slautern, Germany, October 8-11, 1996. Chapman & Hall.

[34] Paul Pettersson and Kim G. Larsen. Uppaal2k. Bulletin of the European Association

for Theoretical Computer Science, 70:40-44, 2000.

[35] J. Antonio Ramrez-Robredo. Paired simulation of I/O automata. Master's thesis, MIT

Department of Electrical Engineering and Computer Science, 2000.

[36] Jorgen F. Sogaard-Anderson, Stephen J. Garland, John V. Guttag, Nancy A. Lynch,

and Anya Pogosyants. Computed-assisted simulation proofs. In Costas Courcoubetis,

editor, Fifth Conference on Computer-Aided Verification (CAV '03), volume 697 of

LNCS, pages 305-319, Elounda, Greece, June 1993. Springer.

[37] Edward Solovey. Simulation of composite I/O automata. Master's thesis, MIT Depart-

ment of Electrical Engineering and Computer Science, 2003.

[38] Joshua A. Tauber. Verifiable code generation from abstract I/O automata. Master's

thesis, MIT Department of Electrical Engineering and Computer Science, 2004. In

progress.

[39] Michael J. Tsai. Code generation for the IOA language. Master's thesis, MIT Depart-

ment of Electrical Engineering and Computer Science, 2002.

87

