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Abstract

With the development of new experimental technologies, biologists have begun to take a
more global view into cell function, approaching its study in a more systematic manner than
previously possible. This thesis develops three new tools to perform systems biology studies of
cell death in T cells: A modeling program, JDesigner; high throughput T cell apoptosis assays;
and an RNAi sequence prediction program. These tools are then applied to a biological and
mathematical analysis of Fas signaling pathways in T cells.
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Chapter 1. Introduction

Before the advent of high throughput biological research technologies, such as multi-
color flow cytometry, researchers could only measure a few cellular components at a time. Such
experimental limitations led to the study of detailed mechanisms of interaction between a small
number of molecules and generally led to the assumption that the modules of molecules could be
studied in isolation. However, scientists now have the tools to measure, simultaneously, the
global expression and activity of many different variables in cells. While this new global view
allows biologists to analyze the cell more realistically as a system, this approach also presents
challenges because the cell is a particularly complicated and non-intuitive system with multiple
feedback loops and nonlinearities, the interactions of which are poorly understood. In order to
enable a productive systems biology approach to understand cell function, new research tools
and platforms must be developed.

The current efforts in systems biology generally fall into two categories, detailed and
statistical.

The detailed approach involves modeling and gathering large data sets for a small
number of components at high resolution. Similar to the older, pre-systems biology approach,
the detailed approach studies variations and interactions between individual molecules to deduce
cause and effect relationships. Unlike the traditional approach, the systems biology approach
can study effects that have multiple causes. For example, the cleavage of a protein may result
from two or three different pathways. Using the old approach, biologists might study the five
proteins in each pathway independently. Using the systems approach, biologists can study all ten
to fifteen proteins simultaneously and determine how the pathways can cooperate to cleave the
final protein. As illustrated by this example, the detailed approach requires some prior
knowledge to select the proteins to be studied.

In contrast, the statistical approach involves modeling and gathering large data sets for a
large number of components at low resolution. The statistical approach generally searches for
correlation rather than cause and effect. For example, one may measure thirty proteins and
discover that the combined activity of two proteins correlates well with cell death. The choice of
proteins to study requires less prior knowledge but also provides less insight into the mechanism.

This project aims to identify and create research tools and platforms to enable systems
biology analysis of cell death in T cells. For the detailed approach to systems biology this
project identifies a modeling program, JDesigner. JDesigner allows biologists to represent
signaling pathways mathematically as a series of chemical reactions in the cell. Using this
representation the biologist can integrate data from multiple pathways, test hypotheses in silico,
and observe the effect of non-intuitive behaviors such as feedback loops. To enable statistical
approaches to study cell function, this project develops the apoptosis assay, a high throughput
assay for the outcome of T cell stimulation, programmed cell death. This assay is especially
appropriate for the biological problems addressed in this project dealing with the function of the
Fas pathway, which is recognized as an important apoptosis pathway in T cells. In addition, this
project develops a program to predict sequences for RNAi, a method to systematically repress
gene expression in cells.

This thesis will introduce the Fas signaling pathways in chapter 2, then each tool,
JDesigner, apoptosis assays, and RNAi in chapters 3, 4, and 5 respectively. The application of
each tool to the Fas pathway will be discussed in chapters 6, 7 and 8.
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Chapter 2. Fas

Introduction
The immune system functions to protect the body from foreign pathogens such as viruses

and bacteria. In most vertebrates including humans, the immune system can be divided into two
branches, the innate and adaptive immune system. The innate immune system includes defenses
such as the skin and phagocytic cells and is not specific for a particular pathogen but has broad
reactivity to classes of frequently encountered pathogens. The adaptive immune system
responds to pathogens with a high degree of specificity and consists of B and T cells. A T cell
recognizes pathogens through an interaction between the T cell receptor (TCR) and the major
histocompatibility complex (MHC) which presents peptides, including foreign peptides when the
body is infected.

Generally a MHC-self peptide complex results in tolerance while a MHC-foreign peptide
complex activates T cells and initiates an immune response including T cell proliferation.
Occasionally a TCR will recognize a MHC-self peptide complex as foreign. The T cell
presenting this TCR will mount an immune response to a self peptide, potentially leading to
autoimmunity.

T cells will upregulate Fas and Fas ligand (FasL), cell surface proteins involved in
programmed cell death (apoptosis), when the TCR is repeatedly stimulated. The Fas-mediated
apoptosis of T cells after frequent stimulation is known as activation induced cell death (AICD)
and is believed to remove self-reactive T cells as well as extra post-infection T cells from the T
cell population. The importance of Fas/FasL mediated cell death is highlighted by patients with
mutations in the Fas receptor. These patients suffer from autoimmune lymphoproliferative
syndrome (ALPS) which is characterized by enlarged lymph nodes and spleen, where B and T
cells generally reside, as well as autoimmunity (Jackson et al. 1999). Resistance to Fas mediated
apoptosis can also be an important step towards developing lymphomas (Igney and Krammer
2002).

Details of Fas Signaling Pathways
The general architecture of the Fas signaling pathways is fairly well established (Goldsby

et al. 2003). As illustrated in figure 2.1, the signal begins when FasL binds Fas, a trimer (Siegel
et al. 2000). Each Fas molecule can then recruit a Fas associated death domain containing
protein (FADD). Each FADD has a protein-protein interaction domain termed the death effector
domain (DED) which can recruit proteins with the same domain via homeotypic interactions.
FLICE or caspase-8, a member of the family of cysteine aspartate proteases (caspases), contains
two DEDs as does c-FLIP (FLICE-like Inhibiting Protein). The high local concentration of
caspase-8 when recruited to FADD is believed to lead to cleavage and activation (Peter and
Krammer 2003). Activated caspase-8 can cleave proteins in two different pathways starting with
caspase-3 and Bid (Luo et al. 1998). In contrast, c-FLIP contains a mutated active domain which
abolishes activity (Peter and Krammer 2003). This suggests c-FLIP may function as a
competitive inhibitor of caspase-8 by binding to FADD and preventing downstream signaling.

There are two signaling pathways downstream of activated caspase-8 resulting in the
activation of effector caspases, such as caspase-3. Effector caspases cleave a wide array of
proteins which are required to trigger the cellular changes associated with apoptosis. In the type
I pathway, caspase-3 is cleaved directly by caspase-8. In the type II pathway, caspase-8 initiates
a cascade of reactions that result in cytochrome c and Smac release from the mitochondria and
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caspase-9 cleavage of caspase-3. In detail, caspase-8 cleaves Bid (Peter and Krammer 2003).
Truncated Bid (tBid) then oligomerizes Bak or Bax to induce the mitochondria to release
cytochrome c and Smac (Wei et al. 2000, Sun et al. 2002). Bcl-2 can inhibit this release
(Scaffidi et al. 1998, Sun et al. 2002). After its release from the mitochondria, Smac functions to
release cleaved caspase-3 and caspase-9 from inhibition by the X-linked inhibitor-of-apoptosis
protein (XIAP) (Sun et al. 2002). Cytochrome c interacts with Apaf-1 to recruit and activate
caspase-9. Activated caspase-9 then cleaves other caspases including caspase-3 (Slee et al.
1999). Some evidence supports the presence of a positive feedback loop with caspase-3 cleaving
caspase-8 though this is not yet widely accepted (Slee et al. 1999, Engles 2000).

Questions about the Function of Fas in T cells
This thesis applies systems biology to address two questions about the function of Fas in

T cells. First, what changes in cell state dictate whether a cell exhibits type I versus type II cell
death characteristics. Second, at what level do Fas signaling pathways interact with TCR
signaling pathways, and what are the biological consequences of this interaction.

Type I versus Type II cells
Scaffidi et al. (1998, 1999) have proposed that cells can be assigned to one of two types,

type I or type II, based on the effect of Bcl-2 overexpression on Fas-mediated apoptosis. Bcl-2
overexpression in type II cells blocks caspase-8 and caspase-3 activation, as well as apoptosis.
Scaffidi et al. (1998) hypothesize that the type II cells might activate only low levels of caspase-
8 initially and that the mitochondrial pathway serves to amplify these weak signals. Bcl-2
overexpression would prevent amplification of a weak caspase-8 signals through the
mitochondrial pathway, preventing the activation of caspase-3 and further activation of caspase-8
via feedback. However, Bcl-2 overexpression in type I cells does not inhibit caspase-8 or
caspase-3 activation indicating that these cells use a different pathway to signal Fas-mediated
apoptosis.

To establish the type I and type II cell paradigm, Scaffidi et al. investigated a large
number of cell types, including T cell lines that exhibit either type I (H9 cells) or type II (Jurkat
cells) killing by Fas (Scaffidi et al. 1998). Dr. Fei Hua, a postdoctoral researcher in our
laboratory, has found that Jurkat cells were more sensitive to Fas-mediated killing than H9 cells,
yet had fewer Fas receptors on the surface (Figure 2.2). She also found that Jurkat cells had
higher levels of caspase-8, but lower levels of Bcl-2 and caspase-3 compared to H9 cells (Figure
2.3). The lower number of Fas receptors and the higher levels of caspase-8 initially seem to
counteract each other making the Scaffidi hypothesis of low initial caspase-8 activation difficult
to test. The consequences of systematically changing Fas and caspase 8 levels can be explored
experimentally, but would require the creation of new reagents. Furthermore, Sun et al. (2002)
propose that the ratio of XIAP to active caspase-3 and Smac may be most important in
determining type I versus type II behavior. A quantitative model would help to clarify the
importance of Fas receptor number versus caspase-8 concentration, and XIAP versus caspase-3
and Smac concentration, on the activation of caspase-3. The search for a modeling program and
the creation of an ordinary differential equation model of the Fas signaling pathways is discussed
in chapters 3 and 6 respectively.
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Interaction between Fas and TCR
Before TCR activation, there is very little Fas and FasL present on the cell surface. Thus

TCR signaling is required to upregulate Fas and FasL and for Fas signaling to occur (Siegel et al.
2000). However, several papers suggest that more complex interactions may also occur between
the signaling pathways for TCR and Fas. Holstrom et al. (2000) show that Jurkat cells in which
the TCR is activated 30min before stimulation of the Fas receptor have about one half the levels
apoptosis of cells treated with Fas only. Furthermore, they show that this suppression of Fas-
mediated apoptosis correlates with Erk activity, a molecule downstream of the T cell receptor
pathway. Allan et al. later demonstrated that Erk specifically phosphorylates and inhibits
caspase-9. Kennedy et al. (1999) show that FasL treatment of T cells, together with TCR
stimulation, increases proliferation compared with TCR stimulation alone. The apoptosis assay,
developed and applied in chapters 4 and 7 respectively, aims to establish conditions which
maximize the interaction of the Fas and TCR pathways for further investigation.
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Figure 2.1 Schematic of Fas Pathways (courtesy of Fei Hua). The diagram shows that FasL
binds Fas as a trimer which then recruits FADD and caspase 8. Activated caspase 8 can cleave
caspase 3 by two pathways. In the type I pathway, caspase 8 cleaves caspase 3 directly. In the
mitochondrial pathway, caspase 8 cleaves Bid to form t-Bid (truncated Bid). t-Bid dimerizes
Bax or Bak causing mitochondrial release of Smac and cytochrome c. Smac releases the
inhibition of caspase 9 by XIAP and allows the formation of a complex known as the
apoptosome. The apoptosome which consists of APAF, cytochrome c, caspase 9, and ATP
cleaves caspase 3. Cleavage of caspase 3 then induces apoptosis. These pathways are regulated
by several molecules. Activation of caspase 8 can be inhibited by c-FLIP. The mitochondrial
pathway can be inhibited by Bcl-2.
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Figure 2.2 (courtesy of Dr. Fei Hua) A) Jurkat cells are more sensitive to IOOng/ml FasL-
induced apoptosis than H9 cells B) Cells were labeled with fluorescent-conjugated anti-Fas and
the number of Fas on the cell membrane compared by the fluorescence intensity. Unfilled peaks
are negative control.
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Figure 2.3 (Courtesy of Dr. Fei Hua) Jurkat cells have higher levels of caspase-8 but lower
levels of Bcl-2 and caspase-3.
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Chapter 3. Pro2rams for Detailed Modeling of Cell Si2naling Pathways

Introduction
The detailed approach to systems biology attempts to study the precise mechanisms of

cellular behavior with more molecules and with greater resolution than has been previously
attempted. This approach presents two challenges. First, with more molecules, the modeling
begins to more closely reproduce the complexity of the cell. The cell has naturally evolved as a
secure system with many seemingly redundant pathways as well as feedback control
mechanisms. The behavior that results from these mechanisms is often difficult to predict.
Second, at the most mechanistic and granular level, cellular behavior is a series of chemical
reactions. Intuiting the behavior of molecules at the level of chemical reactions is also difficult.
In order to assist in these challenges, a program that allows for modeling of cellular behavior at
the level of chemical reactions is important.

Creating a program to model cellular behavior is difficult due to conflicting
considerations. On one hand, computational modeling of cell pathways is still very new. As a
result, standards are not yet established and the modeler will most likely want new functionality
as the field develops. On the other hand, it is time consuming to recreate models when the
current program proves inadequate. For these reasons, before creating a model, it is important to
attempt to assess whether current programs are flexible enough to adjust to future developments
yet complete enough that models will not have to be rewritten.

The specific purpose of this section of the project was to identify or create a program for
constructing computational models of cell signaling pathways. An important requirement was
that the program be intuitive. In addition, the created models needed to be self explanatory
similar to data in a publication. After considering the requirements for a program and reviewing
the state of the art, I determined that JDesigner satisfied all the requirements and was the most
complete of the currently available programs.

Requirements for the Program
After discussion with members in the Van Parijs lab, I determined that the four most

desirable properties of a cell modeling program are that it possesses a biologically intuitive
interface, the ability to use different reaction representations, space to annotate reactions, and the
capacity to optimize parameters using experimental data.

The following paragraphs discuss each requirement in greater detail.

Intuitive Interface
To facilitate the creation of computational models, an intuitive interface is important.

Generally reactions within biological systems are represented using bubble diagrams similar to
that shown in Figure 2.1. The figure provides some mechanistic insight into the system, showing
for example, that FasL binds Fas as a trimer then recruits FADD and caspase 8. The figure also
shows that caspase 8 can be inhibited by c-Flip. However, the diagram omits complex details
such as that a high concentration of procaspase 8 bound to FADD induces autocatalytic cleavage
activating caspase 8 and that c-Flip may inhibit caspase 8 activation through competition (Igney
2002). An interface similar to the bubble diagram representation, with some but not all detail,
would provide the most intuitive representation of a biological system.
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Different Reaction Representations
Past work has focused on the use of ordinary differential equations or stochastic

simulations to mathematically represent chemical reactions (Bhalla 2002, Mendes 1998).
Ordinary differential equations reflect biological processes when reactants are abundant.

Using differential equations, the reaction "A binds with B to form C reversibly,"

A+B * C

becomes the series of equations

d[C] -k [A][B] -k 2 [C]
dt

d[A] -k2 [C]-k,[A][B]
dt

d[B] -k2 [C]-k,[A][B]
dt

The first equation, d[C] k, [A] [B] - k2 [C], represents how the change in the
dt

d [C ]
concentration of C with respect to time, , depends on the rate at which A binds to B and

dt
forms C, ki[A][B], minus the rate at which C degrades into A and B, k2[C]. Similarly, the second
and third equations represent the change in the concentration of A and B respectively. ki and k2

are known as rate constants. A complete model using differential equations requires knowledge
of all the chemical reactions, the rate constants, and the initial concentrations of each reactant.

Stochastic simulations use similar knowledge. However, stochastic simulations assume
that the initial concentrations of reactants are so low that reactions are probabilistic rather than
guaranteed. Instead of ki[A][B]-k 2[C], stochastic simulations use Fc, the flux of C. The
probability that a reaction occurs to produce C is the flux of C over total flux, Fc/Ft. At each
time step, one reaction is selected probabilistically and carried out to determine the
concentrations of the reactants at the next time step (Kibby 1969).

Because each reaction representation has different strengths, an optimal program would
offer both differential equations and stochastic simulations.

Space for Annotation
Researchers also need to store annotations for the various sources of information

including the literature supporting each reaction and parameter. This is especially important
when two sources in the literature give contradictory values (Hoffman et al. 2002).

Optimization
Finally, an ideal program would perform optimization to fit the computational model to

experimental data. This functionality is especially important because parameter values can be
unavailable, vague, or contradictory in the literature. In addition, feedback loops within a model
can amplify error, yielding an almost-correct system that behaves incorrectly.
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Mendes and Kell tested common optimization algorithms such as evolutionary
programming, truncated Newton, and genetic algorithms. Not surprisingly, they found that no
single method works best for all problems (Mendes 1998). Thus, an ideal program would
provide several optimization algorithms for the user to try.

Review of Potential Modeling Programs
Similar projects in the past have used programs such as Matlab (Schoeberl 2002),

Kinetikit (Bhalla 2002), and JDesigner (Hoffrnann 2002). Of these three programs, Matlab and
Kinetikit meet only some of the requirements while JDesigner meets all four of the previously
established requirements.

Matlab is a commercial software package that provides a flexible environment for
mathematical manipulation of data (Mathworks). As a result, a programmer can code any
desired mathematical reaction representation including ordinary differential equations and
stochastic simulations. As an added benefit, Matlab comes with several ordinary differential
equation solvers. The company also offers several optimization packages although these were
not purchased and explored in this study. Annotation can be added as comments in the code.
However, Matlab was not created with the analysis of biological systems in mind. At best, the
user can program an interpreter to convert a worksheet of biological equations into differential
equations as shown in Figure 3.1 (Shoeberl 2002). This approach distracts from the biology and
draws attention to the mathematical representation.

Kinetikit, also known as GENESIS, is an academic program specifically designed to
provide a friendly biological interface (Bhalla 2002). However, Kinetikit does not support
stochastic reactions because the creators believed that the technology to gather enough
experimental information to justify a stochastic model did not yet exist. In addition, the program
does not offer any optimization algorithms.

JDesigner is part of the Systems Biology Workbench project established at the California
Institute of Technology (California Institute of Technology, Sauro). JDesigner offers a
biologically intuitive interface as shown in Figure 3.2. Associated with each molecular reaction
is mathematical representation. JDesigner specifically supports ordinary differential equations
and stochastic simulations but mathematical equations of any format can also be typed in.
JDesigner also allows for annotation of nodes and reactions. Although optimization is not
implemented, the models can be saved in a standardized language, SBML, to be imported into a
different package that does perform optimization. In particular, a program known as Gepasi
(Mendes 1997) is also part of the Systems Biology Workbench and specializes in fitting
algorithms. Gepasi offers both global algorithms such as evolutionary algorithms and simulated
annealing as well as local algorithms such as gradient descent.

Some other programs explored are displayed in Table 3.1
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Table 3.1 Summary of Potential Modeling Programs.
Program Drawbacks
DBsolve, KineCyte No longer supported
Virtual Cell Could not install
ProcessDB No documentation
Entelos LabBuilder Proprietary
GNS No mathematical backend
ModelMaker, ACSL, VisSim Cumbersome interface
Berkeley Madonna, JSim No support for annotation
STELLA, SCAMP, BioQuest, E-cell No support for optimization

Discussion of JDesigner
Beyond the minimum requirements JDesigner offers some extra advantages as well as

some drawbacks. Among the advantages are that JDesigner can display output in graphical or
worksheet form. This feature allows the user to output the data to other data organization
programs such as Excel. In addition, JDesigner is open source allowing a programmer to modify
the program for specific needs. Among the drawbacks are that JDesigner can quickly become
visually complex. Unlike the bubble diagram introduced in the "Intuitive Interface" section,
JDesigner cannot represent a concept such as Flip inhibition of Caspase 8 recruitment without
depicting the mechanism in dense detail as shown in Figure 3.3. In particular, Figure 3.3
displays all the permutations of three FADD molecules and three Flip molecules that could cause
or inhibit cleavage of caspase 8. A related drawback is that JDesigner does not allow the
depiction of reactions at different levels of abstraction. For example, if the exact mechanism of
Flip mediated inhibition were not known, one might still want to include inhibition in the model
as a boolean variable. With JDesigner the mixture of boolean and differential equations is not
possible. Finally, JDesigner does not incorporate any mechanism for output and model
management which can quickly become a problem. For example, the user will often change the
initial concentration of one molecule in the model to observe the outcome. Without careful
documentation, the user can easily become confused about which outputs correlate to which
changes in initial concentration.

Reaction numn Equation

v1 {EGFR]+[EG +- [EGF-EGFR
v2 rEGF-EGFR]+fEGF-EGFR ++ (EGF-EGFR)2]
v3 [(EGF-EGFR)2} + [(EGF-EGFR*)2j
v4 {(EGF-EGFR*)2GAP-Grb2 +[Prot) ++ (EGF-EGFR*)2-GAP-Grb2-PrqJ
v5 [EGF-EGFR)2-GAP-Grb2-Prot] ~ [(EGF-EGFRi*)2-GAP-Grb2}+[Prot1
v6 [EGFR] + [EGFR}
v7 t(EGF-EGFR*)2] -+ [(EGF-EGFRI*)2]
v8 [(EGF-EGFR*)2]+[GAP] ++ [(EGF-EGFR*)2-GAP
v9 [(EGF-EGFR*)2-GAPJ -+ [(EGF-EGFRI*)2-GAP]
v10 EEGFRI+[EGF1I ++ [EGF-:EGFRJ
v11 [EGF-EGFRJI+[EGF-EGFRiI ++ [(EGF-EGFR)2}
v12 [(EGF-EGFR)21 <+ [(EGF-EGFRI)2
v13 ® [EGFRJ
v14 [(EGF-EGFR *)2}+ [GAP) + [(EGF-EGFR*)2-GAP]
V15 [Proq -+ JProt)
Figure 3.1 Worksheet of biological equations. A program written
equations into differential equations.

in

Kinedc parameto

k1 =397 k-1 380-3;
k2=17; k-2=0.1;
k3=1; k-3=0.01;
k4=1.73e-7 [Recei k-4=1.66e-3 [1/s];
k5=0.03 - 0.0033
W=54-5: k-6=-e-3
k7=5e-5;
k8=16; k-80.2;
k9=5e-5;
ki=14e5; k-10= 0.011;
k11=1e7: k-11=0.1;
k12=1; k-12=0.01
ki3=217 [!Receptors/s;
k14=1e6; k-14=0.2;
k15=1e4

Matlab can convert these
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Figure 3.2 User Interface of JDesigner. The right panel offers an intuitive interface for creating
reactions. The left panel offers the option of built-in rate laws or free format rate laws to
represent the reaction on the right. The small keyboard symbol beside the "Name of Reaction"
user input box offers the user the option of adding annotation.
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Figure 3.3 Fas Pathways Modeled in JDesigner. The red arrows indicate key reactions leading
to the activation of caspase 8. The orange arrows indicate reactions in the direct pathway to
cleavage of capase 3. The purple arrows indicate key reactions in the mitochondrial pathway.
The blue arrow indicates inhibition of the mitochondrial pathway by Bcl-2. The green arrows
indicate reactions that are still being tested. Important molecules are highlighted in light blue.
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Chapter 4. Apoptosis Assays

Introduction
Apoptosis, programmed cell death, serves as an important and easily measured outcome

of the interaction of multiple cellular cues in T cells. This study addresses two receptor mediated
pathways that can result in T cell apoptosis. First, activation of Fas via Fas ligand binding will
generally induce apoptosis in T cells. In addition, activation of the T cell receptor (TCR) can
modulate these cell death signals. We are interested in the molecular interaction of the Fas and
TCR pathways. When Fas and TCR are both activated, the extent of interaction between the
pathways can be observed through the difference in the levels of apoptosis compared to Fas or
TCR stimulation alone. However, because apoptosis is influenced by multiple cues, accurate
measurement requires careful control of experimental conditions.

Among the cues that can influence apoptosis or apoptosis measurements are cell density,
handling, and length of staining. In particular, some cells die due to overcrowding. Other cells
require growth factors for survival, released in an autocrine manner or by nearby cells. Cells can
also die due to the physical damage caused by rough handling. In addition to variables affecting
cell death, there are variables affecting the measurement of cell death. The two most common
stains for apoptotic cells, annexin-V and propidium iodide (PI), each identify different features
of a dying cell and each have experimental limitations. Annexin-V is known to fade with time,
while the PI dye can enter and stain live cells, albeit more slowly than dying cells, and may be
toxic. To determine which of these parameters influence the accuracy of apoptosis experiments,
the effects of different cell densities after 24, 48 and 96hrs, the effect of transferring and washing
cells, and the effect of PI staining over time were studied.

Materials
The immortalized human T cell lines H9 [ATCC HTB-176] and Jurkat were grown with

5% CO 2 in CIO medium (420ml RPMI, 50ml fetal bovine serum [Gibco 20437-028], 5ml
Penicillin-Streptomycin [Gibco 15140-122], 5ml L-glutamine 200mM [Gibco 25030-081], 5ml
non-essential amino acid solution 10mM [Gibco 11140-050], 5ml sodium pyruvate 100mM
[Gibco 11360-070], 5ml Hepes IM [Gibco 15630-080], 5ml 5.5mM 2-Mercaptoethanol [Gibco
21985-023] sterile filtered through 0.22um filter). Propidium iodide was obtained from Roche
Applied Science (Indianapolis, IN.). RPMI and phosphate buffered saline (PBS) was prepared
by the media kitchen at the MIT Center for Cancer Research according to standard recipes.

FACScan (BD Biosciences, San Jose, CA) was used to perform flow cytometry.

Protocols
Counting Cells

Because the cells tend to settle to the bottom of the flask in which they are grown, the
cells were well mixed before 20ul of cell solution was added to 80ul of Trypan Blue stain [Gibco
15250-061]. Four quadrants of the Hausser Dark-Line hemacytometer [Hausser Scientific,
Horsham, PA] were counted excluding any dead cells which appear blue due to the uptake of
Trypan Blue. The cell concentration was determined by the following equation: Cells/ml = total
number of counted cells/4x 1 0^4x5.
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Cell Death Assay
On day 1, cells were diluted to a density of 0.3x10^6 cells/ml in pre-warmed C10 media.

On day 2, the cells were counted and the concentration recorded. An aliquot of the cells was
spun down at 12000rpm for 5min and resuspended in medium to a density of 5x10A6 cells/ml.
The rest of the cells were kept in the original flask. The resuspended cells and media were added
to each well in 3 96 well flat-bottom plates [Coming Inc., Coming, NY] as indicated in table 4.1.
Column 5, rows 1, 2, and 3 contained cells that were taken directly from the original flask. This
column served as a control for any necrosis that might occur as a result of resuspending the cells
to a density of 5x 10^6 cells. The starting time for incubation was noted and the plates were
incubated at 37'c with 5% CO2 for 24hrs for plate 1, 48hrs for plate 2, and 96hrs for plate 3.

Table 4.1 Cell dilution and media added to each well in a 96 well flat bottom plate.
Plate 1 (24hr), 2 (48hr), 3 (96hr)
Column Row ul of 5x1 0A6 Media (ul) Crowding

cell solution Concentration
(1 0A6 cells/ml)

1,2,3 1 4 196 0.1
2 10 190 0.25
3 20 180 0.5
4 40 160 1
5 120 80 3
6 200 0 5
7
8

After 24, 48, and 96hrs, cells from the appropriate plate were moved to 96-well round-
bottom plates [Coming Inc., Coming, NY]. To ensure complete transfer of all the cells, cells
were pipetted vigorously in the well before transferring. The entire plate was spun down and the
supernatant removed. At this point, the end time for incubation was recorded. 200ul of cold
PBS was added to each well to remove color and debris. The plate was spun down again.
Finally, 200ul of cold PBS was added and the cells were transferred to FACS tubes [Falcon 35-
2052]. 200ul of cell culture was also transferred directly from the flask into 3 FACS tubes.
These extra tubes served as a control to determine the difference in necrosis between the cells
that had been subjected to all the transfer and wash steps as opposed to cells that had not.

Fluorescence activated cell sorting (FACS) was performed by adding 200ul of PI
(5ug/ml) to each tube immediately before taking a FACS measurement and vortexing. 20,000
events considered to be live cells were collected for each sample. Samples were left for an hour
then measured again to test for changes in measured apoptosis.

Discussion

Cell Density
A value of 10% cell death or 90% survival was considered acceptable in these

experiments. Figure 4.1 a shows that Jurkat cells exhibit a low level of apoptosis when cultured
at densities of up to 1 million cells/ml 24hrs after the cells were originally transferred into the 96
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well plate. On each subsequent day, the densities with acceptable levels of cell death dropped by
half to 0.5 million cells/ml on the second day, and 0.25 million cells/ml on the third day.

H9 cells are larger cells than Jurkat cells (data not shown), and therefore are likely to be
crowded at lower densities than Jurkat cells. Thus a shift of the cell death curves to the left, to
lower densities, was expected. However, on the first and second day, the H9 cells behaved
similarly to the Jurkat cells with a low level of apoptosis for up to 1 million cells/ml and 0.5
million cells/ml respectively (Figure 4. 1b). By the third day even the lowest cell density of 0.1
million cells/ml showed cell death greater than 10%, suggesting that the effects of crowding
were most pronounced at this time. One possible explanation for this phenomenon is that the H9
cells have a slower cell cycle than the Jurkat cells and the effects of growth and crowding do not
appear until the third day.

Neither cell line seemed to suffer from the reduction in autocrine or paracrine growth
factors likely to be associated with culturing cells at lower densities. If growth factors were
important, the plot of cell death was expected to be a concave parabola, with high cell death at
low densities due to the lack of cytokines, and high cell death at high densities due to crowding.
Instead curves (Figure 4.1 a, b) appear to be sigmoidal with increased cell death correlating with
increased crowding. The lack of cell death at low densities may be explained by two
possibilities. First, the densities tested were not low enough to induce cell death due to growth
factor withdrawal. In other words, even at the lowest densities tested, the cells are producing
enough growth factors to grow. Second, the Jurkat and H9 cells do not need cytokines because
they are immortalized and obtain all necessary nutrients from the culture medium which is
supplemented with serum proteins and other essential molecules. Experiments to distinguish
these possibilities would involve culturing Jurkat and H9 cells in the presence of growth factor
inhibitors or in medium with reduced levels of serum proteins.

These experiments suggest that apoptosis assays would be best performed at the lowest
possible cell densities, because these are associated with lower levels of background cell death.
However, the advantage of the lower level of cell death must be balanced with the requirements
for performing FACS analysis. With less cells, it is more difficult to obtain a statistically
significant number of measurements (typically 20,000 cells or events). Therefore, it was
determined that performing experiments at 0.5 million cells/ml within 24hrs would provide the
optimal balance between low levels of cell death and speed of FACS.

Processing Steps
Figure 4.2 compares the cells plated in column 5 of the the 96-well plates (cells which are

at the same cell density as the cells in the flask) with the cells transferred directly from the flask
into FACS tubes on the day of performing the FACS. Theoretically the cell density and the
percent of cell death in these populations should be the same. However, the cells taken from the
flask consistently have a lower percentage of cell death. This observation indicates that during
the process of growing in a 96 well plate, being transferred, spun down, and washed, cell death
increases, probably due to mechanical stress. The H9 cells appear to be particularly sensitive
showing a 45% difference in cell death by day 3 (Figure 4.2b). However, for at least 24hrs, the
difference between the well and flask populations is small enough to keep the percentage of cell
death below 10%. From these results as well as the results for cell density, it was decided that
cells would experience the least amount of stress and background apoptosis if experiments were
conducted within 24hrs.
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Staining Over Time
Figure 4.3 shows that an increase in staining with PI can occur after less than Ihr. All

samples consistently showed an increase in staining and the staining could increase observed cell
death by up to 18%. These results ran counter to the expectation that the PI might, like Annexin-
V, fade over time and decrease observed cell death. One explanation for the increase in staining
may be that prolonged exposure to PI can stain cells on the way to dying. In particular, PI
crosses the permeable membrane of dead cells to stain the DNA. The intact membrane of live
cells generally prevents the PI from reaching the DNA. However, cells on the way to dying may
have slightly more permeable membranes that slowly allow the PI to cross. This may lead to an
increase in stain with time. Another explanation is that the cells begin to die due to media
withdrawal because the cells are left in PI without growth factors for one hour. Whether the dye
began to stain live cells or the live cells began to die, it was decided that PI should be added
immediately before performing FACS and FACS should be performed no more than Ihr after
media withdrawal.

In conclusion, we established that apoptosis assays should be performed within 24hrs
with an initial cell density of 0.5 million cells/ml to reduce background cell death. In addition,
FACS analysis should be performed no more than lhr after withdrawal from media and PI
should be added immediately before performing FACS.
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Effects of Different Cell Densities over 3 Days (Jurkat)
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Figure 4.1 Apoptosis of Jurkat and H9 cells Initially Plated at Different Cell Densities over 3
Days. Cells were plated at different initial densities then measured for cell death by FACS
analysis of propidium iodide staining after 24, 48 and 72 hrs. A) Jurkat cells are below 10% cell
death for densities up to 1 million cells/ml after 1 day but only densities below 0.25 million
cells/ml are below 10% cell death after 3 days. B) H9 cells are below 10% cell death for
densities up to 1 million cells/ml after 1 day but even a density of 0.1 million cells/ml cannot
prevent cell death greater than 10% after 3 days.
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Effect of Processing Steps (Jurkat)
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Figure 4.2 Effect of Processing Steps on Cell Death of Jurkat and H9 cells over 3 days. A) Cell
death of Jurkat cells is affected by only 4-6% due to the growth conditions in the 96 well plate
and the transfer and wash steps. B) H9 cells exhibit a great disparity between cells grown in the
wells and subjected to the transfer and wash steps compared to cells in the flask after 48hrs.
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Difference between Ohr and Ihr Staining (Jurkat)
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Figure 4.3 Difference between Ohr and lhr Propidium Iodide Staining of Jurkat cells on a
Representative Day (48hrs). The graphs show each triplicate A, B, and C for each cell density
measured right after PI addition or lhr after PI addition. The difference in staining ranges from
1-18%. Similar results were obtained for H9 cells.
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Chapter 5. RNAi

Introduction
A cellular process known as RNA interference (RNAi) has recently been discovered and

has been shown to be useful, experimentally, to efficiently suppress gene expression in
mammalian cells. The RNAi pathway can be triggered by the introduction or expression of short
sequences of double stranded RNA known as short interfering RNAs (siRNA) in cells. This
induces the cleavage of complementary mRNA sequences, resulting in reduced stability of the
mRNA and, consequently, a decrease in the level of its product, a protein, in the cell.

The mechanistic details of RNAi are still being investigated, but it appears that the
double stranded siRNAs are incorporated into a complex known as the RNA-induced silencing
complex (RISC). This complex unwinds the siRNA and is guided by one of the strands to the
complementary mRNA sequence which is then cleaved (see McManus and Sharp (2002),
Dykxhoom et al. (2003), and Denli and Hannon (2003) for more detailed reviews).

There are several methods to introduce the siRNA into mammalian cells. The short
hairpin method used by the Van Parijs laboratory as well as others, involves the use of vectors
that express short hairpin RNAs (shRNAs) in cells. The shRNA consists of one strand of the
siRNA (the sense strand), a loop sequence, and the other strand of the siRNA (the antisense
strand) (Rubinson et al. 2003). The loop sequence is eventually cleaved by a protein, Dicer,
leaving just the siRNA sequence.

Experimentally RNAi provides two advantages over other techniques to genetically
manipulate mammalian cells. First, transfecting siRNAs is much less involved than knocking out
a gene, reducing time and cost. Second, different siRNA sequences can repress genes to
different extents. In theory this should allow cell behavior to be systematically observed at
multiple gene expression levels. These experimental advantages are especially important for
systems biology. Because RNAi is such a flexible and efficient technique, it can be used as a
screening method to knockdown key genes and observe the cellular effects. In addition, multiple
gene expression levels provide an opportunity to study the behavior of the cell with different
starting states for a single gene.

One of the difficulties for the systematic use of RNAi is the selection of functional
siRNA sequences. As mentioned above, different sequences can repress to different extents and
many sequences are considered nonfunctional because they fail to silence gene expression
altogether. Many researchers have been working to unravel the requirements to select functional
siRNA sequence and their work is reviewed below. Automating this process provides two key
benefits. First, a program will save the user time in gathering information to select a sequence.
Second, a program can serve as a center for knowledge about siRNA selection so each user does
not need to keep up-to-date with developments in the understanding of RNAi as long as the
program is kept up-to-date. The specific purpose of this aim was to identify or create a program
for predicting successful sequences.

Requirements for a Sequence Prediction Program
The study of RNAi is a recent field and is highly active. In order to incorporate new

information and to handle the lack of standards, a sequence prediction program must be both
extensible and flexible. For example, a study by Khvorova et al. (2003) elucidating an important
criterion for successful siRNA sequences was published in October, just two months prior to the
writing of this thesis. An extensible program should easily expand to consider this new criterion.
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The flexibility of the program is also important. In particular, because the importance
each selection criterion relative to others has not been studied thoroughly it is important that the
program allow a scientist to perform the ranking manually if desired. In addition, the program
should be flexible to features of the shRNA that are likely to change such as the motif used and
the loop sequence (explained below).

Requirements for Functional siRNA Sequences
By examining large populations of functional and non-functional siRNAs, two groups

have recently established criteria that statistically lead to the selection of better siRNAs.
Khvorova et al. (2003) identified that the free energy, ie. the strength of the bonds, between the
two siRNA strands had a significant impact on the efficiency of gene silencing. They determined
that successful siRNA sequences had lower free energy on the 5' end of the antisense strand, the
loop end in the shRNA, than on the 3' end, the free end in the shRNA (see Figure 5.1).
Successful sequences also had a low free energy for nucleotides 9 to 14 of the antisense strand.
These free energy characteristics are hypothesized to help the RISC unwind the siRNA. Pusch et
al. (2003) showed that a single nucleotide mismatch between the siRNA sequence and the
targeted mRNA also significantly reduced the effect of the siRNA, presumably by causing the
guidance of the RISC to be less accurate. In addition, mismatched sequences may induce a
different gene silencing pathway, known as miRNA which functions by attenuating translation.

Other criteria for selection siRNA sequences are not based on such strong experimental
evidence but are generally included in selection algorithms. These include maintaininng the GC
content of the sequence between 30% and 70% (Dykxhoom 2003). The reasoning was that
mRNA nucleotides G and C are known to bind more strongly than A and U. Thus a high GC
content may affect RNAi by making unwinding by the RISC difficult, while low GC content
might make duplexes unstable and reduce their lifespan. Many researchers also suggest running
a Blast search, a search to find nontargeted genes with sequences similar to the siRNA, to reduce
nonspecific knockdowns (McManus and Sharp 2002, Dykxhoorn 2003). Other restrictions are
laboratory specific. For example, the Van Parijs laboratory uses siRNAs with the sequence motif
AAGN20 where N represents any nucleotide and 20 represents 20 Ns in a row. Other
laboratories use other motifs such as NAN1 9NN, NARN I7YNN, and NANN 1 7YNN where R
represents A or G, and Y represents C or T (Dykxhoom 2003). These restrictions are typically
imposed by the specific vector system that is used. In addition, most laboratories use shRNA
expression systems that utilize RNA polymerase III to transcribe the short RNA hairpin. This
polymerase will terminate if it detects a stretch of 4 of more As in a row. Therefore the use of the
pol III promoter requires a search to check that such a sequence is not present in the shRNA.

Review of Potential RNAi Sequence Prediction Programs
Several public programs exist for the prediction of siRNA sequences including siRNA

Target Finder (Ambion), RNAi OligoRetriever (Ravi Sachidanandam Laboratory at Cold Spring
Harbor Laboratory), and Hairpin siRNA selection Program (Biocomputing at Whitehead
Institute).

siRNA Target Finder and RNAi OligoRetriever are both missing important criteria and
flexibility. siRNA Target Finder allows the user to restrict GC content and avoid sequences with
four As in a row. In addition, the user receives a link to perform a Blast search with the results.
However, the program does not allow the user to avoid sequences targeting single nucleotide
polymorphisms and does not allow the user to specify the sequence motif or the loop sequence
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for shRNAs. RNAi OligoRetriever provides the user with a choice of four common RNAi
systems, which generally determines the motif, then returns siRNA sequences ranked according
to an internal set of criteria.

In contrast, the Hairpin siRNA selection Program does include most of the currently
known important criteria. The user inputs the accession number, which is a unique identifier for
each gene in the NCBI database, Genbank, of the target gene and sequence motifs desired for the
shRNA. The program outputs each potential siRNA sequence with criteria including GC
content, single nucleotide polymorphisms, and Blast results. In addition, the program considers
other often ignored criteria such as self alignments. Sequences with self alignments may fold
over on themselves and create structures that prevent uptake by RISC. However, the program
does not allow the user to avoid sequences with four As in a row and does not work for all genes
that are in GenBank.

At the time of writing this thesis, none of the above programs considered 5' versus 3' free
energy. In addition, none of the programs allowed an experienced user to rank the importance of
the criteria. To solve these problems, a new RNAi sequence prediction program was created.

Program Design
The new RNAi sequence prediction program was specifically designed to incorporate

extensibility and flexibility. For extensibility, the program was written with a main function that
calls several subroutines that calculate the values for each criterion. The values calculated by
each subroutine are explained below. Adding a new criterion simply involves writing another
subroutine and adding a call to the subroutine in the main function. The code is well commented
to make this task straightforward for programmers unfamiliar with the program.

To incorporate flexibility, the program was designed to gather the information for each
criterion separately, then generate an output file for each criterion in Excel. In Excel, the user can
maually sort the sequences based on the criteria that are deemed most important or relevant.
Once the sequences are sorted, the user can run a macro to identify the four top-ranked,
nonoverlapping sequences. This feature has been incorporated because overlapping sequences
may cause the RISC to target the same region and interfere with each other. The number of top
sequences to return is flexible and can be changed by changing the value for a variable,
top num seq, defined at the beginning of the macro. In order to find the top nonoverlapping
sequences, each sequence is considered a node and is weighted by the rank. For example, the
first sequence has a weight of 1, and the second sequence has a weight of 2. The A* algorithm is
then run to find a path of length top num seq with the least weight and nonoverlapping nodes.
The main drawback of using the rank as the weight is illustrated by the example when sequence
1 is far superior to sequences 2 and 3 which are almost equal in quality. In other words, the rank
does not reflect accurately the differences in the quality of the sequences. In the future, one
might consider other weighting schemes such as a summation of the values for each criterion.
Another macro formats the chosen sequences by adding sequences such as the loop for shRNAs.
The sequences to be added are flexible and can be changed by editing the beginning of the
macro.

The input for the program is a file, "Sequences.txt", listing the GenBank ID and
annotation for the target gene. The output, as explained above, is an Excel file, "Output", listing
potential sequences followed by the values for each criterion. This file consists of twelve
columns:
Column 1: GenBank ID originally provided by the user
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Column 2: Annotation originally provided by the user
Column 3: Potential siRNA sequence. Currently the program searches the target mRNA for

AAGs then takes the next twenty nucleotides resulting in sequences with the motif
AAGN20. This motif is currently hard coded but programming a subroutine to search
for other motifs should not be difficult.

Column 4: Position of the region targeted by the potential siRNA sequence on the target mRNA.
This information is used by the A* algorithm explained above.

Column 5: GC content of the potential siRNA sequence.
Column 6: Longest self alignment found within the potential sequence. This criterion is identical

to the self alignment criterion used by the Hairpin siRNA selection Program and has a
slightly misleading name. The subroutine searches for consecutive self alignments not
gapped self alignments. For example, the program will return AGCT as the longest
self alignment for the sequence AGCTACCGCGGAAGCT even though AGCTCCG
will align with TCGAGGC with only one mismatch. Standard algorithms for
determining gapped self alignments for sequences as short as 23 nucleotides are
currently unavailable.

Column 7 and 8: Results of Blast for the potential siRNA sequence. Reporting the results of
Blast presented two challenges. First, GenBank contains many redundancies such as a
record for a gene and a record for the same gene transfected into a different organism.
As a consequence, Blast results will show that the potential sequence aligns perfectly
with several records in GenBank. The program currently assumes that all perfect
alignments are actually alignments with the target gene and reports the first Blast result
with an imperfect alignment. However, the assumption may be incorrect and may miss
a perfect alignment with a non-target gene. Furthermore, the first imperfect alignment
may just be a variant form of the target gene. Second, the time required to execute a
Blast search is currently a bottleneck for the efficiency of the program. Both these
problems may be solved by using a database with fewer redundant records such as
UniGene. However, this also presents problems because GenBank is the most
comprehensive database available and not all unique genes in GenBank are in
UniGene.

Column 9: 5' versus 3' free energy on the antisense strand. The free energy is calculated using
the values listed in the Erratum by Khvorova et al. (2003).

Column 10: 9 to 14 nucleotide free energy on the antisense strand. The free energy is calculated
as above.

Column 11: Presence of single nucleotide polymorphisms in the targeted region
Column 12: Presence of a termination sequence, four As in a row, within the potential sequence.

The code for the program and macros written in Python and Visual Basic respectively are
provided in Appendix A. Python was chosen as the programming language because of the
functions provided by the Biopython Project, an open source project to develop Python tools for
bioinformatics (Biopython). In particular, Biopython includes a useful interface to perform Blast
searches. Excel was chosen as an output format due to the prevalence of Microsoft.
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Figure 5.1 Successful shRNAs tend to have lower free energy on the antisense 5' end compared
to the 3' end.
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Chapter 6. Application of JDesigner to Model Fas Si2nalin2 Pathways

As mentioned in Chapter 2, an important unanswered question about Fas signaling in T
cells is how and why these cells adopt either type I or type II behavior. This question is being
addressed by comparing Fas signaling in H9 cells (type I) and Jurkat cells (type II)
experimentally. However, the complexity of Fas signaling pathways makes it difficult to perform
a systematic and comprehensive analysis of this biological process in the laboratory. For this
reason, we constructed a computational model to represent the current state of knowledge about
the Fas signaling pathways with the goal of exploring type I and type II signaling behaviors in
silico.

Results and Discussion
The architecture of the Fas signaling pathway that leads to apoptosis has been fairly well

established using traditional molecular biology techniques (see Chapter 2). This suggested the
possibility of creating a detailed computational model. Of the possible mathematical
representations, ordinary differential equations were chosen because most molecules were
considered to be abundant making a stochastic model unnecessarily complex. In addition,
similar models of signaling pathways have used ordinary differential equations in the past
(Hoffinan et al. 2002, Schoeberl et al. 2002). All reactions were modeled as bimolecular based
upon the reasoning that multi-molecular reactions can be represented by a series of bimolecular
reactions at the most basic level. A comprehensive, deterministic model for the Fas signaling
pathways was created by Dr. Fei Hua in Matlab, and subsequently translated into JDesigner by
me (Figure 3.3).

The architecture of the model generally follows the structure of Fas signaling determined
experimentally and detailed in chapter 2. However, a number of simplifications and assumptions
were made.

First, binding of Fas and Fas ligand (FasL) to form the Fas complex (FasC) was modeled
as a bimolecular reaction rather than as a stepwise association of each of three FasL with one of
three Fas. This representation is based on the observation by Siegel et al. (2000) that the Fas
receptor exists on the surface of cells as a preassociated trimer. It is worth noting that some
groups, including Holler et al. (2003), suggest that two trimeric FasL may be required for
signaling. In the future we will use our computational model to explore how these different
ways of triggering Fas might affect signaling by this receptor.

Second, we assumed that caspases would intiate signaling as soon as two or more of these
molecules were recruited to signaling complexes, such as the death inducing signaling complex,
DISC, formed by Fas, FADD, and caspase-8, or the apoptosome formed by cytochrome c, Apaf-
1, and caspase-9. This assumption is based on experiments by Chang and Yang (2000) that
demonstrate that dimerization is sufficient to activate caspase 8. The apoptosome is known to be
a complex of seven units of 1 Apaf, 1 cytochrome-c and 1 caspase-9 each (Shi 2002). Originally
we considered modeling the formation of the apoptosome as the formation of each three
molecule unit followed by the binding together of seven of these units. However, how this
complex forms is still unknown and we believed such a representation would be misleading.
Therefore we compromised by modeling the interaction as bimolecular.

Third, we assumed that signaling by BAX was initiated upon dimerization. This may be
an oversimplification because Gross et al. (1998) have shown that forced dimerization of BAX
results in apoptosis and caspase-3 and caspase-9 activity but no detectable release of cytochrome

28



c. In addition, Saito et al. (2000) report the release of cytochrome c with the oligomerization of
between 2 to 4 BAX molecules. However, it is not clear that changing the requirement for BAX
signaling from 2 to 4 molecules has an operational impact on the behavior of our model (data not
shown).

Finally, the inhibition of the mitochondrial pathway by Bcl-2 was modeled as Bcl-2
binding and inhibiting Bid rather than Bcl-2 binding and inhibiting Bax. While both these
mechanisms of action could be correct, no direct evidence exists to distinguish them, and it is
again unclear that these different representations would modify the behavior of the model (Igney
and Krammer 2002).

Despite the wealth of information available on Fas apoptosis signaling pathways, little
quantitative information is available on the rates of the chemical reactions that occur following
Fas binding. Information provided by Donepudi et al. (2003), of the Kd, the off rate, for caspase-
8 dimerization served as a basis for reaction rates in the DISC (Figure 2.1). We also included
reaction rates that have been used successfully in the computational model of a similar apoptosis
signaling pathway, the Tumor Necrosis Factor alpha pathway(Birgit Schoeberl Personal
Communication). The original estimates were then optimized within an order of magnitude
using simulated annealing in Gepasi. Gepasi is a program in the Systems Biology Workbench
that provides various optimization algorithms as mentioned in chapter 3. Simulated annealing is
an algorithm that searches for a global minimum. In this case, the algorithm searched for rate
constants that would minimize the square error of the model behavior compared to the training
data. We used experimentally obtained data from Jurkat cells on the rate of cleavage of key
signaling proteins, caspase 8, caspase 3, Bid, as training data (Fei Hua, unpublished data). The
resulting fit is shown in Figure 6.1.

Once the model fit the training data, it was used to systematically explore the features of
Fas signaling that might result in type I versus type II behavior. We anticipated that the model,
in its original configuration, would represent the Fas signaling behavior of a type II cell because
the data used to fit the model was derived from Jurkat (type II) cells. An important prediction of
this hypothesis was that Bcl-2 overexpression should decrease caspase-3 cleaveage.
Surprisingly, the model behaved as would be expected of a type I cell, with the level of Bcl-2
expression making little difference in the level of caspase 3 cleavage (Figure 6.2). To test that
whether this was an artifact of the model, and whether we had inaccurately represented the
mitochondrial component of the type II Fas signaling pathway, we tested whether Bid cleavage
could be observed and whether it was subject to the levels of Bcl-2 expression in the cell (Figure
6.3). As expected for a type II cell, the levels of Bcl-2 in the cells affected the amount of Bid
cleaved, indicating that our model accurately represented the initiation of mitochondrial
signaling as seen in type II cells. We are currently creating laboratory experimental systems to
over and underexpress Bcl-2 in Jurkat cells and will use the results generated in these
experiments to alter and further optimize our model. More generally, we will continue to obtain
experimental data that will allow us to solidify the model by clarifying the architecture of the
signaling pathways and providing better estimates of rate constants for individual reactions
involved in these pathways. We will also examine specific components of Fas signaling
pathways, such as the possible existence and role of a positive feedback loop involving caspase3,
predicated by Slee et al. (1999).
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Comparison of Caspase 8 Concentration
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Figure 6.1 Results of Fitting the ODE Model to Experimental Data. Concentration is measured
in terms of molecules per cell.
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Comparison of Caspase 3 Concentration
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Figure 6.2 Results of Bcl-2 Underexpression and Overexpression in the Fitted ODE Model. The
level of Bcl-2 makes little difference in the level of caspase-3 cleavage indicating the model
behaves like a type I cell.
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Figure 6.3 Results of Bcl-2 Underexpression and Overexpression in the Fitted ODE Model. The
level of Bcl-2 changes the amount of Bid cleaved.
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Chapter 7. Application of Apoptosis Assays to the Fas Signaling Pathways

Fas is often responsible for triggering signals that induce cells to undergo apoptosis. In T
cells, signals from the TCR appear to modulate the function of Fas in complex and poorly
understood ways. The optimized apoptosis assay was used to systematically screen for
stimulation conditions where simultaneous engagement of both the TCR and Fas receptors would
alter the sensitivity of T cells to apoptosis.

Materials
rhsSuperFasL was purchased from Alexis Biochemicals, San Diego, CA. rhsSuperFasL is

a soluble, recombinant form of human FasL crosslinked to imitate FasL in its trimerized form.
Anti-CD3 purified mouse anti-human monoclonal antibody [555336] was purchased from BD
Pharmingen, San Diego, CA.

Protocols
On day 1, cells were counted and diluted to a concentration less than 0.5 million cells/ml

to ensure the cells would be healthy for the day of the experiment. On day 2, the cells were
counted, spun down, and resuspended in C10 medium to a density of 1 million cells/ml. anti-
CD3 and superFasL were used to stimulate the TCR and Fas respectively. These ligands were
mixed as follows:

For soluble anti-CD3:
4ul of stock solution (106 ng/ml) was added to 996ul of media for 1 000ul of 4x 1 03ng/ml

9ul of 4xl03ng/ml solution was added to 891ul of media for 900ul of 40ng/ml
For FasL:
3ul of stock solution (105ng/ml) was added to 747ul of media for 750ul of 400ng/ml
8ul of 400ng/ml solution was added to 792ul of media for 800ul of 4ng/ml

Ligand solution and media were added to the wells of a 96-well flat bottom plate as
indicated in Table 7.1. Finally, 1 00ul of cell solution was added to each well. The starting time
was recorded and the plates were incubated at 37'c with 5% CO2 . After 24hrs, FACS analysis
was performed to determine the relative levels of apoptosis.
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Table 7.1 Ligand solutions and media added to the rows and columns of a 96 well plate
Fas (ng/ml) -> 0 (50ul 1 (50ul 5 (2.5ul 10 (5ul 50 (25ul
anti-CD3 media) 4ng/ml) 400ng/ml 400ng/ml 400ng/ml

and 47.5ul and 45ul and 25
media) media) media)

0 (50ul media)
1 (5ul 40ng/ml
and 45ul
media)
10 (50ul
40ng/ml)
100 (5ul
4xl03ng/ml
and 45ul PBS)
1000 (50ul
4x10 3n ml)

Results and Discussion
The apoptosis assay can serve as a quick screen for conditions under which the

interaction between Fas and TCR pathways may be greatest. The purpose of this segment of the
thesis was to explore a range of TCR and Fas stimulation in order to find these interesting
conditions.

In these experiments, both Jurkat and H9 cells were exposed to a wide concentrations of
reagents to trigger the TCR (anti-CD3 antibody) or Fas receptor (superFasL). The TCR has a
short intracellular domain and relies on associated molecules, CD3, to transmit signals. Anti-
CD3 brings these molecules together thus mimicking physiological stimulation of TCR.
Therefore the range of TCR stimulation was studied in terms of anti-CD3 concentration.
Initially, these stimuli were applied individually. As shown in Figure 7.1 a, anti-CD3 stimulation
resulted in low but detectable levels of apoptosis for both cell types. The dose response of
superFasL (Figure 7. 1b) shows that Jurkat cells exhibit higher death at lower concentrations of
superFasL than do H9 cells. This agrees with previous findings in our laboratory that Jurkat
cells are more sensitive to Fas-mediated killing (Figure 2.2a). However, in these experiments we
found that H9 cells eventually reach, at higher concentrations of FasL, levels of apoptosis close
to those of Jurkat cells. This contradicts our previous findings (Figure 2.2a) where H9 cells were
found to plateau at a lower level of apoptosis than Jurkat cells. The difference may be explained
by the ten hour difference in the duration of the experiment, or by intrinsic variations in these
experiments. Tests to distinguish these two possibilities are underway.

Because both Fas and TCR induce apoptosis in isolation, we predicted that adding both
stimuli simultaneously would have an additive effect on apoptosis. As shown in Figure 7.2, we
found that the effects of FasL dominate over the effects of anti-CD3 on apoptosis in general.
Interestingly, H9 cells stimulated with anti-CD3 concentrations greater than 1 OOng/ml showed a
small but statistically significant reduction in apoptosis for Fas concentrations greater than
1 Ong/ml. This protective effect is more readily observed when the background level of apoptosis
induced by FasL alone is subtracted out from the level of apoptosis induced by both stimuli.
Figure 7.3a also shows that anti-CD3 has a small protective effect in Jurkat cells for
concentrations of FasL up to 5ng/ml. Interestingly, the dose response curve of Jurkat cells to
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FasL plateaus soon after 5ng/ml. The dose response curve of H9s to FasL does not plateau in the
range of the FasL concentrations studied. Notably, the protective effect of anti-CD3 in H9 cells
also continues to increase. This suggests that anti-CD3 may provide some protection against
Fas-mediated killing up to the concentration at which FasL reaches maximal apoptosis. This
effect was seen in each triplicate as well as in the average of the triplicates (data not shown).
However, these experiments need to be repeated.

In conclusion, these initial experiments indicate that Jurkat and H9 cells both show a low
level of apoptosis in response to anti-CD3 but have differing sensitivities to superFasL. When
both signals are provided simultaneously, the effect of FasL dominates the overall shape of the
apoptosis curves. However, at levels of FasL that do not induce maximal apoptosis,
costimulation with anti-CD3 can provide a small protective effect. This protective effect could
not have been predicted from the response to each ligand separately and shows the utility of this
apoptosis assay for an initial screen for interesting behaviors of signaling pathways using a
systems biology approach. These experiments will be repeated to confirm the results obtained,
and the intracellular signals that correlate with cellular outcomes identified and studied.
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Normalized Apoptosis by anti-CD3
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Figure 7.1 Dose response curves of Jurkat and H9 cells to anti-CD3 and superFasL. A) Jurkat
and H9 cells both exhibit low but positive levels of apoptosis after anti-CD3 stimulation. B)
FasL induces higher levels of apoptosis than anti-CD3 and Jurkat cells exhibit more death at
lower concentrations than H9 cells.
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Apoptosis by FasL and Soluble anti-CD3
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Figure 7.2 Costimulation of Jurkat and H9 cells with soluble anti-CD3 and superFasL. Each
line represents a different concentration of anti-CD3. The influence of FasL dominates over any
effect of anti-CD3.
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Normalized Apoptosis in Jurkats for FasL and anti-CD3 Costimulation
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Soluble anti-CD3 Concentration (ng/ml)
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Normalized Apoptosis in H9s for FasL and Soluble anti-CD3
Costimulation
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Figure 7.3 Subtle effects of costimulation with soluble anti-CD3 and superFasL. The dose
response for FasL is subtracted out to reveal the subtle effects of the costimulation. Each line
represents a different concentration of FasL. A) Jurkat cells show a reduction in apoptosis for
Fas concentrations up to 5ng/ml. B) H9 cells show a slight but significant reduction in apoptosis
for FasL concentrations greater than 1 Ong/ml and anti-CD3 concentrations greater than
100ng/ml.
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Chapter 8. Application of the RNAi Program to the Fas Pathways

As explained in chapter 5, an RNAi sequence prediction program was created based on
current knowledge about criteria important for a functional siRNA sequence. The purpose of
this section of the thesis was to test the performance of this RNAi program at detecting
successful shRNA sequences in the context of the Fas signaling pathway, with the ultimate goal
of creating a suite of reagents to modulate gene expression and test predictions about the
behavior of Fas signaling made by our computational model of this pathway.

Results and Discussion
The shRNA prediction program was used to predict functional sequences for three

components of the Fas signaling pathway for which experimental data on the performance of
shRNAs was available, namely mouse caspase-8, caspase-3, and caspase-9. The program took
about three hours to run all three genes. The output of the program was sorted based first on the
presence of a termination sequence, second on the 5' versus 3' antisense free energy difference,
and third on the 9 to 14 nucleotide free energy. The results are shown in Tables 8.1, 8.2, and 8.3
respectively. Christopher Dillon generously provided the results for sequences already tested in
the Van Parijs laboratory. Unsuccessful sequences are highlighted in red, successful sequences
are highlighted in yellow.

All of the successful RNAi sequences exhibited the combination of characteristics
considered important by the literature. In particular, the sequences had negative 5 versus 3 prime
antisense free energy differences. This criteria was not met for 4 of the 5 unsuccessful caspase-8
sequences (Table 8.1), and 2 of the 4 unsuccessful caspase-9 sequences (Table 8.3). 2 of the 5
unsuccessful caspase-8 sequences also appeared to show high homology to other genes (Table
8.1). Upon further inspection, these homologies were actually against variants of the original
gene. This result underscores the potential advantage of performing sequence comparisons in
databases with fewer redundancies (see chapter 5).

The reason for the failure of the sequences with negative 5' versus 3' antisense free
energy is much more difficult to determine. The one unsuccessful caspase-8 sequence with a
negative 5' versus 3' antisense free energy (Table 8.1) has a slightly high Blast result with 19 out
of 23 nucleotides identical to a gene of unknown function on chromosome 12 (caspase-8 is
located on chromosome 1). While this might be predicted to increase nonspecific knockdown of
genes, it should not necessarily decrease specific knockdown. All the criteria for the two
unsuccessful caspase-9 sequences are within the range suggested by literature (Table 8.2). Thus,
successful sequences met all the criteria but meeting all the criteria did not guarantee successful
sequences. This suggests that the current set of selection criteria used does not provide sufficient
predictive power in selecting shRNAs. As a consequence, it remains necessary to test at least
four or five sequences to have a reasonable probability of identifying a functional one.

Future work on this program will involve improving the subroutine for Blast by
performing sequence comparisons in a database with fewer redundancies. In addition, the
subroutine for self alignments may be improved by a subroutine that considers gapped
alignments. It is likely that an effective prediction program for selecting shRNAs will only be
generated once more information becomes available about the features of successful sequences.
It might be possible to develop a learning algorithm to identify such features.
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Table 8.1 Sequences predicted for Caspase-8. The output of the program was sorted based first
on the presence of a termination sequence, second on the 5 versus 3 prime antisense free energy
difference, and third on the 9 to 14 nucleotide free energy. There were no successful sequences
for caspase-8. Unsuccesful sequences are highlighted in red.
GenBank ID Annot AAGN20 Position GC cont Self align Blast id Blast title 5 vs 3 9 to 14 SNP over Termination

33859519 NM_0 AAGCG 1179 47.826 GCGC (17, 17 >g bAC1 -4.1 8.2 FALSE FALSE
33859519 NM 0 AAGGG 846 52.174 AAGG (17, 17 >gbIAC1 -2.4 8.2 FALSE FALSE
33859519 NM 0 AAGGC 440 39.13 TTTC (22, 22) >embAJ -2.4 6.4 FALSE FALSE
33859519 NM_0 AAGGC 1169 56.522 GCGC (16, 16 >gbACO -1.8 8.5 FALSE FALSE
33859519 NM 0 AAGCT 1696 47.826 AGCT (21, 21 >embIAJ -1.6 9.7 FALSE FALSE
33859519 NM 0 AAGGC 1015 56.522 CCCGG (16, 16 >g b AC1 -1.5 6.7 FALSE FALSE
33859519 NM 0 AAGCC 178 69.565 GAGGC (17, 17) >gbIAF1 -1.5 9.7 FALSE FALSE
33859519 NM 0 AAGG 1061 39.13 ACAG (21, 21 >gbAFO -1.5 6.1 FALSE FALSE
33859519 NM 0 AAGTG 1427 39.13 GTG (17, 17 >gbIAC1 -1.2 6.9 FALSE FALSE
33859519 NM 0 AAGAC 323 56.522 GGC (19, 19 >embIAL -1.2 9.7 FALSE FALSE
33859519 NM 0 AAGGG 424 52.174 TTG 18, 18 >gbIACO -0.9 8.5 FALSE FALSE
33859519 NM 0 AAGAC 1199 43.478 AAG (21, 21) >gbIACO -0.7 6.6 TRUE FALSE
33859519 NM 0 AAGTTC 340 43.478 AAG (16,16 >gbIAC1 -0.7 8.5 FALSE FALSE
33859519 NM 0 AAGAA 964 47.826 AG (18, 18 >gbIACO -0.6 9.9 FALSE FALSE
33859519 NM 0 AAGAC 1093 34.783 CCTT (17, 17) >gbIAC1 -0.4 8.2 FALSE FALSE
33859519 NM 0 AAGGA 1264 52.174 GGAGG (16,16 >gbIAC1 -0.3 8.1 FALSE FALSE
33859519 NM 0 AAGAG 915 43.478 GTGA (17, 17 > b AC1 -0.3 6.4 FALSE FALSE

33859519 NM 0 AAGG 842 52.174 AGG (19, 20 >gblAC1 -0.3 6.7 FALSE FALSE
33859519 NM 0 AAGCA 373 56.522 CATC (18,18 >gbIBCO -0.1 7.8 FALSE FALSE
33859519 NM 0 AAGATC 793 34.783 GATC (16,16 >gbIAC1 0 6 FALSE FALSE
33859519 NM O AAGG 1361 39.13 GGAAG (17, 17 >gbIAC1 ##1 # 6.4 FALSE FALSE
33859519 NM 0 AAGAT 1572 43.478 TGTC (18, 18 >embAL 0.1 7 FALSE FALSE
33859519 NM 0 AAGAAT 270 39.13 TGGA (17, 17) >gbIAC1 0.1 8.5 FALSE FALSE
33859519 NM OAAGAA 1192 39.13 AAG (17,17 >refINM 0.2 6.4 FALSE FALSE
33859519 NM 0 AAGGA 1583 39.13 GATG (22, 22 >dbjIAKO 0.2 6.6 FALSE FALSE
33859519 NM 0 AAGTTT 950 26.087 GTT (17, 17 >gbACO 0.3 7.2 FALSE FALSE
33859519 NM 0 AAGGG 1654 56.522 GCA (20, 20) >gbIAC1 0.3 6.6 FALSE FALSE
33859519 NM 0 AAGTG 605 43.478 AATT (17, 17 >embIAL 0.3 6.7 FALSE FALSE
33859519 NM 0 AAGAG 778 56.522 GATC 18,18 > b U34 0.4 9.7 FALSE FALSE

33859519 NM 0 AAGGG 1237 52.174 CGT (15, 15) >reflNM 0.5 5.5 FALSE FALSE
33859519 NM 0 AAGAC 923 47.826 GTGA (17,17 >gbIAFO 0.6 6.4 FALSE FALSE
33859519 NM 0 AAGAG 1079 43.478 AGAG (22, 22 >gblAFO 0.6 6.4 FALSE FALSE
33859519 NM 0 AAGATC 810 39.13 GATC (19,19 >gb AC1 0.7 6.7 FALSE FALSE
33859519 NM 0 AAGAT 674 43.478 AAG (19, 20 >ref NM 0.7 8.2 FALSE FALSE
33859519 NM 0 AAGAA 370 52.174 TCGA (20, 20 > b BCO 1.2 6.1 FALSE FALSE
33859519 NM 0 AAGCT 667 47.826 AGCT (18, 18 >ref NM 1.2 6.6 FALSE FALSE
33859S19 NM _OAAGAC 1637 52.174 CG 18,18 > bAC 1.3 9.4 FALSE FALSE

33859519 NM 0 AAGCC 184 73.913 GAGGC (16, 16 >emb AL 1.7 9.4 FALSE FALSE
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Table 8.2 Sequences predicted for Caspase-3. The successful sequence is highlighted in yellow.

GenBank I Annot AAGN20 Position GC cont Self alignr Blast id Blast title 5 vs 3 9 to 14 SNP over Terminati

6753283 NM_0 AAGCCC 523 39.13 AAG (18,18) >gb|U881 -4.5 6.7 FALSE FALSE

6753283 NM_0 AAGGGq 434 39.13 ATTT (18, 18) >embIALE -3.7 6.3 FALSE FALSE

6753283 NM_0 AAGCTJ 733 52.174 AGCT (21, 21) >gb1U637 -2.4 11.7 FALSE FALSE

6753283 NM 0 AAGGTJ 787 52.174 GAATTC (15,15) >gbIAC1 -1.8 9.6 FALSE FALSE

6753283 NM 0 AAGCCj 420 52.174 CCATGG (19,19) >dbjlAKO -1.8 6.9 FALSE FALSE

6753283 NM 0AAGCT _ 953 47.826 AGCT (17, 17) >gbjAC1 -1.3 9.4 FALSE FALSE

6753283 NM_0 AAGGAI 393 47.826 AGCT (19,19 >gb|AC1 -1.2 7.3 FALSE FALSE

Table 8.3 Sequences predicted for Caspase-9
GenBank I Annot AAGN20 Position GC cont Self align Blast id Blast title 5 vs 3 9 to 14 SNP over Terminatio

31560478 NM_ AAGGC 1459 47.826 GGCC (17, 17) >gblAC1 -4.8 6.1 FALSE FALSE

31560478 NM_ AAGGG 1994 39.13 AAGG (17, 17) >gbIAC1 -4.2 7 FALSE FALSE

31560478 NM_ AAGGC 1057 56.522 AAGG (18, 18 >embjAL -3.6 8.5 FALSE FALSE

31560478 NM. AAGGC 1108 65.217 CCAAG (20, 21) >gb|AC1 -3 12.4 FALSE FALSE

31560478 NM_ AAGCG 302 65.217 GGC (16, 16 >emb B -2.9 8.5 FALSE FALSE

31560478 NM AAGCC 978 47.826 AGCT (18,18 >embjAL -2.8 6.7 FALSE FALSE

31560478 NM_ AAGCA 321 47.826 GGATC (19, 19 >gb AC1 -2.1 8.2 FALSE FALSE

31560478 NM, AAGCC 495 52.174 AGA (22, 23 >gbIAC1 -1.5 6.4 FALSE FALSE

31560478 NM_ AAGCA 313 56.522 GGATC (16, 16 >gb AC1 -1.5 8.2 FALSE FALSE

31560478 NM AAGGG 1327 43.478 AAG (17, 17 >gbIAC1 -1.2 6.7 FALSE FALSE

31560478 NM_ AAGAC 1279 56.522 CTGCA (17, 17) >gbAC -0.9 7.6 FALSE FALSE

31560478 NM_ AAGATC 576 43.478 GATC (18,18 >dbjAPO -0.7 7.9 FALSE FALSE

31560478 NM_ AAGCT 1751 52.174 AGCT (18, 18) >gbAC1 -0.3 6.4 FALSE FALSE

31560478 NM_ AAGTTT 1145 52.174 AA (20, 20 >gbACO ##0. 8.5 FALSE FALSE

31560478 NM, AAGGA 396 47.826 AGCT (18, 18) >embIAL 0.3 6.1 FALSE FALSE

31560478 NM AAGTG 1220 52.174 GTAC (16,16 >gbIBC01 0.5 7.9 FALSE FALSE

31560478 NM_ AAGAC 1584 52.174 CCGG (22, 23 >dbjAKO 0.5 8.2 FALSE FALSE

31648N_IAAGAAC 756 47.826 AG (21, 21) >embIAL 0.6 6.4 FALSE FALSE

31560478 NMIAAGTCC 1934 60.87 CCAGC (20, 21) >gb ACOJ 0.6 11.21 FALSE FALSE

31560478 NMIAAGTTAI 1984 39.13 AGAA (16, 16A>gbIACO 0.8 8.2 FALSE FALSE

31560478 NM_IAAGAAC 1581 47.826 CCGG (22, 23 >dbjlAK04 1.4 7.6 FALSE FALSE

31560478 NM_ AAGTC 94 65.217 GAGCT (16,16 >gblAF1 1.5 7.9 FALSE FALSE

31560478 NM_ AAGAA 1662 52.174 AGAA (18, 18) >gbACO 1.5 8.2 FALSE FALSE
q1RAA7A IMM AArCrT AlA AR 917 ArC'.T (99 92 >rIhiIARnI I Q r PAi RF Fqi .F

\AGCTq 14341 56.522IAGCTC 1( 18)1>gbiAC12 1.81 9.71 FALU
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Chapter 9. Summary of Contributions

In summary this thesis has created or explored three tools for a systems biology approach
to studying apoptosis signaling in T cells. We have identified JDesigner as the optimum
modeling program currently available and documented the current state of knowledge about Fas
by creating an ordinary differential equation model. Using this model we have explored type I
versus type II behavior and discovered that a type I model can fit the data from a type II cell
(Jurkat cells). We have also established an optimum protocol for performing apoptosis assays
with H9 and Jurkat cells. Using this protocol, we have found evidence to suggest interaction
between the TCR and Fas signaling pathways. Finally, we have created a program for function
siRNA sequence prediction. We tested this program and discovered that the currently known
criteria for selecting siRNA sequences are not powerful enough to predict functional siRNA
sequences though all functional sequences follow these criteria.

Future work will involve laboratory experiments to gather more data to optimize the
computational Fas model, repetition of the apoptosis assays to confirm our initial findings, and
rewriting of the subroutines in the siRNA program for faster Blast searches and more accurate
self alignments.
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Appendix A

Code for RNAi sequence prediction program

# Rayka Yokoo
# Program to find information important for creating RNAi sequences

# Output from this program can be fed into Excel and sorted for the

most
# important information
# A macro in Exel uses the A* algorithm to find the optimum non
overlapping
# set of RNA sequences
# Input--File, Sequences, in the same folder as this program with

# each GenBank ID and annotation on a separate line
# Output--Tab delimited file, Output, of AAGN20 sequences found in the

DNA for the
# GenBank IDs given along with extra information.
# Column 1-GenBank ID
# Column 2-Annotation
# Column 3-AAGN20 sequence found
# Column 4-Position
# Column 5-GC content
# Column 6-Self alignments
# Column 7-Blast similarity (identity)
# Column 8-Blast similarity (title)
# Column 9-5 antisense free energy
# Column 10-9 to 14 nt region (antisense) free energy
# Column 11-SNPs
# Column 12-Termination Seq

from Bio import SeqUtils
from Bio.Blast import NCBIWWW
from Bio import *

import difflib

# Main function that calls all others
# Requires that file, Sequences.txt, is in same folder as this program
# Output--File called Output
def main():

file = open("D:/Rayka/Sequences.txt")
gids = list()

# Create a dictionary of GIDs to user annotation
gidToAnnot = dict()
for line in file:

gidAndAnnot = line.split(" ",1) # Line should be GID followed

by annotation
gid = gidAndAnnot[0]

annotWn = gidAndAnnot[1]

annot = annotWn.strip("\n") # Strip newline character
gids.append(gid)
gidToAnnot[gid] = annot

# Find GenBank entry for GIDs
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# Create a dictionary of gids to seq, organism, and SNPs

gidToSeqOrgSNP = dict()
ncbi dict = GenBank.NCBIDictionary(parser =

GenBank.FeatureParser()
for gid in gids:

print gid
seqOrgSNP = list()
# Sequence
entry = ncbi dict[gid]
seq = entry.seq
seqOrgSNP.append(seq)
features = entry.features
SNPs = list()

for feature in features:
# Organism
if feature.type == "source":

sourceInfo = feature.qualifiers
orgInfo = sourceInfo['organism']
org = orgInfo[0]

# SNPs
if feature.type == "variation":

SNPs.append(feature.location)
seqOrgSNP.append(org)
seqOrgSNP.append(SNPs)
gidToSeqOrgSNP[gid] = seqOrgSNP

# Prepare to write to Output
out file = open("Output", "w")
out file.write ("GenBank ID\tAnnotation\tAAGN20

sequence\tPosition\tGC content\tSelf alignments\tBlast identity\tBlast
title\t5 vs 3 prime free energy\t9 to 14 nt region (antisense) free
energy\tSNP overlap\tTermination Sequence\n")

# Create a dictionary of gids to a dictionary of AAGN20 seqs
# Dictionary of AAGN20 strings maps AAGN20 seqs to list of

features
# The list of features is in the same order as the columns

(Position,
# GCContent, etc)
gidToAAGDict = dict()
for gid in gids:

seqOrgSNP = gidToSeqOrgSNP[gid]
seq = seqOrgSNP[0]

print seq
org = seqOrgSNP[1]
print org
SNPs = seqOrgSNP[2]
print SNPs
AAGSeqToFeatures = dict()

# Find AAGN20 Sequences
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stringSeq = seq.tostring()
AAGPos = stringSeq.find("AAG", 0)

while AAGPos > -1:

AAGEnd = AAGPos + 23

AAGSeq = seq[AAGPos:AAGEnd]

print AAGSeq

# Create list of features
AAGFeatures = list()

# Annotation
annot = gidToAnnot[gid]
# Position
AAGFeatures.append(AAGPos+l)
# GC Content
GCContent = SeqUtils.GC(AAGSeq)

print GCContent

AAGFeatures.append(GCContent)

# Self alignments
maxalign = selfalign(AAGSeq)
print maxalign
AAGFeatures.append(maxalign)

# Blast similarity--NEED TO MAKE THIS FASTER. CONSIDER
LOCAL BLAST

blastInfo = blast sim(AAGSeq.tostringo, org)
print blastInfo
AAGFeatures.append(blastInfo)
# 5 to 3prime free energy
fiveTothreeenergy = fiveTothree(AAGSeq)
print fiveTothree energy
AAGFeatures.append(fiveTothreeenergy)
# 9 to 14 nt region (antisense) free energy
nineTofourteen energy = nineTofourteen(AAGSeq)

print nineTofourteenenergy
AAGFeatures.append(nineTofourteenenergy)
# SNPs
SNPoverlap = overlap(SNPs, AAGPos+1, AAGEnd+l)

print SNP overlap

AAGFeatures.append(SNPoverlap)

# Termination seq
termination = terminationseq(AAGSeq)
print termination

AAGFeatures.append(termination)

# Write to Output

outfile.write (gid+"\t"+annot+"\t"+AAGSeq.tostring()+"\t"+repr(AAGPos+

1)+"\t"+repr(GCContent)+"\t"+max align.tostring()+"\t"+repr(blastInfo[

0])+"\t"+blastInfo[l]+"\t"+repr(fiveTothreeenergy)+"\t"+repr(nineTofo
urteenenergy)+"\t"+repr(SNPoverlap)+"\t"+repr(termination)+"\n")

# Prepare for next loop
AAGSeqToFeatures[AAGSeq] = AAGFeatures
AAGPos = stringSeq.find("AAG", AAGPos+3)
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gidToAAGDict[gid] = AAGSeqToFeatures
outfile.close()
print gidToAAGDict

# Column 6-Self alignments
# Find longest self alignment by finding longest match between
# given seq and antiparallel strand
# Returns--substring that self aligns in seq
def selfalign(seq):

antiparallel = SeqUtils.antiparallel(seq)
matcher = difflib.SequenceMatcher(None, seq.tostring(),

antiparallel)
matchIndices = matcher.findlongestmatch(O, len(seq), 0,

len(antiparallel))
alignBegin = matchIndices[0]
alignEnd = alignBegin + matchIndices[2]
return seq[alignBegin: alignEnd]

# Column 7-Blast similarity
# Input--sequence to be Blasted and organizm from which the sequence
originates
# Returns--Results of Blast in the form of a tuple with
# highest (number of identities/total aligned) and title of alignment
# Ignores sequences in which number of identities equals
# length of original sequence because these are most likely self
identities

def blastsim(seq, org):
# Word size of 7, Filter off and Expect Value 1000 suggested by
# Blast website for searching short nucleotide sequences
# CONSIDER USING UNIGENE

blast results = NCBIWWW.blast('blastn', 'nr', seq,

entrezquery=org, filter='off', expect='1000', wordsize='7')

blastparser = NCBIWWW.BlastParser()

blastrecord = blastparser.parse(blast results)
alignments = blastrecord.alignments
blastSimInfo = list()

simInfoFound = False

for alignment in alignments:
hsps = alignment.hsps

# First hsp usually has the most significance
hsp = hsps[0]
# Identity is tuple (number of identities/total aligned)
# Ignore sequences with number of identities equal to
# length of original sequence becuase these are most likely

self
identity = hsp.identities
if identity[0] != len(seq):

blastSimInfo.append(identity)
alignmentWnt = alignment.title

alignmentWt = alignmentWnt.replace("\n", " ")
alignment = alignmentWt.replace("\t", " ")

blastSimInfo.append(alignment)
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simInfoFound = True

break
if not simInfoFound:

blastSimInfo.append([0,0])
blastSimInfo.append("None")

return blastSimInfo

# Column 9-5 vs 3prime antisense free energy
# Free energy calculated based on Khvorova et al. Cell Vol. 115 209-
216 Oct. 2003
# Input--Sequence in all capitals
# Returns--difference in free energy between the 5 and 3 prime
antisense strand of

# the given sequence
def fiveTothree (seq)

antiparallel = SeqUtils.antiparallel(seq)
fivePrimeEnergy = free energy help(antiparallel[0:5])
threePrimeEnergy freeenergyhelp(antiparallel[-6:-1])
return fivePrimeEnergy-threePrimeEnergy

# Column 10-9 to 14 nt region (antisense) free energy
# Free energy calculated based on Khvorova et al. Cell Vol. 115 209-
216 Oct. 2003
# Input--Sequence in all capitals
# Returns--free energy for the 9 to 14 nt region antisense of the
given sequence

def nineTofourteen(seq)
antiparallel = SeqUtils.antiparallel(seq)
nineTofourteenenergy = freeenergyhelp(antiparallel[9:14])
return nineTofourteenenergy

# Define dictionary of free energy values
# Matrix based on Erratum for Khvorova et al. Cell Vol. 115 209-216
Oct. 2003
# Key is first nucleotide
# Values are in the order of A, C, G, T
freeenergyval = dict()

freeenergyval['A'] = [1.9, 1.3, 1.6, 1.5]
free energy val['C'] = [1.9, 3.1, 3.6, 1.6]
freeenergyval['G'] = [1.6, 3.1, 3.1, 1.3]
freeenergyval['T'] = [1.0, 1.6, 1.9, 1.9]

# Help routine for freeenergy
# Computes the free energy of seq

def free energy help(seq):
i =0

freeenergy = 0
while j < len(seq):

firstChar = seq[i]

secondChar = seq[j]

freeenergy list = free energyval[firstChar]
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if secondChar == "A":
freeenergy = freeenergy + freeenergylist[0]

elif secondChar == "C":
freeenergy = freeenergy + freeenergylist[l]

elif secondChar =="G":

freeenergy = freeenergy + freeenergylist[2]
else:

free energy = free-energy + free energy list[3]
i = i+1

j = j+1
return free-energy

# Column 11-SNPs
# Input--List of Bio.SeqFeature.FeatureLocations, sequence start
position, and
# end position
# Output--True iff any FeatureLocation overlaps sequence
def overlap(locations, seqStart, seqEnd):

start = SeqFeature.ExactPosition(seqStart, extension = 0)
end = SeqFeature.ExactPosition(seqEnd, extension = 0)
overlapexists = False
for location in locations:

loc_start = location.start
loc_end = location.end
if (start <= loc_start and loc_start <= end) or (start <=

loc end and loc end <= end) or (loc start <= start and start <=
loc_end):

overlapexists = True
break

return overlapexists

# Column 12-Termination Seq
# Input--Sequence in all capitals
# Output--True iff given sequence contains AAAA or TTTT
def terminationseq(seq):

stringSeq = seq.tostring()
fourA = stringSeq.find("AAAA")
fourT = stringSeq.find("TTTT")
termination = False
if fourA != -1 or fourT != -1:

termination = True
return termination

main()

Macro to run A* Algorithm

'Rayka Yokoo
'Macro written to choose the top 4 sequences that do not overlap
'Requires that Booki is open
'Output is written to Booki Worksheet 2
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Sub RNAiAstar()

'Define number of sequences wanted
topnumseq = 4

'Note workbook with siRNA sequences
originalworkbook = ActiveWorkbook.Name

'Define column with accession numbers, annotationss, siRNA sequences,
'and empty column at the end
accession column = 1
annotcolumn = 2
siRNAcolumn = 3

emptycolumn = 13

'Determine number of rows
rownumber = 1

Cells(rownumber, siRNAcolumn).Select
While Not IsEmpty(Selection)
rownumber = row-number + 1
Cells(rownumber, siRNAcolumn).Select
Wend

'Determine the optimum arrangement of siRNA sequences that don't
overlap
'Runs Astar algorithm
'Would like to memoize whether two sequences overlap but having
trouble creating fixed array

'Add all sequences as initial paths
'Column 1-path weight, Column 2-path
'Perform calculations in Sheetl in BookI
numbersequences = row-number - 2

Workbooks ("Bookl") .Activate
Worksheets(1).Select
Columns(1).ClearContents
Columns(2).ClearContents

numberpaths = 0
'Start counting sequences at 0
For i = 0 To numbersequences - 1
Weight i
Path = Join(Array(i), "")
'Rows start at 1
Cells(i + 1, 1).Value = Weight
Cells(i + 1, 2).Value = Path
numberpaths = numberpaths + 1

Next

'Pick the path with the least weight-row 1
Weight = Cells(1, 1).Value
Path = Cells(1, 2).Value
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path-length = Len(Path)

'Extend until path length equals 4
pathfound = True
While Not path-length = topnumseq And path-found

'Extend
last node = Val(Left(Path, 1))
'For each sequence ranked lower than the last sequence in the existing

path
'Check for overlap then add to the existing path
For i = lastnode + 1 To number-sequences - 1
Overlap = False

'Check for overlap
For j = 1 To pathlength
pathnode = Val(Mid(Path, j, 1))
If overlapCalc(pathnode, i, originalworkbook) Then Overlap = True:
Exit For
Next

'If there is no overlap, add to existing path
If Not Overlap Then newpath = Join(Array(i, Path), ""):

new weight = i + Weight:
Cells(numberpaths + 1, 1).Value = new weight: _

Cells(numberpaths + 1, 2).Value = newpath:
numberpaths = numberpaths + 1

Next

'Prepare variables for next loop
Cells(l, 1).Clear
Cells(l, 2).Clear
numberpaths = numberpaths - 1

ActiveSheet.Columns.Sort Keyl:=Columns(1), Orderl:=xlAscending,
Header:=xlNo
If IsEmpty(Cells(l, 1)) Then path found = False
Else Weight = Cells(l, 1).Value:
Path = Cells(l, 2).Value:
pathlength = Len(Path)

Wend

'Output path to Bookl Worksheet 2 or display error message
Workbooks(originalworkbook).Activate
totalnumsequences = 1
If pathfound Then
For j = 1 To Len(Path)
Worksheets(1).Select
sequence number = Val(Mid(Path, j, 1))
'Sequences enumerated starting at 0 but found in rows starting at 2
sequence = Cells(sequencenumber + 2, siRNAcolumn).Value
accession-number = Cells(sequencenumber + 2, accessioncolumn).Value
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Workbooks("Bookl").Worksheets(2).Cells(totalnumsequences, 1) =
accession-number
Workbooks("Bookl").Worksheets(2).Cells(totalnumsequences, 2) = j
Workbooks("Bookl").Worksheets(2).Cells(totalnumsequences, 3) =
sequence
totalnumsequences = totalnumsequences + 1
Next
Else: MsgBox ("Cannot find non-overlapping sequences")
End If
End Sub

'Function returns true if two given sequences overlap, false otherwise
Function overlapCalc(seql, seq2, dataworkbook)
'Define position column
poscolumn = 4
'Sequences enumerated starting at 0 but found in rows starting at 2
seqlpos = Workbooks(dataworkbook).Worksheets(l).Cells(seql + 2,
poscolumn).Value
seq2_pos = Workbooks(dataworkbook).Worksheets(l).Cells(seq2 + 2,
poscolumn).Value
If Abs(seqlpos - seq2_pos) < 23 Then overlapCalc = True Else
overlapCalc = False

End Function

Macro to Create shRNA Sequence
'Rayka Yokoo
'Macro written to add
'preT, hairpin, complementary, terminator, postC and sticky end
sequences
'to each RNAi sequence in a worksheet
Sub RNAi tran()

'Define preT, hairpin, terminator, postC, sticky end sequence
preT = "T"
hairpin = "TTCAAGAGA"
terminator = "TTTTTT"

postC = "C"
stickyEnd = "TCGA"

'Looks like barcode isnt needed
'First row, first column should contain the next barcode sequence
rownumber = 1
Cells(rownumber, 3).Select
'barcode = Selection.Value
'row number = row-number + 1
'Cells(rownumber, 1).Select

'Run through column of RNAi sequences adding preT, hairpin,
complementary,
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'terminator, barcode, and postC sequences
While Not IsEmpty(Selection)
origRNAiseq = Selection.Value
RNAiseq = Right(origRNAiseq, 21)
RNAiseq = UCase(RNAiseq)
complement = seqComplement(RNAiseq)
RNAcomponents = Array(preT, RNAiseq, hairpin, complement, terminator,
postC)
RNAicomplete Join(RNAcomponents, "")

Cells(rownumber, 4).Select
ActiveCell.Value = RNAicomplete

'Find reverse complement of complete RNAi sequence and add sticky end
RNAiComplement = seqComplement(RNAicomplete)
revRNAicomponents = Array(stickyEnd, RNAiComplement)
revRNAiComplete = Join(revRNAicomponents, "")

Cells(rownumber, 5).Select
ActiveCell.Value = revRNAiComplete

'Increment barcode and row number for next loop
'barcode = barcodeCounter(barcode)
row number = rownumber + 1
Cells(rownumber, 3).Select
Wend

'Output next barcode for the user
'ActiveCell.Value = barcode
End Sub

'Function returns the reverse complement of the sequence given
Function seqComplement(seq)

'Reverse Sequence
reverseSeq = StrReverse(seq)

'Find complement fo each character in sequence
For counter = 1 To Len(reverseSeq)
Select Case Mid(reverseSeq, counter, 1)
Case "A"
reverseSeq = Mid(reverseSeq, 1, counter - 1) + Replace(reverseSeq,
"A", "T", counter, 1)
Case "T"
reverseSeq = Mid(reverseSeq, 1, counter - 1) + Replace(reverseSeq,
"T", "A", counter, 1)
Case "C"
reverseSeq = Mid(reverseSeq, 1, counter - 1) + Replace(reverseSeq,
"C", "G", counter, 1)
Case "G"
reverseSeq = Mid(reverseSeq, 1, counter - 1) + Replace(reverseSeq,
"G", "C", counter, 1)
End Select
Next
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'Return result

seqComplement = reverseSeq
End Function

'Function returns the next barcode

'The barcode counts up in the order of A, T, C, then G
Function barcodeCounter(code)

'Reverse code for simplicity
reverseCode = StrReverse(code)

'Find letter that needs to be incremented and increment

For counter = 1 To Len(reverseCode)

Select Case Mid(reverseCode, counter, 1)

'Letter with the lowest value-increment to T

Case "A"
reverseCode = Mid(reverseCode, 1, counter - 1) + Replace(reverseCode,
"A", "T", counter, 1)
Exit For

'Increment to C

Case "T"

reverseCode = Mid(reverseCode, 1, counter - 1) + Replace(reverseCode,
"T", "C", counter, 1)

Exit For

Case "C"
reverseCode = Mid(reverseCode, 1, counter - 1) + Replace(reverseCode,
"C", "G", counter, 1)

Exit For

'Letter with the highest value-set to A and run through loop again
Case "G"
reverseCode = Mid(reverseCode, 1, counter - 1) + Replace(reverseCode,
"G", "A", counter, 1)

End Select
Next

'Return result

barcodeCounter = StrReverse(reverseCode)

End Function

56


