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Abstract

In this thesis, we present two computational platforms for future biological research.

The first, FNAC, is a flexible programmatic Framework for Network Analysis and

Comparison that simplifies many common operations on biological networks. As a

demonstration of FNAC, we investigate the properties of several prominent protein

function and protein-protein interaction networks. In doing so, we uncover evidence

suggesting that a recently-developed technique for annotating proteins may also have

substantial value in the computational prediction of protein-protein interactions. Our

second computational platform, the Coiled-Coil Database (CCDB), serves as a central

and easily queryable repository for information about the coiled coil protein structural

motif in a variety of organisms.
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Chapter 1

Introduction

The simple network has emerged as an extremely common and powerful model for

many different types of biological data. This thesis introduces FNAC, a flexible

programmatic Framework for Network Analysis and Comparison. FNAC, described

in Chapter 2, is a Java API that builds on a variety of previous work to simplify

many common network operations. Use of FNAC can speed the development of

future network-based computational approaches and, by doing so, drive substantial

biological discoveries.

As a demonstration of FNAC, Chapter 3 describes the application of many of

the framework's features to the analysis and comparison of several protein networks.

This application of FNAC yields several new insights into the relationship between

functional annotation of proteins and experimentally observed interactions.

This document also introduces the CCDB, a persistent, searchable Coiled-Coil

Database. The CCDB, described in Chapter 4, is a general repository for information

about the coiled coil protein structural motif and can be readily applied, either on

its own or in conjunction with FNAC, to genome-wide protein-protein interaction

studies.
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1.1 Biological Network Analysis

While by no means a novel concept, the representation of many types of biological

data as graphs has grown very popular in recent years. Such networks can be both

efficient and visually illustrative models of large and complex data sets. They are also

fairly easy to manipulate and can be used to represent everything from ecological food

webs[21] to genetic regulation[27]. Importantly, network properties and algorithms

for graph analysis have been studied by theorists for hundreds of years. The primary

driving force for the adoption of graphs in biology, however, has been the large volume

of data recently generated by efficient computational and experimental techniques.

These data have finally enabled meaningful analysis of natural networks and the

discovery that these graphs possess many unique and intriguing properties.

1.1.1 Connectivity and Clusters

Many interesting properties of biological networks involve the connectivity of their

nodes; that is, the number of edges incident on each node. It has been observed that

the connectivity distributions of most such networks (including dozens of metabolic

networks[14], the yeast protein-protein interaction network[13], and several ecological

food webs[21]) obey a power law:

P(k) k-(1.1)

That is, most nodes are connected to only one or two edges, with the probability

of a node being connected to k neighbors decreasing exponentially with k. This

is in contrast with the previous assumption that biological networks are essentially

random, in which case a Poisson connectivity distribution would be expected[14]. The

power law distribution, illustrated in Figure 1-1, also implies that a few nodes, called

"hubs," are very highly connected. Disruptions targeted at these nodes can therefore

have disastrous and far-reaching consequences, leading Barabasi et al. to denote such

networks as "scale-free." [4]
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Figure 1-1: Example connectivity distribution. The connectivity distribution of the
Database of Interacting Proteins' (DIP) protein-protein interaction network for the
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networks.
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In addition to connectivity, previous researchers have also described metrics of

the "clustering" of nodes[1]. The clustering of a node represents the degree to which

its neighbors are fully interconnected. At the extremes, a clustering coefficient of

1 indicates that a node and its neighbors form a fully-connected subgraph, while a

clustering coefficient of 0 indicates that none of a node's neighbors are connected to

any other. Biological networks often simultaneously exhibit distinct regions of high

and low clustering. A hierarchical pattern emerges in which many densely-connected

clusters are loosely connected to one another, forming a set of less densely-connected

modules which are, in turn, loosely connected among themselves[23].

1.1.2 Network Motifs

Most recently, attention has been focused on the notion of network "motifs," multi-

node topological patterns that, statistically, are significantly more prevalent in a par-

ticular network than in randomly rewired versions of the same network[27, 20]. Such

motifs have been identified in many different types of naturally-occurring networks

and biological explanations have been proffered for several of these. The feed-forward

loop motif, for example, has been particularly well characterized by Mangan and other

members of the Alon group and has been suggested to be central to time-dependent

transcriptional regulation[17, 18].

1.2 Protein-Protein Interaction Networks

One class of biological network that is of particular interest to the Keating lab is

the protein-protein interaction network. In this type of network, each node repre-

sents a protein and each edge represents a direct physical interaction between two

proteins. Preliminary protein-protein interaction networks have been generated for

several species based on recently developed high-throughput interaction assays such

as yeast two-hybrid assays[28, 11], co-purification/mass spectrometry[10], and pro-

tein arrays[34]. In addition, these techniques-in conjunction with classical low-

throughput experiments-have been used to compile several large, public databases
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of protein-protein interactions including DIP[32], BIND[3], MINT[33], and MIPS[19].

An example network, generated from the DIP-CORE database (described in Chap-

ter 3), is shown in Figure 1-2.

1.2.1 Motivation for Computational Interaction Prediction

Despite the publicity that the above protein-protein interaction networks have re-

ceived, the high-throughput experiments from which they are all derived are incom-

plete and unreliable (up to 50% false positive rate), with little overlap in results (less

than 20% overall)[25]. Classical analyses can detect whether two particular proteins

interact with very high confidence. However, such experiments are very time consum-

ing and cannot possibly be used to test all half a billion possible interactions between

the -35,000 human proteins or even the -18,000,000 possible interactions among the

the -6,000 proteins of the much-studied yeast Saccharomyces cerevisiae.

Nonetheless, the construction of complete and accurate protein-protein interaction

networks is very important to modern biology and medicine. Proteins are vital to life

as we know it-they form the foundation of cellular structures, facilitate transport

of materials into and out of cells, and come together to regulate nearly all biological

processes. Even minor alterations in the interaction pattern between proteins can

lead to many critical malfunctions, including cancer[9, 6, 29, 24].

Fortunately, we believe that a growing wealth of tangentially-related information

about proteins can be integrated computationally to improve the confidence of high-

throughput techniques and, in some cases, suggest interactions not detected by these

methods. Specifically, we expect the function, cellular location, and physical struc-

ture of a protein to be useful predictors or contradictors of interaction. For example,

we would expect a higher likelihood of interaction between a phosphatase (a protein

that cleaves phosphate groups off of other proteins) and a protein with many phos-

phate groups than a protein lacking phosphates. Similarly, we would expect proteins

primarily located in the nucleus to be most likely to interact with other proteins lo-

cated in the same compartment. Moreover, certain classes of structures are known to

preferentially interact with certain other structures.

17
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Figure 1-2: Example protein-protein interaction network. Despite its visual appear-

ance, the network representing the protein-protein interactions in DIP-CORE (de-
scribed in Chapter 3) is quite sparse, with just 5,581 edges between 2,386 proteins.

Figure generated using Cytoscape[26].
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Several computational interaction prediction methods have already been devel-

oped based on integration of these types of information. All of these techniques seek

to merge many network representations of the above data into a single high-confidence

predicted protein-protein interaction network. The simplest approaches involve com-

puting either boolean or weighted pairwise unions of multiple networks, while oth-

ers involve more elaborate graph-theoretical methods like Jansen et al.'s Bayesian

network-based machine learning scheme[12]. While there is some evidenciary support

that these approaches improve the confidence of high-throughput experimental data

sets, no measure of general reliability has been presented. Recent work in the Keat-

ing lab has combined simple correlation analysis and a decision tree-based machine

learning scheme to produce the AVID integration technique described later in this

chapter[15]. Although AVID hasn't yet been applied to protein-protein interaction

prediction, data presented in Chapter 4 suggests its potential utility for exactly that

purpose.

1.3 Annotation Networks and Gene Ontology

In order to examine whether function and localization indeed correlate with inter-

action, we first need to collect such annotations and represent them in a manner

well-suited to comparison with the interaction networks. One solution is to model

the data as a set of networks, but, in doing so, we encounter three major challenges.

First, a common language (both vocabulary and grammar) is needed to describe these

protein properties. Second, a reasonably comprehensive source of such annotations is

needed. Finally, a method is needed for representing the annotations of an individual

protein as edges connecting it to other proteins.

Fortunately, the Gene Ontology (GO) Consortium provides a solution to the first

challenge by defining a standard framework and controlled vocabulary for annotation[2].

GO divides protein descriptions into three distinct ontologies: the Molecular Function

(MF) associated with a protein, the Biological Process (BP) in which it is involved,

and the Cellular Component (CC) in which it is known to exist. In each of these

19
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Figure 1-3: GO annotation for the yeast POP1 protein. The GO annotations of
POP1 illustrate the distinction between the Molecular Function, Biological Process,
and Cellular Component ontologies. Additionally, these descriptions exemplify the
hierarchical nature of the GO vocabulary at several levels of detail. Figure courtesy
of T. Jiang.

categories, GO also defines a broad hierarchical vocabulary to describe proteins in a

very general or a very specific manner, depending on the degree to which the protein's

operation is understood. An example of the annotation hierarchy for a single protein

is shown in Figure 1-3.

In response to the second challenge, many independent groups, working in col-

laboration with the GO Consortium, maintain GO ontologies for approximately two

dozen of the most commonly studied organisms including bacteria, yeast, nematodes,

plants, fruit flies, mice, rats, and humans. All of these data sets are well-documented,

regularly updated, and available for public download in a common format from the

GO website.

The representation of GO ontologies as networks, however, is not a practice ad-

dressed by the GO Consortium or any of its current collaborators. The most simple

and straightforward solution, which we have adopted, is to represent each ontology

(MF, BP, and CC) has an independent network. In each, we connect with an edge

20



every two proteins that share a common annotation at the most detailed levels. This

leads to fully-connected clusters of proteins that occasionally intersect at proteins

with multiple annotations. Our GO networks are not scale-free and are not expected

to contain meaningful network motifs. However, they do describe certain relation-

ships between proteins and, in this thesis, we test the extent to which they correlate

with protein-protein interaction networks. Such a correlation would make them useful

in computational interaction prediction.

1.4 Annotation Via Integration of Data (AVID)

The GO ontologies are far from complete in their description of proteins. Proteins that

have not been characterized in small-scale experiments often have no GO annotations

at all, while many others are described only at the coarsest levels. In fact, the

most detailed levels of the Saccharomyces cerevisiae MF ontology at the time of our

analyses covers only 40% of the species' known proteins, with BP covering 36% and

CC just 21%. To supplement these ontologies, we use a method developed by Jiang

et al. called AVID-Annotation Via Integration of Data[15].

1.4.1 The AVID Process

AVID is a four-stage process (shown in Figure 1-4) for predicting new GO annota-

tions by integrating several loosely-related genomic data sets. In particular, AVID

incorporates information about protein pairs generated by:

" High-throughput yeast two-hybrid assays

" Large-scale affinity co-purification and mass spectrometry

" DNA microarray co-expression analyses

" Global protein localization studies

" Paralog analysis based on sequence similarity.
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It is important to note that no small-scale experimental data is considered. In the

first stage of AVID, each of these genomic data sets, represented as a network, is

compared with the existing GO annotations to compute the conditional probability

of two proteins sharing a GO annotation given that they are connected by an edge

in the genomic network. In stage two, the genomic networks are weighted by their

normalized conditional probabilities and multiplied to generate a new network in

which each edge weight reflects the relative likelihood that an edge represents a real

shared GO annotation. Edges whose weights fall below a particular threshold are

eliminated completely. In stage three, the remaining edges, along with the conditional

probabilities from stage one, are processed by a decision tree-based machine-learning

scheme to further filter low confidence pairs. Finally, in stage four, AVID assigns a GO

annotation to each protein based on the annotation of the majority of its neighbors

in the finely-filtered network from stage three.

1.4.2 Results and Evaluation of the Technique

The yeast annotations predicted by AVID cover a significant percentage of currently

unannotated or coarsely annotated proteins. Combining the original GO networks

with the AVID-predicted networks markedly improves the annotation coverage for all

three ontologies. The new MF network covers 69% of known proteins (up from 40%),

BP covers 59% (up from 36%), and CC covers 57% (up from 21%). After combining

AVID and GO, 80% of known proteins are assigned an annotation in at least one of

the three ontologies.

Importantly, the AVID-predicted annotations also appear to be very reliable. Self-

consistency tests indicate that AVID's predictions for currently unannotated proteins

are correct 71%, 59%, and 71% of the time respectively for the MF, BP, and CC

ontologies. Furthermore, 75%, 80%, and 87% of AVID's refined predictions for MF,

BP, and CC, respectively, are consistent with the coarser existing annotations. In

many instances where AVID predictions do not match existing GO annotations (and

are, therefore, counted as incorrect) they are highly related to current annotations or

are experimentally accurate according to literature reports.
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Figure 1-4: The AVID functional prediction process. AVID predicts functional anno-
tations of proteins through a four-stage process. Colored nodes in the illustrated net-

works represent annotated proteins. In the first two stages, a product of conditional

probabilities is used to filter weakly correlated protein pairs from the complete pro-

tein correlation network. Stage three employs a decision tree-based machine-learning

scheme to further filter the lowest-confidence pairs. Finally, the remaining edges are

used to transfer GO annotations (and node coloring) to all involved proteins. At

each stage, the accuracy of edges improves as judged by tests on known proteins, at

a modest cost in coverage. Figure courtesy of T. Jiang.
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In Chapter 3, we use network comparison techniques to investigate the correla-

tion between protein-protein interactions and (1) original GO annotations, (2) new

AVID-predicted annotations, and (3) GO annotations supplemented with the AVID

predictions.

1.5 Structural Motifs and the Coiled Coil

In addition to the protein properties embodied in GO annotations, we expect that cer-

tain structural properties may also correlate with protein-protein interactions. Many

protein tertiary structures can be broken into modules called "motifs" or "domains".

Proteins frequently contain one or more of these motifs. Furthermore, many of these

motifs are known to bind specifically and directly to certain other motifs. There-

fore, it is reasonable to expect that pairs of proteins containing compatible binding

domains would be more likely to interact with one another than two random proteins.

While there are a wide variety of these known structural elements, one relatively

simple and well-characterized motif is the coiled coil. We estimate that this motif

exists in at least 4-5% of human proteins (Chapter 4). In many cases, coiled coils

directly mediate physical protein-protein interactions, and aberrations in coiled-coil

structure are known to cause several diseases, including a variety of cancers[9, 6,

29, 24]. Moreover, almost all coiled-coil interaction partners are other coiled coils,

and inter-coiled coil interaction specificity is reasonably well-characterized. Finally,

a variety of techniques (described later in this section) are available to predict the

presence of the structural motif entirely from protein sequence with considerable

accuracy[16, 5, 31, 8]. Together, these properties make the coiled coil an ideal candi-

date motif for correlating structure with interaction.

1.5.1 Physical Properties of the Coiled Coil

Coiled coils are composed of multiple a-helices wound around one another to create a

superhelical twist. Most coiled coils have been shown to consist of either two helices

(dimers) or three (trimers), although a few cases of higher-order coils have been
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observed. Importantly, the superhelical twist of the coiled coil forms a characteristic

seven-residue structural repeat, or heptad. The positions, or register, (designated as

a through g) define the location of each residue with respect to the other a-helices

involved in the motif. For example, positions a and d are buried within the helical

bundle while e and g are exposed on the outer surface. As is generally the case with

protein folding, the buried residues are usually highly hydrophobic in nature while

exposed residues are predominantly charged and polar.

1.5.2 Computational Identification of Coiled Coils

It is implausible for researchers to visually inspect each of the more than 2,300 known

protein structural families[22] for the presence of a coiled coil. Even if such a project

were undertaken, it is often difficult to distinguish short coiled coils from similar, non-

coiled helical packings by eye. As a result, several computational prediction programs

have been developed to assist in coiled-coil identification.

One program, SOCKET, can fairly accurately locate coiled coils in proteins for

which high-resolution structures are available[30]. SOCKET examines the a-helices in

proteins and evaluates the physical packing of their amino-acid side chains. However,

such structures have been solved for only a small percentage of proteins, reducing the

usefulness of SOCKET in proteome-wide identification of coiled coils.

Fortunately, several other programs have been developed that detect coiled coils

based solely on the amino acid sequence of the proteins in question. Such informa-

tion is generally available for all proteins in the growing number of organisms whose

genomes have been completely sequenced. Amino acid sequences are also known for

many other proteins that have been studied experimentally, but for which no structure

has been solved.

The most popular sequence-based prediction programs include COILS[16], Paircoil[5],

Multicoil[31], and MARCOIL[8]. COILS, the first such program, works by comparing

a sliding 28-residue window with a database of single-residue frequencies in known

coiled-coil sequences to identify regions of proteins most similar to known coils. Pair-

coil significantly extends this concept by scoring all pairs of residues in a sliding
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30-residue window with a similar database. Multicoil adds to the Paircoil program

the ability to detect trimeric coiled coils and distinguish them from dimers. Finally,

MARCOIL, the most recent program, uses a windowless hidden Markov model to

elucidate likely coiled-coil regions. The performance of these methods appears highly-

dependent on the databases used to train the algorithms. As a result, our internal

testing indicates that COILS and MARCOIL most accurately detect very long, well-

structured coils whereas Paircoil and Multicoil are more versatile and detect smaller,

less-obvious coiled coils more often than the others. Additionally, we find that COILS

generally produces a large number of false-positive predictions

In Chapter 4, we discuss the creation of a Coiled-Coil Database based on the

results of these sequence-based predictions. Using FNAC, we can construct networks

representing the presence of coiled coils in proteins. In the future, we plan to integrate

these networks with protein-protein interaction and annotation networks to identify

a set of previously uncharacterized interactions likely to occur and be mediated by

coiled coils.
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Chapter 2

A Framework for Network Analysis

and Comparison

This chapter details FNAC, our computational Framework for Network Analysis and

Comparison that we use to investigate correlations between a variety of protein net-

works in Chapter 3. Here we include discussion about the motivation for FNAC

and its capabilities, the core Java interfaces and abstract classes that can be used

to quickly create new network analysis and comparison routines, and the set of such

routines already implemented as part of the framework.

2.1 Motivation and Capabilities

FNAC was created to provide a general, powerful, and intuitive platform for exam-

ining relationships between large numbers of proteins. Networks are a particularly

suitable representation of such relationships because most properties of proteins can

easily be represented in such a format and also because such a format can be readily

interpreted by the human eye. For example, one of the properties we investigate is

the GO Cellular Component (CC) annotation. This annotation can be represented

for an entire genome by constructing a graph in which each protein is represented

by a node and an edge is drawn between every protein that shares a CC annota-

tion. The result is a graph consisting of several completely connected clusters that
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occasionally intersect at proteins annotated to exist in multiple cellular components.

Construction of the network is straightforward and, when intelligently layed out, its

visual representation is physically intuitive.

Furthermore, the representation of many different protein properties in a common

format allows FNAC to provide a substantial, shared foundation for the easy im-

plementation of many analysis and comparison techniques. FNAC greatly simplifies

creation of such operators by removing from the developer the burdens of network

import and export, network representation, logging, and configuration. This allows

the developer to focus on the analysis algorithm itself.

FNAC is provided as a set of Java packages that provide this foundation as well as

others that implement several common analysis and comparison techniques that we

found useful. In particular, it includes classes for analyzing and comparing networks

on the basis of their nodes' connectivity, pairwise relationships (edges), and network

motifs-all of which are demonstrated in Chapter 3. FNAC does not provide any

functionality for visualizing networks, but its file format and internal graph repre-

sentation (using the Graph INterface librarY, GINY) are compatible with the more

general bioinformatics platform Cytoscape[26]. This allows FNAC networks to be vi-

sualized and further analyzed within Cytoscape. Moreover, it simplifies the creation

of Cytoscape plugins based on FNAC.

2.2 Interfaces and Abstract Implementations

The core FNAC package consists only of interfaces and abstract implementations that

can be used to construct network analyzers, comparators, and integrators. Details

are available through the JavaDoc documentation in Appendix A, but this section

aims to provide an overview of the package and some of the software engineering

considerations involved with its design.
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FnacObject FnacException

AbstractSource btracterator

-----------Source Operator I

FileSource AbstractSingleSourceOperator AbstractMultiSourceOperator

SingleSourceOperator MultiSourceOperator

MySqlSource f f i . . .. . .

ConnectivityAnalyzer PairwiseComparator

MotifAnalyzer SimpleMerger

Figure 2-1: FNAC class and interface heirarchy. FNAC is designed to simplify cre-

ation of new network sources and operators by allowing inheritance of core func-

tionality. This hierarchy illustrates how provided utility classes like FileSource,
ConnectivityAnalyzer, and PairwiseComparator make use of this inheritance.

White boxes with solid borders represent concrete classes, while dashed boxes sig-

nify interfaces and grayed boxes indicate the abstract classes that implement them.

2.2.1 Common

At the root of the inheritance trees (shown in Figure 2-1) lies the FnacObject

and FnacException classes. Together, these provide the functionality shared by

all FNAC-related classes. FnacObject currently provides only a common logging

mechanism whereby output and error streams can be passed back and forth or shared

between multiple FNAC classes. However, the existence of such a completely shared

abstract class allows for easy future expansion of FNAC, at even the most funda-

mental levels. The FnacException class extends Java's built-in checked Exception

class and provides a basis for distinguishing all FNAC-related exceptions from those

exceptions arising from other codebases.

2.2.2 Data Sources

While an excellent graph representation package, the GINY library lacks many help-

ful features that can be added with the construction of a simple wrapper around
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a GINY graph. The Source interface and it's associated AbstractSource abstract

implementation act as just such a wrapper. First, they allow textual naming of each

data source. Second, they provide efficient binding of protein names to nodes in the

graphs. Third, they can be extended to associate networks with a persistent storage

location (such as a text file or a database table) and facilitate loading from and saving

to that location.

One of GINY's few major weaknesses is its lack of efficient node naming. In

general, GINY clients can address and manipulate graphs either by index or by object

reference. Every node and edge in a graph is assigned an integer index and, as

such, can be accessed via this index quickly and with minimal memory overhead.

Alternatively, a Node object can be created for each node and an Edge object can be

created for each edge. These objects can then be assigned names and used thereafter

to refer to each of the nodes and edges. While the latter method offers the abstraction

and extensibility benefits of a traditional object-oriented approach, it also incurs a

sizeable memory and performance overhead, especially when networks are as large as

whole-genome protein interaction networks or when multiple networks are resident

in memory simultaneously. Even more unfortunately, this object-oriented method is

required to assign textual names to nodes within the GINY framework.

The Source wrapper offers a solution to the node-naming problem by implement-

ing a simple name-to-index mapping. Each network is associated with a single map

associating every node index with the name of the protein represented by that node.

Thus, GINY graphs can be addressed by index and names can be assigned to nodes

without the extreme overhead of the completely object-oriented approach. Moreover,

the map is implemented using two unidirectional hashtable-based maps, allowing ef-

ficient lookups both by index and by name.

Finally, concrete implementations of the Source interface require methods for

loading and saving of the network from/to persistent storage. Since these are the

only two methods that need to be implemented to extend AbstractSource, new

data sources can be supported relatively easily. Two such sources, FileSource and

MySqlSource are provided as part of the fnac.sources package.
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2.2.3 Operators

The primary function of FNAC, to facilitate analysis and manipulation of the data

sources described above, is encapsulated by the Operator interface and other in-

terfaces inheriting from it. This interface, along with its abstract implementation

AbstractOperator, extends the logging functionality of FnacObject, providing a

model in which each object implementing Operator can be thought of as an operation

to be performed on a network or a set of networks. Every operation can be supplied

a flexible set of options, started, and queried for completion. After the operation has

completed, a client can interrogate the Operator for results in an implementation-

dependent manner, but this functionality is beyond the scope of the simple Operator

interface.

Because this interface is very general, management of an operation's target data

sources is left to two child interfaces as described below.

SingleSourceOperator

The SingleSourceOperator interface extends Operator to provide a complete chan-

nel for clients to associate a single data source with an operator. Many implementa-

tions of Operator may be designed to support only single data sources. In such cases

it is often convenient to have this restriction enforced by the interface to the class.

MultiSourceOperator

The MultiSourceOperator interface extends Operator to support the general case

where many data sources can be associated with a single operation. Such support

is required for all network comparators, integrators, and other operators which, by

their very nature, necessitate consideration of more than one network. In addition,

it is often beneficial for even simple analyzers that operate on a single network at

a time to implement MultiSourceOperator. Doing so allows a single instance of

the operator to analyze many networks at once with a common set of options and a

common memory context.
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2.3 Provided Packages

This section describes a set of packages we've developed on top of the FNAC core

components for the types of analyses we conducted in Chapter 3. These packages

include data source connectors as well as operators based on node connectivities,

pairwise (edgewise) relationships, and network motifs. Overviews of these tools are

provided below and detailed JavaDoc documentation is included in Appendix A.

2.3.1 sources

The fnac.sources package provides concrete implementations of the Source inter-

face for two different types of data sources. The first, FileSource, allows networks

to be loaded from and saved to what Cytoscape refers to as "raw interaction files."

These are simple text files where each line represents an edge in the network and

consists of two tab-delimited node names. The text files' locations are represented as

Java File objects, extending those objects' multi-platform support to FNAC clients.

The second concrete Source implementation, MySqlSource, allows networks to

be loaded from SQL queries on MySQL database tables. Queries are specified by

the hostname of the server, the TCP port number of the listening MySQL service,

the database to be used, the SQL SELECT statement to be issued, and, optionally,

a username and password. The result set of the specified query is processed by

treating the first two columns as names of interacting nodes, just as in the raw

interaction file above. Currently, MySqlSource does not support saving of networks

into MySQL databases and throws an Unsupported0perationException when such

a save is attempted. This functionality may be added in the future, however, by

allowing a client to specify the SQL INSERT command to be executed.

2.3.2 connectivity

The fnac. connectivity package provides a concrete implementation of the

SingleSourceOperator interface based on simple analysis of node connectivities.

This class, Connect ivityAnalyzer, examines the connectivity of every node in its
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associated network. Based on this analysis, it can provide the average connectivity,

per-node connectivities, connectivity distributions, and a list of the hubs in the net-

work (where we define a "hub" to be any node whose connectivity is more than twice

the network average).

2.3.3 pairwise

The fnac.pairwise package provides two concrete implementations of the

MultiSourceOperator interface based the connections between individual pairs of

nodes. The PairwiseComparator operator compares a set of networks, providing

methods for retrieving the number of overlapping nodes, the number of overlapping

edges, and overlap percentages. The SimpleMerger class-which is actually used

by PairwiseComparator-can generate all possible intersections among a set of net-

works.

2.3.4 motif s

The fnac .motif s package is substantially more complex than any of the other FNAC

packages, as it considers graphs in the context of network motifs. While this pack-

age contains supporting classes (i.e., Motif Shape), it currently contains only a single

concrete implementation of SingleSourceOperator called MotifAnalyzer that de-

tects and remembers every motif up to a specified size within a single network. After

analysis, this operator provides methods for iterating over all motifs, querying for

the presence of a motif among a specific set of nodes, and retrieving the number of

occurrences of motifs of different shapes.

Unlike the previous packages, the implementation of this package is not straight-

forward. Below we provide a summary of the data structures, algorithms, and per-

formance considerations involved with fnac .mot if s.
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Data Structures

Representation of the shape of network motif was the first major issue addressed in

the design of this package. Previous implementations such as MFinder have assigned

shapes numerical identifiers on the basis of their adjacency matrices. This required

that all such shapes had to be enumerated at prior to execution and "hard-coded" in

the program for the purposes of pattern matching. Obviously, this greatly restricts the

size of motifs that can be detected. Moreover, the nodes of a motif can be reordered in

the adjacency matrix without impacting the logical shape of the motif. It follows that

each logical shape can be represented by a number of different adjacency matrices-

one per linear permutation of the involved nodes. The number of these matrices

for each shape grow exponentially with the size of supported motifs, hampering this

method's scaling to motifs greater than four nodes.

The alternative representation we developed for this package involves the notion

of sub-motifs or "motif children." Specifically, we propose that each n-node motif

can be uniquely identifed by the shapes of the n-1-node sub-motifs. There are n

such children, generated by independently removing each node from the original mo-

tif. It is precisely the number of occurrences of each shape child that defines the

shape of the parent motif. Thus, our shape representation scales linearly, rather than

exponentially, with the size of the motif.

The implementation of our representation takes the form of the Motif Shape class.

Objects of this class are instantiated through a singleton-like factory pattern that

ensures only one instance of each shape to minimize memory usage and processor

time required for object creation. As defined by our representation, each instance

of the class contains a count of the number of motif children assuming particular

shapes. However, since this structure is defined recursively, a "base case" shape is

necessary. We consider three-node motifs to be such root shapes since, in the case of

our undirected networks, there are only two possible three-node motifs: partially- and

fully-connected. The former are colloquially referred to as "TRI" since the appear

graphically as triangles, while the latter are called "ELL" since they look like the
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letter 'L'.

Motif storage was a second challenge we encountered during implementation. Even

relatively small Saccharomyces cerevisiae networks can have tens or hundreds of mil-

lions of four-node motifs. Thus, every byte of memory required to store a motif can

cost scores of megabytes over an entire network. In light of this situation we store

each motif in a hash-based map of node sets to MotifShape objects. Because each

object reference is effectively a single memory address, storage of the node sets is the

most expensive factor. To minimize the storage costs for node sets, we represent each

set as a primitive array of shorts with each entry representing a node's index in the

network. The use of shorts instead of ints restricts the use of MotifAnalyzer to

networks of no more than 32,768 nodes, although this could be expanded to 65,536

by utilizing both positive and negative index values. Using shorts also reduces the

size of each node set array, although exact savings are platform-dependent and vary

with the size of motifs considered. Further savings could be achieved by reducing the

overhead associated with the Java array construct, either by creating a Java wrapper

around a C construct or by cleverly consolidating all of the node sets into a single,

large Java array.

Motif Detection Algorithm

The algorithm we've developed for enumerating network motifs can be broken into

two consecutive stages: set detection and shape identification. The former employs a

simple breadth-first search, modified to prevent revisitation of node sets, to identify

all sets of connected nodes up to a client-specified motif size. Then, after all node sets

have been identified, the shape of each set is determined, starting with the three-node

("base case") motifs. Once all three-node sets have been assigned a shape, four-node

shapes can be determined by performing a series of lookups of three-node shapes.

The process continues until the largest motifs have been assigned shapes.
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Realistic Performance Considerations

Unfortunately, even with careful design and implementation, the problem of motif

detection still scales exponentially with network size and density. While this does lead

to lengthy computations, the limiting factor for our algorithm is memory availablity.

For example, some Saccharomyces cerevisiae networks can contain approximately

5,000 nodes and 25,000 edges. Detection of three- and four-node motifs for such a

network may only take a few hours on a single currently-high-end CPU. However, the

detection requires more than 3 GB of memory, much more than is often available for

such a computation. One obvious (and naive) solution is to write all the motifs to

disk as they are found. Unfortunately, since the algorithm relies on frequent accesses

of the node-set-to-shape map, such a solution degrades performance by many orders

of magnitude.

Our solution to this storage problem involves splitting the large motif map into

many smaller maps. By intelligently dividing the map, first by motif size and then by

the lowest node index in each node set, we can effectively concentrate successive map

lookups within a single submap. Moreover, we store each map on disk but maintain a

cache of recently accessed maps in memory. The cache grows with available memory

and implements a least-recently used (LRU) replacement policy. Disk copies of the

maps are only updated when the map is dropped from the cache and at the end of

operator execution. Through this technique, we effectively maximize memory usage

and performance without restricting support for large or dense networks.
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Chapter 3

Applying FNAC to Annotation

and Interaction Networks

In this chapter we apply several of FNAC's functionalities to the analysis and compar-

ison of several protein annotation and protein-protein interaction networks introduced

in Chapter 1. Specifically, we begin by investigating these networks on an individual

basis to develop a better understanding of the nature of their contents. Then, we

examine how different categories of annotation correlate with one another as well as

with known protein-protein interactions.

3.1 Introducing the Data Sets

In total, this chapter describes the evaluation of 19 distinct networks. Logically, we

separate these networks into two categories: annotation sources derived from func-

tional descriptions of proteins and interaction standards derived from actual interac-

tion experiments. The 15 annotation sources can be further divided into five sets of

networks:

* GO - One network derived from each of the three GO ontologies (MF, BP,

and CC) for the yeast Saccharomyces cerevisiae. Only proteins classified at the

most detailed levels in the ontologies are included in the network, and edges
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are formed in the network only between proteins that share these most-detailed

annotations.

" AVID-GO - AVID predicts its own MF, BP, and CC annotations from a variety

of data (described in Chapter 1). AVID networks consist of edges between

proteins that share AVID-predicted annotations. Only proteins present in the

corresponding original GO networks are included in AVID-GO. Since AVID-GO

networks contain only AVID-predicted annotations, these often differ from GO

annotations of the same proteins.

" AVID-New - Derived from the same AVID-predicted annotations as AVID-GO,

but proteins are only included in the networks if they were not described in

the corresponding original GO ontology. Thus, AVID-New contains predicted

annotations of only previously unannotated proteins.

* GO Plus AVID-New (GPAN) - The union of GO and AVID-New. These net-

works can be thought of as the original GO networks supplemented with AVID's

predicted annotations for proteins not covered by GO.

" AVID-GO Plus AVID-New (AGPAN) - The union of AVID-GO and AVID-

New. These networks amount to the complete AVID-predicted MF, BP, and

CC ontologies.

Each of these five sets consists of an MF, BP, and CC annotation network. As

described in Chapter 1, nodes in these networks represent proteins and each edge

represents an annotation common to both involved end points.

In addition to the annotation sources, we also consider four interaction standards.

These are protein-protein interaction networks described by DIP[32], DIP-CORE[7],

and both the "Gold-Standard Positives" and "Gold-Standard Negatives" of Jansen

et al[12]. The DIP network represents a fairly large set (15,160) of direct interactions

suggested by a variety of experimental assays, both high-throughput and small-scale.

DIP-CORE is a subset of DIP consisting only of those interactions that are supported

by small-scale experimental evidence, have known paralogous interactions, or appear
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in at least two independent studies. The Jansen positive network is derived almost

directly from the MIPS complexes catalog[19], while the negatives are constructed

from proteins reported to localize to different subcellular compartments. For efficiency

in our analyses, we selected a random subset of 200,000 of the 2,700,000 edges in this

set of Jansen negatives.

3.2 Connectivity Analysis

Before inspecting how all of these data sets compare with one another, it is worthwhile

to examine each individually in order to gain further insight into the data it represents.

We begin by considering simple connectivity statistics as introduced in Chapter 1.

In particular, we generate the connectivity distribution and average connectivity for

each graph.

3.2.1 Methods

All of the analyses in this section were performed using the FNAC Java packages.

Each of the data sets, represented on disk as raw interaction files, was loaded into

memory as an instance of FileSource and one instance of ConnectivityAnalyzer

was created. Each network was then passed to the ConnectivityAnalyzer via a call

to the latter's setSource() method and analyzed by an invocation of operate().

The connectivity distribution of the network was obtained through a call to the

analyzer's getConnectivityDistribution() method and the average connectivity

through getAverageConnectivity(.

3.2.2 Results

The connectivity properties observed for each of the networks are consistent with the

manner in which the graphs were constructed. Each network's statistics are described

in detail below.
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Annotation Sources

All three GO networks (MF, BP, and CC) exhibit extensive clustering, as shown

in Figure 3-1(a). Instead of the exponentially decreasing distribution typical of the

scale-free "biological" networks, these distributions take the form of a collection of

discrete peaks. There is a slight decaying trend at very low connectivities, but this

is generally dominated by spikes of linearly-increasing magnitude. Each of these

large peaks represents a single, fully-connected cluster of proteins sharing a particular

annotation, while the much smaller peaks at high connectivities represent proteins

with multiple annotations and, therefore, connections to multiple clusters. From the

average connectivities, ranging from 28.2 to 75.6, we can infer the typical number of

proteins sharing an annotation. However, we can also see from the large peaks that

there are a few annotations shared by many proteins (as many as 300 in MF).

In contrast to their GO counterparts, the AVID-GO networks exhibit largely de-

caying connectivity distributions (Figure 3-1(b)). While a few indications of cluster-

ing appear in the MF and BP peaks at connectivities as high as 80, an exponential

decrease uncharacteristic of annotation networks dominates the distribution. This

effect, which reduces the average connectivities to between 8.0 and 17.2, results from

the generally sparse nature of the networks used by AVID to make its predictions.

None of the AVID training networks are nearly as clustered as GO.

Even more atypical of annotation networks, the AVID-New graphs exhibit almost

pure exponential decay (as shown in Figure 3-1(c)) and average connectivities between

8.8 and 13.1. This is consistent with the fact that these are not complete annotation

networks, but rather supplements to other annotation networks. As such, these lack

the majority of the edges in each shared-annotation cluster. This distribution is also

consistent with the exponentially-decreasing nature of the data sets used by AVID to

generate this network of novel and refined predictions.

Finally, the connectivity distributions of both the GPAN and AGPAN networks

(Figure 3-1(d-e)) are, unsurprisingly, consistent with their constituent graphs. That

is, the GPAN sets exhibit slightly more exponential decay than their GO components
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Figure 3-1: Connectivity distributions of source and standard networks. (a) The dis-
tribution of node connectivities for the three original GO networks (MF, BP, and CC)
show sporadic peaks along the line y = x, indicating dense clustering. (b) Although
significantly less clustered than their GO counterparts, the AVID-GO networks retain
some element of clustering as evidenced by the substantial signal at connectivities as
high as 75. (c) AVID-New networks exhibit purely exponential decay and minimal
clustering. (d-e) Both the GO and AVID-GO networks retain much of their distinct
appearances when supplemented with the AVID-New networks. (f) The interaction
standards show very unique connectivity distributions. While DIP and DIP-CORE
demonstrate sharp exponential decays, the Jansen gold-standard positives contain
several large, dense clusters, and the Jansen gold-standard negative network is ex-
tremely dense on the whole.
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but retain most of the cluster-induced peaks, especially at higher connectivities. Simi-

larly, the distributions of the AGPAN networks largely mimic those of the AVID-New

networks, with the addition of a few peaks corresponding to the most significant

peaks in the AVID-GO networks. The average connectivities of both data sets also

fall between the average connectivities of their components.

Interaction Standards

As illustrated in Figure 3-1(f), both the DIP and DIP-CORE interaction networks

exhibit the classic exponential decay and low average connectivity expected of scale-

free biological networks. The average connectivity of DIP is just 6.4 and that is

further reduced to 4.7 for DIP-CORE. Moreover, both distributions peak with more

than 25% of their proteins carrying a connectivity of one, while just 3.10% of DIP

and 0.80% of DIP-CORE proteins have connectivities above 30.

Unlike the previous two networks, the Jansen Gold-Standard Positive graph more

closely resembles a clustered annotation network than an interaction network. The

average connectivity (18.9) is significantly higher than that for DIP and, although

the most common connectivity is still just one, only 11% of proteins are connected

in such a fashion. Furthermore, the connectivity distribution shows a pattern of

increasingly large peaks, not unlike those seen in the GO Annotation Source. All

of these observations are consistent with the fact that, in essence, this interaction

standard actually is an annotation network similar to GO CC. It doesn't represent

known direct interactions, but rather a shared complex assignment which is inherently

clustered in nature. Connectivity analysis alone demonstrates this network's poor

suitability as our "gold-standard" for direct protein-protein interactions.

Our subset of the Jansen Gold-Standard Negative network is fundamentally dif-

ferent than all of the previous networks. This graph is not scale-free or even highly

clustered. It is simply dense, as expected, since most protein pairs do not interact.

The average connectivity is 137.8 and even the least connected of the 2,702 nodes

neighbors 81 other nodes. Moreover, the distribution resembles nothing we have

previously encountered. Instead, it appears tri-modal, with three very broad peaks
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occurring around the connectivities of 100, 145, and 195.

3.3 Correlation Between Sources

Now that we have established a firmer understanding of the inherent properties of the

individual networks, we can begin examining how they compare with one another.

In the next section we will discuss how the annotation sources correlate with each

interaction standard, but this section focuses on the relationships among the MF,

BP, and CC networks within each of the five annotation sources. Although these

three networks are purported to describe distinct properties, we expect them to be

biologically related. For example, intuition suggests that proteins involved in the same

biological process should have a higher probability of localizing to the same cellular

component than two random proteins. Moreover, the three ontologies may well be

derived from the same data sources and, thus, not independent. This codependence

is certainly true for the AVID predictions since the same training networks were

incorporated into the prediction of all three ontologies, albeit with different weights.

3.3.1 Methods

For each pair of networks we examined, we computed the number of nodes common

to both networks, the number of edges in each network completely incident on the

common nodes, and the percentage of each network contained in the other-all with

a few very simple calls to FNAC.

As in the connectivity analysis, each source network is first loaded into mem-

ory as an instance of FileSource and a single instance of PairwiseComparator is

created. We then loop over each set of annotation networks and, within each, all

three possible pairs of networks (MF/BP, BP/CC, and MF/CC). At each iteration,

PairwiseComparator's setSources() method is used to specify the current pair of

networks to be analyzed and the operate() method is invoked to perform the pair-

wise comparison. Upon completion, the intersection of the two source networks is

obtained through a call to get OverlappingSource () and we count the nodes and
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edges (Eboth) in the resulting graph, yielding the number common to both networks.

The number of edges, Ei,comm, in each source incident on the common nodes is then

obtained through two calls to getEdgeCountOnCommonNodes 0. From the count of

the overlapping edges and edges on common nodes, we compute the percentage, Pi,

of network i's common node edges in the overlap as follows:

P = Eicomm (3.1)
Eboth

3.3.2 Results

The observed correlations within each set of annotation sources vary from less than

20% (in the case of the AVID-New CC and BP networks) to nearly 100% (for the

AVID-GO MF and CC). Among the data (shown in Figure 3-2), we believe several

results are particularly helpful in understanding the nature of the networks and discuss

these below.

First, we observe a very strong dependency of the GO CC network on GO MF.

That is, for the 728 proteins described in both ontologies, the CC network is almost

entirely a subset of MF. Interestingly, though, these CC edges comprise less than

a third of the MF network. These results seems to indicate that, for the proteins

described in both ontologies, almost all CC annotations are derived directly from

the MF annotatons. Notably, AVID discards 91% of MF edges but just 55% of CC

edges when constructing the AVID-GO networks. Among the 589 proteins that are

still annotated in both of these ontologies, the MF network is now almost entirely a

subset of the CC! One likely explanation for this role reversal is the emphasis AVID

places on MIPS complex formation when predicting both MF and CC. Intuitively,

one would expect MIPS complexes to correlate well with GO CC annotations since

both are purported to represent the same type of data. Thus, MF and CC edges that

overlapped would have a higher retention rate than those that didn't. Indeed, the

data shows just such a trend.

Second, we notice that in GO and, to a lesser extent, AVID-GO, the BP and CC

networks are surprisingly similar. Even though, on the whole, the GO BP network
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Figure 3-2: Correlation between the three networks (MF, BP, and CC) of each source
category. Each of the five source categories shows varying degrees of correlation
among its three networks. Interestingly, both GO and AVID-GO exhibit significant
similarity betweeen their MF and CC networks.
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consists of nearly twice as many nodes and edges as CC, edges between those proteins

in both ontologies are highly correlated. To be precise, 6,398 edges overlap among

the 9,526 in BP and 7,888 in CC between common nodes. This unexpected degree of

similarity obviously indicates a dependence between the annotations in each ontology,

although the directionality of this dependence is less clear.

Third, we observe generally decreased correlation among the AVID-New networks

when compared to their GO counterparts. Consistent with the goal of AVID to expand

the coverage of GO, we observe significantly higher numbers of proteins involved in

each of the AVID-New networks than the raw GO networks. This, in turn, leads to

an increase in the number of overlapping nodes and edges between those nodes. On

average, each pair of AVID-New networks had 205% more nodes in common than

the corresponding GO pair and each network had 58% more edges incident on these

common nodes. The number of edges overlapping each pair of networks, however,

did not increase proportionally, leading to the observed decrease in correlation. This

is not surprising or a sign of low accuracy on the part of AVID, however-AVID

networks are significantly less dense and clustered than those of GO, meaning that

each AVID-New edge is much more independent of other edges.

Finally, the GPAN and AGPAN combination networks are clearly influenced by

both of their constituents. This influence is most lucid in AGPAN, where the corre-

lation between each pair of networks actually lies between the associated correlations

in AVID-New and AVID-GO. Although less clear, this dual-influence is also present

in GPAN, where the relative rise and fall of correlations roughly mirror the peaks ob-

served in AVID-New and GO. Neither of these results is surprising given that GPAN

and AGPAN are each the union of two disjoint data sets.

3.4 Correlation of Sources With Standards

In this section, we move a step closer to predicting new protein-protein interactions

by investigating the relationships between our annotation sources and interaction

standards. To this point, we have focused on understanding the nature of each of our
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19 networks, both through connectivity analysis of individual networks and pairwise

comparison of annotation sources. Here, however, we begin to asses the value of

each annotation network in predicting known protein-protein interactions. To this

end, we correlate each of the networks (MF, BP, and CC) and network intersections

(MFnBP, MFnCC, BPnCC, and MFnBPnCC) of the annotation sources with each

of the interaction standards, using much of the same FNAC functionality as in the

previous section.

3.4.1 Methods

As in both previous analyses, all of our networks are represented in memory as

FileSources. For each set of annotation networks, we create an instance of

SimpleMerger and pass it all three of the relevant networks. We then invoke the

operate 0 method of the SimpleMerger to generate the seven possible intersections

which we then retrieve through getAllIntersections(). We iterate over these in-

tersections and, for each, use a PairwiseComparator just as in the previous section

to generate overlap statistics with each of the interaction standards. The statistics

generated for each comparison include:

" Common Nodes - the number of nodes present in both the source and standard

networks

" Trimmed Edges - the number of edges in each network among the common

nodes

" Overlap Edges - the number of edges present in both networks

" Accuracy - the percentage of trimmed source edges in the set of overlap edges

" Coverage - the percentage of trimmed standard edges in the set of overlap edges

3.4.2 Results

The most obvious result of this analysis is that the correlation between our anno-

tations sources and interaction standards varies quite widely by both source and
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standard. To simplify presentation, we divide discussion of our observations by inter-

action standard below.

DIP and DIP-CORE

Consideration of just the GO annotations and DIP interactions is a good starting

point for understanding how correlation varies by combination of source networks

used. As shown in Figure 3-3, the GO CC network alone is more than twice as

accurate in its prediction of DIP as either MF or BP. This is most likely a statistical

embodiment of the fact that, at the detailed levels included in our analysis, GO CC

effectively represents protein complexes where at least several of the proteins are

known to physically interact. Moreover, correlation of any of MF, BP, or CC can be

improved, often dramatically, by filtering it with either of the other networks. For

example, only 6.79% of trimmed MF and 7.18% of trimmed BP edges are present

in DIP. However, this accuracy is increased to 26.79% when edges in both MF and

BP are considered. Similarly, an accuracy of 34.52% is seen in the overlap between

BP and CC, and the intersection of all three networks yields an impressive 42.61%.

Given the incompleteness of DIP, such a high accuracy is remarkable and strongly

suggests that GO alone may be a very powerful predictor of interaction.

Also intriguing are the differences in correlation between the GO and AVID-GO

annotation sources. First, all seven AVID-GO networks correlate better with DIP

than their GO counterparts. This is expected since AVID-GO is predicted, at least

in part, based on some of the same high-throughput experiments used to generate

DIP. However, the AVID-GO networks also all correlate better with DIP-CORE than

those in GO. This result is less expected since, in its prediction, AVID considers

none of the additional evidence required of edges in DIP-CORE. One explanation for

the improved performance under DIP-CORE is the simple fact that DIP-CORE is a

subset of DIP, under which AVID-GO also performs better. This hypothesis does not

directly address the fact that AVID-GO accuracy is actually better under DIP-CORE

than DIP (unexpected if DIP performance is the primary contributor to DIP-CORE

performance).
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Figure 3-3: Correlation between source networks and both DIP and DIP-CORE. The

GO and AVID-GO CC networks correlate particularly well with both DIP networks.

In general, the correlation of a source network with the standards is improved by
intersection with another source network (e.g., MFnCC is more accurate than CC

alone). Also, accuracy of GO and AVID-GO is higher in DIP-CORE than DIP, while
that of AVID-New is actually lower.
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This latter observation, however, is consistent with the improved correlation of

the original GO networks with DIP-CORE over DIP. The cause of this improvement,

though, is uncertain. Since the overlap between each GO network and DIP-CORE

is a subset of the overlap between the same network and DIP, the former must be

selectively enriched for correlation. This is particularly true for MF and CC, which

are enhanced much more in DIP-CORE than BP. One possible explanation is that

because DIP-CORE proteins are generally more well-studied, their GO annotations

are more likely to be based on high-confidence small-scale experimentation rather than

a single, error-prone high-throughput assay. Another possible explanation, particular

for the CC networks, is that the reduction in the number of overlapping proteins

between CC and DIP-CORE eliminates many of the non-interacting members of the

CC complexes. This node reduction, in turn, removes an exponential number of

edges from each of the remaining nodes, shrinking the accuracy denominator, and

significantly improving correlation.

Despite the obvious ability of AVID to enhance correlation between GO and both

DIP standards, the AVID-New predictions exhibit notably less correlation. It is

certainly possible that this poor correlation is due to incorrect predictions on the part

of AVID. However, given the previous analysis of the method's performance, it seems

much more likely to be an embodiment of the fact that proteins newly annotated

by AVID are much less well-studied. Since the relationships between these proteins

were not examined closely enough to be described in GO, it would follow that they

are also unlikely to be described in DIP and, especially, DIP-CORE. Indeed, unlike

the GO and AVID-GO sources, the accuracy of AVID-New decreases substantially in

DIP-CORE over DIP.

Jansen Gold-Standard Positives

Even the most cursory first glance at the results in Figure 3-4 reveals that all of our

networks correlate extremely well with the Jansen Gold-Standard Positives network.

In particular, GO CC alone displays 97.56% accuracy and 95.15% coverage in pre-

dicting the edges of this standard on the 575 overlapping proteins (the standard itself
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only contains 871 proteins). Combining GO CC with GO MF further improves accu-

racy to 99.54% and coverage to 97.04%. These observations are certainly consistent

with the fact that the standard was generated by filtering the MIPS complex data, as

MIPS and GO CC essentially represent the same data. However, they do also clearly

demonstrate that this Gold-Standard Positive network cannot be used as a reliable

metric of predictive value.

Jansen Gold-Standard Negatives

As expected and illustrated in Figure 3-4, none of our annotation sources correlate

appreciably with the Jansen Gold-Standard Negatives network, connecting proteins

previously reported to localize to different subcellular compartments. However, sev-

eral networks (namely CC and MFnCC of both GO and AVID-GO) show exception-

ally little correlation with the negative standard. This is particularly expected since

the standard consists of pairs of proteins localized to wholly different parts of the cell

while the CC networks consist of pairs known to group together at the finest level.

3.4.3 Predictive Value

As an extension of the correlation data described above, compute a Bayesian "likeli-

hood ratio," as in Jansen et al., to provide a single measure of the predictive value of

our annotation sources[12]. For a given network feature f, this ratio, L, is defined as:

Pr(f 1positive)
Pr(f negative)

Based on the previously detailed nature of our interaction standards, we define DIP-

CORE to be our "gold-standard positive" set and the Jansen Gold-Standard Nega-

tives to be our "gold-standard negative." Therefore, the likelihood ratio for a given

network is its previously computed coverage of DIP-CORE divided by its coverage

of the Jansen Gold-Standard Negatives. Note the usage here of coverage instead of

accuracy.

Figure 3-5 shows the likelihood ratios for each of our annotation network intersec-
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Figure 3-4: Correlation between source networks and the Jansen gold-standards.

(a) Since the gold-standard positives are derived from MIPS complex data, it is not

surprising that they correlate almost perfectly with GO CC. (b) As expected, none of

the source networks correlates appreciably with the gold-standard negative network.
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Likelihood Ratios of Sources (Compared with DIP-CORE and the Gerstein Negative Standard)
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Figure 3-5: Bayesian likelihood ratios for each annotation source's prediction of inter-

action. The high likelihoods of several GO and AVID-GO networks suggest that these
sources may be very useful in the prediction of unknown protein-protein interactions.

tions. Clearly, given our definitions, the best predictor of interaction is the AVID-GO

MFnCC network with a ratio of 531. Intuitively, this means an edge found in this

network is 531 times as likely to represent an interaction as not. Even if we discard

all CC-based networks because of their known anticorrelation with the gold-standard

negatives, significant likelihood ratios are still observed. The GO MFnBP network,

for example, exhibits a ratio of 159, and edges in the AVID-GO MF network are

279 times as likely to represent interactions as not. Although below most of those

associated with GO and AVID-GO, the likelihood ratios for the AVID-New networks

are still significant, varying between 57 and 107.

From all of the data described above, we conclude both that GO annotations can

be highly suggestive of protein-protein interactions and that AVID can successfully

enhance the predictive value of the GO MF and CC annotations.

53



54



Chapter 4

The Coiled-Coil Database (CCDB)

This chapter describes the Coiled-Coil Database (CCDB), our central repository for

information we collect regarding coiled coil containing proteins. It includes discussion

on the requirements that led to its creation, the design of database itself, our approach

to automating database generation and maintenance, the web service programmatic

interface, and the user-friendly HTML front-end.

4.1 Motivation for a Database of Coiled Coils

Because the coiled-coil structural motif is studied by many different research groups

around the world and it is also commonly encountered by scientists who aren't ex-

pressly studying it, information about proteins containing the motif is often scattered

throughout many different resources. Since the Keating lab concentrates many of

their efforts on coiled coils, it became clear that a single, easily searchable repository

of relevant information would be very useful in supporting a variety of sequence-,

structure-, and function-based calculations. In particular, such informations includes

textual annotations, Gene Ontology classifications, and cross-references to other on-

line resources for coiled coil-containing proteins.

At the core of the database is information about which proteins contain coiled coils

in the first place. Unless a protein's structure has been solved by nuclear magnetic

resonance (NMR) spectroscopy or x-ray crystallography, we cannot be absolutely cer-
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tain whether a protein contains a coiled-coil motif. In these majority of cases, we rely

on sequence-based prediction programs such as COILS[16], Paircoil[5], Multicoil[31],

and Marcoil[8]. None of these programs perfectly predicts coiled coils, however, but

instead generates scores for the probability of a coiled coil existing in different regions

of the protein in question. For a variety of genomic analyses, it can be extremely

useful to have quick access to the scores of every region of every protein.

The CCDB allows us to study the properties of coiled coils across entire genomes,

rather than focusing on a few particular well-understood families as has been done

in the past. Statistics regarding the length of coiled coils, their distribution across

different functional families, and their involvement in known biological pathways can

be obtained through quick and simple SQL queries. Moreover, computational or

experimental studies of protein interactions can potentially be enhanced by extracting

coiled-coil information for the involved proteins. As an example, we plan to use the

CCDB in conjunction with our network analysis framework to correlate the presence

of coiled coils with interaction and to identify potential-but currently unknown-

interactions mediated by coiled coils. In the future, this approach can also be extended

to other protein structural motifs.

4.2 Database Design

Before we could begin design and construction of the database itself, we needed

to select a relational database management system (RDBMS) to serve as our pri-

mary platform. Although there are many more sophisticated and higher-performing

databases available, we chose MySQL 4.0. MySQL provides good support for most

of the recent Structured Query Language (SQL) standards and is well-documented.

Compared to other packages, it is also straightforward and easy to learn. Above all,

though, it is a very commonly used, freely available, and open-source product, making

it ideal for academic use.
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4.2.1 Contents

Another key design decision involved in construction of the CCDB was the choice

of exactly what content it should contain. On the conservative extreme, we could

mine from external databases only information specifically pertaining to coiled coils-

if a protein doesn't contain the motif, we wouldn't keep any information about it.

Conversely, we could extract (and consolidate locally) every bit of relevant information

about every protein we encounter. The former approach would require minimal local

storage and creation effort. However, it would also provide only the barest minimum

of functionality, precluding complex queries and requiring additional searching of

public information repositories for any details. The latter approach, on the other

hand, would require significant local storage and extensive maintenance, but would

allow for easy queries involving almost any property of a protein. In the end we chose

to compromise between the two extremes and include all information that would be

regularly queried for large datasets and nothing more.

The data type most central to our work is the protein. We uniquely identify

each protein by the species in which it is found and its amino acid sequence. Many

websites maintain detailed information for each protein, but much of this data is often

duplicated between sites or irrelevant to our research. Therefore, from each site of

interest, we chose to incorporate into the CCDB only a simple textual description

from each data source as well as enough information to query the website at a later

time for more details-namely the "ID" or "accession number" given to the protein

by each website.

A second data type critical to the success of the CCDB is the coiled coil itself. Each

coiled coil has many associated properties: the protein within which it is contained,

its location in the protein, the program that predicted its presence, the program's

confidence in its own prediction, and the predicted register of the coiled coil.

Additionally, supporting information about each data source is also incorporated

into the CCDB. This includes a textual description of each data source and the URLs

required to query each website for more information.
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4.2.2 The Table Structure

The schema for this database (shown in Figure 4-1) is designed to maximize flexibility,

expandability, and performance while minimizing redundancy and wasted storage. In

general, unsigned integers are used as keys for indexing into tables containing more

information. For example, in the proteins table, we do not store the full species name

"Homo Sapiens" (12 bytes) for each entry, but rather just the single-byte numerical

identifier of the species. This reduces storage and increases performance, each by an

order of magnitude.

species
spec_id
spec0name

tinyint(3) unsigned

varchar(50)

protid int(10) unsigned Auto Increment

.spec id tinyint(3) uns igned
sosroeid tinyint(3) unsigned

ref_desc text Null Allowed

protse text

prot updated timestamp (14) Null Allowed

protcreated datetime

f coils
p00019 jot (0) so-gtso

os.f d jot (10)
xrefJid

_prot_id
xref-source id

refid
ref-desc

xr=L updated

sourceidt

source_name
source-desc

source-home-url
source_ref url

int(10)
int (10)
tinyint (3

text

text

timestamp(14)

source
tinyint (3)

varchar(50)
text

text
text

unsigned Auto Increment

unsigned

unsigned

Null Allowed

Null Allowed

unsigned Auto Increment

Null Allowed

programs
program_id tinyint(3) unsigned Auto Increment

program_name varchar(50)

Figure 4-1: The CCDB's table layout and dependency diagram. In general, fields

are represented by the most efficient data type that will accommodate foreseeable

expansion. Also, references (represented by arrows) are made to other tables wherever

possible to minimize redundancy and improve query performance.

The species Table

The species table is the simplest of all the tables in the CCDB and contains just two

columns. The first, spec-id, contains a unique integer identifier for each species. The

second, specname provides the scientific name for each species (e.g., "Homo sapiens"

or "Escherichia coli").
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The sources Table

This table contains information about each data source supported by the database.

Currently, this includes only Georgetown's non-redundant protein reference, PIR

NREF and NCBI's similarly non-redundant data set, RefSeq, but the design of

the database facilitates future additions. Information stored in this table includes

a unique integer identifier of the source (source-id), the textual name of the source

(source-name), a textual description of the source (source-desc), the URL of the

source website's home page (source home-url), and the URL used to obtain more

information about a particular protein (source-ref _url).

The proteins Table

The proteins table is more complicated than either of the previous two tables and

relies on them both for proper function. Each protein has a single entry in this table

and, as usual, is associated with a unique integer identifier (prot-id). The proteins

table also contains two integer columns (spec-id and source-id) that reference the

species and sources tables respectively and are used to identify both the species in

which the protein has been found and the data source in which we first encountered

it. The ref Ad column contains textual strings corresponding to the identifier of

the protein in the associated data source and ref _desc contains the source's textual

annotation of the protein. Furthermore, the protseq column encompasses the amino

acid sequence of each protein, represented as a string of single-letter codes. This,

along with the species identifier, is the piece of information that logically defines a

"unique" protein. Finally, the prot-created and prot-updated fields are used by

our generation and maintenance scripts to keep track of which proteins need to be

analyzed for the presence of coiled coils.

The crossreferences Table

Since there may be several data sources that describe the same protein (that is to say,

the protein from a particular species with a particular amino acid sequence), we cre-
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ated a crossreferences table to collect all references to a protein other than the orig-

inal data source in which it was encountered. This table is very similar in structure to

the proteins table since it embodies very similar types of information. Each entry in

the table has a unique integer identifier (xref Ad) as well as reference (prot-id) to the

entry in the proteins table for the associated protein. Moreover, crossreferences

contains fields called xref _source-id, ref _id, ref _desc, and xref _updated that are

completely analogous to the similarly-named columns in proteins.

The programs Table

The programs table is identical to the species table in complexity and structure.

Here, each coiled-coil prediction programs (e.g., COILS or Paircoil) has an entry con-

sisting of a unique integer identifier (program-id) and textual name (program-name).

The coils Table

The coils table is designed to collect the results of all the coiled-coil prediction

programs on the set of proteins contained in the proteins table. Each program may

predict multiple coiled coils of varying length, location, register, and confidence in

each protein. Therefore it is important that this table be very flexible and capable

of accommodating many coiled coils per protein. Given this flexibility requirement,

we decided to allow multiple rows per protein where each row represented a single

predicted coiled coil.

Each entry consists of a unique integer identifier (cc-id), the identifier of the

protein in which the coiled coil is predicted (prot-id), the identifier of the prediction

program that generated the entry (program-id), the offset of the start of the coiled-

coil from the beginning of the protein's amino acid sequence (cc-start), the length

(in amino acid residues) of the coiled coil (cc-length), the probability score generated

by the prediction program (cc-prob), and the predicted register of the first residue in

the coiled coil. Additional information, such as the amino acid sequence of the coiled

coil or the percentage of the associated protein occupied by the coiled coil, can be

quickly generated by basic queries of both the coils and proteins tables.
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4.2.3 The Indexing Strategy

Because of the large number of rows in some of our tables (hundreds of thousands of

proteins and millions of predicted coiled coils) and the complex nature of queries we

need to support, a good indexing strategy is imperative to achieve reasonable perfor-

mance. Without indexing, RDBMSs must execute a query on a table by examining

every row of that table to ensure the completeness of the results. By constructing

well-designed indices of the table in question prior to query execution, however, the

RDBMS can quickly determine which rows (if any) are relevant to the query. For

example, if a user wanted to obtain the list of proteins associated with humans (as-

sume in this case that the spec-id for "Homo sapiens" is five), they would issue the

following SQL query:

SELECT * FROM proteins WHERE spec-id=5

If no indexing were used on the proteins table, every row would be checked to see

if its spec-id column were equal to five. However, if the column were indexed, the

RDBMS would already have built a list of all the rows whose spec-id column equals

five and could return them very quickly.

The importance of indexing in our case is heightened by our decision to allow

many entries in coils and crossreferences for each protein. We could have cho-

sen to "hard-code" information about each referring data source as columns in the

proteins table, but this would have required modifying the table structure for each

new source. As usual, this decision was a trade-off and the cost of the flexibility is

query performance.

Details of index implementation vary for different RDBMSs but the methods em-

ployed by MySQL 4.0 are sufficient for our needs. In MySQL, indices can (and often

should) span multiple columns, but the order of these columns in the index matters

greatly. To create the index, the RDBMS constructs a B-Tree consisting of all the

column values occurring in the table (where a maximum depth can be specified to pre-

vent unnecessarily large trees). For each leaf in this tree, MySQL constructs another

B-Tree consisting of all the values of the second column occurring in rows in which
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the first column matches the leaf. This process continues for each column in the in-

dex. To execute a query involving the first two columns of the index, MySQL simply

walks down the first B-Tree to find the leaf node associated with all rows matching

on the first column. Next, MySQL traverses the second-column B-Tree associated

with the first leaf node to find all rows matching on both of the first two columns.

It is important to note that, because of this construction, MySQL can only benefit

from a multiple-column index when all of the leading index columns are restricted

in the query. For example, an index of columns one, two, and three cannot be used

to find all rows in which column three matches a particular value-MySQL doesn't

have the information it needs to traverse the first two sets of B-Trees. The index can,

however, be used to find all rows in which column one matches a particular value

since column one was the first column specified in the creation of the index. Sections

7.2 ("Optimizing SELECT Statements and Other Queries") and 7.4 ("Optimizing

Database Structure") of the MySQL Reference Manual describe more detailed use of

indices to optimize query performance.

In general, designing a good indexing strategy requires understanding the scenarios

in which the database is utilized. Common queries that are executed very frequently

or in a time-sensitive manner should be optimized while uncommon, non-time-critical

queries can be left unindexed. Table 4.1 summarizes the non-primary indices used in

the CCDB and the indices for each table are described in more detail below.

Table Column 1 Column 2 Column 3

proteins spec-id source-id

proteins ref Ad
coils cc-prob program-id cc-length

coils prot-id cc-prob program-id

crossreferences prot-id xref-source-id

crossreferences refid

Table 4.1: Multiple-column indices in the coiled-coils database.
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Indices on proteins and crossreferences

Because the proteins and crossreferences tables contain the same type of infor-

mation, it is likely they will be queried with similar restrictions and, therefore, it is

appropriate for them to include similar indices. Both include a primary index on their

unique identifiers (prot-id and xref _id respectively) that allows individual rows to

be extracted rapidly based on these identifiers. This primary index is particularly

important when extracting information from multiple tables simultaneously.

After extraction by identifier, we expect the most common query to involve the

accession number of the protein in a particular data source. For example, we expect

users will likely want information related to the protein whose "id" is NF00499275 (an

identifier in the PIR NREF database). Thus, we have created single-column indices

on the first ten characters of the ref Ad column of each table.

We expect the next most common protein query to involve the species in which

the protein exists and, perhaps additionally, the source of the protein information.

Requests covered in this category include those for "all proteins in E. coli" and

"all human RefSeq proteins." In order to support such queries on the proteins

table, we create a two-column index spanning spec-id and source-id. Since the

crossreferences table doesn't contain the species information directly, we substi-

tute the column linking each row to its associated entry in proteins. That is, we

create a two-column index spanning prot-id and xref _source-id. This substitution

has the added benefit of allowing requests for "all crossreferences to protein 2236233".

Finally, in order to quickly find perfect matches of a particular sequence in the

database, the first six characters of the prot-seq column of proteins are also in-

dexed. Currently, there are 349,016 unique entries in the proteins table with 174,508

unique six-character sequence prefixes. Thus, for an arbitrary query sequence, this

index reduces the number of potential matches from the number of rows in the table

to an average of just two. However, it is important to note that this index does not

provide any improvement in regular expression or substring matching of the protseq

column since only the first six characters are indexed. Such queries require MySQL
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to examine each row of the table.

Indices on coils

Much like for the proteins and crossreferences, several indices are required to

support fast queries of the predicted coiled coils in the coils table. As in the previous

examples, a primary index is created on the uniquely identifying column coil-id to

facilitate single-row extraction.

Additionally, to support queries based on prediction program and confidence score,

indices on the program-id and cc-prob columns are necessary. However, we do not

want to index solely these columns as we expect queries to often combine these fields

with the length of the predicted coiled coil or the protein in which its contained. To

support both scenarios simultaneously, we create two three-column indices. The first

spans prot-id, cc-prob, and program-id. The second spans cc-prob, program-id,

and cc-length. Between the two, users can quickly retrieve all coiled coils in a

particular protein, all coiled coils in the protein with a particular likelihood, all coiled

coils in the protein predicted by a particular program with a particular likelihood, all

coiled coils of a particular length predicted by a particular program with a particular

likelihood, and many other similar data sets.

Indices on Other Tables

All tables other than proteins, crossreferences, and coils are simple enough

that they do not require any indexing other than the simple primary indices on their

unique identifiers. These primary indices allow the tables to be efficiently joined to

the more substantive tables during queries.

4.3 Automatic Generation and Maintenance

A primary concern when constructing a database of this nature is keeping it up-to-date

and synchronized with the myriad data sources from which its contents are derived.

Some of these sources are updated sporadically (for example, once a quarter) while

64



others are updated continuously, making it extremely challenging, if not impossible,

to maintain any reasonable level of synchronization by hand. Since the purpose of

this database is to simplify, rather than complicate, our data mining, an automated

maintenance system is the only viable approach.

In general, this system must regularly download the latest protein information

from the external data sources, parse it and insert it into the proteins and

crossreferences tables, run the coiled-coil prediction programs on new proteins,

and store the results in the coils table. Moreover, it must accomplish these tasks in

a predictable, auditable, and reasonably efficient manner.

4.3.1 Retrieving Protein Information

The first step in the maintenance process is to download the latest protein information

from each of the data sources of interest. Currently, these data sources only include

Georgetown's non-redundant protein reference PIR NREF and the NCBI's similarly

non-redundant RefSeq database. However, additional sources can be incorporated

with minimal extra effort, assuming their entire contents can be downloaded in the

common FASTA format.

The retrieval process starts with the execution of a script for each data source that

downloads and condenses the source's protein information into the FASTA format.

In the simple (and common) case where the protein information is available directly

from the source in FASTA format, this retrieval script is trivial. However, if the

data is not available in a single FASTA file-some websites use a custom format or

separate their data into many smaller FASTA files-these scripts are responsible for

parsing the data in a source-specific fashion to generate a FASTA file for use in the

next step of the process.

After the data has been downloaded and parsed into one FASTA file per source, a

common insertion script is invoked for each file. This script (insertFastaSeqs .pl)

is passed the name of the file to be parsed as well as the name of the associated data

source. It then loops through each entry in the file and considers only those proteins

derived from a species of interest (i.e., a species with an entry in the species table).
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For each such protein, the script checks whether a protein with the exact same se-

quence exists in the proteins table. If not, it creates an entry and populates the

columns with the relevant information. If there is already an entry for this protein,

the script investigates whether there is already a reference to this protein from the

current data source. If not, it creates an entry in the crossref erences table and pop-

ulates the relevant fields. If a reference from the current data source already existed,

the script checks whether the reference should be updated and updates columns as

necessary. The end result of the execution of insertFastaSeqs .pl is the freshening

of the proteins and crossreferences tables with the latest information from all of

the external data sources.

4.3.2 Predicting Coiled Coils

Once the protein information has been downloaded from all relevant sources and

inserted into the database, the four coiled-coil prediction programs (COILS, Paircoil,

Multicoil, and Marcoil) must be run on each of the new proteins. Rather than support

up to 100 different confidence scores for each predicted coiled coil, we have decided to

create 14 common "views" of the coiled coils. That is, we have selected 14 confidence

scores of interest (0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.92, 0.94, 0.96,

0.98, 0.99) and taken a snapshot of the predicted coiled coils at each cutoff. Because

each program has its own unique input requirements and output formats, we have

created separate scripts for the execution of each as described below.

COILS

Prediction by COILS is divided into two phases: program execution and output pars-

ing. The execution step is embodied in runCoils.pl, a simple script that queries

the database for new proteins, writes these proteins to a temporary FASTA file, and

invokes the COILS executable with the temporary file as input. The parsing step

is handled by a separate script, parseCoils.pl, which is invoked once per confi-

dence cutoff. The COILS program generates confidence scores for every amino acid
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residue. Therefore, parseCoils.pl parses the output of COILS, looking for contigu-

ous residues with scores exceeding the cutoff of interest. It considers each such region

as a separate coiled coil and creates an entry in the coils table for each.

Paircoil

Much as with COILS, using Paircoil to predict coiled coils in a large number of pro-

teins is best accomplished in two stages. The first stage (implemented in

runPaircoil.pl consists of program execution and trivial output parsing. This

script collects all protein sequences from the database and compiles them into a

single large FASTA file. Importantly, the Paircoil program itself is unable to accom-

modate sequences larger than about 20,000 residues so proteins larger than this size

are currently skipped (although we plan to work around this problem in the future).

Once the FASTA file has been generated, runPaircoil.pl passes it to Paircoil with

a specified probability threshold of 0.05. This low cutoff causes Paircoil to output to

a file all coiled coils whose probability is at least 0.05. Finally, this output file is read

by runPaircoil.pl and each predicted coiled coil is inserted into a temporary table

(_coils-intermediate).

The second stage of Paircoil prediction involves the condensation of the tempo-

rary results in _coils-intermediate. Each row in this table corresponds to a coiled

region of a particular confidence. However, a single coiled coil may consist of several

regions of different probability. For example, Paircoil might assign the first 20 residues

probability 0.44 and the next 4 resides probability 0.62. In this case, only the last 4

residues of the coil would be visible with a confidence cutoff of 0.5 or 0.6. However,

all 24 residues would be visible at a cutoff of 0.4. The condenseResults.pl script,

however, accounts for these possibilities by merging all relevant coiled coils at each

supported confidence level. The script begins with the highest confidence level (99)

and finds all coiled coils predicted with at least this score. If any of these proteins are

adjacent to or overlap one another, they are merged together. At the next confidence

level (98), only the coils resulting from the previous round of parsing and coils scoring

between 98 and 99 need be examined for adjacencies or overlaps. The process contin-
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ues iteratively, merging new coiled coils with higher-scoring ones at each step. Once

all confidence levels have been considered, condenseResults .pl writes the results to

the permanent coils table.

Multicoil

Multicoil prediction and processing proceeds in much the same manner as Paircoil,

with only a few additional quirks. First, just as Paircoil could not accommodate large

sequences, Multicoil cannot accommodate large numbers of sequences. As a result,

runMulticoil.pl divides the proteins to be analyzed into a series of FASTA files,

each consisting of no more than 25,000 sequences. The same script then feeds each

file to Multicoil and examines the program's output. Unlike runPaircoil.pl, how-

ever, runMulticoil.pl must recognize Multicoil's distinction between coiled coils

likely to exist as dimers and those likely to exist as trimers. Once all coil informa-

tion has been collected, it is written to the same temporary table used by Paircoil

(_coils-intermediate) and the previously-discussed condenseResults .pl script is

invoked.

Marcoil

Because Marcoil has the useful feature of accepting a set of confidence cutoffs as

input and generating coiled coils according to the per-residue cutoff scheme employed

by parseCoils.pl, no extensive processing of Marcoil's output is required. Instead,

runMarcoil.pl simply queries the database for all new proteins, writes one to a

temporary file, invokes Marcoil on that file with set of supported confidence cutoffs,

inserts the results into the coils table, then proceeds to the next new protein.

4.3.3 Automation: cron and the Beowulf Cluster

The collection of maintenance scripts described above is coordinated by a master shell

script called updateDatabase. sh that is scheduled (via the cron utility) to run on

a weekly basis. The script is executed on an Internet-connected server that begins
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the process by downloading the relevant data sets as described in Section 4.3.1. This

master script then takes advantage of an available Beowulf cluster (effectively isolated

from the Internet) and the MySQL server for parallel execution of the remaining tasks.

Care has been taken to define the dependencies between the jobs so that, for example,

runCoils .pl completes prior to the execution of parseCoils .pl on its output.

4.4 The Web Service API

At least as critical to the success of the CCDB as content and performance is a

clean and useful programmatic interface. A core requirement of the interface is that

it be accessible from many common programming languages. Additionally, it must

be extensible for use across the Internet and, in doing so, serve a buffer protecting

the types of queries executed against the internal database. To meet both of these

requirements, we decided to implement an XML web service that conforms to the

relevant World Wide Web Consortium (W3C) standards. In particular, adherence

to the working drafts of the Simple Object Access Protocol (SOAP) and the XML

Protocol (XMLP) is important for portability across languages and platforms.

Rather than deal directly with the details of these complex protocols, we chose

to create our service with the Java Web Services Developer Pack. This platform

conforms to the standard Web Services Interoperability (WS-I) Basic Profile and

offers easy implementation of XML-RPC (through its JAX-RPC package).

4.4.1 Data Structures

The CCDB web service relies on five core data structures, mirroring the internal

database structures, as described below:

The Species and Program Classes

Two of the five core data structures are extremely simple, consisting of just two

fields-an ID and a Name. These two, Species and Program, are provided as simple,

extensible representations of their logical counterparts. In addition, by providing both
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numerical and textual identifiers, these classes allow an element of client flexibility.

That is, the programmer of an application that uses the service can decide whether

his requirements dictate the use of computationally-efficient numerical identifiers or

human-friendly textual names.

The Source Class

The Source data structure is only marginally more complex than the two previous

structures. Like the others, Source provides both a numerical ID and a textual Name,

but this class also provides three other textual fields: Description, HomeURL, and

RefURL. The first, as its name implies, consists of the brief description of the data

source as stored in the sources table of the database. Similarly, the URL members

consist of the addresses of the data source's homepage and the page to be visited

for more information about a particular protein (provided a reference identifier is

appended to the end of the RefURL field).

The Protein Class

Unlike the previous structures, the Protein class consists of more than just simple

data types. Like the others, it contains a identifier (id); however, unlike the others,

this identifier is a string and represents the name or accession number assigned to

the protein by the associated data source (i.e., the ref _id column of the proteins or

crossreferences tables. The structure also contains a textual description (desc),

an instance of the Source data type (source), a list of Protein data types (xRef s),

an instance of the Species data type (species), and a textual representation of the

protein's amino acid sequence (sequence).

The Coil Class

Much like Protein, the Coil class consists of both simple and complex data types.

In particular, it contains the string identifier of the protein in which it is contained

(proteinID), an instance of the Program data type representing prediction program

that identified this particular coiled coil, the numeric offset of the coiled coil in the
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protein's sequence (startIndex), the numeric length of the coil (length), the numeric

confidence score (likelihood), the character representation of the start register of

this coil (startRegister), and the amino acid sequence of the coiled coil (sequence).

Notably, there is no unique identifier for each coil. This is because coiled coils are

never passed as arguments to the web service (this is discussed in more detail in

the next section). Also important to note is the fact that the containing protein is

referenced in this structure only by it's ID-not as an entire Protein structure as

might be expected. This simplification is intended to dramatically reduce the size

of the result set produced by queries that return many predicted coils. Clients can

obtain an instance of the Protein structure at a later time through a separate call to

the web service. The final unusual property of the Coil structure is that it contains

the amino acid sequence of the coil-a property not recorded in the backing coils

table. This property is expected to be very commonly used and, by adding it to

this structure, we expect to reduce the number of Protein structures that must be

retrieved for common web service calls.

4.4.2 The CCDB Interface

The web service interface itself is defined as a set of six functions that depend heavily

on the data structures described in the previous section. This interface includes three

functions for discovering supported parameters, two functions to query for matching

coiled coils, and one function for retrieving detailed information about particular

proteins. For performance and ease of input validation, all functions accept only

simple data types and, where appropriate, these inputs correspond to the unique

identifiers of their respective objects. For example, integer source identifiers are used

to specify which data source to query and textual protein identifiers are used to specify

which protein to consider. These functions are described in more depth below:
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Parameter Discovery Functions

Before clients can search for coiled coils, they need to have some information about

what values are acceptable as input for different parameters, and they can obtain this

information through the web services three "parameter discovery functions." These

include getSupportedSources(), getSupportedPrograms(), and

get Support edSpecies(). Each accepts no arguments and returns a list of instances

of the corresponding data type. For example, getSupportedSources () returns a

list of instances of Source with one entry per data source supported by the back-

ing database. Taken together, these three functions provide enough information to

perform a wide variety of additional queries through the CCDB web service.

Coiled-Coil Query Functions

Once a client has used the parameter discovery functions to familiarize itself with the

CCDB's supported input values, it can begin to search for coiled coils through two

distinct query functions. The first, countCCs (), simply returns the number of results

that match a given set of input values while the second, f indCCs (), actually returns

a list of Coil instances representing all the coiled coils matching the input criteria.

Both functions accept the same first seven input arguments:

" int iSourceID - the protein source to consider

" String sProteinID - the name of a particular protein to consider

" int iSpeciesID - the species to consider

" int iProgramID - the prediction program to consider

" int iLikelihood - the coil confidence score to consider

" int iMinLength - the minimum coil length to consider

" String sDesc - a regular expression to be matched against textual protein

annotations
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In addition, findCCs ) accepts two other arguments: an integer iStartIndex indi-

cating the offset into the result set at which to start returning results and an integer

iResultLimit specifying the maximum number of results to be returned by the query.

A null (zero) value can be provided in place of any argument to ignore that input

criteria. For example, passing zero as the iSourceID argument searches all supported

sources and passing zero as the iResultLimit argument defers to the default bound

on the size of result set.

The Protein Retrieval Function

The final function provided by the CCDB web service interface, findProteino, can

be used to obtain detailed information about any protein referenced by a Coil object.

A list of such objects are returned by a call to f indCCs 0, but, in order to minimize

the size of the result sets, each contains only a string identifier of the protein in which

the coiled coil is contained. A complete Protein structure can be obtained by passing

one of these protein identifiers as the only input to findProtein(.

4.4.3 Implementation

The implementation of the CCDB web service is not complicated and requires no

innovative algorithms. The parameter discovery functions need only issue a simple

SQL query to the RDBMS and convert the results to a list of the appropriate data

types. Even the apparently complex coiled-coil query and protein retrieval functions

need only validate their inputs, construct a SQL query statement, issue that statement

to the RDBMS, and convert any results to the correct data types. The bulk of the

work in every case is performed by the RDBMS.

4.5 The Web Front End

While the web service is a convenient interface for developers creating client applica-

tions, the CCDB also needs a convenient interface for non-developers. To this end,

we created a website that allows visitors to query the CCDB just as if they were using
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Protein Source IPIR-NREF Zj Predicted By Marcoli j
Protein ID jAny With Probability .9 :J
Species Homo sapiens zj Minimum Length residues
Protein Desc
(Reg. Exp.)

Search!

Matching Coils (1-20 of 60):
Protein: NFOO829864 (IR-NREF) Species: Homo sapiens
Desc: Leucine zipper & ICAT homologous protein LZIC [Homo sapiens]
Program: Marcoil Likelihood: 99
Residues: 16-31 (length 16) Start Register: d
Sequence: LEEOLDRLMOOLQME

Protein: NF00138018 (PIR-NREF) Species: Homo sapiens
Desc: Glucocorticoid-induced leucine zipper protein (Delta sleep-inducing peptide

Immunoreactor) (DSIP-immunoreactve peptide) (DIP protein) (hDIP) (TSC-22-Ike
protein) (TSC-22R) [Homo sapiens]

Program: Marcoil Likelihood: 99
Residues: 76-91 (length 16) Start Register: d
Sequence: LKEQIRELVEXNS0LE

Protein: NF00866299 (PIR-NREF) Species: Homo sapiens

[bth]

Figure 4-2: The query results summary page of the CCDB website. This particular

screenshot depicts a successful regular expression search for coiled coils in proteins

described as consisting of a "zipper." Summary information about 20 matching coiled

coils is displayed per page.

the web service API. In fact, the CCDB website is actually implemented using calls

to that API.

The heart of the CCDB website is a Java Server Pages (JSP) form (called

search. jsp) that allows a user to query the database for coiled coils by protein

source, protein name, species, prediction program, prediction probability, minimum

coil length, and protein description. To minimize invalid inputs and improve the user

experience, the protein source, species, prediction program, and prediction probabil-

ity fields are all implemented as drop-down boxes preloaded with valid inputs. When
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the search button is clicked, the form is submitted to the server for processing and

execution. The JSP application server performs only minimal input validation before

generating a request to the CCDB web service which performs its own validation.

The JSP application server then formats the results of the web service query as an

HTML table (shown in Figure 4-2 and sends the page to the client browser.

From this result page, the user can link to another JSP page (protein. jsp,

shown in Figure 4-3) that displays detailed information about an individual protein.

In addition to the basic protein information (source, name, species, description, cross-

references, and sequence), the page also includes an image representing the location,

likelihood, and register of every coiled coil predicted to occur in the protein. Rather

than keeping a library of images, we implement this functionality through a Java

Servlet (called coilImage) that generates the image dynamically based on informa-

tion it too retrieves from the CCDB through the web service API.
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Protein Details:
Protein ID: NF00138018 Species: Homo sapiens
Source: PIR-NREF (PIR non-redundant Reference database)

Glucocorticold-induced leudne zipper protein (Delta sleep-inducing peptide
Deusc: immunoreactor) (DSIP-immunoreactive peptide) (DIP protein) (hDIP) (TSC-22-lke

protein) (TSC-22R) [Homo sapiens]
Sequence: iDrNYQ'1WVAYMLWSISFFSSLLGDSVKLDSASASVVAIDNKIEQMLVDLXMYAVREEVEILKEQI

RELVEKNSQLERENTLLKTLASPEOLEKFQSCLSPEEPAPESPQVPEAPOOSAV

Crossreferences:
Protein ID: NP 004080.2
Source: RefSeq (NCBI non-redundant sequence database)

Gi:37622901 - delta sleep Inducing peptide, Immunoreactor isoform 2;
Desc: glucocorticold-induced leucine zipper protein; TSC-22 related protein;

DSIP-immunoreactive leucine zipper protein [Homo sapiens]
Coil Map:

Confidence: 100 2OE 30 403 50A 603 700 803 903 92W 94 96W 98M 99K
MNTEMYTPMEVAVYQLHNFSISFFSSLLGGDVVSVKLDNSASGASVVAIDNKIEQAMDLVKNHLMYAVREEVEILKEQI

COILS abcdefga
Multicoil Dimer
Multi coil T rimer eYabcdefoacdefgaxdefgabcdefoabcde abcdef
Marcoil abc e :defga

RELVEKNSQLERENTLLKTLASPEQLEKFQSCLSPEEPAPESPQVPEAPGGSAV
COILS bcdefgabcdefg
Multicoil Dimermt -a n
Multi coil T rimegabcdef1abcde1bcdefg
Marcoil bcdefgbdef' t t-abcdefg

[tbhl

Figure 4-3: The protein detail page of the CCDB website. In addition to providing full
sequence information and textual annotation for proteins, this page identifies cross-
references of the protein in other databases. Most notably, the page also includes a
dynamically-generated "map" of all the protein's predicted coiled coils. The lower-
case letters correspond to the heptad register of the predicted coils and the coloration
indicates the confidence with which the coiled coil is predicted.
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Appendix A

FNAC API Documentation

This appendix documents details of the FNAC packages using JavaDoc generated

from source comments.

A.1 Class Hierarchy

A.1.1 Classes

e java.lang.Object

" fnac.FnacObject (in A.5.2, page 124)

" fnac.AbstractOperator (in A.5.2, page 114)

" fnac.AbstractMultiSourceOperator (in A.5.2, page 112)

" fnac.pairwise.PairwiseComparator (in A.6.1, page 130)

" fnac.pairwise.SimpleMerger (in A.6.1, page 135)

" fnac.AbstractSingleSourceOperator (in A.5.2, page 117)

" fnac.connectivity.ConnectivityAnalyzer (in A.3.1, page 87)

" fnac.motifs.MotifAnalyzer (in A.2.1, page 80)

" fnac.AbstractSource (in A.5.2, page 119)

" fnac.sources.FileSource (in A.4.1, page 93)

" fnac.sources.MySqlSource (in A.4.1, page 96)

" fnac.motifs.MotifShape (in A.2.1, page 84)
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Interfaces

* fnac.FnacObjectlnterface

" fnac.Operator (in A.5.1, page 102)

" fnac.MultiSourceOperator (in A.5.1, page 100)

" fnac.SingleSourceOperator (in A.5.1, page 105)

" fnac.Source (in A.5.1, page 107)

Exceptions

e java.lang.Object

e java.lang.Throwable

e java.lang.Exception

e fnac.FnacException (in A.5.3, page 127)
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A.2 Package fnac.motifs
Package Contents Page

Classes

M otifA nalyzer .............................................................. 80
Utility class for analyzing FNAC networks on the basis of topological

network motifs.
M otifShap e ................................................................. 84

Object representation of a motif shape.

Public clients cannot create instances of this class.
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A.2.1 Classes

Class MotifAnalyzer

Utility class for analyzing FNAC networks on the basis of topological network

motifs. Given enough time, this class is capable of detecting motifs of arbitrary size

and keeping track of individual motifs even after the call to operateo has

completed. Logically, this class treats motifs as a pair of objects: the nodes between

which the motif occurs; and the topology or "shape" of the motif. All node sets are

represented as short[]s and all shapes are represented as MotifShapes.

Declaration
public class MotifAnalyzer

extends fnac.AbstractSingleSourceOperator (in A.5.2, page 117)

Constructor summary

MotifAnalyzero

MotifAnalyzer(Source)

Method summary

getMaxMotifSize() Retrieve the maximum motif size currently being

considered

getShape(short[]) Retrieve the shape of the network topology

involving a particular set of nodes.

iteratorO Get an iterator over all motifs.

operateO

setMaxMotifSize(int) Specify the maximum motif size to consider

during a call to operateO.

Constructors
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" MotifAnalyzer

public MotifAnalyzer( )

" MotifAnalyzer

public MotifAnalyzer( fnac.Source source )

Methods

" getMaxMotifSize

public int getMaxMotifSize( )

- Description

Retrieve the maximum motif size currently being considered

- Returns - the current maximum motif size

" getShape

public MotifShape getShape( shortO nodeSet ) throws

fnac.FnacException

- Description

Retrieve the shape of the network topology involving a particular set of

nodes.

- Parameters

* nodeSet - - The node indices for which to retrieve the MotifShape

- Returns - - the MotifShape representing the topology between the

specified edges if the edges form a connected motif and null otherwise.

- Throws

* fnac . FnacException - if operate() has not been called or another

exceptional condition has been encountered

" iterator

public java.util.Iterator iterator( ) throws fnac.FnacException
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- Description

Get an iterator over all motifs. Each item is actually an instance of

Map.Entry where the key is the short[] representing the nodes involved in

the motif and the value is the MotifShape representing the topological

shape of the motif.

- Returns - an iterator over all detected motifs

- Throws

* fnac.FnacException - if operateo has not been called or another

exceptional condition has been encountered

" operate

void operate( ) throws fnac.FnacException

- Description copied from fnac.Operator (in A.5.1, page 102)

Execute the network operation. This is almsot always required prior to

retrieval of operation results.

- Throws

* fnac. FnacException - if Source(s) have not been specified for this

Operator or another exceptional condition was encountered.

" setMaxMotifSize

public void setMaxMotifSize( int maxMotifSize ) throws

fnac.FnacException

- Description

Specify the maximum motif size to consider during a call to operate().

- Parameters

* maxMotifSize - - the integer (greater than 2) to be the maximum

motif size

- Throws
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* fnac . FnacException - if maxMotifSize is less than 3 or another

exceptional condition is encountered.

Members inherited from class fnac. AbstractSingleSourceOperator (in

A.5.2, page 117)

" public Source getSource( )

" public void setSource( Source source )

Members inherited from class fnac . AbstractOperator (in A.5.2, page 114)

" public File getDataDir( )

" public Properties getOptions( )

" public boolean isOperationComplete( )

" public abstract void operate( ) throws FnacException

" public void setDataDir( java.io.File dataDir ) throws FnacException

" public void setOptions( java.util.Properties options )

Members inherited from class fnac .FnacObject (in A.5.2, page 124)

" public PrintStream getErrorStream( )

" public PrintStream getOutputStream( )

" public void setErrorStream( java.io.PrintStream errorStream )

" public void setOutputStream( java.io.PrintStream outputStream )

83



Class MotifShape

Object representation of a motif shape.

Public clients cannot create instances of this class. Internally, this class utilizes a

Factory pattern to consolidate many occurrences of a shape into many references to

a single MotifShape instance.

Furthermore, each n-node motif shape is uniquely identified by the shapes of all

possible submotifs of size n-i. For example, a 4-node motif connected as a square

can be identified by 4 occurrences of the 3-node motif connected as an 'L'. A 4-node

motif connected as a 'U' can be identified by 2 occurrences of the same 3-node 'L'

shape.

Declaration
public class MotifShape

extends java.lang.Object

implements java.io.Serializable

Method summary

toString()

Serializable Fields

" private MotifShapeChildren _children

" private short _nodeCount

" private boolean _rootConnected

Methods
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* toString

public java.lang.String toString( )
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A.3 Package fnac.connectivity
Package Contents Page

Classes

ConnectivityA nalyzer ..................................................... 87
Utility class for analyzing FNAC networks on the basis of their connec-

tivity.
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A.3.1 Classes

Class ConnectivityAnalyzer

Utility class for analyzing FNAC networks on the basis of their connectivity. Can

compute average connectivity, per-node connectivities, connectivity distributions,

and hub nodes.

Declaration
public class ConnectivityAnalyzer

extends finac.AbstractSingleSourceOperator (in A.5.2, page 117)

implements finac.SingleSourceOperator

Constructor summary

ConnectivityAnalyzer(

ConnectivityAnalyzer(Source)

Method summary

getAverageConnectivity() Retrieve the average connectivity of the

analyzed network

getConnectivityDistributiono Retrieve the connectivity distribution

of the analyzed network.

getConnectivityOfNode(int) Retrieve the connectivity of a

particular node.

getConnectivityOfNode(String) Retrieve the connectivity of a

particular node.

getHubIndices( Retrieve the indices in the GINY GraphPerspective

of all hub nodes.

getHubNameso Retrieve the names of all hub nodes.

operate()
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Constructors

" ConnectivityAnalyzer

public ConnectivityAnalyzer( )

" ConnectivityAnalyzer

public ConnectivityAnalyzer( fnac.Source source )

Methods

" getAverage Connectivity

public float getAverageConnectivity( ) throws fnac.FnacException

- Description

Retrieve the average connectivity of the analyzed network

- Returns - the average connectivity

- Throws

* fnac. FnacException - if operateo has not been called or another

exceptional condition was encountered

" getConnectivityDistribution

public int getConnectivityDistribution( ) throws

fnac . FnacException

- Description

Retrieve the connectivity distribution of the analyzed network.

- Returns - an arrray where the value of each element i is the number of

nodes with connectivity i

- Throws

* fnac.FnacException - if operateo has not been called or another

exceptional condition was encountered
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* getConnectivityOfNode

public int getConnectivityOfNode( int nodeIndex ) throws

fnac.FnacException

- Description

Retrieve the connectivity of a particular node.

- Parameters

* nodeIndex - - The index of the desired node in the GINY

GraphPerspective

- Returns - the connectivity of the requested node

- Throws

* fnac. FnacException - if operate() has not been called, results could

not be found for the particular node, or another exceptional

condition was encountered

* getConnectivityOfNode

public int getConnectivityOfNode ( java. lang. String nodeName )

throws fnac.FnacException

- Description

Retrieve the connectivity of a particular node.

- Parameters

* nodeName - - The name of the desired node

- Returns - the connectivity of the requested node

- Throws

* fnac .FnacException - if operate() has not been called, results could

not be found for the particular node, or another exceptional

condition was encountered
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" getHubIndices

public intE] getHubIndices( ) throws fnac.FnacException

- Description

Retrieve the indices in the GINY GraphPerspective of all hub nodes. A

hub node is defined as a node whose connectivity is more than twice the

average connectivity of the network.

- Returns - an array of hub node indices

- Throws

* fnac .FnacException - if operateo has not been called or another

exceptional condition was encountered

" getHubNames

public java.util.Set getHubNames( ) throws fnac.FnacException

- Description

Retrieve the names of all hub nodes. See getHubIndices( for the

definition of "hub."

- Returns - an array of hub node names

- Throws

* fnac .FnacException - if operateo has not been called or another

exceptional condition was encountered.

" operate

void operate( ) throws fnac.FnacException

- Description copied from fnac.Operator (in A.5.1, page 102)

Execute the network operation. This is almsot always required prior to

retrieval of operation results.

- Throws

* fnac .FnacException - if Source(s) have not been specified for this

Operator or another exceptional condition was encountered.
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Members inherited from class fnac AbstractSingleSourceOperator (in

A.5.2, page 117)

" public Source getSource( )

" public void setSource( Source source )

Members inherited from class fnac.AbstractOperator (in A.5.2, page 114)

" public File getDataDir( )

" public Properties getOptions( )

" public boolean isOperationComplete( )

" public abstract void operate( ) throws FnacException

" public void setDataDir( java.io.File dataDir ) throws FnacException

" public void setOptions( java.util.Properties options )

Members inherited from class fnac FnacObject (in A.5.2, page 124)

" public PrintStream getErrorStream( )

" public PrintStream getOutputStream( )

" public void setErrorStream( java.io.PrintStream errorStream )

" public void setOutputStream( java.io.PrintStream outputStream )
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A.4 Package fnac.sources
Package Contents Page

Classes

FileSource ............................................................. . 93
Implementation of the FNAC Source interface capable of reading and

writing networks as "raw interaction files" where each line of the file is

of the format: PROTEINNAME1 PROTEINNAME2

M ySqlSource ............................................................... 96

Implementation of the FNAC Source interface capable of loading (but

not saving) a network from a MySQL database query.
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A.4.1 Classes

Class FileSource

Implementation of the FNAC Source interface capable of reading and writing

networks as "raw interaction files" where each line of the file is of the format:

PROTEIN-NAME1 PROTEIN-NAME2

Declaration
public class FileSource

extends fnac.AbstractSource (in A.5.2, page 119)

implements fnac.Source

Constructor summary

FileSource(Source, File)

FileSource(String, File)

Method summary

loadDatao

saveData()

saveDataAs(File) Save a network to a file other than the one specified

as its "source."

Constructors

" FileSource

public FileSource( fnac.Source source, java.io.File sourceFile )

" FileSource

public FileSource( java.lang.String name, java.io.File

sourceFile )
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Methods

" loadData

void loadData( ) throws fnac.FnacException

- Description copied from fnac.Source (in A.5.1, page 107)

Load the network at the location specified by this Source.

- Throws

* fnac . FnacException - if exceptional circumstances were

encountered while trying to load the network data

" saveData

void saveData( ) throws fnac.FnacException

- Description copied from fnac.Source (in A.5.1, page 107)

Save the network to the location specified by this Source (optional).

- Throws

* fnac . FnacException - if exceptional circumstances were

encountered while trying to save the network data

" saveDataAs

public void saveDataAs( java.io.File outFile ) throws

fnac.FnacException

- Description

Save a network to a file other than the one specified as its "source."

- Parameters

* outFile - - The file to which to write this network

- Throws

* fnac. FnacException - if an exceptional condition was encountered

while trying to write the file
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Members inherited from class fnac. AbstractSource (in A.5.2, page 119)

" public GraphPerspective getGraphPerspective( )

" public String getName( )

" public int getNodelndex( java. lang. String nodeName )

" public int getNodelndices( )

" public int getNodelndices( java.lang.String[] nodeNames )

" public String getNodeName( int nodeIndex )

" public String getNodeNames( )

" public abstract void loadData( ) throws FnacException

" public abstract void saveData( ) throws FnacException

" public void setGraphPerspective( giny.model.GraphPerspective graph )

" public void setNodeMapping( java.lang.String nodeName, int

nodelndex )

Members inherited from class fnac .FnacObject (in A.5.2, page 124)

* public PrintStream getErrorStream( )

" public PrintStream getOutputStream( )

" public void setErrorStream( java.io.PrintStream errorStream )

" public void setOutputStream( java.io.PrintStream outputStream )
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Class MySqlSource

Implementation of the FNAC Source interface capable of loading (but not saving) a

network from a MySQL database query. Database connection parameters and query

string are specified during object construction. SQL queries should return two

columns - the names of the nodes in each edge. In the event that more than two

columns are returned, only the first two are examined.

Declaration
public class MySqlource

extends fnac.AbstractSource (in A.5.2, page 119)

implements fnac.Source

Constructor summary

MySqlSource(String, String, int, String, String, String, String)

Create a new MySqlSource instance.

Method summary

loadDatao

saveDatao

Constructors

* MySqlSource

public MySqlSource( java. lang. String name, java. lang. String

host, int port, java.lang.String database, java.lang.String

query, java.lang.String user, java.lang.String password )

- Description

Create a new MySqlSource instance.

- Parameters
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* name - - Friendly source name

* host - - Hostname or IP address of the server hosting the RDBMS

* port - - TCP port number on which to connect to the RDBMS

* database - - The name of the database to be queried

* query - - The SQL query to be executed

* user - - Username with which to connect to the database (optional)

* password - - Password with which to connect to the database

(optional)

Methods

" loadData

void loadData( ) throws fnac.FnacException

- Description copied from fnac.Source (in A.5.1, page 107)

Load the network at the location specified by this Source.

- Throws

* fnac . FnacException - if exceptional circumstances were

encountered while trying to load the network data

* saveData

void saveData( ) throws fnac.FnacException

- Description copied from fnac.Source (in A.5.1, page 107)

Save the network to the location specified by this Source (optional).

- Throws

* fnac .FnacException - if exceptional circumstances were

encountered while trying to save the network data

Members inherited from class fnac. AbstractSource (in A.5.2, page 119)

a public GraphPerspective getGraphPerspective( )

97



" public String getName( )

" public int getNodelndex( java. lang. String nodeName )

" public int getNodelndices( )

" public int getNodeIndices( java.lang. String[] nodeNames )

" public String getNodeName( int nodeIndex )

" public String getNodeNames( )

" public abstract void loadData( ) throws FnacException

" public abstract void saveData( ) throws FnacException

" public void setGraphPerspective( giny.model.GraphPerspective graph )

" public void setNodeMapping( java.lang.String nodeName, int

nodeIndex )

Members inherited from class fnac.FnacObject (in A.5.2, page 124)

" public PrintStream getErrorStream( )

" public PrintStream getOutputStream( )

" public void setErrorStream( java.io.PrintStream errorStream )

" public void setOutputStream( java.io.PrintStream outputStream )
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A.5 Package fnac
Package Contents Page

Interfaces

M ultiSourceO perator.....................................................100
Interface for any utility that analyzes a multiple data networks and

generates a set of statistics for them.
O p erator ................................................................... 102

Interface for simple network operations.

SingleSourceOperator ........................................ 105
Interface for any utility that analyzes a single data network and gener-

ates a set of statistics for that network.
S o u rce ...................................................................... 107

Interface to all network representations.

Classes

AbstractMultiSourceOperator ........................................... 112

Abstract implementation of the MultiSource Operator interface.

A bstractO perator ......................................................... 114

Abstract implementation of the Operator interface.

Abstract SingleSourceOperator .......................................... 117

Abstract implementation of the SingleSource Operator interface.

A bstractSource............................................................119

Abstract implementation of the Source interface.

F nacO bject ................................................................ 124
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A.5.1 Interfaces

Interface MultiSourceOperator

Interface for any utility that analyzes a multiple data networks and generates a set

of statistics for them.

Declaration
public interface MultiSourceOperator

implements Operator

All known subclasses AbstractMultiSourceOperator (in A.5.2, page 112),

SimpleMerger (in A.6.1, page 135), PairwiseComparator (in A.6.1, page 130)

All classes known to implement interface AbstractMultiSourceOperator (in

A.5.2, page 112)

Method summary

addSource(Source) Add a network to the list of those on which to be

operate.

addSources(Collection) Add multiple networks to the list of those on

which to operate.

getSourceso Get a reference to the data sources currently specified for

this Operator

Methods

e addSource

void addSource( Source newSource )

- Description

Add a network to the list of those on which to be operate.

- Parameters
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* source - - Data source to add

" addSources

void addSources( java.util.Collection newSources )

- Description

Add multiple networks to the list of those on which to operate.

- Parameters

* source - Data sources to be added

" getSources

java.util. Collection getSources( )

- Description

Get a reference to the data sources currently specified for this Operator

- Returns - a copy of the set of networks on which to operate
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Interface Operator

Interface for simple network operations. Only allows options to be configured and

operation to be invoked. Inheriting interfaces should almost always be used instead

of this one.

Declaration
public interface Operator

implements FnacObjectInterface

All known subclasses MotifAnalyzer (in A.2.1, page 80), ConnectivityAnalyzer (in

A.3.1, page 87), SingleSourceOperator (in A.5.1, page 105), MultiSourceOperator (in

A.5.1, page 100), AbstractSingleSourceOperator (in A.5.2, page 117), AbstractOperator

(in A.5.2, page 114), AbstractMultiSourceOperator (in A.5.2, page 112), SimpleMerger (in

A.6.1, page 135), PairwiseComparator (in A.6.1, page 130)

All known subinterfaces SingleSourceOperator (in A.5.1, page 105),

MultiSourceOperator (in A.5.1, page 100)

All classes known to implement interface AbstractOperator (in A.5.2, page

114)

Method summary

getDataDiro Get the current scratch directory used by this Operator.

getOptions() Returns the current configuration options of this

Operator.

isOperationComplete() Find out whether an invocation of operate(o

has completed and whether results are ready for retrieval.

operateo Execute the network operation.

setDataDir(File) Set the scratch directory to be used by this Operator.

setOptions(Properties) Specifies configuration options for this

operator.
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Methods

" getDataDir

java.io.File getDataDir( )

- Description

Get the current scratch directory used by this Operator.

- Returns - The scratch directory currently being used

" getOptions

java.util.Properties getOptions( )

- Description

Returns the current configuration options of this Operator.

- Returns - The set of options that would be used if the Operator were to

be executed now.

" is OperationComplete

boolean isOperationComplete( )

- Description

Find out whether an invocation of operate o has completed and whether

results are ready for retrieval.

- Returns - True if a call to operateo has completed successfully and

related results are ready for examinations

" operate

void operate( ) throws fnac.FnacException

- Description

Execute the network operation. This is almsot always required prior to

retrieval of operation results.
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- Throws

* fnac.FnacException - if Source(s) have not been specified for this

Operator or another exceptional condition was encountered.

" setDataDir

void setDataDir( java.io.File dataDir ) throws

fnac . FnacException

- Description

Set the scratch directory to be used by this Operator. Many Operators

require the use of temporary files. Callers should specify the directory in

which the Operator can create, modify, and delete temporary files at will.

No other processes or Operators should be using this directory as the

Operator makes no guarantee as to its behavior within the specified

directory. NOTE: The directory and parent directory will be created if

they do not exist.

- Parameters

* dataDir - The new scratch directory

- Throws

* OperatorException - If the specified File does exist but is not a

directory

" setOptions

void setOptions( java.util.Properties options )

- Description

Specifies configuration options for this operator. Supported options vary

depending on the particular Operator.

- Parameters

* options - The set of options used to configure this Operator
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Interface SingleSourceOperator

Interface for any utility that analyzes a single data network and generates a set of

statistics for that network.

Declaration
public interface SingleSourceOperator

implements Operator

All known subclasses MotifAnalyzer (in A.2.1, page 80), ConnectivityAnalyzer (in

A.3.1, page 87), AbstractSingleSourceOperator (in A.5.2, page 117)

All classes known to implement interface ConnectivityAnalyzer (in A.3.1,

page 87), AbstractSingleSourceOperator (in A.5.2, page 117)

Method summary

getSourceo Get a reference to the data source that is currently

specified for this Analyzer.

setSource(Source) Specify a data source to be analyzed

Methods

* getSource

Source getSource( )

- Description

Get a reference to the data source that is currently specified for this

Analyzer.

- Returns - A reference to the data source currently set for analysis if one

exists, null otherwise
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* setSource

void setSource( Source source )

- Description

Specify a data source to be analyzed

- Parameters

* source - Data source to be analyzed
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Interface Source

Interface to all network representations. This interface allows clients to load / save

data, set / retrieve GINY network representations, and set / retrieve node

name-to-node index mappings.

Declaration
public interface Source

implements FnacObjectInterface

All known subclasses MySqlSource (in A.4.1, page 96), FileSource (in A.4.1, page

93), AbstractSource (in A.5.2, page 119)

All classes known to implement interface MySqlSource (in A.4.1, page 96),

FileSource (in A.4.1, page 93), AbstractSource (in A.5.2, page 119)

Method summary

getGraphPerspective() Get a GINY GraphPerspective representation

of this network.

getName() Get the friendly name for this network

getNodeIndex(String) Gets the index in the GINY GraphPerspective

associated with a particular node name.

getNodeIndiceso Get the indices of all nodes in this network.

getNodeIndices(String[]) Get the indices in the GINY

GraphPerspective associated with a particular set of node names.

getNodeName(int) Gets the name of the node associated with a

particular index in the GINY GraphPerspective.

getNodeNameso Get the names of all nodes in this network.

loadDataO Load the network at the location specified by this Source.

saveData() Save the network to the location specified by this Source

(optional).
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setGraphPerspective(GraphPerspective) Reset the underlying

network to a particular topology.

setNodeMapping(String, int) Maps a node name to a particular

node index in the GINY GraphPerspective (and vice-versa).

Methods

" getGraphPerspective

giny. model. GraphPerspective getGraphPerspective( )

- Description

Get a GINY GraphPerspective representation of this network. This

representation allows efficient graph analysis for sparse networks,

provided that node and edge indices are used in all communications with

the GraphPerspective. See documentation of the node name-to-node

index mapping functionalities also provided by the Source interface.

- Returns - A GINY GraphPerspective representation of this network

" getName

java.lang.String getName( )

- Description

Get the friendly name for this network

- Returns - The name of this network

" getNodeIndex

int getNodeIndex( java. lang. String nodeName )

- Description

Gets the index in the GINY GraphPerspective associated with a

particular node name.

- Parameters
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* nodeName - - The name of the node for which to find an index

- Returns - The index of the specified node in the GINY

GraphPerspective (provided such a mapping has previously been

created).

* getNodelndices

int [ getNodeIndices ( )

- Description

Get the indices of all nodes in this network.

- Returns - The indices of all nodes in this GINY GraphPerspective for

which a node name-to-node index mapping has been created.

* getNodeIndices

int [ getNodeIndices( java.lang. String O nodeNames )

- Description

Get the indices in the GINY GraphPerspective associated with a

particular set of node names.

- Parameters

* nodeNames - - The names of the nodes for which to find indices

- Returns - The indices of the specified nodes in the GINY

GraphPerspective (provided such mappings have previously been

created).

* getNodeName

java. lang. String getNodeName( int nodeIndex )

- Description

Gets the name of the node associated with a particular index in the

GINY GraphPerspective.
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- Parameters

* nodeIndex - - The node index for which to find a name

- Returns - The name of the node at nodeIndex in the GINY

GraphPerspective (provided a name has previously been mapped to this

node)

" getNodeNames

java. lang. StringO getNodeNames( )

- Description

Get the names of all nodes in this network.

- Returns - The names of all nodes in this network for which a node

name-to-node index mapping has been created.

" loadData

void loadData( ) throws fnac.FnacException

- Description

Load the network at the location specified by this Source.

- Throws

* fnac . FnacException - if exceptional circumstances were

encountered while trying to load the network data

" saveData

void saveData( ) throws fnac.FnacException

- Description

Save the network to the location specified by this Source (optional).

- Throws

* fnac .FnacException - if exceptional circumstances were

encountered while trying to save the network data
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* setGraphPerspective

void setGraphPerspective( giny.model.GraphPerspective graph )

- Description

Reset the underlying network to a particular topology. WARNING!! Use

of this method requires extreme caution as it does not adjust the node

name-to-node index mappings maintained by this Source. Graphs out of

sync with the node mappings can result in completely unreliable (and

difficult to debug) results.

- Parameters

* graph - - The GINY GraphPerspective representation of the new

network topology

* setNodeMapping

void setNodeMapping( java. lang. String nodeName, int

nodeIndex )

- Description

Maps a node name to a particular node index in the GINY

GraphPerspective (and vice-versa).

- Parameters

* nodeName - - The name of the node

* nodeIndex - - The index of the node in the GINY GraphPerspective
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A.5.2 Classes

Class AbstractMultiSourceOperator

Abstract implementation of the MultiSourceOperator interface. Should be inherited

by any class that operates on multiple networks.

Declaration
public abstract class AbstractMultiSourceOperator

extends fnac.AbstractOperator (in A.5.2, page 114)

implements MultiSourceOperator

All known subclasses SimpleMerger (in A.6.1, page 135), PairwiseComparator (in

A.6.1, page 130)

Method summary

addSource(Source)

addSources(Collection)

getSourceso

Methods

" addSource

void addSource( Source newSource )

- Description copied from MultiSourceOperator (in A.5.1, page

100)

Add a network to the list of those on which to be operate.

- Parameters

* source - - Data source to add

" addSources

void addSources( java.util. Collection newSources )
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- Description copied from MultiSourceOperator (in A.5.1, page

100)

Add multiple networks to the list of those on which to operate.

- Parameters

* source - Data sources to be added

* getSources

java.util.Collection getSources( )

- Description copied from MultiSourceOperator (in A.5.1, page

100)

Get a reference to the data sources currently specified for this Operator

- Returns - a copy of the set of networks on which to operate

Members inherited from class fnac. AbstractOperator (in A.5.2, page 114)

" public File getDataDir( )

" public Properties getOptions( )

" public boolean isOperationComplete( )

" public abstract void operate( ) throws FnacException

" public void setDataDir( java.io.File dataDir ) throws FnacException

" public void setOptions( java.util.Properties options )

Members inherited from class fnac . FnacObj ect (in A.5.2, page 124)

" public PrintStream getErrorStream( )

" public PrintStream getOutputStream( )

" public void setErrorStream( java.io.PrintStream errorStream )

" public void setOutputStream( java.io.PrintStream outputStream )
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Class AbstractOperator

Abstract implementation of the Operator interface. Should only be inherited when

neither SingleSourceOperator nor MultiSourceOperator are adequate.

Declaration
public abstract class AbstractOperator

extends fnac.FnacObject (in A.5.2, page 124)

implements Operator

All known subclasses MotifAnalyzer (in A.2.1, page 80), ConnectivityAnalyzer (in

A.3.1, page 87), AbstractSingleSourceOperator (in A.5.2, page 117),

AbstractMultiSourceOperator (in A.5.2, page 112), SimpleMerger (in A.6.1, page 135),

PairwiseComparator (in A.6.1, page 130)

Method summary

getDataDir()

getOptionso

isOperationComplete()

operate()

setDataDir(File)

setOptions(Properties)

Methods

* getDataDir

java.io.File getDataDir( )

- Description copied from Operator (in A.5.1, page 102)

Get the current scratch directory used by this Operator.

- Returns - The scratch directory currently being used
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" getOptions

java.util.Properties getOptions( )

- Description copied from Operator (in A.5.1, page 102)

Returns the current configuration options of this Operator.

- Returns - The set of options that would be used if the Operator were to

be executed now.

" isOperationComplete

boolean isOperationComplete( )

- Description copied from Operator (in A.5.1, page 102)

Find out whether an invocation of operate o has completed and whether

results are ready for retrieval.

- Returns - True if a call to operateo has completed successfully and

related results are ready for examinations

" operate

void operate( ) throws fnac.FnacException

- Description copied from Operator (in A.5.1, page 102)

Execute the network operation. This is almsot always required prior to

retrieval of operation results.

- Throws

* fnac .FnacException - if Source(s) have not been specified for this

Operator or another exceptional condition was encountered.

" setDataDir

void setDataDir( java.io.File dataDir ) throws

fnac . FnacException

- Description copied from Operator (in A.5.1, page 102)
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Set the scratch directory to be used by this Operator. Many Operators

require the use of temporary files. Callers should specify the directory in

which the Operator can create, modify, and delete temporary files at will.

No other processes or Operators should be using this directory as the

Operator makes no guarantee as to its behavior within the specified

directory. NOTE: The directory and parent directory will be created if

they do not exist.

- Parameters

* dataDir - The new scratch directory

- Throws

* OperatorException - If the specified File does exist but is not a

directory

e setOptions

void setOptions( java.util.Properties options )

- Description copied from Operator (in A.5.1, page 102)

Specifies configuration options for this operator. Supported options vary

depending on the particular Operator.

- Parameters

* options - The set of options used to configure this Operator

Members inherited from class fnac .FnacObject (in A.5.2, page 124)

" public PrintStream getErrorStream( )

" public PrintStream getOutputStream( )

" public void setErrorStream( java.io.PrintStream errorStream )

" public void setOutputStream( java.io.PrintStream outputStream )
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Class AbstractSingleSourceOperator

Abstract implementation of the SingleSourceOperator interface. Should be inherited

by any class that operates on individual networks.

Declaration
public abstract class AbstractSingleSourceOperator

extends fnac.AbstractOperator (in A.5.2, page 114)

implements SingleSourceOperator

All known subclasses MotifAnalyzer (in A.2.1, page 80), ConnectivityAnalyzer (in

A.3.1, page 87)

Method summary

getSourceo

setSource(Source)

Methods

" getSource

Source getSource( )

- Description copied from SingleSourceOperator (in A.5.1, page

105)

Get a reference to the data source that is currently specified for this

Analyzer.

- Returns - A reference to the data source currently set for analysis if one

exists, null otherwise

" setSource

void setSource( Source source )
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- Description copied from SingleSourceOperator (in A.5.1, page

105)

Specify a data source to be analyzed

- Parameters

* source - Data source to be analyzed

Members inherited from class fnac. AbstractOperator (in A.5.2, page 114)

" public File getDataDir( )

" public Properties getOptions( )

" public boolean isOperationComplete( )

" public abstract void operate( ) throws FnacException

" public void setDataDir( java.io.File dataDir ) throws FnacException

" public void setOptions( java.util.Properties options )

Members inherited from class fnac FnacObj ect (in A.5.2, page 124)

" public PrintStream getErrorStream( )

* public PrintStream getOutputStream( )

" public void setErrorStream( java.io.PrintStream errorStream )

" public void setOutputStream( java. io.PrintStream outputStream )
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Class AbstractSource

Abstract implementation of the Source interface. Should be inherited by any class

representing a new type of source location.

Declaration
public abstract class AbstractSource

extends finac.FnacObject (in A.5.2, page 124)

implements Source

All known subclasses MySqlSource (in A.4.1, page 96), FileSource (in A.4.1, page

93)

Method summary

getGraphPerspective()

getNameo

getNodelndex(String)

getNodeIndiceso

getNodeIndices(String[])

getNodeName(int)

getNodeNameso

loadData()

saveData()

setGraphPerspective(GraphPerspective)

setNodeMapping(String, int)

Methods

* getGraphPerspective

giny.model. GraphPerspective getGraphPerspective( )
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- Description copied from Source (in A.5.1, page 107)

Get a GINY GraphPerspective representation of this network. This

representation allows efficient graph analysis for sparse networks,

provided that node and edge indices are used in all communications with

the GraphPerspective. See documentation of the node name-to-node

index mapping functionalities also provided by the Source interface.

- Returns - A GINY GraphPerspective representation of this network

" getName

java.lang.String getName( )

- Description copied from Source (in A.5.1, page 107)

Get the friendly name for this network

- Returns - The name of this network

" getNodeIndex

int getNodelndex( java. lang. String nodeName )

- Description copied from Source (in A.5.1, page 107)

Gets the index in the GINY GraphPerspective associated with a

particular node name.

- Parameters

* nodeName - - The name of the node for which to find an index

- Returns - The index of the specified node in the GINY

GraphPerspective (provided such a mapping has previously been

created).

" getNodeIndices

int ] getNodeIndices ( )

- Description copied from Source (in A.5.1, page 107)

Get the indices of all nodes in this network.
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- Returns - The indices of all nodes in this GINY GraphPerspective for

which a node name-to-node index mapping has been created.

" getNodeIndices

int [ getNodeIndices( java. lang. String O nodeNames )

- Description copied from Source (in A.5.1, page 107)

Get the indices in the GINY GraphPerspective associated with a

particular set of node names.

- Parameters

* nodeNames - - The names of the nodes for which to find indices

- Returns - The indices of the specified nodes in the GINY

GraphPerspective (provided such mappings have previously been

created).

" getNodeName

java. lang. String getNodeName( int nodeIndex )

- Description copied from Source (in A.5.1, page 107)

Gets the name of the node associated with a particular index in the

GINY GraphPerspective.

- Parameters

* nodeIndex - - The node index for which to find a name

- Returns - The name of the node at nodeIndex in the GINY

GraphPerspective (provided a name has previously been mapped to this

node)

" getNodeNames

java. lang. String O getNodeNames ( )

- Description copied from Source (in A.5.1, page 107)

Get the names of all nodes in this network.
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- Returns - The names of all nodes in this network for which a node

name-to-node index mapping has been created.

" loadData

void loadData( ) throws fnac.FnacException

- Description copied from Source (in A.5.1, page 107)

Load the network at the location specified by this Source.

- Throws

* fnac . FnacException - if exceptional circumstances were

encountered while trying to load the network data

" saveData

void saveData( ) throws fnac.FnacException

- Description copied from Source (in A.5.1, page 107)

Save the network to the location specified by this Source (optional).

- Throws

* fnac .FnacException - if exceptional circumstances were

encountered while trying to save the network data

" setGraphPerspective

void setGraphPerspective( giny.model.GraphPerspective graph )

- Description copied from Source (in A.5.1, page 107)

Reset the underlying network to a particular topology. WARNING!! Use

of this method requires extreme caution as it does not adjust the node

name-to-node index mappings maintained by this Source. Graphs out of

sync with the node mappings can result in completely unreliable (and

difficult to debug) results.

- Parameters
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* graph - - The GINY GraphPerspective representation of the new

network topology

* setNodeMapping

void setNodeMapping( java.lang. String nodeName, int

nodeIndex )

- Description copied from Source (in A.5.1, page 107)

Maps a node name to a particular node index in the GINY

GraphPerspective (and vice-versa).

- Parameters

* nodeName - - The name of the node

* nodeIndex - - The index of the node in the GINY GraphPerspective

Members inherited from class fnac .FnacObject (in A.5.2, page 124)

" public PrintStream getErrorStream( )

" public PrintStream getOutputStream( )

" public void setErrorStream( java.io.PrintStream errorStream )

" public void setOutputStream( java.io.PrintStream outputStream )
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Class FnacObject

Declaration
public abstract class FnacObject

extends java.lang.Object

implements FnacObjectInterface

All known subclasses MotifAnalyzer (in A.2.1, page 80), ConnectivityAnalyzer (in

A.3.1, page 87), MySqlSource (in A.4.1, page 96), FileSource (in A.4.1, page 93),

AbstractSource (in A.5.2, page 119), AbstractSingleSourceOperator (in A.5.2, page 117),

AbstractOperator (in A.5.2, page 114), AbstractMultiSourceOperator (in A.5.2, page

112), SimpleMerger (in A.6.1, page 135), PairwiseComparator (in A.6.1, page 130)

Method summary

getErrorStream()

get Output StreamO

setErrorStream(PrintStream)

setOutputStream(PrintStream)

Methods

* getErrorStream

java.io.PrintStream getErrorStream( )

- Description copied from FnacObjectInterface

Get a reference to the destination where error messages will be written.

The default target is System.err. Error messages are typically only

generated when the Operator encounters unexpected or exceptional

circumstances during its execution.

- Returns - The current target for error messages or NULL if such

messages are disabled
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" getOutputStream

java.io.PrintStream getOutputStream( )

- Description copied from FnacObjectInterface

Get a reference to the destination where standard output messages will

be written. The default target is System.out. Such output messages

typically include logs generated by the Operator during its execution.

- Returns - The current target for standard output messages or NULL if

such messages are disabled

" setErrorStream

void setErrorStream( java.io.PrintStream errorStream )

- Description copied from FnacObjectInterface

Specify an alternative destination for error messages. The default target

is System.err. Error messages are typically only generated when the

Operator encounters unexpected or exceptional circumstances during its

execution.

- Parameters

* errorStream - The new target for error messages or NULL to

disable these messages

" setOutputStream

void setOutputStream( java.io.PrintStream outputStream )

- Description copied from FnacObjectInterface

Specify an alternative destination for standard output messages. The

default target is System.out. Such output messages typically include logs

generated by the Operator during its execution.

- Parameters
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* outputStream - The new target for standard output messages or

NULL to disable these messages
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A.5.3 Exceptions

Class FnacException

Generic checked exception used throughout FNAC

Declaration
public class FnacException

extends java.lang.Exception

Constructor summary

FnacExceptiono Creates a new instance of FnacException without

detail message.

FnacException(String) Constructs an instance of FnacException with

the specified detail message.

Constructors

" FnacException

public FnacException( )

- Description

Creates a new instance of FnacException without detail message.

" FnacException

public FnacException( java.lang.String msg )

- Description

Constructs an instance of FnacException with the specified detail

message.

- Parameters

* msg - the detail message.
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Members inherited from class java. lang.Exception

Members inherited from class java.lang.Throwable

" public synchronized native Throwable filllnStackTrace( )

" public Throwable getCause( )

" public String getLocalizedMessage( )

" public String getMessage( )

" public StackTraceElement getStackTrace( )

" public synchronized Throwable initCause( Throwable )

" public void printStackTrace( )

" public void printStackTrace( java.io.PrintStream )

" public void printStackTrace( java.io.PrintWriter )

" public void setStackTrace( StackTraceElement[] )

" public String toString( )
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A.6 Package fnac.pairwise
Package Contents Page

Classes

Pairw iseCom parator......................................................130

Utility class for comparing two networks in a pairwise fashion.

Sim pleM erger ............................................................. 135

Utility class for generating the intersections between multiple networks.
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A.6.1 Classes

Class PairwiseComparator

Utility class for comparing two networks in a pairwise fashion. During a call to

operateO, objects of this class find the nodes contained in both networks, find the

edges contained within these common nodes, find the complete intersection of the

two networks, and keeps track of orphaned edges (those not connected to any other

edges).

Declaration
public class PairwiseComparator

extends fnac.AbstractMultiSourceOperator (in A.5.2, page 112)

Constructor summary

PairwiseComparator()

PairwiseComparator(Collection)

Method summary

getCommonNodeCount() Get the number of nodes present in both

networks

getEdgeCountOnCommonNodes(Source) Get the count of edges of

one of the networks that fall completely within the set of common

nodes.

getOrphanedEdgeCount(Source) A static method for counting the

number of orphan edges in a network on the fly.

getOrphanedEdgeCountOnCommonNodes(Source) Get the count

of orphaned edges in the trimmed version of a particular network.

getOverlappingSourceo Get a network representation of the

intersection of the two networks.

getSourceWithOnlyCommonNodes(Source) Get the trimmed

version of a particular network.

130



operate()

Constructors

" Pairwise Comparator

public PairwiseComparator ( )

" Pairwise Comparator

public PairwiseComparator( java.util. Collection sources )

Methods

" getCommonNode Count

public int getCommonNodeCount( ) throws fnac.FnacException

- Description

Get the number of nodes present in both networks

- Returns - the number of nodes present in both networks

- Throws

* fnac.FnacException - if operate( has not been called or another

exceptional condition has been encountered

" getEdgeCountOnCommonNodes

public int getEdgeCountOnCommonNodes( fnac.Source src )

throws fnac.FnacException

- Description

Get the count of edges of one of the networks that fall completely within

the set of common nodes. I generally refer to the set of such edges as a

"trimmed" network.

- Parameters
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* src - - The network for which to count the number of trimmed edges

- Returns - the number of edges in src whose both endpoints are

contained in the set of common nodes

- Throws

* fnac. FnacException - if operate() has not been called, the specified

source has not been analyzed, or another exceptional condition was

encountered

" getOrphanedEdge Count

public static int getOrphanedEdgeCount ( fnac.Source src )

- Description

A static method for counting the number of orphan edges in a network

on the fly.

- Parameters

* src - - The source to examine for orphan edges

- Returns - - The number of orphan edges found in the network

" getOrphanedEdgeCountOnCommonNodes

public int getOrphanedEdgeCountOnCommonNodes( fnac.Source

src ) throws fnac.FnacException

- Description

Get the count of orphaned edges in the trimmed version of a particular

network.

- Parameters

* src - - The network whose trimmed version should be examined for

orphan edges

- Returns - the number of such orphan edges found

- Throws
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* fnac. FnacException - if operate() has not been called, the specified

source has not been analyzed, or another exceptional condition was

encountered

" getOverlappingSource

public fnac.Source getOverlappingSource( ) throws

fnac.FnacException

- Description

Get a network representation of the intersection of the two networks.

- Returns - - A Source embodying the intersecting nodes and edges

between the networks

- Throws

* fnac. FnacException - if operate() has not een called or another

exceptional condition has been encountered

" getSource WithOnlyCommonNodes

public fnac.Source getSourceWithOnlyCommonNodes( fnac.Source

src ) throws fnac.FnacException

- Description

Get the trimmed version of a particular network.

- Parameters

* src - - The network for which to obtain a trimmed version

- Returns - a Source representing the trimmed source

- Throws

* fnac.FnacException - if operate( has not been called, the specified

source has not been analyzed, or another exceptional condition was

encountered
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9 operate

void operate( ) throws fnac.FnacException

- Description copied from fnac.Operator (in A.5.1, page 102)

Execute the network operation. This is almsot always required prior to

retrieval of operation results.

- Throws

* fnac.FnacException - if Source(s) have not been specified for this

Operator or another exceptional condition was encountered.

Members inherited from class fnac.AbstractMultiSourceOperator (in A.5.2,

page 112)

" public void addSource( Source newSource )

" public void addSources( java.util.Collection newSources )

" public Collection getSources( )

Members inherited from class fnac. AbstractOperator (in A.5.2, page 114)

" public File getDataDir( )

" public Properties getOptions( )

" public boolean isOperationComplete( )

" public abstract void operate( ) throws FnacException

" public void setDataDir( java.io.File dataDir ) throws FnacException

* public void setOptions( java.util.Properties options )

Members inherited from class fnac.FnacObject (in A.5.2, page 124)

" public PrintStream getErrorStream( )

" public PrintStream getOutputStream( )

" public void setErrorStream( java.io.PrintStream errorStream )

" public void setOutputStream( java.io.PrintStream outputStream )
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Class SimpleMerger

Utility class for generating the intersections between multiple networks. When

operateo is called, all possible intersections are computed and can be quickly

retrieved thereafter. For example, if networks A, B, and C are merged, the

intersections AxB, AxC, BxC, and AxBxC are all computed. If you only want to

compute a single intersection, you should only specify 2 networks.

Declaration
public Class SimpleMerger

extends fnac.AbstractMultiSourceOperator (in A.5.2, page 112)

Constructor summary

SimpleMergero

SimpleMerger(Collection)

Method summary

getAllIntersections() Get the Collection of all intersections.

getIntersection(Collection) Retrieve a specific intersection network.

operateO

Constructors

" SimpleMerger

public SimpleMerger( )

" SimpleMerger

public SimpleMerger( java.util .Collection sources )
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Methods

" getAlllntersections

public java.util.Collection getAllIntersections( ) throws

fnac.FnacException

- Description

Get the Collection of all intersections. Each intersection is represented as

a Source. Also, in addition to the "real" intersections, the returned

Collection also contains the original sources and a null source

(representing the intersection of none of the networks).

- Returns - a Collection of Sources representing all possible network

intersections

- Throws

* fnac FnacException - if operate() has not been called or another

exceptional condition was encountered

" getIntersection

public fnac.Source getIntersection( java.util.Collection sources )

throws fnac.FnacException

- Description

Retrieve a specific intersection network.

- Parameters

* sources - - The Collection of sources whose intersection is being

requested

- Returns - the Source representing the intersection of the specified

networks

- Throws
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* fnac .FnacException - if operate( has not been called, one or more

of the specified sources was not analyzed during the last call to

operateO, or another exceptional condition has been encountered

e operate

void operate( ) throws fnac.FnacException

- Description copied from fnac.Operator (in A.5.1, page 102)

Execute the network operation. This is almsot always required prior to

retrieval of operation results.

- Throws

* fnac. FnacException - if Source(s) have not been specified for this

Operator or another exceptional condition was encountered.

Members inherited from class fnac. AbstractMultiSourceOperator (in A.5.2,

page 112)

" public void addSource( Source newSource )

" public void addSources( java.util.Collection newSources )

* public Collection getSources( )

Members inherited from class fnac. AbstractOperator (in A.5.2, page 114)

" public File getDataDir( )

" public Properties getOptions( )

" public boolean isOperationComplete( )

" public abstract void operate( ) throws FnacException

" public void setDataDir( java.io.File dataDir ) throws FnacException

" public void setOptions( java.util.Properties options )
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Members inherited from class fnac.FnacObject (in A.5.2, page 124)

" public PrintStream getErrorStream( )

" public PrintStream getOutputStream( )

" public void setErrorStream( java.io.PrintStream errorStream )

" public void setOutputStream( java.io.PrintStream outputStream )
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