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Abstract

In this thesis, I implemented and extended a face detector, based on cascades of
boosted features, for use in real time systems. The extensions are twofold. First, [
designed a way of combining several cascades into a cascade tree, and showed how
such a tree provides a powerful mechanism for combining detector efficiency and
accuracy. When the training data has large variations, the cascade tree yields a faster
detector, and when the data has only small variations, there is a distinct detection
rate improvement. As a second extension, I designed a system for pose estimation
based on an array of cascades. I performed an evaluation of this system and compared
to normalized cross-correlation.
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Chapter 1

Introduction

Over the past decade, the digital revolution reached the domain of cameras and pic-
tures. A large fraction of new cameras sold today are digital, and soon the traditional
camera will only be used by photo enthusiasts. Many new cell phones come equipped
with cameras, and sometimes motion pictures are shot using digital video cameras.

The change in availability of digital imaging devices allows digital systems to come
much closer to the individual, and to interact with people in a more direct fashion.
This forces us to address the problem of teaching these systems how to recognize
when humans are interacting with them, and how to interpret their actions.

One task that needs to be solved is finding the human faces in an image. To a
human, this is a very simple task. We do it all the time, with none or little effort.
But how do we do it? Consider a sheet of paper with little numbers ranging from 0 to
255, representing pixel intensity values, placed in a grid pattern. How do you decide
whether or not you are looking at an image of a face? This is the task the computer
must handle. It has no innate knowledge of humans or human faces, and a much less
flexible brain than we do. Unless we can tell it exactly how to do the task, it will not
be able to do it.

Face detection is a subproblem of the more general task of object detection. How-
ever, it is not one of the hardest ones, mostly because faces are rigid objects, with a
number of clear features. The eyes, the nose, the outline of the cheeks and chin, and

the hairline are all very helpful in detecting faces. In fact, some approaches to face

13



detection [4] focus on finding the parts, and then combining the results to find whole
faces. These approaches, although accurate, are usually very slow. Other approaches

have used neural networks [7] or wavelet decompositions [8].

Slow methods can be very accurate, and many use techniques that appear very
reasonable. However, to be used in real time systems, a detector has to not only
be accurate, but also fast. The amount of computation per pixel that can be done
while keeping up with video input is very small. On a 2 GHz machine, 30 frames per
second of 640 by 480 video leaves time for a few hundred machine instructions per
pixel. Translated to more direct terms, that means in the average case, we have a
few hundred additions and subtractions to determine whether or not a window of the
image, say of size 24 by 24, does or does not contain a face.

In [10], Viola and Jones introduced a method to accomplish this. They use a
fast way to evaluate simple rectangular features, and a cascaded detector to quickly
reject obvious non-faces, while spending more time on more complicated regions. In
Chapter 2, we discuss the ideas behind their detector, and some properties of it. This
sets the stage for the rest of the thesis, which will use the fundamental ideas of this
approach to do both face detection and pose estimation.

When training several cascades for object classes that are very similar, such as
human faces in different poses, there will be redundant information in the cascades.
On the other hand, if the appearances of two poses are too different, a single cascade
will not be an efficient detector. For example, the rejection rate per node may be too
low, because the statistical variation in the training set is too high. This would result
in a detector that returns far too many false positives to be useful. In Chapter 3, we
introduce an extension to the detector cascade, cascade trees, which describes what to
do in this situation. Cascade trees offer a flexible way to combine detector efficiency
and accuracy.

We then in Chapter 4 consider the task of estimating pose using cascades. We de-
scribe how to collect the data needed for the pose estimator, and give the algorithm to
actually estimate pose. The evaluation of the algorithm, along with the evaluation of

cascade trees, follows in Chapter 5. We describe three different experiments, designed
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to highlight different features of the cascade trees and evaluate the pose estimator.

We finally conclude with a discussion of the approach and results in Chapter 6.
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Chapter 2

A Boosted Framework for

Detection

In a standard face detection task, the input image to scan may be 640 by 480 pixels,
and contain zero, one, or perhaps four human faces. The face detector must find all
the faces in the image, independent of scale, orientation, lighting and facial expression.
As posed, the search problem is very complex, and it is customary to reduce the task
to a pure detection problem.

The reduced task solves a simpler, binary decision problem. Given an image of
a predetermined size, say 24 by 24 pixels, is it a face or not? If an algorithm that
solves the binary decision problem exists, we can solve the face detection problem by
independently considering each possible subwindow of the full input image. To find
faces of different sizes, we also need to scan across different scales. In practice, the
search across scales could be performed by resizing the image, running the detector
again, and repeat until the resized image is too small for the binary decision algorithm.

Let’s assume that our search algorithm rescales the images by a factor of 0.8 at
each step. Some simple arithmetic shows that for the image dimensions given above,
the face detection algorithm must be run on almost 750,000 windows. If we want the
total processing time to be a fraction of a second per frame, the binary detector needs
to be extremely fast in the average case.

In [10], the authors proposed a detector built to have exactly this property. Their
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detector is able to reject most non-face subwindows after only a few very simple
computations. This chapter explains how that detector works. In a later chapters we
will extend the ideas behind it to construct a detector that simultaneously detects

faces in multiple poses, and to build a system that can estimate face pose.

2.1 Simple Classifiers

Imagine a face detector that has a detection rate of 95%, and a false positive rate of
80%. On its own, such a classifier is useless. But imagine a voting scheme, where
hundreds or thousands of these classifiers are all allowed to consider an input. Fig-
ure 2-1 shows how the separability of faces from non-faces increases as the number of
simple classifiers increase, assuming all classifiers are independent.

In reality, we cannot find thousands of independent classifiers. In addition, we're
not guaranteed to be able to find sufficiently many filters that have a 95% detection
rate and not more than 80% false positive rate. However, in [10] the authors showed
that we can find classifiers that are approximately independent, with good detection
and false positive rates. They also showed that this is enough for our purposes.
Following their work, we base our face detector on simple classifiers of the form

o(I) = 1 if pifiI) >t (2.1)
0 otherwise.
The functions f; are chosen from a predetermined set of filters F'. Each f € F takes
an image subwindow [ as a parameter, and returns a scalar.

The filters in F', some of which are shown in Figure 2-2, are specified by two, three
or four rectangular regions. At least one region will have positive parity, and at least
one will have negative parity. The pixel values in each rectangular region are summed
together, and then the resulting sums are combined using their corresponding parities
to compute the final filter output. In theory, we could use rectangles of any size, as
long as they fit inside the subwindow. In practice, to limit the total number of filters

in ', we disallow filters composed of differently sized rectangles. In addition, we
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Figure 2-1: Separation of face- and non-face as a function of the number of simple
classifiers. Consider an ensemble of independent classifiers that return 1 with 95%
probability given that the sample is a face, and 1 with 80% probability given that it is
not. This figure shows how the difficulty of separating faces from non-faces decreases
dramatically with N, the number of classifiers used.
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require the rectangular regions to be connected.

This still leaves a very large number of possible filters to choose from. Using only
the types of filters shown in Figure 2-2, we have a pool of more than 138000 unique
filters to consider. These filters may look simple, but with the threshold properly set
in a frontal face detection task, the best classifier alone can reject more than half of

the non-face subwindows, with virtually no missed detections.

2.2 Integral Image

One of the benefits of using rectangular features as basis functions for the simple
classifiers is that due to the sheer abundance of available filters, some classifiers are
bound to be very accurate. Another key benefit is that they can be evaluated in
constant time using integral images. An integral image is uniquely specified by its
source image, and is generated by replacing each pixel in the normal image by the

sum of all the pixels above and to the left of it.

To compute the sum of pixels in any rectangular region, only four references to
the integral image is required, as shown in Figure 2-3. Similarly, the difference of
the sums of two adjacent rectangles can be computed using only six array references.
This allows for very fast evaluation of the simple classifiers, and is key to the success

of the Viola-Jones approach.

Creating the Integral Image can be done in time linear in the number of pixels in

the image. Consider

Iy = 23:022:0 oy = 233:02’;;}) Gay + 5000 Gob +tab = Lop1 + Lam1p — Ta1p-1 + ab.

(2.2)
Eq. (2.2) shows one way of structuring the computation so that it is linear time.
Computing the integral image takes only a few machine instructions per pixel, and
will not be the most time-consuming step of the face detector, independent of the size

of the input image.
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Figure 2-2: The output value of the filters is computed by summing the pixels in the
bright rectangles, and subtracting the pixels in the dark rectangles. The figure shows
two-, three- and four-rectangle classifiers.
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Figure 2-3: The Integral Image allows for summing pixel values in any rectangular
region in constant time. The sum of the shaded pixels can be computed by S =
(D) = (C) = (B) + (A).
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2.3 Cascades

The key to making a detector that is fast is to remove superfluous computations
wherever possible. It is natural to use an approach that spends more computational
time on "hard” parts of the image, and quickly rules out patches that are obviously
not faces. If it is possible to rule out a patch after evaluating only two features, there
is no need to evaluate the full ensemble of thousands of features.

Exploiting this fact, the authors of [10] introduced the concept of a cascade. A
cascaded detector provides a way of efficiently detecting objects in images, especially
in the case where the objects of interest are rare. The cascade consists of a set of
nodes, that are evaluated in sequential order for each image subwindow. Only the
subwindows that pass the first node are evaluated at the second node, and so one. To
be classified as a face, a subwindow needs to pass every single node in the cascade.

Typically, cascades are trained so that each node has a detection rate of at least d,
and a false positive rate of at most f. If the cascade has N nodes, the total detection
rate is d”, and the false positive rate is f%. For a detector with d = 0.999, f =06,
and N = 40, the total detection rate is D = 0.96, and the false positive rate is
F = 107°. In reality, false positive rates between 10~% and 107 are common, which
translates to about one false positive per 640 by 480 image.

To achieve the desired accuracy goals for a given node, more and more features
are required. A typical detector might have one or two simple classifiers in the first
node, and over 200 per node at the end of the cascade. Since typically less than one
window in a thousand pass through the first 10 nodes of the cascades, a large amount
of computer time can be spent on the more complicated examples without sacrificing

overall speed.
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Chapter 3

Cascade Trees

When a set of parallel cascades are detecting visually similar object configurations,
considerable performance improvement is possible by merging the independent de-
tector cascades into a tree classification structure. Detectors trained on images of
objects in adjacent poses will have cascades with redundant component classifiers.
We will show that when we remove these redundancies we can speed up the overall
processing time at virtually no cost in detection ratio or false positives. This chap-
ter describes how such a cascade tree is generated from a number of independently
trained cascades, by a process of iterative merging. The evaluation of the merged

detectors is done in Chapter 5.

3.1 Cascade Merging

When two object classes have similar appearances, it may be the case that their
corresponding linear cascades will have similar structure. Figure 3-1 shows the mean
face of the 8 different poses used in a set of experiments, along with the first 10 nodes
of the corresponding linear cascade. The nodes are illustrated in the figure by the
sum of their constituent rectangular simple filters.

The decision of a node on any given image cannot be predicted from this figure,
because the individual classifier cutoffs are not shown. It is nonetheless a useful

indication of what features were deemed important by the learning algorithm for each

25



Figure 3-1: Mean faces for the 8 different poses used in a set of experiments, and
illustrations of the first 10 nodes of the corresponding cascades. The nodes are illus-
trated in the figure by the sum of their constituent rectangular simple filters. (The
cutoffs for the simple classifiers are not shown.)
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Figure 3-2: A classifier tree is made by iteratively merging cascades.

A B

node. It can be seen from the figure that there is significant redundancy between the
cascades. This is exactly the kind of property that can be exploited by merging

cascades into a tree.

3.2 Deciding the Tree Structure

In our algorithm, the structure of the tree is determined automatically from the
cascades and the training samples in an iterative fashion. We begin by training a
linear cascade for each pose in the training set. A linear cascades is a cascade in
the Viola-Jones sense, trained to detect only one particular pose, and lacking any
branching points.

At each iteration we consider each pair of cascades, and decide at what node they
should be merged. We then merge the two cascades that were judged the most similar,
up until the node that was decided as the branching point. This process, illustrated
in Figure 3-2 is repeated until only one single tree remains.

The similarity measure between a pair of cascades is defined based on how well

they perform on their partner’s training set. Define two datasets A and B by

A = Uai (3.1)
B = Ubi’ (3.2)

where a; and b; are samples, and let C'y and Cp be the corresponding cascades.
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Figure 3-3: The tree designed by the merging algorithm when given 8 cascades of 40
nodes each. The numbers in the circles represent the number of nodes at that point
in the tree.

Now define ¢(C, z) to be a function that returns the maximum integer & so that if
the cascade C' was to be cropped to only depth k, C' would accept = as a positive
example. Note that a cascade of length 0 accepts anything as a positive example, and
removing a node never reduces the detection rate. Both linear cascades and trees can

be cropped in this way, since the depth of each node is uniquely defined in each case.
Now we are ready to define the similarity measure between cascades. Let

1 Na 1 Ns
f(A,B) = 3N, ZE(CB, a;) + N, Zé’(CA, bi). (3.3)

Intuitively, f is the expectation value of how far a training sample of one cascade will

make it in the other cascade.

The index of the node to merge the two cascades at is computed as

nNAB = Af(A, B): (34)
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where A is a tunable parameter that controls how early in the tree branching occurs.
When A = 0, all branches occur before the first node, so the resulting tree is equivalent
to running each linear cascade in parallel and combining the results. When A = oo
the resulting tree is one single linear cascade.

After the algorithm has decided which two cascades to merge and where, it per-
forms the actual merge. For the purpose of determining the structure of the tree, the
merged cascade Cy B consists of either the nodes from Cy or the nodes from Cpg up

until the branch point, and nodes from both cascades in parallel after it.

3.3 Node Retraining

Once the final structure of the tree is determined, nodes are retrained on the data sets
they are meant to recognize. The new nodes are trained to have detection rates on
the merged datasets that are as good as the nodes in the linear cascade have one the
single-pose dataset. This can be done at the expense of getting more false positives
at any given node in the detector.

Taking longer to eliminate false positives in turn slows down the overall system,
since more computational effort is required. Note however that the overall false
positive rate can be controlled by adding new nodes at the very end of the detector,
so the only expense we incur is in the average number of classifiers that need to be
evaluated per sample window. Nodes at the end of the detector are evaluated for very
few false positives, and hence adding an extra node does not significantly slow down
the detector.

When the merging is too weak, more classifiers than necessary are evaluated be-
cause similarities between cascades are not being fully exploited. When the merging
is too strong, the resulting classifier needs to handle poses that are fundamentally
different, which means the false positive rate will decrease only slowly as a function
of classifier length. For some intermediate value of \ performance is maximized. In
the current implementation we try several different intermediate values and choose

the best tree. Figure 3-4 summarizes the algorithm used to design and train the tree.
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(a)

(e)

1. Given N sets of positive examples 4;, a single set of negative examples B, the initial
cascade depth k, and the minimum detection rate d; and maximum false positive
rate f; for 1 <j <k.

2. For each i, train a linear cascade C; using direct feature selection with A; as the set
of positive examples and B as the set of negative examples.

3. While more than one cascade remains, do

for each pair {A;, C;}, {4;,C;}, compute
ci; = min(Af(A;, Ci, Aj, C;), branch;, branch;)

where

1 Ng
1
F(A,C4, B,Cp) = Ze (Cp, ai) + 2—_@Ze(a‘,bt).

and branch; is the index of the first branching node in C;.
Find 4, j so that ¢;; is maximized. Define n = [¢4;].

Merge the sets of positive examples A; and A; into one large sample set A

Merge the cascades C; and C; into a new cascade C. Run C; and C; on the
dataset A, and keep the first n nodes of the cascade that performs the best.
Add a branch point after node n, and paste in C; and C; starting from nodes
n+ 1.

Remove {4;, C;} and {4;,C;} from the pool of cascades. Add {4, C} to the
pool.

4. Finally, retrain each node of the tree using the associated subset of N data, and
the subset of B which is not eliminated by earlier nodes in the tree as the negative
training data. For a node of depth 7, use d; and f; as training parameters.

Figure 3-4: Summary of the algorithm for merging detection cascades into a single

tree classifier
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Chapter 4

Pose Estimation

A face detector is usually used only as the first step of any computerized vision system.
The final objective is usually another. For example, face recognition, automatic red-
eye reduction and face tracking tasks all include face detection modules. However,
most face detectors give a very coarse estimate of the pose of the face, or none
at all. In this chapter, we show how to build a pose estimator based the same
principles as cascades and cascade trees. The next chapter contains an evaluation of

the performance of this approach compared with other approaches for pose estimation.

4.1 Training Data

To train a face detector, all that is needed is a set of example faces in different poses. It
is not necessary to label the poses accurately, since that information wouldn’t be used
anyway. To properly train a pose estimation system, much more care must be taken
to get properly labelled data. One way of accomplishing this is to capture data from
multiple cameras at the same time. The data from [1] was captured simultaneously
by 48 cameras on a grid, and that data is what we used to train the system.

This data was used to train 48 cascades, in the following way. For each pose
displayed in Figure 4-1, select that pose and all immediately surrounding poses. This
results in 4 selected poses when the original pose is in a corner of the pose grid, but 9

selected poses when it is in the center. All the data from these selected poses are now
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used as positive examples, and all the data from the other 39 to 44 poses are used
as negative examples. The result is 48 cascades trained for 48 different poses. From
here on, when we talk about the pose of a cascade, we are referring to the originally
selected pose. This is the same as the center among the poses used as positive training

data.

4.2 Pose Estimation Algorithm

There are many different ways of doing pose estimation, including complex feature-
based methods [5]. Here we’ve opted for a simple approach, that takes advantage of
cascade flexibility. Keeping in mind that a cascade does not necessarily have to be a
binary classifier, we modify a standard linear cascade into one that instead of purely
rejecting or accepting a sample returns a number signifying how far into the cascade
the sample made it.

A good number to return for a sample is the fractional depth of the node that
first rejected it, with 1.0 being returned if every node in the cascade accepts it. Since
the rejection rate is almost the same at every node, this can be thought of as a score
proportional to the logarithm of the probability that the sample is of the same class
as the positive samples used to train the cascade.

If a sample in some pose P is evaluated by a detector for the same pose, one
would expect the sample to make it deep into the cascade, or even all the way to the
end. In reality, this is not always the case. Figure 4-2 shows sample output of the 48
pose detectors on images of a single person in 48 poses. The images were captured by
the same array of cameras as the training data, but were held out from the training
phase.

The 48 small 8 by 6 subimages represent detector outputs on each of the 48 input
images. The top left pixel in every subimage corresponds to the detector for the
top left pose showed in Figure 4-2, and so on. It follows that if this was a perfect
pose detector, the Nth image of the Mth row would have a black pixel, symbolizing

a return value of 1, at position (N, M). In addition, all other pixels would be white,
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Figure 4-1: The 48 poses used by the pose estimation system
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Figure 4-2: Output of the 48 pose estimation cascades on 48 sample input images.
Each subimage is the output of the 8 by 6 array of cascades, with one pixel corre-
sponding to each cascade. The input sample used to generate the subimage at position
(z,y) was of the same pose as the cascade at position (z,y) in each subimage. Darker
pixels correspond to better cascade matches.
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symbolizing a cascade return value of 0.
To compute the final pose estimate, we use a two step procces. First, we compute
a weighted sum of the poses of the cascades. The weights are the outputs of the

cascades on the input sample. Explicitly, the intermediate pose P’ is computed by
P(I) = ZQ‘U)Pﬁ (4.1)
J

where I is the input sample, C; is a set of cascades, and p; is the corresponding set
of poses. However, this pose estimate tends to be biased towards the center of the
pose space, since very few cascades will in general return really low numbers. To

compensate for this, we apply a linear transformation to each pose coordinate,
P(I) = a:P(T) + b (42)

The constants a; and b; are learned from the training data by minimizing the
least-squares error during training. In a combined face detection and pose estimation
task, a cascade tree would be used to detect the faces in an image, and then the
pose estimator would be run on each detected face. The approach for pose estimation
presented in this chapter is general enough to handle both two- and three-dimensional
pose estimation, although we will only use it to estimate two pose parameters at a

time in this thesis.
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Chapter 5

Experiments and Results

Cascade trees present several advantages to traditional linear cascades. In this section,
we'll describe a set of experiments conducted to highlight different features of the tree
approach. The first experiment uses a training set of 48 almost frontal poses, under
one single simple illumination condition. We will show that detection performance
can be dramatically increased while keeping the false positive ratio and the speed of

the detector fixed.

The second experiment uses the PIE database as training data. This data set is
very diverse, with many different poses and lighting conditions, and it is impossible
to train a single efficient detector. We show that the tree approach yields almost ex-
actly the same detection performance as 8 independently trained cascades, but with a
speedup of more than a factor of 2. In both this and the previous experiment, we used
the negative samples from [10]. This set of 9492 files was originally obtained by crawl-
ing the web, and randomly selecting images that do not contain faces. Altogether,

these images contain a total of 2,440,328,628 subwindows.

In the third and final experiment, we evaluate the pose estimation algorithm
introduced in Chapter 4. We use the same data as in the first experiment to train the
pose estimator. We compare estimated pose with ground truth and pose computed

using normalized cross-correlation.
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5.1 Detection Rates

A somewhat surprising benefit of cascade trees is an increase in the detection rate,
compared to a single detector. This feature is the most prominent when there are
many linear cascades, perhaps because each has a somewhat independent probability
of detecting a difficult face in an image. This experiment shows a case where the
detection rate increase is significant.

All our experiments use the Direct Feature selection method [11] to train nodes.
In the standard AdaBoost-based approach, each node decides whether or not to pass
a sample on to the next node based on comparing a linear sum of the votes of a set of
simple classifiers to a cutoff. Using the Direct Feature selection method, the weight
in front of each simple classifier is 1, and the overall decision is made by majority
vote. We used this approach because of the drastic reduction in training time needed

per node.

5.1.1 Training Set

The training set for this experiment was collected for {1], using an array of cameras
pointing at a subject. The subjects in the training set are shown in Figure 5-1, and
the different poses are shown in Figure 4-1. Note that the majority of subjects are
Caucasian males, which most likely hampers the ability of the detector to find faces
of individuals not in this category. In addition, there is no variation in lighting. The

negative training set was the samples from [10].

5.1.2 Performance

This experiment was subdivided into two tasks. The first task is face detection in an
office setting, where lighting conditions are similar to the training data. Figures 5-
2, 5-3 and 5-4 show detection ratios, false positive rates, and average number of simple
features evaluated per subwindow for this office task. Some example images from the
first task are shown in Figure 5-5. Note especially that the detection rate is highest

for small values of A\, whereas the detector efficiency is highest for large values of .
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Figure 5-1: The subjects used to train the first set of cascade trees

Around A = 1.0, we can get close to maximum detection performance while keeping

close to maximum efficiency.

The second task is face detection on images in the MIT+CMU test set[7], which is
commonly used to evaluate face detector performance. This test set contains images
that are blurry, faces that are not frontal, and various severe illumination conditions.
In addition, several test images are included simply because many detectors find false
positives in them. Although the performance of our detector on this data set is poor
compared to other detectors [6], which can achieve detection rates slightly over 90%,
the trend of increased performance as A decreases is clearly visible. Figure 5-6 shows
detector output for two values of A, with the detection ratios jumping from 61% to
82%, keeping the number of false positives fixed. These two trees were trained on

exactly the same data.

The results of a more systematic evaluation is shown in Table 5.1. When the face
detectors were evaluated, special care was taken to make sure the number of false

positives were kept roughly constant, to make sure that the results did not simply
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Figure 5-2: Detection ratio for the office task
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Figure 5-3: False positive rate for the office task

40

35



Face detection efficiency on office test set
140 T T T T T T

120

100

[+ [+<]
[=] =]
T T
i 1

number of classifier evaluations per window
o
(=3
T
L

201 1

lambda

Figure 5-4: Detector efficiency for the office task

A | Detection ratio | False positives | Classifiers evaluated |
0.0 55.2% 82 183.36
0.8 53.6% 73 19.72
1.0 50.5% 64 17.31
1.5 44.6% 62 15.66
00 37.9% 66 15.46

Table 5.1: Performance of the detector on the MIT+CMU dataset. The dataset
contains a total of 130 images with 507 faces, and 68,963,690 subwindows.

portray a shift along the ROC curve of the detectors. This was done by removing
nodes at the end of the detector, or at the end of each branch in the case of a tree,

until the false positive rate was high enough.

5.2 Face Detector Speed

One of the original motivations for the concept of cascade trees was a desire to remove
redundancies between detectors for similar classes of objects. If such redundancies

could be removed, the resulting detector should be faster than the original. To gain
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Figure 5-5: Example images from the office task. The subjects shown were not
represented in the training set, and the poses detected in these images are outside of
the range of the training data.
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Figure 5-6: Sample output from a detector trained on face data from an array of
cameras. The top picture was generated by a tree with A = 1.0, and the bottom one
by one with A = co. Note that even though the false positive rates are almost the
same in both images, the detection ratio is far higher for the topmost one. These
images each contain roughly 3.5 million subwindows.
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Figure 5-7: The different poses used in the PIE database

the maximum improvement, an exhaustive search over all possible trees is most likely
unavoidable. It is, however, also unpractical.

In Section 3, we introduced a way of designing a tree based on a set of already
trained linear cascades. We show here that the parameter A used to tweak the struc-
ture of the tree has a natural value of 1.0, at which point detector speed is maximized.
In the previous experiment, a higher value of A would guarantee a faster detector. In
this section, however, we show a case where the relationship between A and detector

efficiency is more complex.

5.2.1 The PIE Database

To fully appreciate the results, it is necessary to have some understanding of the
PIE[9] database, which was used for training. The database has 68 people in 13
different poses, as shown in figure 5-7. We only used the 8 rightmost poses in our
experiments, using the fact that a detector trained for left profiles can be flipped
around the vertical axis to detect right profiles.

It is also worth noting that the lighting conditions are severe. In fact, some
illuminations were deemed too dark to be useful for training. Figure 5-8 shows one
test subject in one pose under all 22 used lighting conditions. Note that once the face
is scaled down to 24x24 pixels, it becomes very difficult even for humans to determine
whether or not the little image represents a face.

In the interest of fairness, it should be mentioned that the PIE database was not
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Figure 5-8: The different lighting conditions used in the PIE database

intended to be used as a training set for a face detector, but rather as a test set.
Any training data set should mirror the statistical distribution of faces, poses and
illumination conditions the detector is expected to see when operating. For the most
generic face detector, the ideal data set would be composed of randomly selected

images from the world wide web.

5.2.2 Early Rejection and Multiple Cascades

To understand the principles determining the speed of a face detector, it is instructive
to look at the first few nodes of some detectors trained on data sets with differing
variations. Figure 5-9 shows the performance of three different cascades. The first
one was trained on a data set with only interpersonal variation, the second one also
had illumination variation, and the third one had both subject, illumination, and
pose variation. The rate of false positives remaining after each node is shown below
the node, and the average number of classifiers evaluated per subwindow is listed at
the very bottom.

The more variation there is in the training data, the harder it is to find good
simple classifiers to differentiate positive from negative samples. As a result, a lower

percentage of negative samples gets rejected at each node. Since nodes get increasingly
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Figure 5-9: Performance of the first five nodes in different detectors. Detector A has
subjects in the same pose and illumination, detector B was trained for illumination
variations, and detector C for both pose and illumination variations. The number of
classifiers per node is fixed at 1, 5, 5, 11 and 11.
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complex and expensive to evaluate deeper into the detector cascade, the earlier a

sample can be rejected, the faster the cascade is in the average case.

Cascades trained on only a single pose are comparatively good at rejecting false
positives. However, to span the entire range of poses, we need multiple cascades, all
evaluated separately. This multiplies the average number of features needed to reject
a non-face by the number of cascades. To maximize performance, it is necessary to
find the right balance between reducing training data variation and minimizing the

number of cascades.

5.2.3 Tuning Detector Speed

Tuning A affects the structure of the tree, which in turn affects the efficiency of the
detector. Figure 5-10 shows how detector efficiency, measured as number of classifiers
evaluated per subwindow, varies with A. For this training set, which contains signif-
icant pose and lighting variations, the single-cascade A = oo or the separate-cascade
A = 0 options are both roughly a factor of 2 slower than the A = 1 cascade tree. For
this particular training set, A = oo does not result in a useful detector, even when 40
nodes are allowed. Figure 5-11 shows sample detection performance for several values

of A on the MIT+CMU test set.

5.3 Pose Estimation

A cascade tree is not necessarily a binary classifier. Each terminal node can be given
an independent ID, which would be returned by the detection algorithm if that node
in the tree were to be reached. If several end nodes were to be reached, a list of IDs
might be returned. Unfortunately, ordinary cascades, trained with only non-faces
as negative examples, are not good at pose discrimination. This section describes
the results of an evaluation of the pose estimator described in Chapter 4. We also

compare the results to normalized cross-correlation.
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Figure 5-10: Detector efficiency, measured in the average number of classifiers needed
to reject a non-face, for various values of A. The detectors are adjusted to have
the same detection rates and false positive ratios. Around A = 1.0, efliciency is
maximized.
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Figure 5-11: Results of multi-pose detectors on image with unseen faces. The left
image shows baseline result from set of independent cascade classifiers, equivalent to
A = 0.0. The center image shows result from the extreme case of merging all cascades
into a single chain, or A = oo. The right image shows the result with a cascade
tree designed by our algorithm, with A = 1.0 The performance with the cascade
tree is qualitatively similar despite considerable savings in computational cost. Note,
however, the one lost detection at the top of the image.
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[ | Horizontal [ Vertical I

a 1.62 2.70
b -1.17 -16.40

Table 5.2: Parameters for the pose estimation transformation.

5.3.1 Task Description

In this experiment, we again used the data from [1] to train 48 cascades. As positive
data for a given pose, we used the sample images from that pose and all immediately
surrounding poses. As negative data, we used the remaining sample images. Note that
the negative data set from [10] is not used. A test set of 192 images of 4 individuals
were held out from the training set, and the pose of those images is then estimated by
the system. As a comparison, we also implemented and evaluated a pose estimation
system based on normalized cross-correlation. The comparison uses the mean face of
each of the 48 poses as templates, and the best template match becomes the base
pose. The final pose estimate is an adjustment of the base pose, computed by fitting
a second-degree polynomial to the correlation scores of the three closest poses in the

x and y directions, and finding the maximum of that polynomial.

5.3.2 Results

Table 5.2 lists the parameters used for the linear pose estimate transformation, as
described in Eq. 4.2. These parameters were determined using only the training data.
As expected, they encode for a stretching of the pose space, cancelling the bias to
return a pose in the central region of the field.

Figure 5-12 shows the final results of the pose estimation task. It shows that the
cascade approach is fairly robust, with no pose estimates being wrong by more than
10 degrees. Note that most pose estimates are in fact within 5 degrees from the true
pose. In the training data, poses were also 5 degrees apart, so this error corresponds
to an error of one discrete pose. Table 5.3 summarizes the mean and variance of the

pose estimation error for the two approaches.
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[ Method | Horizontal error | Vertical Error ]

Array of Cascades —1.78 + 3.37 —0.31 £ 2.66
Normalized Correlation —5.42+6.21 —4.20 £ 7.88

Table 5.3: Mean and variance of the pose estimation error for the two approaches
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Figure 5-12: Pose estimation error for the array of cascades approach and the nor-
malized cross-correlation approach. A pose error of 5 degrees corresponds to the
difference between two neighboring poses in the training grid.
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Chapter 6

Discussion

Creating face detectors by boosting simple classifiers is a fascinating topic. During
my experiments, I've come to realize the power of this approach. State-of-the-art
face detectors such as [6] can scan video data in real time, with amazing accuracy.
This has opened up a sea of other possibilities. Tasks that need face detection as a
preprocessing step can now get complete, pre-built modules that use up very little
computing time.

In my own experiments, I've consistently seen excellent performance. In particu-
lar, the performance on the training data is always remarkable, both when discrim-
inating faces from non-faces and when discrimination faces of different poses from
each other. The real moment of truth comes when the detector is applied to a test
set. If the training set was well balanced, performance on the test set will sometimes
not be worse than performance on the training set.

It’s also amazing that one single feature evaluation is able to rule out 40 to 60
percent of all non-face subwindows. As was hinted at in [11], the power of this
approach most likely comes from the sheer number of possible filters used in the
classifiers. All filters will have some distribution of outputs for faces and non-faces,
and not all distributions can be random or uniform. In fact, statistically it would be
strange if some were not useful for classification. What kind of boosting is used, be it
Adaboost[2], Direct Feature Selection[11], GentleBoost[3] or something else, matters

less.
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The main difficulty is finding a data set with the right kinds of variation. We
showed in Section 5 that large lighting variations are not useful and can even be
harmful. On the other hand, even a training set consisting mostly of Caucasian people
not wearing glasses yields a detector that half the time detects African Americans
wearing sunglasses. Another somewhat surprising result is that a detector trained for
an office environment with data from only 60 people, is capable of finding virtually
any face in the same lighting condition and pose range. Even at 10 degrees outside

the training pose range, detection rates are still around 60 to 70 percent.

In this thesis, we have shown that cascade trees have two benefits. First, if the
training set is too diverse to make a single detector efficient, using a cascade tree will
speed up the overall detector without sacrificing detection performance. Even if the
data set is not diverse, using a cascade tree will not hurt the efliciency of the detector.
The speedup is accomplished by exploiting whatever statistical sitnilarities there are
between the different object classes. When those redundancies are exhausted, the
tree will branch off into different cascades. The new, more narrowly defined cascades
are more efficient at rejecting non-face samples, since the statistical variations in their
training sets are lower. The resulting detector can be several times more efficient than

a simple linear cascade.

The second benefit of cascade trees is that a tree may have a significantly higher
detection rate than a linear cascade trained on the same data. The cause of the
performance increase is the randomness inherent in the cascade training. If the train-
ing set densely samples the pose space, a linear cascade trained on one pose will do
well on data that is meant to be handled by its immediate neighbors in the pose
space. Sometimes it will do just as well as the cascades which are meant to handle
the data. There’s always a little randomness in detecting a face. If two detectors are
completely independent with 90 percent accuracy, and overlap in the samples they
can handle, the combined detector might be up to 99 percent accurate. In reality, the
improvement will not be that big, but the results indicate that the accuracy might
be around 94 or 95 percent. In either case, having a set of different detectors will

minimize random rejections.

54



We have also shown that cascades are useful for pose estimation. However, to fully
take advantage of their power, the cascades must be trained with data from other
poses as negative examples. When simple non-faces are used as negative examples,
there is no penalty for a cascade to detect faces in other poses, and on occasion
it will. This is the very cause of the increased detection rate of cascade trees; the
set of recognized faces for each branch of the tree overlap slightly, and even if one
detector misses a face, another might catch it. But when doing pose estimation, we
need more predictable cascades. The results presented in this thesis show that using
data from other poses as negative examples during training gives us the reliability
we need. When averaged over a set of cascades, the resulting detector is both robust
and accurate.

In conclusion, we have in this thesis explained the concept of boosted cascades of
simple features, and why that is a very appropriate method for face detection and
other rare event detection tasks. We have also shown how to build a cascade tree
from a set of cascades, and how such a tree can improve both the efficiency and the
accuracy of an overall detector. We have also shown how to build a pose estimator
using cascade technology, and evaluated a system based on our algorithm on a real
pose estimation task. The boosted cascade is a very powerful and versatile tool, and
it is a concept important enough for any student of computer vision should be familiar

with it.
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