
Modeling the Scalability of Acyclic Stream

Programs

by

Jeremy Ng Wong

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 2004

@ Massachusetts Institute of Technology 2004. All rights reserved.

A uthor
Department of Electiiral Engineering and Co er Science

anuary 30, 2004
/ Z-1,

Certified by......................I....
Saman P. Amarasinghe

Associate Professor

Thesis Supervisor

Accepted by...........
Arthur C. Smith

Chairman, Department Committee on Graduate Students
MA SSACHUSETTS INSnTE

OF TECHNOLOGY

JUL 2 02004

LIBRARIES

BARKER

Modeling the Scalability of Acyclic Stream Programs

by

Jeremy Ng Wong

Submitted to the Department of Electrical Engineering and Computer Science

on January 30, 2004, in partial fulfillment of the
requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

Despite the fact that the streaming application domain is becoming increasingly
widespread, few studies have focused specifically on the performance characteristics

of stream programs. We introduce two models by which the scalability of stream pro-

grams can be predicted to some degree of accuracy. This is accomplished by testing

a series of stream benchmarks on our numerical representations of the two models.

These numbers are then compared to actual speedups obtained by running the bench-

marks through the Raw machine and a Magic network. Using the metrics, we show

that stateless acyclic stream programs benefit considerably from data parallelization.

In particular, programs with low communication datarates experience up to a tenfold

speedup increase when parallelized to a reasonable margin. Those with high commu-

nication datarates also experience approximately a twofold speedup. We find that the

model that takes synchronization communication overhead into account, in addition

to a cost proportional to the communication rate of the stream, provides the highest

predictive accuracy.

Thesis Supervisor: Saman P. Amarasinghe
Title: Associate Professor

3

4

Acknowledgments

I would like to thank Saman Amarasinghe for his patience and guidance throughout

this thesis project, in helping me formulate the original ideas as well as refining them

throughout the entire process. I'd also like to thank the entire StreamIt group at

CSAIL, for providing me with the tools to learn more about streaming programs

than I ever wanted to know!

In particular, I'm eternally grateful to Bill Thies, whose guidance in all aspects

was both instrumental and inspirational. I've spent countless hours badgering him

about any and all things related to Computer Science, and have learned more from

him than I could have ever imagined.

Without my friends, both from MIT and from before college, there's no way I

would have been able to survive five and a half years of this school. From lending an

ear upon which I could vent, a pair of eyes to proofread my writing, or a similarly

procrastinating soul with whom I could play Starcraft until the morning hours, they

have been essential in maintaining my sanity.

Lastly, I would like to thank my parents, Joseph and Mary June, and my siblings,

Jonathan and Adrienne. I feel truly blessed to have had their love and support in the

past, and feel extremely lucky in knowing I'll have it for the rest of my life.

Whoohoo!

5

6

Contents

1 Introduction 15

1.1 Problem Description . 15

1.2 Prior Work . 16

1.3 General Overview . 18

2 Background and Methodology 21

2.1 The Raw Machine........... 21

2.2 Magic Network .. 23

2.3 The Streamlt Language and Compiler 23

2.3.1 The StreamIt to Raw Compiler Path 26

2.4 Description of Steady State . 28

2.5 Filter Fission . 29

2.6 Partitioning . 29

3 Benchmarks 31

3.1 Pipeline Benchmarks . 34

3.2 Splitjoin Benchmarks . 36

3.3 Roundrobin Benchmarks . 39

3.4 Testing the Benchmarks . 39

4 Basic Cost Metric 41

4.1 T he M odel . 41

4.2 Results and Analysis . 43

7

4.2.1 Cost Type Comparison . 43

4.2.2 Metric Comparison . 46

5 Synchronization Cost Metric 57

5.1 The M odel. 57

5.2 Results and Analysis . 59

6 Conclusion 69

6.1 Results Summary . 69

6.1.1 Metric Validation . 69

6.1.2 Scalability Analysis . 73

6.2 Current State . 74

6.3 Future W ork . 75

A Metric Implementation File 77

A.1 ParallelizationGathering.java. 77

B Benchmark Source Files 97

C Simulation Graphs for Round Robin Splitting 103

8

List of Figures

2-1 Raw Tile Block Diagram 22

2-2 A StreamIt Pipeline . 24

2-3 A Splitjoin Pipeline . 25

2-4 A Sample Raw Layout 27

2-5 Steady State Example . 28

2-6 Pictoral Representation of Fissed Filters' cost characteristics Pre-fissing 30

2-7 Pictoral Representation of Fissed Filters' Cost Characteristics Post-

fissin g . 30

3-1 Stream Graphs of Communication Heavy Pipelines 35

3-2 Stream Graphs of Computation Heavy Splitjoins 37

3-3 Stream Graphs of Communication Heavy Splitjoins 38

3-4 Stream Graphs of Round Robin Splitjoins 39

4-1 Cost Distribution for Computation Dominated Pipelines 44

4-2 Cost Distribution for Communication Dominated Pipelines 45

4-3 Graphical comparison of Basic Metric to Raw simulator for Computa-

tion Heavy Pipelines . 48

4-4 Graphical comparison of Basic Metric to Raw simulator for Commu-

nication Heavy Pipelines . 49

4-5 Graphical comparison of Basic Metric to Raw simulator for Computa-

tion Heavy splitjoins . 51

4-6 Graphical comparison of Basic Metric to Raw simulator for Commu-

nication Heavy splitjoins . 52

9

4-7 Graphical comparison of Basic Metric to Raw simulator for Round

Robin splitjoins . 53

4-8 Synchronization metric accuracy vs. Magic Network and Raw simula-

tions for pipelines . 55

4-9 Synchronization metric accuracy vs. Magic Network and Raw simula-

tions for splitjoins . 55

5-1 Graphical comparison of Synchronization Metric to Raw simulator for

Computation Heavy Pipelines . 60

5-2 Graphical comparison of Synchronization Metric to Raw simulator for

Communication Heavy Pipelines . 61

5-3 Graphical comparison of Synchronization Metric to Raw simulator for

Computation Heavy splitjoins . 63

5-4 Graphical comparison of Synchronization Metric to Raw simulator for

Communication Heavy splitjoins 64

5-5 Graphical comparison of Synchronization Metric to Raw simulator for

Round Robin splitjoins . 65

5-6 Synchronization metric accuracy vs. Magic Network and Raw simula-

tions for pipelines . 66

5-7 Synchronization metric accuracy vs. Magic Network and Raw simula-

tions for splitjoins . 66

6-1 Metric Comparison of Pipelines with Respect to Magic Network . . . 70

6-2 Metric Comparison of Pipelines with Respect to Raw 70

6-3 Metric Comparison of Splitjoins with Respect to Magic Network . . . 71

6-4 Metric Comparison of Splitjoins with Respect to Raw 72

C-1 Graphical comparison of Synchronization Metric to Raw simulator for

Computation Heavy Pipelines . 104

C-2 Graphical comparison of Synchronization Metric to Raw simulator for

Communication Heavy Pipelines . 105

10

C-3 Graphical comparison of Synchronization Metric to Raw simulator for

Computation Heavy Splitjoins . 106

C-4 Graphical comparison of Synchronization Metric to Raw simulator for

Communication Heavy Splitjoins . 107

11

12

List of Tables

3.1 Key Benchmark Characteristics . 32

3.2 Benchmark Suite for Metric Tests . 33

4.1 Speedup comparison of Benchmarks

6.1 Projected Benchmark Speedup with Synchronization Metric

54

73

13

14

Chapter 1

Introduction

1.1 Problem Description

As general purpose computer processors become increasingly powerful with respect to

both sheer speed and efficiency, novel approaches to utilizing them can be explored.

In particular, algorithms that were once implemented solely as specialized hardware

are increasingly being implemented in software. This trend is spurred on in part due

to the increasing importance of what are called "stream" programs. In the simplest

definition, a stream program is one that takes as an input a potentially infinite amount

of data over a large amount of time, and likewise outputs a potentially infinite amount

of data. From basic Digital Signal Processing (DSP) algorithms such as the Fast

Fourier Transform (FFT) to consumer-oriented applications such as MP3 or HDTV,

it has even been surmised that such streaming applications are already consuming

the majority of cycles on consumer machines [7].

There have been numerous attempts to facilitate the programming of such software

implementations. These include specialized programming languages and compilers

such as StreamIt [3] [12] and Brook [2] [4]. Among the biggest challenges that software

implementations face is that they must match or outperform the realtime performance

that traditional specialized hardware achieves. To that end, streaming-application

compilers often include multiprocessor support to address the speed issue. However,

there have been few studies specifically aimed at measuring the general scalability of

15

stream programs when split across multiple computation units.

It has been generally theorized that data parallelism will generally produce a

speedup for most stream programs, but general purpose models of this have yet to be

defined. This thesis aims to model this large scale behavior by introducing numerical

models that can accurately predict the performance of stream programs when they

are parallelized. We accomplish this by defining two metrics of predicting the speedup

of stateless acyclic stream programs, and evaluating the metrics by comparing their

small scale performance against two existing networks. We discovered that for this

subset of streaming programs, they are indeed scalable across multiple processor units,

though this speedup is limited primarily by the amount of internal communication

ocurring in the stream.

1.2 Prior Work

The field of exploring data parallelization is a well-studied one, with numerous contri-

butions already made. However, their applicability is not specific to stream programs

and this unique application domain has yet to be comprehensively studied. There

exists some prior work in the field, which was useful for us to establish a starting

point in our own modeling work.

Early work by Subhlok, O'Hallaron et al. [8] studies optimal data parallel map-

pings for stream programs, in particular how the program characteristics affect over-

all performance for various mappings. It effectively introduces a communication cost

model based on the number of items that a stream program consumes and internally

routes, which is an approach that this thesis will also use. It also looks at stream pro-

gram characteristics from a high level such that the study can be applicable towards

multiple architectures. However, their performance measurements are based on low

level compiler scheduling control, effectively trying to compensate for certain char-

acteristics in stream programs by optimizing the compiler to improve performance.

They also do not explore the effects of any characteristics specific to a particular

stream program on its overall scalability, which this thesis does. Finally , the work

16

does not test their models on any real life architectures, making it less usable as a

way of modeling aspects of stream programs in general.

Later work by Subhlok and Vondran [9] addresses the concern of applicability

by testing their optimal mapping of parallel programs to an existing compiler and

testbed, also introducing a more mathematically rigorous justification for their mod-

els. They test their mapping models on a wide variety of benchmarks, a test method-

ology that this thesis borrows from. However, their approach is still based on low

level compiler control, which this thesis abstracts away. Instead, this thesis focuses

primarily on aspects of the stream programs themselves, which compilers are able to

optimize if they wish.

Lipton and Serpanos [6] develop a communication cost model for multiprocessors,

with a focus on measuring the scalability of their model as the number of processors

increase. This is quite relevant to our work due to its focus on scalability. However, the

model they present is quite simplistic, using a uniform communication cost regardless

of the number of processors. In addition, they fail to take into acocunt any notion

of computation cost for test programs, which can be significant in stream programs.

They test their metrics on a very specialized machine (PRAM network with PLAN

switches), further limiting its general purpose applicability.

Recent work by Suh, Kim, and Cargo et al [10] perhaps provides the greatest

relevance to measuring the performance of stream programs on numerous possible

architectures. They introduce numerous relevant stream program benchmarks, and

test their potential speedups on three different architecture types, using real sys-

tems. Their fundamental approach, however, is different than that of this thesis.

The primary goal of their work is to compare the effectiveness of the three differing

architectures with respect to their performance, using a common set of benchmarks.

While we essentially only validate our models on one of these architecture types, the

intent is for the metrics we introduce to be applicable towards others as well, with

minimal changes being made to them.

17

1.3 General Overview

The goal of this project is to introduce two models by which one can predict the

scalability of stream programs. These models should be apply to a large class of

parallel architectures with distributed memory, and be as accurate as possible with

respect to what it predicts. In order to do this, we take the following steps: Firstly,

we describe our methodology in how we set up and test the numerical metrics that the

models are comprised of. Then, we introduce a benchmark suite of stream programs

that represent the various characteristics of stream programs. Next, we explain the

two metrics that were developed, and compare our results to that of real simulations.

The methodology stage involves explaining our strategy in both creating and val-

idating the two metrics. To this end, we introduce three key tools that are currently

being used in the streaming application domain: Raw, StreamIt, and a Magic Net-

work. The Raw machine is a scalable multiprocessor machine that is designed to

efficiently parallelize input programs by giving the compiler maximum low level con-

trol, reducing many possible sources of overhead. The Magic Network is not a physical

network, but instead is an idealized simulator of a tiled multiprocessor machine that

is useful in showing best case performance. StreamIt is comprised of both a high level

programming language and matching compiler that allows programmers to represent

stream programs in a high-level abstraction. The compiler is then able to efficiently

convert the high level code into machine language optimized for Raw. We also briefly

describe the concept of Steady State, which is essential in measuring the performance

characteristics of stream programs.

The benchmark chapter introduces ten sample stream programs that were decided

to display a large range of possible characteristics in the streaming application domain.

They are categorized by three main qualities, which will be described in a future

chapter.

The two metrics in this thesis are introduced by first deriving their numerical

form. The metrics are then tested by running the equations on the benchmarks, then

comparing these results to when the same benchmarks are run through Raw and the

18

Magic Network. The results from the three sources are then analyzed with respect

to each other, in an effort to validate the metric.

19

20

Chapter 2

Background and Methodology

Due to the specialized nature of stream programs, using standard programming lan-

guages and compilers to compare our metrics with real results would have resulted

in numerous problems with respect to obtaining optimal performance. For instance,

using a standard Java or C compiler would have severely limited the ability to test

data parallelization by splitting a filter amongst multiple processors. Instead, we

opted to use tools that were more applicable to stream programs as a whole. First,

we introduce the Raw microprocessor, hardware that is well-suited to testing stream

program scalability. Then, we introduce the Magic Network, a simulator alternative

to the Raw architecture. Finally, we mention the StreamIt programming language

and compiler, which enabled us to create high level programming models of stream

programs and efficiently compile them to Raw.

2.1 The Raw Machine

To minimize any potential overhead incurred by data parallelization across multiple

processors, we chose an architecture that allows the compiler to determine and im-

plement an optimal resource allocation for a given stream. The Raw machine [1] [11]

is a highly parallel VLSI architecture that accomplishes this. Instead of building one

processor on a chip, several processors are connected in a mesh topology. As a result,

each tile occupies a fraction of the chip space, so scalability of tiles benefits as well

21

as latency between them.

nComputing
processor 4-stage

(8 stage 32 bit, pipelined
single issue, FPU

in order)

96 KB
I-Cache Com-

muication
32 KB processor

D-Cache

8 32-bit
channels

Figure 2-1: Raw Tile Block Diagram

Each tile in a Raw machine, as seen in Figure 2-1, contains a dedicated memory

module and cpu. It also has a RISC-type pipeline and is connected to other tiles

through a point-to-point network. This is incredibly useful for testing performance

characteristics of stream programs, as it allows the compiler to directly assign which

filters are placed on certain tiles, to optimize performance. Figure 2-4 is an example

of a sample Raw layout when filters are assigned to tiles. The red arrows indicate the

communication datapaths between the tiles.

However, since compilers and tools for Raw are still in development, there were

numerous limitations in what we could simulate. Our tools currently only allow rect-

angular tile configurations, limiting the amount of datapoints that could be gathered.

Furthermore, successful compilation beyond 16 tiles (4x4 layout) was inconsistent,

which forced us to design benchmarks that were sufficiently small to fit into this lay-

out and still have room to be parallelized. In addition, because Raw is a synchronized

static network, the StreamIt compiler, as described in a following section, can suffer

introduces considerable overhead in assuring synchronicity among all the tiles. There

22

exists finite size buffers on the communication channels as well, which also introduce

additional delay. In order to minimize these extra costs, we opted to also simulate a

tiled network that does not have these costs, entitled the Magic network.

2.2 Magic Network

The Magic Network is a pure simulation that assumes the characteristics of a Raw-

type machine (low level compiler control, data parallelization), but allows exploration

of architectural variants of Raw. It allows infinite buffering, removing delays from

the previously mentioned finite sized communication buffers on each tile. In addition,

it does not make any synchronization requirements between the tiles beyond the

requirements of the processes being run, eliminating further overhead costs. The

cycle latency per hop is a value that is settable by the user at compile time, allowing

for variety in testing various benchmarks. Although this network does not exist as

a processing entity, it is useful for comparison purposes, as the metrics we introduce

are designed to be applicable for any stream program backend.

2.3 The StreamIt Language and Compiler

Since we decided on using the Raw machine, we sought a compiler that could seam-

lessly interface with Raw and provide an adequate high level programming language

with which our benchmarks could be programmed and tested. For these purposes,

StreamIt was the natural choice. It has both a programming language and compiler

that are tailored towards stream programs and their effective implementation.

The StreamIt compiler contains both a Raw and Java backend, which was ex-

tremely useful in our simulation efforts. Using the Java backend, the two metrics we

introduce in later chapters were implemented and tested. We could then compare

these results with those of the Raw backend, using the same benchmark streams.

Since support for Raw is already built into the compiler, no interfacing issues arose

in our number gathering.

23

The StreamIt language provides a simple high level abstraction with which soft-

ware engineers without lower level DSP knowledge can easily represent stream pro-

grams. Perhaps the most useful abstraction that it provides is its categorization of

streaming programs. The basic building block is a filter, which on every invocation

takes in (pops) a certain amount of data, processes it, and outputs (pushes) a cer-

tain amount at the other end. This is the same way streaming algorithms are viewed

from a DSP perspective; consequently, they are highly applicable in this case as well.

The language defines three constructs as those that can contain groups of filters to

compose them into a network: pipelines, splitjoins, and feedback loops. Our metrics

do not currently support feedback loops; we will focus on the former two.

Figure 2-2 shows a sample pipeline. Filters are arranged in series one after the

other, and send/receive data in this sequential fashion. Figure 2-3 shows a sample

splitjoin element. These contain independent parallel streams that diverge from a

common splitter module and are combined into a common joiner module. The splitter

and joiner can vary with respect to how data is taken in and out of them. For instance,

there are two main splitter types, duplicate and roundrobin. A duplicate- splitter

simply sends identical copies of any data item it receives to its children parallel

streams, while a roundrobin(n,m) splitter sends n items one way, then m items the

other way, and repeats the process. It is important to note that splitters need not be

limited to 2 parallel streams; it can support an arbitrary amount of child streams.

Fu -: OA lt ipelB eB

Figure 2-2: A StreamIt Pipeline

24

A1 A ---- An A
0

An

is s 3 = 21
02 Il OBm 1

OBI Bm
B1 B3Asl Bm

Figure 2-3: A Splitjoin Pipeline

25

2.3.1 The StreamIt to Raw Compiler Path

While details about the StreamIt compilation path are not necessary in either un-

derstanding or implementing the models espoused in this thesis, it is useful to show

the compiler path as one that is not limited to a tiled architecture like Raw. A large

part of the compiler's function is to determine an efficient way to either combine mul-

tiple filters on the same processing unit (fusing), or splitting a single filter amongst

different units (fissing), based on the layout it is given.

The StreamIt compiler employs three general techniques that can be applied to

compile the StreamIt language to not only the Raw backend, but for other archi-

tectures as well: 1) partitioning, which adjusts the granularity of a stream graph to

match that of a given target, 2) layout, which maps a partitioned stream graph to

a given network topology, and 3) scheduling, which generates a fine-grained static

communication pattern for each computational element.

The StreamIt partitioner employs a set of fusion, fission, and reordering trans-

formations to incrementally adjust the stream graph to the desired granularity. To

achieve load balancing, the compiler estimates the number of executions by each fil-

ter in a given cycle of the entire program; then, computationally intensive filters can

be split (fission), and less demanding filters can be combined (fusion). Currently, a

simple dynamic programming algorithm is used to automatically select the targets of

fusion and fission, based on a simple work estimate in each node.

The layout phase of the StreamIt compiler aims to assign nodes in the stream

graph to computation nodes in the target architecture while minimizing the commu-

nication and synchronization present in the final layout. This layout assigns exactly

one node in the stream graph to one computation node in the target. Because this

occurs after the partition phase, a one-to-one mapping is guaranteed.

Figure 2-4 is an example of a sample Raw layout when filters are assigned to tiles.

The red arrows indicate the communication datapaths between the tiles.

26

nul]Sink 45_20_22 WEIG ED ROUNDROBINJoin _40 MutableFilter_21_28_11 MutableFilter 21 30_13

MutabIeFIter 21 31 14 - MutableFilter2129-12 nullSource 5-17-6 MutableFilter 3*7. 35 19

MutableFilter 37_3418..........MutableFilter 37_36_20 MutableFilter 37_37_21 j - - . MutableFilter_37_33_17

Figure 2-4: A Sample Raw Layout

27

2.4 Description of Steady State

In order to effectively measure our proposed scalability models, it is necessary to first

understand key performance characteristics of stream programs. Among the most

important of these is a given stream program's Steady State behavior.

A stream's Steady State is best defined as a set of multiplicities for each filter in a

stream such that all data that is pushed onto a given channel is completely consumed.

Another way of viewing this is that the overall number of data items produced in the

stream is also consumed within the stream, for a single Steady State execution.

pop = 1 pop =
A 2* A

push= 3 pus 3

pop=2 pop2
B 3* B

cush =1 %push=

Figure 2-5: Steady State Example

Figure 2-5 shows an example of how a steady state schedule is determined. Because

the first filter outputs three data items per execution and the second only consumes

two items per execution, if each filter were just run once, then there would be one

item left on the channel connecting the two. In order to ensure that this does not

occur, in the Steady State, the first filter executes twice, and the second filter executes

three times. This is shown in the picture on the right of Figure 2-5. Now, a total of

six data items are outputted, and six are consumed by the following filter.

The usefulness of knowing a stream's Steady State is that any schedule that is

aware of these multiplicities is able to repeat it endlessly. Because of this, we should

28

measure the computational characteristics of filters according to their Steady State

schedules. In our study, the main computational quantity of each filter that is mea-

sured and compared is that of cycles per Steady State output. Due to the properties

of the schedule, we can be assured that this quantity remains constant over time. A

more detailed explanation of Steady State behavior can be found in [5].

2.5 Filter Fission

Among the primary aspects of this thesis involves the accurate modeling of filter

fission. When a filter is first fissed into two filters to reduce the steady state com-

putation cost, that filter in the stream is replaced by a splitter, two parallel fissed

filters, and a joiner, in that order. Figures 2-6 and 2-7 show an example of this. Here,

each the fissed filters now receive some subset of data that the original filter would

have received, depending on the splitter module used. If a duplicate splitter is used,

then the fissed filters get exactly the same data the original filter would have, and

internally decimate the input based on the subset they are assigned to process. If a

round robin splitter is used, then each splitter would only receive the data they are

to process. However, using a round robin splitter is not without tradeoffs. While the

overall communication bandwidth of the stream (and likewise, to the filters individu-

ally) decreases, it introduces other causes for overhead. This will be further explored

in a following chapter.

It is important to note that this model is only valid for filters without internal state

from iteration to iteration. If a filter was not stateless, then the StreamIt compiler is

currently unable to fiss it.

2.6 Partitioning

As introduced earlier our description of the StreamIt to Raw compiler path, parti-

tioning is a key aspect of exploring scalability. The entire process of filter fission is

limited by the granularity with which the compiler can assign filters to tiles. This

29

Figure 2-6: Pictoral Representation of Fissed Filters' cost characteristics Pre-fissing

kRwndkohf~bmmbLancd_5

EIGHTED-ROUNI)RB-(,

Mutabiekkferjnss_56 Mutab lajw,_s-57
DUPLICATE(IJ) DUPLICATE(0,I)

.M.Wbl .,47 Mutbker_ 48 Muuabkhe 45 Muwb._h 46

P0-280 p.-280 pqG 40 pp-140

initPeekO =0 Werk= 1570 initPeek0 =140 Wk= 1570 intPeckO =0 Work. 129 initPmek0 =70 Wmrk= 1290

HTDRUDROBLN(14014 EIGHTEDROUND.RBIN(707

<:WGMGHTEONDUNDROBIN

Figure 2-7: Pictoral Representation of Fissed Filters' Cost Characteristics Post-fissing

is a nontrivial thing to accomplish, as the compiler must be aware of which fissing

will best benefit overall stream performance. In using the StreamIt compiler, we

can be assured that partitioning is being done intelligently. More details about the

partitioning algorithms StreamIt uses can be found in [12].

30

RwundRobibfalancd4

EIGHTED-ROUNDROBIN(2I)

MwalbkiIr_14 MtableF. _15

p.hO--14 p.A.O=
7
O

p~pO-
4

0 ppO=
7
0

k=140W k= 15 k0=70W-k= 1280

EGHTEDROUNDROBIN(21

nullSink16

2 0
0.210W~,k=423

Chapter 3

Benchmarks

In order to efficiently and accurately test our metrics, we created a test suite of sim-

ple benchmarks whose purpose was to highlight specific characteristics of streaming

programs such that the strengths and shortcomings of each metric could be easily

visible. Each benchmark stream consists of a dummy source, a dummy sink, and two

filters in between them. While it may seem at first glance that few combinations can

be made with such a simple model, there are numerous characteristics of streaming

programs that can be effectively tested with it.

Although the vast majority of existing programs in the streaming application

domain contain far more than two basic filters, when these filters are fissed, or split,

they are equivalent to more complex stream programs that had larger amounts of

filters in their initial state. By starting from a base case of two, we were able to

better follow the progression as filters were fissed. It is also important to note that

filter fusion, or the event of placing more than one filter on the same processing tile,

is not considered in this thesis. As a result, our simulations on these benchmarks

were started from a number of processors equal to the number of filters in the overall

stream.

Of the ten metrics that were created from this basis, eight can be categorized fully

by the characteristics in Table 3.1.

It is important to note the distinction between pipelines and splitjoins, as de-

scribed in the previous chapter. While the two constructs are quite different func-

31

Stream Type Dominating Cost Relative Size
Pipeline Computation Balanced
Splitjoin Communication Imbalanced

Table 3.1: Key Benchmark Characteristics

tionally, their differences are less signficant from a perspective of bottleneck cost. If

two identical filters are placed in series versus in parallel, this layout difference should

not affect which one of the two is the bottleneck in the stream.

The dominating cost characteristic can have either one of two values; either a

stream's overall complexity is dominated by the amount of processing done on its

input data, or the sheer amount of data that is passed within it. This difference is

essential to distinguish in measuring overall scalability, as large amounts of compu-

tation are easily parallelizable among different tiles, whereas a high communication

bandwidth is less affected by parallelization.

The relative size characteristic is a comparison of the two filters' overall cycle cost

per steady state. In a balanced stream, it can be expected that each filter will be fissed

evenly, since they have an identical amount of work in them initially. However, for

imbalanced filters, the more work-heavy filter will be fissed much more than the work-

light one. This is expected to produce a few deviations in terms of the progression of

bottleneck work. For instance, it requires a total of two extra fissings for a balanced

stream to produce any speedup, since both filters need to be fissed.

The final two benchmarks contain round robin splitters, and will be described

separately. Appendix B contains the code for each of the ten benchmarks.

32

Strea TypeDominting ost Rlativ Siz Slte
Computation

Computation

Communication

Communication

Computation

Computation

Communication

Communication

Communication

Communication

Balanced
Imbalanced

Balanced
Imbalanced

Balanced
Imbalanced

Balanced
Imbalanced
Imbalanced
Imbalanced

n/a
n/a
n/a
n/a

Duplicate
Duplicate
Duplicate
Duplicate

Roundrobin
Roundrobin

Table 3.2: Benchmark Suite for Metric Tests

33

Pipeline
Pipeline
Pipeline
Pipeline
Splitjoin
Splitjoin
Splitjoin
Splitjoin
Splitjoin
Splitjoin

I

Dominating Cost Relative Size SplitterStream Type

3.1 Pipeline Benchmarks

The stream graph of the computation heavy pipelines can be seen in Figure ??. The

"peek" quantity in the stream graphs are irrelevant for the purposes of our metrics,

and thus can be ignored. The "work" quantity is a simple work estimate of each

filter, as calculated by the StreamIt backend. Both have almost no communication

cost, with a push and pop rate of 2. However, they were given large amounts of

computation to cycle through per invocation, which will dominate over the negligible

communication cost. The balanced graph has two equally computationally heavy

filters, while the imbalanced graph has one heavy filter and one lighter one whose

computation cost is lesser than the other by a large factor.

34

The communication heavy pipelines, whose stream graphs can be seen in Figure 3-

1, follow the same approach as the computation heavy benchmarks. However, these

have a relatively high communication bandwidth and just enough computation to

ensure one of the filters is the bottleneck and not either the sink or source. For the

imbalanced pipeline, the datarates of both filters are actually the same, but their

computation costs are not. This leads to the event that one filter is fissed far more

often than the other one, which is the desired effect.

MutablePipelineCommBalanced

nulSorce7

Pol,
0
=O

ek0 - Work= 140

MutableFilter8
push0=70
pop0=7O

-ekO =70 Work= 2780

MutableFilter.9
push0=70
popO=7O

ekO =70 Work= 2780

nu link_10
pushk=O
popO=

70

eek0 =70 Work= 143

-4 MutablePipelineommlmbalan,

nullSource7

k 0 Work= 140

MableFilter_8

push0=70

kO=70 Work= 780

MutableFilter_9
pusb0=70

pop0=70

ekO =70 Work= 3780

popO=70

nullSin10

ekO =70 Work= 143

Figure 3-1: Stream Graphs of Communication Heavy Pipelines

35

:dC4

3.2 Splitjoin Benchmarks

The splitjoin benchmarks are similar to the pipeline benchmarks in terms of individ-

ual filters, in that both have a dummy source and sink, and contain two other filters.

The primary difference is that in these benchmarks, the two are arranged in parallel

instead of in series, in between a duplicate splitter and a roundrobin joiner. Ideally,

the communication heavy filters, as can be seen in Figure 3-3, would have a commu-

nication datarate much higher than the amount of computation it does. However,

in our preliminary tests, we found that this extreme would lead to the bottleneck

filter to often be the dummy sink, which is not fissable. This is because the sink is

responsible for producing a set number of outputs per steady state, which reasonably

incurs a considerable cost. If the filters did not have a computation cost higher than

the cost of the sink's outputting, then the bottleneck would quickly converge to the

sink. As a result, the amount of computation on even the communication dominant

filters had to be sufficiently raised.

36

Figure 3-2: Stream Graphs of Computation Heavy Splitjoins

37

MutableSplitJoinCompBalanced_4

pushO=2
pOp0=0

kO =0 Work= 4

Default~plid~oin_12

DUPLICAT-E(l,1) .

MutableFilter 14 MutableFilter_15
pushO=2 pushO=2
popO=2 pop-=2

Mk =2 Work= 5008 eekO =2 Work= 5008

EIGHTEDROUND_ ROBIN(2,2)

nullSink_ 16
popO=4

kO =-4 Work= I I

MutableSpliiJoinCompImbalanced_4

pushp=2

popO p p= 0=

= k2 =0 Work= 4

Dcfault~plid~oin_12

DULPLICAT-E(1,1)

MutableFilter _14 MutableFilter _15
pushO-=2 pushO-=2
popO-=2 popO=2

ekO =2 Work= 258 ek0 =2 Work= 5008

EIGHTEDROUND-ROBIN(2,2)

nullSink-16

push0=0
popO=

4

ek0 =4 Work= II

Figure 3-3: Stream Graphs of Communication Heavy Splitjoins

38

MutableSplituoindomnmBalanced_4

nullSource_13

ekO =0 Work= I40

DefaultSpfiUoin_12

DUPLICATE(0, lI

MutableFiltet_14 MutableFiller_15
pushO=35 pushO-=35
popO=70 popO=70

Mk =70 Work= 27 10 ekO =70 Work= 2710

EIGHTEDROUND-ROBIN(35,35)

nUllSink_16

popO=70
Mk =70 Work= 13

MutableSplituoinCommimbalanced_4

nullSource-13
pushO=70

Mk =-0 Work= I4

Defaul Npl i -oina 12

DUPLICATE(l,l)

-MutableFilter _14 MutableFilter_15
pushO-=35 pushO=35
popO=70 popO=70

ekO =70 Work= 610 kO =70 Work= 30 10

EGTED-ROUNDROBIN(3,5

nuflSink_16

popO=70ekO =70 Work= 143

3.3 Roundrobin Benchmarks

The final two benchmarks created for the test suite were also splitjoins, but with

round robin splitters instead of the duplicate splitters used in Figures 3-2 and 3-3.

This was done because round robin splitters tend to incur a greater communication

cost than duplicate splitters, as they can only send data to one of its downstream

filters at a time. One of the metrics we test in a future chapter uses this assumption.

Figure 3-4: Stream Graphs of Round Robin Splitjoins

3.4 Testing the Benchmarks

Each of the ten benchmarks were tested in three separate simulations; one with the

metric, one with the Magic Network, and one with Raw. Due to limitations in both

the Raw and Magic network simulators, we were unable to get consistent datapoints

beyond anything in a 4x4 tile configuration. As a result, we were forced to keep

39

koundRobinBalanced_4

nuilS uce-13

kO =0 Wok= 280

Default~pfitJoin-12

EHTEDROUNDROBIN(1

MutableFilter_ 14 MutableFilrr15

ekO =70 Work= 3780 Mk =70 Work= 3780

EIGHTEDROUNOI(,)

nuilSink 16

ekO =140 Work= 283

RoundRobinlrmbalanced 4

nullSoure_13

ekO =0 Wrk= 210

Defauft~pfitJoin_ 2

IGHTEDROUNDROBIN(21
Mutab eite_1 MutableFflter _15

ekO =70 Work= 3780 eek0 =35 Work= 189

EIGHTEDROUNDROBIN(2,I)

nu]Sink_16

e kO = 105 Work= 213

our benchmark streams with minimum complexity, as adding more filters initially

would have introduced fusion in the lower tile configurations. However, because our

models are essentially numerical equations, we were able to test the metrics to an

arbitrarily large number of processors. For the purposes of this thesis, we limited

it to 24 processors. This was sufficiently a large amount to display the asymptotic

trends for our test benchmarks.

40

Chapter 4

Basic Cost Metric

In our development of models to accurately predict the performance of filter fission

across a variety of benchmarks, we followed an iterative process. The first metric

tested was one that assumes a communication overhead, solely based on the commu-

nication bandwidth of each benchmark. This includes the processing time for any

push, pop, or peek, implying that the data per processor is fed directly into the com-

putation portion of the processor after a fixed amount of cycles. Other effects such as

synchronization are not accounted for in this model. While at first glance this metric

may seem overly basic to be of use, we found it important to establish an accurate

baseline measurement as to the optimal performance of fission, assuming a perfect

compiler that would effectively eliminate any costs that would stem from fissing.

4.1 The Model

As a baseline measurement for this metric and all following ones, we assume that

every filter initially occupies one processor each (for instance, a five filter stream is to

occupy a total of five processors as its initial state). This is done in order to remove the

potential effects of filter fusion from the calculation. Thus, we focus strictly on data

parallelization. Because we make this assumption, the bottleneck work will always

stem from a single filter, and not groups of them. For instance, the steady-state cost

of a pipeline would be the maximum of its individual component filters, since each

41

filter is simulated to run in parallel.

The model assumes an iterative process in how new processors are added. It

also makes the assumption that all the filters in the stream do not carry with them

internal state from iteration to iteration. This is because stateful filters are currently

considered to be unfissable without considerable compexity. In the base case, a simple

work estimate is taken of all filters in the stream, and this is the initial data that is

used. Upon each iteration, the current bottleneck filter in the stream is calculated

and fissed. This process is repeated for every new processor that is added. It is

important to note that the bottleneck filter is not necessarily the same for each new

processor that is added, as parallelizing the current bottleneck filter might make a

completely different filter the new bottleneck. Thus, the overall cost of the bottleneck

filter scales as follows:

PN * N
PN+1 N + I

po = Initial filter computation work estimate

where pi is the total cost of the bottleneck filter when fissed i ways. The decreasing

bottleneck cost can be easily explained by the multiplicity of filters that grow with

N. Within a stream (and hence its original filters), there exists a fixed total cost

that needs to be processed in order for outputs to be produced. As filters are fissed,

the overall number of filters grow, which reduces the amount of work each individual

filter has to do. One can also view this on a filter level, namely that each filter in the

original stream is responsible for a certain amount of work, that is then split amongst

its fissed filters. Due to data parallelization, each fissed filter only takes upon a

fraction of the work of the original, with this fraction decreasing as the number of

processors increases.

42

4.2 Results and Analysis

4.2.1 Cost Type Comparison

As an example of the difference between communication and computation dominated

streams, Figures 4-1 and 4-2 show the distribution of computation vs. communication

in the four pipeline benchmarks. In the computation dominant cases of Figure 4-1,

the overall cost completely overlaps with the computation cost trendline, which is

not surprising given that the communication cost is negligible for all values on the x

axis. However, the overall cost trendline is slightly different in Figure 4-2, where the

communication cost, albeit still relatively small, does indeed contribute. In particular,

it is interesting to note that after a certain number of processors on both graphs in the

figure, the communication cost exceeds that of the computation cost. The spikes in

communication cost (and respective dips in computation cost) on the bottom graph

of Figure 4-2 are due t6 the imbalanced nature of the benchmark. The graph shows

the bottleneck filter a given number of processors, and so at these points, it is the

less intensive of the two original filters that is being fissed.

43

Computation Heavy, Balanced Pipeline

6000

5000

3 4000

0
w 3000

5 2000

1000

0

Computation Heavy, Imbalanced Pipeline

Extra Processors

+-Computation Cost -a-- Communication Cost ' -.- Overall Cost

Figure 4-1: Cost Distribution for Computation Dominated Pipelines

44

5 10 15 20 25

Extra Processors

-- - - Computation Cost - -R- - Communication Cost Overall Cost

30

6000

5000

4000

3000

2000

1000

0

-1000

0.

0

U

Communication Heavy, Balanced Pipeline

0 5 10 15 20 25
Extra Processors

-+- Computation Cost -0- Communication Cost Overall Cost

Communication Heavy, Imbalanced Pipeline

5 10 15 20 25

Extra Processors

--- Computation Cost -1- Communication Cost Overall Cost

Figure 4-2: Cost Distribution for Communication Dominated Pipelines

45

0

4000

3500

3000

C 2500
0

2000

1500
U

1000

500

0

5000

4500

4000

3500

3000
0
w 2500

2000

1500

1000

500

0

30

30

4.2.2 Metric Comparison

Figures 4-3 and 4-4 show the graphical results of applying the metric to the four

pipeline benchmarks, compared to the actual results gathered from both the Magic

network and the Raw simulator. Due to simulation limitations, only a limited number

of data points were taken for the two simulations, with the metric trendline typically

extending to larger numbers of processors. It is important to note that for each of the

following comparison graphs, the x axis indicates the number of processors beyond

the base case for each stream, in which each filter starts by already occupying its own

processor. We normalized the results from the base case, which was when each filter

in the stream occupied its own tile.

For the computation heavy pipeline benchmarks, the trendline metric matches the

Magic Network results fairly well, since communication costs are a negligible in those

pipelines by design. In a balanced pipeline or splitjoin, each of the two work filters are

split alternately, resulting in a regular stepwise decrease in bottleneck throughput,

as exactly two fissings need to occur for a decrease to occur. Conversely, with an

imbalanced pipeline or splitjoin, the more work intensive filter is split more often

than the non intensive filter, hence the decrease in bottleneck throughput does not

follow any set pattern. Both the regular stepwise progression on the top graph of

Figure 4-3 and the irregular stepwise progression on the bottom graph are accurately

captured.

The Basic metric's shortcomings first appear in the graphs in Figure 4-4, where

it severely overestimates the projected speedup for communication heavy pipelines.

While the regular stepwise behavior of the top graph and the irregular stepwise pro-

gression of the bottom graph are expected, the rate of decrease for the bottleneck cost

is far lower than that of either the Magic network or Raw trendlines. This implies

that there are other communication costs inherent in data parallelization besides the

ones modeled in this metric.

In viewing the Raw trendline for these graphs and all future ones, it is important to

note that only datapoints for rectangular Raw configurations are displayed. Because

46

Raw is limited to data parallelization only across these configurations (e.g. 1x1, 1x3,

2x2, 3x4, etc.), the intermediary data points (e.g. 7, 11) do not give an accurate

portrayal of the simulator's performance.

There exists a large disparity between the Raw trendlines and the other two, in

particular with respect to the communication heavy pipelines. One potential reason

is due to a limited capacity buffer between two filters in a pipeline. When the buffer

is full, the preceding filter in the pipeline is blocked, as it is unable to write to the

buffer. In Magic network, infinite buffering is assumed, so this is not a factor. A

future iteration of this metric might be able include buffer size as a parameter, if

we wished to better match the Raw trendline. In addition, we observed increases

in bottleneck cost regularly at the 3x3 Raw configuration, which translates to the 5

extra processor datapoint, with this effect most obvious on the top graph of Figure 4-

3. This occurrence can most likely be attributed to the peculiarities of Raw's handling

this particular layout.

47

Computation Heavy, Balanced Pipeline

1.2

1

0.8

0.6

0.4

z

0.2

10 15

Extra Processors

--- Metric, NormFactor 5026 -5-~ MagNet, NormFactor 6054 Raw, NormFactor 6054

Computation Heavy, Imbalanced Pipeline

0 5 10 05 20 25

Extra Processors

--- Metric, NormFactor 5026 -*- MagNet, NormFactor 6054 Raw, NormFactor 6054

Figure 4-3: Graphical comparison of Basic Metric to Raw simulator for Computation
Heavy Pipelines

48

20 25
0

Communication Heavy, Balanced Pipeline

10 15

Extra Processors

-4- Metric, NormFactor 3410 -W- MagNet, NormFactor 4082

Communication Heavy, Imbalanced Pipeline

1.2

1

0.8

0.6

0.4

0.2

0
10 15 20

Extra Processors

- Metric, NormFactor 4410 -5-- MagNet, NormFactor 5282 -Raw, NormFactor 5282

Figure 4-4: Graphical comparison of Basic Metric to Raw simulator for Communica-

tion Heavy Pipelines

49

1.2-

0.8 -

0.6-

0.4
z

0.2

0
20 25

25

5

Raw, NormFactor 402]

In viewing the trendlines for the computation heavy splitjoin benchmarks, the

basic metric matches both the Raw and Magic network trendlines quite well. In

particular, the stepwise behaviors for the bottom graph in Figure 4-5 that are present

in Raw and Magic network is accurately reflected in the basic metric trendline. It

is possible that it is also the case for the top graph, but it cannot be definitively

determined given the spacing of the simulator data points.

It is important to note that because Raw places the joiner module of the splitjoin

in a separate tile by default, we could not normalize from the base case of 4 (as we

did with the pipelines), as that case would include the fused joiner module. However,

we were unable to normalize to 1 extra processor either (5 tiles), as 1x5 results were

unavailable for both Raw and Magic network. Because of these limitations, we had

to normalize all three trendlines for splitjoins to two extra processors, which surely

introduced error into our findings.

Similar to the results with the communication dominant pipelines, the nmetric

trendlines in Figure 4-6 vastly overestimates the speedup obtained by fissing. The

accuracy of the basic metric to Figure 4-5 is easily explained because of the lack of

any real communication overhead in those benchmarks, due to their relatively small

push and pop rates. As a result, the constant communication cost in these cases is

negligible.

Because round robin splitters inherently have more communication involved with

them compared to duplicate splitters, it is not surprising to find that the Basic metric

performs poorest on Figure 4-7. While there were very few simulation datapoints for

these benchmarks, they are sufficient to highlight the fundamental flaws of the metric.

Another interesting item of note in the splitjoin graphs is that the Raw trendline

here matches up with the magic network simulation results much better than with the

pipelines. This gives further credence to the theory that there are other unaccounted

for costs involved in the placing of two filters in a pipeline as opposed to a splitjoin,

that result in vastly different bottleneck costs.

50

Computation Heavy, Balanced Splitjoin

10 15 20

Extra Processors

---- Metric, NormFactor 2504 --- MagNet, NormFactor 6026 ^, Raw, NormFactor 6026

Computation Heavy, Imbalanced Splitjoin

5 10 15 20

Extra Processors

-1--- Metric, NormFactor 2510 -~-- MagNet, NormFactor 3020 : - Raw, NormFactor 3020

Figure 4-5: Graphical comparison of Basic Metric to Raw simulator for Computation
Heavy splitjoins

51

1.2

1

0.8

0.6

0.4

z

0.2

0
25

1.2

1-

0.8

S0.6

0.4

0.2

0
25

Communication Heavy, Balanced Splitjoin

5 10 15 20 25 30

Extra Processors

-4--- Metric, NormFactor 3025 -U- MagNet, NormFactor 1752 Raw, NormFactor 2265.5

Communication Heavy, Imbalanced Splitjoin

1.2

'A0.8-

0.

0.2

0
0 5 10 15 20 30

Extra Processors

-- *--Metric, NormFactor 3325 -*-MagNet, NormFactor 2443.5 .. Raw, NormFactor 3118.5

Figure 4-6: Graphical comparison of Basic Metric to Raw simulator for Communica-
tion Heavy splitjoins

52

1.2.

1 -

0

0.6.

0.4-
z

0.2

0-

RoundRobin, Balanced Splitjoin

10 15
Extra Processors

-4Metric, NormFactor 4294 4 Raw, NormFactor 3290

RoundRobin, Imbalanced Splitjoin

10 15 20 25

Extra Processors

E-4--=Metric, NormFactor 4294 -- ~ MagNet, NormFactor 2846 - - Raw, NormFactor 4641

Figure 4-7: Graphical comparison of Basic Metric to Raw simulator for Round Robin

splitjoins

53

1.2

1

0.8

0.6

E 0.4

0.2

0
25 30

1.2

1.0.8

0.6

0.4

0.2

0
30

20

Stream Ty
Pipeline
Pipeline
Pipeline
Pipeline
Splitjoin
Splitjoin
Splitjoin
Splitjoin
Splitjoin
Splitjoin

?e Characteristic Metric Magic Net
CompBalanced 3.51 5.93

Complmbalanced 3.44 2.94
CommBalanced 5.81 3.13

CommImbalanced 4.95 1.96
CompBalanced 3.51 5.92

CompImbalanced 6.02 5.85
CommBalanced 6.02 1.59

CommImbalanced 9.09 2.29
RoundRobinBalanced 3.98 n/a

RoundRobinImbalanced 4.98 2.08

Table 4.1: Speedup comparison of Benchmarks

Table 4.1 shows a comparison of the overall speedups for the ten benchmarks after

a set amount of extra processors added. The numbers in the table are obtained after

exactly twelve fissings total beyond the base case. While numbers for greater fissings

were available for some benchmarks, we were limited by the Raw simulator's inability

to run a few benchni-arks yPast tei. For instance, for the pipeline benchmarks, one

fissing was always devoted to being allocated to the splitter module when one of the

base filters were fissed. Consequently, limiting all the comparisons to ten fissings

provides the most uniform view of our results. An exception is for the Round Robin

benchmarks, which lacked simulation data for more than eight fisses beyond the base

case.

54

Raw
2.96
1.56
1.64
1.35
3.47
4.03
1.43
1.58
1.35
1.87

5

3.5

3
C2.5

2

1.5

0.5-

CompBalanced Compimbalanced CommBalanced Commimbalanced

[0 Basic Metric vs. MagNet N Basic Metric vs. Raw

Figure 4-8: Synchronization metric accuracy vs. Magic Network and Raw simulations

for pipelines

E

(5V

b

bRt~

I Basic Metric vs. MagNet 0Basic Metric vs. Raw

Figure 4-9: Synchronization metric accuracy vs. Magic Network and Raw simulations
for splitjoins

55

5

2

The results from figures 4-8 and 4-9 serve to echo the analysis of the graphs

previously displayed in the chapter. The basic metric most accurately reflects the

predicted speedups for cases with low communication rates , but in general does not

do well on the high communication cost benchmarks, especially when compared to

Raw. This is not surprising, since the simple nature of our initial model does not

capture all of the complexity inherent in building an accurate communication cost

model.

Our basic cost metric, while promising, leaves much room to be desired, partic-

ularly for the benchmarks containing large amounts of communication overhead. A

new metric needs to be introduced, that includes other overhead costs.

56

Chapter 5

Synchronization Cost Metric

The second metric that we developed attempts to implement a communication cost

metric that is more accurate than that of the Basic metric, in which a simple constant

communication overhead was assumed based on the overall communication rates of

the individual filters. We observed that there remained room for improvement on

the accurate predictive ability of the basic metric towards communication dominated

streams, in particular those containing Splitjoins. To that end, the following metric

models a filter's communication cost as it is related to its synchronization cost when

the filter is fissed.

5.1 The Model

We first define a quantity ki that represents the cost related to receiving data of a

particular filter when it is fissed i ways. This constant is determined as a direct

function of a filter's pop rate:

ki = b * popratei

where b is a constant (set to be three for our tests), and popratei is simply the fissed

filter's respective pop rate. It is interesting to note that in the steady state, this

constant is actually a decreasing quantity. This is because in the steady state, the

57

pop rate of any individual fissed filter stays constant even with increasing i. Although

a filter's pop rate increases per-invocation with i, the number of outputs of the entire

stream graph also increases with i, the two effects cancelling each other out.

The crux of the synchronization cost model involves understanding the effects of

increasing fissing to a filter's communication overhead. When a filter is first fissed

into two filters to reduce the steady state computation cost, that filter in the stream

is replaced by a splitter, two parallel fissed filters, and a joiner, in that order. (See

Figure 2-6) When these filters are fissed N ways using a roundrobin splitter, each one

of them has to wait a total of k(N - 1) cycles per invocation to receive its input from

the preceding filter (and the following splitter module). This is because the sending

filter can only send data to one filter at a time. As N increases, the number of outputs

in the entire stream per invocation also increases. Consequently, in the steady state,

the relative number of outputs per filter scales as 1. The overall synchronization

cost is thus the product of these two q'uantities, in order to get the units of cycles per

output:

N

The cost si is known as the synchronization cost that is seen by a given filter, and

aims to take communication density into account. This is an additive quantity to

the overall cost equation introduced in the previous chapter. The two are added to

produce the new overall cost, with i as a parameter:

ci = si + pi

where pi is the overall cost of the bottleneck filter when fissed i ways from the Basic

metric. What makes this metric fundamentally different from the Basic metric is

that it effectively contributes an additional communication cost si, to better model

the considerable overhead that is present in communication heavy streams.

We emphasize that this model is only valid for fissing that is done using round

robin splitters. For duplicate splitters, this delay element does not exist, and is not a

58

factor in the communication cost of filters. Also, it is important to note that the Raw

and Magic Net simulation results used duplicate splitting, not round robin splitting.

The synchronization metric is different from the basic metric in its inclusion of

this synchronization cost. It operates on the original graph, and predicts performance

for an implementation using either duplicate or roundrobin splitting. The metric is

applicable to roundrobin splitjoins as well, and it is this metric's ability to distinguish

the effects of round robin splitting that separates it from the basic metric. The

results we evaluated the metric against in Raw and the Magic network use duplicate

splitting because that is the current implementation of the StreamIt compiler on

Raw. However, Appendix C contains graphs using simulated round robin splitting,

and they are generally comparable.

5.2 Results and Analysis

Figures 5-1 and 5-2 show the graphical results of applying the synchronizatiin coi.

metric to the four pipeline benchmarks, compared to both the Raw simulator and the

Magic network simulator. The trendline for the Basic metric is also included in these

graphs.

Not surprisingly, the Sync metric trendline overlaps exactly with that of the Basic

metric for both graphs of Figure 5-1. With almost no communication cost existing

in these benchmark streams (See Figure 4-1), any metric that has a communication

cost proportional to a filter's communication rate would not change these trendlines.

The Sync metric trendlines in Figure 5-2, however, show a significant improve-

ment. The added synchronization cost is responsible for the general upward shift in

the metric trendline. This is because the decreasing overall cost as calculated from the

basic metric is being partially offset by the synchronization cost, and thus results in an

overall slower speedup factor. The overall shape of the trendline is preserved, which

is also not surprising considering the synchronization cost is simply added to the cost

calculated by the Basic metric. In particular, the sync metric trendline of Figure 5-2

matches that of the Magic network almost exactly for the sample datapoints.

59

Computation Heavy, Balanced Pipeline

0 5 10 15 20 25

Extra Processors

Basic Metric, NormFactor 5026 -4-Sync Metric, NormFactor 5026
-II- MagNet, NormFactor 6054 Raw, NormFactor 6054

Computation Heavy, Imbalanced Pipeline

5 10 15 20
Extra Processors

Basic Metric, NormFactor 5026 --- Sync Metric, NormFactor 5026
-I- MagNet, NormFactor 6054 Raw, NormFactor 6054

25

Figure 5-1: Graphical comparison of Synchronization Metric to Raw simulator for
Computation Heavy Pipelines

60

1.2

0.8

0.6

0.4

0.2

0

Communication Heavy, Balanced Pipeline

1.2

S0.8
0

'a 0.6

1

0.4

0.2

10 15 20

Extra Processors

+ Basic Metric, NormFactor 3410 --- Sync Metric, NormFactor 3410
-u-MagNet, NormFactor 4082 Raw, NormFactor 4082

Communication Heavy, Imbalanced Pipeline

15 20

Extra Processors

-- Basic Metric, NormFactor 4410 +-Sync Metric, NormFactor 4410
--- MagNet, NormFactor 5282 Raw, NormFactor 5282

Figure 5-2: Graphical comparison of Synchronization Metric to Raw simulator for
Communication Heavy Pipelines

61

25

1.2

1

0.6

E 0.4

0.2

0
251ID

The Sync metric trendlines for splitjoins, as seen in Figures 5-3 , 5-4 and 5-5

show improvement similar to that which was observed in the pipeline benchmarks. In

Figure 5-3, the sync metric trendline is again identical to the Basic metric trendline.

The primary shortcoming of the Basic metric was in the communication heavy

splitjoins, and in this respect, the Sync metric performs marginally better. While

the metric's trendline on the top graph of Figure 5-4 for small numbers of extra

processors (1-5) is far from accurate with respect to the Magic network and Raw

trendlines, it is slightly better in that its asymptotic speedup is lower than that of

the Basic metric. The Sync metric performs even better on the imbalanced splitjoin

benchmark, providing an accurate trendline for small numbers of extra processors as

well. A similar case can be made to analyze the roundrobin graphs in Figure 5-5,
though the trendline is still far from accurate.

62

Computation Heavy, Balanced Splitjoin

1.2

1

0.8

0.6

i 0.4

0.2

0
10 15 20 25

Extra Procewsors

Basic Metric, NormFactor 2504 -+- Sync Metric, NormFactor 2522
-*- MagNet, NormFactor 6026 Raw, NormFactor 6026

Computation Heavy, Imbalanced Splitjoin

1'

*0

a \ 2~AA

0.4 -

0 510 is 20 25

Extra Processors

- - asic Metric, NormFactor 2510 ----- Sync Metric, NormFactor 1685 --- MagNet, NormFactor 3020 '- Raw NormFactor 3020

Figure 5-3: Graphical comparison of Synchronization Metric to Raw simulator for
Computation Heavy splitjoins

63

Communication Heavy, Balanced Splitjoin

10 15
Extra Processors

20

Basic Metric, NormFactor 3025 -4- Metric, NormFactor 3025

4--MagNet, NormFactor 1752 Raw, NormFactor 2265.5

Communication Heavy, Imbalanced Splitjoin

0 5 10 15 20 25 30
Extra Processors

-M Basic Metric, NormFactor 3325 -+- Metric, NormFactor 3325
-*-- MagNet, NormFactor 2443.5 Raw, NormFactor 3118.5

Figure 5-4: Graphical comparison of Synchronization Metric to Raw simulator for
Communication Heavy splitjoins

64

1.2

1

t 0.8

a 0.8

0.4

z

0.2

0
25 30

RoundRobin, Balanced Splitjoin

1

0.

02
0

0.2 0

10 15

Extra Processors

20

Basic Metric, NormFactor 4294 -- Metric, NormFactor 4294 --- Raw, NormFactor 3290

RoundRobin. Imbalanced Splitjoin

10 15

Extra Processors

20

- Basic Metric, NormFactor 4294 -+- Metric, NormFactor 4294
--- MagNet, NormFactor 2846 --- Raw, NormFactor 4641

Figure 5-5: Graphical comparison of Synchronization Metric to Raw simulator for
Round Robin splitjoins

65

25

1.2

1

0.8

0.6

0.4

0.2

0
25 30

30

2.5

2

i

1

0.5

CompBalanced Compimbalanced CommBalanced Commimbalanced

*Sync Metric vs. Magic Net USync Metric vs. Raw

Figure 5-6: Synchronization metric accuracy vs. Magic Network and Raw simulations
for pipelines

3.5-

3-

* 2-

1.5

0.5-

Or
n sy iL0'

IOSYnc Metric vs. Magic Net USyntMrivsRa

Figure 5-7: Synchronization metric accuracy vs. Magic Network and Raw simulations
for splitjoins

As can be seen in figure 5-6, the Sync metric is more accurate than the Basic metric

in nearly pipeline benchmark, sometimes by a factor of two or three. The percentage

accuracy with respect to the Magic network in the computation heavy benchmarks is

66

3

preserved, but there is a drastic difference in the communication heavy benchmarks.

Where the Basic metric was off by about 100%, the Sync metric now matches Magic

Network almost exactly, with little room for improvement. There remains a high

percentage difference from the Raw simulator, due to overhead issues described in

the first chapter.

Figure 5-7 highlights the improved accuracy of the Synchronization metric with

respect to splitjoins. The percentage correlation for the communication dominated

splitjoins remain low, but are an improvement over the Basic metric. It is also note-

worthy that the metric matches the Round Robin balanced benchmark on Magic Net

almost exactly, a vast improvement from the Basic metric for this particular stream.

The improved overall performance of the Synchronization metric indicates that it

is be a better overall metric for predicting real performance, in particular for pipelines,

in which it predicts Magic network performance almost exactly. It still does not seem

to go far enough for splitjoins, but the metric has shown itself to be a fairly accurate

predictor.

67

68

Chapter 6

Conclusion

This thesis aims to introduce two models by which stream programs can be measured

for their overall scalability. It does this in two phases: First, the introduction of a

metric, and a brief derivation as to its numerical formulation. The second phase is

analyzing the performance of the metric on a test suite, comparing it to two other

networks to demonstrate its accuracy.

6.1 Results Summary

6.1.1 Metric Validation

In this thesis, we analyze two models of scalability, the Basic metric and the Sync

metric. Figure 6-1 shows the accuracy with which the two metrics predict pipeline

speedup, with respect to the Magic network. It is not surprising to note that for

the computation heavy cases, both metrics match the Magic network almost exactly,

since communication cost is negligible in these cases. Since communication cost is

known to be responsible for the majority of the cost overhead in fissing, the speedup

due to computation cost is relatively simple to calculate.

However, the advantage of including synchronization overhead is visible in Fig-

ure 6-1. Here, the sync metric is far more accurate in predicting the projected speedup

using the Magic network, giving credence to the presence of considerable synchroniza-

69

tion overhead in communication dominant stream programs.

Figure 6-2 exhibits a similar trend, though both metrics are generally less accurate

with respect to Raw. This is due to a number of factors, among them the presence

of finite size buffers in the communication channel for each tile.

2.5-

2-

1.5

C

CompBalanced Compimbalanced CommBalanced CommImbalanced

1Basic Metric ESync Metric I

Figure 6-1: Metric Comparison of Pipelines with Respect to Magic Network

CampBalanced Complmbalanced CommBalanced Commlmbalanced

* Basic Metric U Sync Metric

Figure 6-2: Metric Comparison of Pipelines with Respect to Raw

70

Figures 6-3 and 6-4 show similar accuracy results to those of the pipeline results,

though both metrics are generally less accurate at predicting performance for these

structures. We were unable to obtain Magic network comparison for the balanced

round robin benchmark due to simulator errors. Part of the potential error can be

attributed to issues related to normalization, as we were unable to normalize the

speedups to the base case for splitjoins. This was because the number of tiles in the

base case (five) for splitjoins could not be generated with the current state of the Raw

and Magic network simulators. The general trend of the sync metric outperforming

the basic metric is still clearly visible in Figures 6-3 and 6-4, indicating that the

synchronization overhead is present regardless of the stream layout.

In general, our metrics are less predictively accurate for streams with imbalanced

filters versus streams with balanced ones. This indicates that there is perhaps either

something inherent in the stream graph itself, or within the compiler that introduces

additional overhead when fissing one filter much more than the other. As we were

unable to determine the exact cause, exploring this would be a potential improvement

for future work.

.2

I

UBasic Metrlc E Sync Metric

Figure 6-3: Metric Comparison of Splitjoins with Respect to Magic Network

71

7

6

5

4

6 6
5<5 5 '9

6' 0~
'9 '9 '9 '9

C, '9
C~ ~ 6

$
5-

OBasic Metric ES nc Metric

Figure 6-4: Metric Comparison of Splitjoins with Respect to Raw

72

0

r

6.1.2 Scalability Analysis

Since we have shown that the sync metric is accurate to a high degree in predicting

the scalability of stream programs for small scale processors, we now extrapolate the

potential speedups of our benchmarks for larger amounts of processors. Table 6.1

shows the results when the sync metric simulates filter fissing to 24 extra processors.

Stream Type Characteristic Speedup
Pipeline CompBalanced
Pipeline CompImbalanced 11.70
Pipeline CommBalanced 17.39
Pipeline CommImbalanced 5.11
Splitjoin CompBalanced 7.01
Splitjoin CompImbalanced 5.87
Splitjoin CommBalanced 4.70
Splitjoin CommImbalanced 5.83
Splitjoin RoundRobinBalanced 4.98
Splitjoin RoundRobinImbalanced 5.79

Table 6.1: Projected Benchmark'Speedup with Synchronization Metic

As can be seen in Table 6.1, while all ten benchmarks benefit considerably from

scaling to a large number of processors, we can draw key distinctions from the dis-

parities in speedups. It is not surprising to see that the computation dominated

benchmarks in general experience a much larger speedup than that of the communi-

cation ones. As described in the Basic metric, the computation cost of a filter decrease

geometrically as the number of processors fissing it increases. We also showed in our

derivation of the Synchronization metric that the communication cost does not expe-

rience this decrease; rather, the cost actually increases for sufficiently large numbers

of processors due to the synchronization overhead, if roundrobin splitters are used for

the fission process.

It is also interesting to note that splitjoins in general experience a lesser speedup

than pipelines, buy a relatively large margin. While our metric did not specifically

draw a distinction between filters being placed in a pipeline versus being placed

in a splitjoin, it is quite conceivable that added complexity in a splitjoin structure

contributes to an increased cost overhead for all filters. For instance, the metrics

73

do not take into account the extra splitter and joiner modules present in splitjoins

versus pipelines. Another source of error was that due to simulator limitations, we

were unable to normalize splitjoin speedups to the base case of one filter per tile.

Instead, we had to normalize and compare based on a base case of n + 1 tiles to n

computation units. In the case of splitjoins, these computation units consist of the

filters and the joiner module. However, despite these sources of error, the metric still

predicts on average a five-fold speedup on all splitjoin streams.

6.2 Current State

This thesis is novel in that it proposes mi etris for modeling the scalability of stream

programs in specific, and compares the metrics to existing real-life networks. Other

studies have explored the field of data parallelization in general, but none have applied

directly to the streaming application domain, nor tested their findings on stream

programs. Because of this, there was very little material for the thesis to build on;

consequently, the state of these models are effectively still in their infancy.

The Sync metric in particular showed considerable promise in accurately modeling

the bottleneck cost of pipeline streams, though it only takes into account a single

possible source of overhead, the synchronization cost. The datapoints used to test

it from Raw and Magic network were also somewhat lacking, due to the fact that

the StreamIt compiler and Raw tools are still in a developmental phase. As a result,

more tests are sorely needed in order to validate the metric.

There are a plethora of other potential costs that would strengthen this metric

even more, in particular costs that are more specific to splitjoin constructs. However,

we have demonstrated that this model is highly applicable to stream programs that

are acyclic and stateless.

74

6.3 Future Work

As the streaming application domain has yet to be explored to a large degree, there

are numerous things that can be done to further the contributions introduced in this

thesis.

From a testing perspective, a benchmark suite with more complex stream pro-

grams would be more helpful in validating the metrics espoused in this thesis. We

were unable to do this due to shortcomings in our current compiler and simulation

infrastructure, but it is highly conceivable that these will be remedied in the future,

and further testing can be done.

The system that the metrics were compared against, the Raw machine, is a grid-

based VLSI architecture. The models should ideally be architecture-independent, as

they were conceived and derived without regard to any particular architecture. It

would be extremely helpful to run tests on other systems, such as a cluster-based

architecture.

A limitation of the metrics introduced in this thesis was that they made certain

assumptions about compiler behavior on how data parallelization was implemented at

a low level. We did this due to our knowledge of the StreamIt to Raw compiler, and

have demonstrated with some accuracy that we can indeed model acyclic stateless

programs in this manner. However, there exist many other compiler implementations

that have vastly differing characteristics, from their cost models to their partitioning

and scheduling algorithms. It would be useful to both test our metrics on other

compilers, and extend the metrics we introduced in order to be applicable to these,

as well.

Lastly, extending the metrics to incorporate other characteristics of the streaming

application domain would vastly increase their applicability to real world programs.

For instance, adding support for cyclic programs with feedback loops would greatly

increase its usefulness, as most complex DSP algorithms have these structures.

75

76

Appendix A

Metric Implementation File

A.1 ParallelizationGathering.java

package at.dms.kjc.sir.stats;

import at.dms.kjc.*,

import at.dms.kjc.flatgraph.*;

import at.dms.kjc.iterator.*;

import at.dms.kjc.sir.*;

import at.dms.kjc.sir.lowering.partition.*;

import at.dms.kjc.sir.lowering.fission.*;

import at.dms.kjc.sir.lowering.fusion.*;

import at.dms.kjc.raw.*;

import java.util.*;

import java.io.*;

* This class gathers statistics about the parallelization potential

* of stream programs. It overrides the VisitFilter, PostVisitPipeline,

* and PostVisitSplitJoin methods (extends EmptyStreamVisitor)

* 11/12/03, v1.00 jnwong

* v.1.10:

* Added communication cost parallelization, refined nocost

* option such that it only halves filters along the critical path.

public class ParallelizationGathering {

77

public ParallelizationGathering() {

}

//procedure that's called by Flattener.java

public static void doit(SIRStream str, int processors) {

new ParallelWorko).doit(str, processors);

}

static class MutableInt {

static int mutint;

}

static class ParallelWork extends SLIREmptyVisitor{

//Toggles for type of synchronization I want to do

static boolean commcost;

static boolean syncremoval;

** Mapping from streams to work estimates. **/

static HashMap filterWorkEstimates;

static HashMap filterCommunicationCosts;

static HashMap filterTimesFizzed;

static Vector statelessFilters;

static MutableInt numFilters;

static SIRFilter lastFizzedFilter;

static int[] computationCosts;

static int[] communicationCosts;

static Vector bottleneckFilters;

//additions for syncremoval support:

static HashMap fizzedFiltersToOriginal;

static SIRStream originalStream;

static HashMap origToNewGraph;

static HashMap newToOrigGraph;

static boolean printgraphs;

static boolean synccost;

public ParallelWork() {

filterWorkEstimates = new HashMap();

filterTimesFizzed = new HashMapo;

filterCommunicationCosts = new HashMapo;

statelessFilters = new Vectoro);

numFilters = new MutableInto;

lastFizzedFilter = null;

78

bottleneckFilters = new Vectoro;

fizzedFiltersToOriginal = new HashMapo);

originalStream = null;

origToNewGraph = null;

newToOrigGraph = null;

printgraphs = false;

commcost = true;

synccost = true;

syncremoval = false;

}

public static void doit(SIRStream str, int numprocessors)

{

originalStream = str;

computationCosts = new int[numprocessors];

communicationCosts = new int[numprocessors];

if(syncremoval)

{

//StatelessDuplicate.USE-ROUNDROBINSPLITTER = true;

}

else

{

//StatelessDuplicate.USEROUNDROBIN-SPLITTER = false;

}

if(commcost) {

SIRStream copiedStr = (SIRStream) ObjectDeepCloner.deepCopy(str);

GraphFlattener initFlatGraph = new GraphFlattener(copiedStr);

HashMap[] initExecutionCounts = RawBackend. returnExecutionCounts (copiedStr, initFlatGraph);

origToNewGraph = new HashMap();

newToOrigGraph = new HashMapo;

WorkEstimate initWork = WorkEstimate.getWorkEstimate(copiedStr);

createFilterMappings(origToNewGraph, newToOrigGraph, str, copiedStr); //sync thing!

IterFactory.createFactoryo.createIter(str) .accept(new BasicVisitor(filterTimesFizzed));

IterFactory.createFactory().createIter(copiedStr) .accept

(new ParallelVisitor(initFlatGraph, initWork, newToOrigGraph, fizzedFiltersToOriginal,

filterWorkEstimates, filterCommunicationCosts, filterTimesFizzed,

initExecutionCounts, numFilters));

SIRFilter initHighestFilter = getHighestWorkFilterSync(i);

for(int i = 2; i < numprocessors + 1; i++)

{

79

//sync implementation

filterWorkEstimates = new HashMapo;

filterCommunicationCosts = new HashMapo;

statelessFilters = new Vector();

GraphFlattener flatGraph = new GraphFlattener(copiedStr);

if(syncremoval){

Lifter.lift(copiedStr);

}

//do sync removal if syncremoval is true

//get number of prints, so I can divide everything by it to get

//executions per steady state

String outputDot = new String("at-fizz-" + i + ".dot");

StreamItDot.printGraph(copiedStr, outputDot);

HashMap[] filterExecutionCosts = RawBackend. returnExecutionCounts (copiedStr, flatGraph);

WorkEstimate work = WorkEstimate.getWorkEstimate(copiedStr);

IterFactory.createFactoryo).createIter(copiedStr).accept

(new ParallelSyncVisitor(flatGraph, work, filterExecutionCosts,

filterWorkEstimates, filterCommunicationCosts,

fizzedFiltersToOriginal, filterTimesFizzed,

newToOrigGraph, synccost));

copiedStr = (SIRStream) ObjectDeepCloner.deepCopy(originalStream);

parallelizesync(copiedStr, i);

generateOutputFiles();

}//if(commcost)

else

{

WorkEstimate initWork = WorkEstimate.getWorkEstimate(str);

GraphFlattener initFlatGraph = new GraphFlattener(str);

HashMap[1 initExecutionCounts = RawBackend.returnExecutionCounts (str, initFlatGraph);

IterFactory.createFactoryo).createIter(str).accept

(new NoSyncVisitor(initWork, filterWorkEstimates,

filterCommunicationCosts, filterTimesFizzed,

initExecutionCounts, initFlatGraph, numFilters));

report(1);

for(int i = 2; i < numprocessors + 1; i++)

{

parallelize(;

report(i);

}

generateOutputFiles(;

}//endif(commcost)

80

}

/** parallelizesync(copiedStr):

* Similar to parallelize, but it does not use greedy approach, calculates everything straight

* from originalStream. Also increments part of HashMap filterTimesFizzed, depending on what it fizzed.

* returns the new parallelized stream in copiedStr.

public static void parallelizesync(SIRStream copiedStr, int numprocessors)

{

SIRFilter nextFizzedFilter = getHighestWorkFilterSync(numprocessors); //returns real original filter, reports

int oldfizzfactor = ((Integer)filterTimesFizzed. get (nextFizzedFilter)). intValueO;

filterTimesFizzed.put(nextFizzedFilter, new Integer(oldfizzfactor + 1));

Iterator filtersToFizz = filterTimesFizzed.keySetO.iteratoro);

//do the mappings!

origToNewGraph. clearo;

newToOrigGraph.clear();

createFilterMappings(origToNewGraph, newToOrigGraph, originalStream, copiedStr);

while(filtersToFizz.hasNext())

{

SIRFilter currentFilter = (SIRFilter)filtersToFizz.next();

int timestofizz = ((Integer)filterTimesFizzed.get(currentFilter)).intValue(;

if(timestofizz > 1)

{

SIRFilter fizzingFilter = (SIRFilter)origToNewGraph.get(currentFilter);

if (StatelessDuplicate. isFissable(fizzingFilter))

{

SIRSplitJoin newFilters = StatelessDuplicate.doit(fizzingFilter, timestofizz);

//populate fizzedFiltersToOriginal HashMap

for(int i = 0; i < newFilters.getParallelStreamso).size(; i++)

{

SIRFilter splitFilter = (SIRFilter) newFilters.get(i);

fizzedFiltersToOriginal.put(splitFilter, currentFilter);

}

}

}

}

}//void parallelizesync

/** getHighestWorkFilterSync:

81

* Returns the *ORIGINAL* filter in the input stream with the highest overall cost (comp plus comm.),

* also populates computationCosts, communicationCosts[] for reporting

public static SIRFilter getHighestWorkFilterSync(int numprocessors)

{

SIRFilter maxFilter = null;

int maxwork = Integer.MINVALUE;

Iterator sirFilters = filterWorkEstimates.keySet().iteratoro);

int maxcomm = 0;

int maxcomp = 0;

while(sirFilters.hasNexto)

{

SIRFilter currentFilter = (SIRFilter)sirFilters.next();

int currentcompcost = ((Integer)filterWorkEstimates.get(currentFilter)).intValue();

int currentcomcost = ((Integer)filterCommunicationCosts.get(currentFilter)) .intValue();

int currentwork = currentcompcost + currentcomcost;

if(currentwork >= maxwork)

{

maxFilter = currentFilter;

maxwork = currentwork;

maxcomm = currentconcost;

maxcomp = currentcompcost;

}

}

computationCosts[numprocessors - 1] = maxcomp;

communicationCosts[numprocessors - 1] = maxcomm;

bottleneckFilters.add(maxFilter.toStringo);

SIRFilter realMaxFilter = null;

if(fizzedFiltersToOriginal.containsKey(maxFilter))

realMaxFilter = (SIRFilter)fizzedFiltersToOriginal.get(maxFilter);

else

realMaxFilter = (SIRFilter)newToOrigGraph.get(maxFilter);

return realMaxFilter;

}//SIRFilter getHighestWorkFilterSync

I** createFilterMappings:

* produces a mapping of filters from the original stream to the new stream and vice versa,
* and stores these in two HashMaps.

82

public static void createFilterMappings(HashMap origToNew, HashMap newToOrig, SIRStream origStream, SIRStream newStream)

{

if(origStream instanceof SIRFilter)

{

newToOrig.put(newStream, origStream);

origToNew.put(origStream, newStream);

}

if(origStream instanceof SIRContainer)

{

SIRContainer origContainer = (SIRContainer)origStream;

for(int i=O; i < origContainer.sizeo; i++)

{

createFilterMappings(origToNew, newToOrig, origContainer. get i), ((SIRContainer)newStream).get i));

}

}

}//createFilterMappings

/** generateOutputFiles():

* prints to various output files the results of the parallel modelling experiments.

*

public static void generateOutputFilesC)

{

try

{

File compSyncFile = new File("compsync.txt");

File commSyncFile = new File("commsync.txt");

File totalSyncFile = new File("totalsync.txt");

File filterFile = new File("bfilters.txt");

File costsFile = new File("costs.txt");

FileWriter compSync = new FileWriter(compSyncFile);

FileWriter commSync = new FileWriter(commSyncFile);

FileWriter totalSync = new FileWriter(totalSyncFile);

FileWriter filter = new FileWriter(filterFile);

FileWriter costsSync = new FileWriter(costsFile);

costsSync.write("Processors; Computation Cost; Communication Cost; Overall Cost; \n");

for(int i = 0; i < computationCosts.length; i++)

{

Integer compCost = new Integer(computationCosts[i]);

Integer commCost = new Integer(communicationCosts[i]);

int totalcost = compCost.intValue() + commCost.intValueC);

83

Integer totalCost = new Integer(totalcost);

compSync.write(compCost.toStringo));

compSync.write(";");

commSync.write(commCost.toString());

commSync.writeC";");

totalSync.write(totalCost.toString());

totalSync.writeC";");

filter.write((String)bottleneckFilters.get(i));

filter.write(";");

//costsFile writing

Integer currentProcessor = new Integer(i+);

costsSync.write(currentProcessor.toString();

String costLine = new String(";" + compCost.toString() + ";" +

commCost.toStringo) + ";" +

totalCost.toString() + "; \n");

costsSync.write(costLine);

}

costsSync.close();

totalSync.close);

filter.closeC);

compSync.closeC);

commSync.closeC);

}

catch(IOException e)

{

System.err.println("File Output Error with message " + e.getMessageC));

}

}//generateOutputFiles()

/* reportC):

* Print to int[]computationCosts and int[communicationCosts

* both the communication and the computation costs of the bottleneck filter, takes current number of processors as

public static void report(int currentprocessors)

{

SIRFilter maxFilter = getHighestWorkFilter();

int maxwork = ((Integer)filterWorkEstimates.get(maxFilter)).intValueC);

int commcost = ((Integer)filterCommunicationCosts.get(maxFilter)).intValue();

84

computationcosts[currentprocessors - 1] = maxwork;

communicationCosts[currentprocessors - 1] = commcost;

bottleneckFilters. add(maxFilter.toString());

}

/* parallelizeo);

* takes the highest work stateless filter on the critical path, cuts it in half, putting

* new work into filterWorkEstimates (replacing the old mapping)

*/~

public static void parallelizeO)

{

SIRFilter maxFilter = getOptimalFizzFiltero);

if (StatelessDuplicate. isFissable (maxFilter))

{

int oldfizzfactor = ((Integer)filterTimesFizzed.get(maxFilter)) .intValue(;

Integer maxWork = (Integer)filterWorkEstimates. get (maxFilter);

int mwork = maxWork.intValueo;

int totalwork = mwork * oldfizzfactor;

int newwork = totalwork / (oldfizzfactor + I); //simulate the fizzing

filterTimesFizzed.put(maxFilter, new Integer(oldfizzfactor + 1));

filterWorkEstimates.put (maxFilter, new Integer(newwork));

}

//else

}//void parallelizeO)

/** getHighestWorkFilter

* Returns the filter with the highest overall work

* (computation + communication cost)

public static SIRFilter getHighestWorkFilterO

{

SIRFilter maxFilter = null;

int maxwork = Integer.MINVALUE;

Iterator sirFilters = filterWorkEstimates.keySetO.iteratoro;

while(sirFilters.hasNext()

{

SIRFilter currentFilter = (SIRFilter)sirFilters.next();

int currentcompcost = ((Integer)filterWorkEstimates. get (currentFilter)) . intValueO;

int currentcomcost = ((Integer)filterCommunicationCosts.get(currentFilter)). intValue();

int currentwork = currentcompcost + currentcomcost;

85

if(currentwork >= maxwork)

{

maxFilter = currentFilter;

maxwork = currentwork;

}

}

return maxFilter;

}//getHighestWorkFilter

/**

*

getOptimalFizzFilter: Returns the filter that would most

benefit from being fizzed, using filterWorkEstimates()

and filterTimesFizzedo.

public static SIRFilter getOptimalFizzFilter()

int worksavings = Integer.MINVALUE;

SIRFilter optFilter = null;

Iterator sirFilters = filterWorkEstimates.keySet().iterator(;

while(sirFilters.hasNext()

{

SIRFilter currentFilter = (SIRFilter)sirFilters.next(;

Integer currentWork = (Integer)filterWorkEstimates. get (currentFilter);

int work = currentWork.intValue();

int fizzfactor ((Integer)filterTimesFizzed.get(currentFilter)).intValue();

int totalwork = work * fizzfactor;

int nwork = totalwork / (fizzfactor + 1);

int currentsavings = work - nwork;

if(currentsavings >= worksavings)

{

worksavings = currentsavings;

optFilter = currentFilter;

}

}

return optFilter;

} //getOptimalFizzFilter(

86

I** getOptimalCommFizzFilter: Similar to getcptimalFilter,

* but incorporates fan-in/fan-out cost k-(k/N), where

* k is constant.

*/

public static SIRFilter getOptimalCommFizzFilter()

{

int fancost = 10;

int worksavings = Integer.MINVALUE;

SIRFilter optFilter = null;

Iterator sirFilters = filterWorkEstimates.keySet().iteratoro);

while(sirFilters.hasNext()

{

SIRFilter currentFilter = (SIRFilter)sirFilters.next();

Integer currentWork = (Integer) filterWorkEstimates. get (currentFilter);

int work = currentWork.intValue();

int fizzfactor = ((Integer)filterTimesFizzed.get(currentFilter)) . intValue(;

int totalwork = work * fizzfactor;

int cfanwork = fancost - (fancost/fizzfactor);

int nwork = totalwork / (fizzfactor + 1);

int nfanwork = fancost - (fancost/(fizzfactor + 1));

int currentsavings = cfanwork + work - (nwork + nfanwork);

if(currentsavings >= worksavings)

{

worksavings = currentsavings;

optFilter = currentFilter;

//System.err.println("blah with worksavings " + currentsavings);

}

//System.err.println("Saving " + worksavings);

return optFilter;

}//getOptimalCommFizzFilter

I

//Static class ParallelWork

static class ParallelVisitor extends EmptyStreamVisitor {

87

/** Mapping from streams to work estimates. **/

static HashMap newToOrigGraph;

static HashMap fizzedFiltersToOriginal;

static HashMap filterWorkEstimates;

static HashMap filterTimesFizzed;

static HashMap filterCommunicationCosts;

static MutableInt numFilters;

static int currentfilters;

static WorkEstimate work;

static HashMap[] executionCounts;

static GraphFlattener flatGraph;

//static int printsperexec;

public ParallelVisitor

(GraphFlattener graph, WorkEstimate wrk, HashMap newormap, HashMap filtermapping,

HashMap filters, HashMap comcosts, HashMap timesfizzed, HashMap[] execcounts, MutableInt num)

{

flatGraph = graph;

work = wrk;

newToOrigGraph = newormap;

fizzedFiltersToOriginal = filtermapping;

filterTimesFizzed = timesfizzed;

filterWorkEstimates = filters;

filterCommunicationCosts = comcosts;

numFilters = num;

currentfilters = 0;

executionCounts = execcounts;

//printsperexec = 0;

}

//Visitor Methods:

/** visitFilter:

* Gets the work estimate of the filter, and stores it in

* filterWorkEstimates. If the filter is stateless, put in statelessFilters vector

* also populates the communication cost hashmap, based on pushing, popping, and peeking

public void visitFilter(SIRFilter self, SIRFilterIter iter) {

int costperitem = 3; //can be varied to see how it affects things!

NumberGathering execNumbers = new NumberGatheringo;

execNumbers.getPrintsPerSteady(flatGraph.getFlatNode(self), executionCounts);

int printsperexec = execNumbers.printsPerSteady;

int workestimate = work.getWork(self);

int numreps = work.getReps(self);

88

boolean nostate = StatelessDuplicate.isStateless(self);

if(printsperexec > 0)

filterWorkEstimates.put(self, new Integer(workestimate /printsperexec));

else

filterWorkEstimates.put(self, new Integer(workestimate));

fizzedFiltersToOriginal.put(self, (SIRFilter)newToOrigGraph.get(self));

s

int numpop = self.getPopInto;

int numpush = self.getPushInto;

int numpeek = self.getPeekInto;

int initcost = costperitem * (numpop + numpush + numpeek) * numreps;

if (printsperexec > 0)

initcost = initcost / printsperexec;

filterCommunicationCosts.put(self, new Integer(initcost));

//end addition for constant communication cost

numFilters.mutint = numFilters.mutint + 1;

return;

I

*

*

*

*

postVisitPipeline

Requires that all the children have already been visited, and their

estimated work calculations already be in streamsToWorkEstimates or filterWorkEstimates

(Hence, this being postVisit, and not preVisit). Since it is just a pipeline,

function just sums up all the work of its children.

* Also puts the work of the pipeline in

*/

streamsToWorkEstimates.

public void postVisitPipeline(SIRPipeline self, SIRPipelineIter iter)

{

return;

}

/** postVisitSplitJoin

*

*

*

*

Requires that all the children have already been visited, and their

estimated work calculations already be in either streamsToWorkEstimates

or filterWorkEstimates.

Since it is a splitjoin, it will take the maximum of the work

89

* of its children (bottleneck path)

public void postVisitSplitJoin(SIRSplitJoin self, SIRSplitJoinIter iter)

{

return;

}

}//class ParallelVisitor

/** ParallelSyncVisitor

* Similar to ParallelVisitor, except it populates FilterCommunicationCosts with the synchronization

* costs dynamically.

*/

static class ParallelSyncVisitor extends EmptyStreamVisitor {

static HashMap filterWorkEstimates;.

static HashMap filterCommunicationCosts

static HashMapE] executionCounts;

static GraphFlattener flatGraph;

//static int printsperexec;

static WorkEstimate work;

//static Vector splittersVisited;

static HashMap filterTimesFizzed;

static HashMap fizzedFiltersToOriginal;

static HashMap newToOrigGraph;

boolean synccost;

public ParallelSyncVisitor(GraphFlattener flat, WorkEstimate wrk,

HashMap[] execcounts, HashMap workcosts, HashMap comcosts,

HashMap fizzedtooriginal, HashMap timesfizzed,

HashMap tooriggraph, boolean scost)

{

executionCounts = execcounts;

flatGraph = flat;

filterWorkEstimates = workcosts;

filterCommunicationCosts = comcosts;

filterTimesFizzed = timesfizzed;

fizzedFiltersToOriginal = fizzedtooriginal;

newToOrigGraph = tooriggraph;

work = wrk;

90

synccost = scost;

}

//Visitor Methods:

/** visitFilter:

* Gets the workEstimate of the filter, and stores it in filterWorkEstimates. Also

* populates initial communication costs

*/

public void visitFilter(SIRFilter self, SIRFilterIter iter)

{

NumberGathering execNumbers = new NumberGathering();

execNumbers.getPrintsPerSteady(flatGraph.getFlatNode(self), executionCounts);

int printsperexec = execNumbers.printsPerSteady;

int costperitem = 3; //can be varied

int workestimate = work.getWork(self);

int numreps = work.getReps(self);

if(printsperexec > 0)

filterWorkEstimates.put(self, new lnteger(workestimate /printsperexec));

else

filterWorkEstimates.put(self, new Integer(workestimate));

//add initial comm cost for all filters, based on their push/pop/peek rates

int numpop = self.getPopInto;

int numpush = self.getPushInto;

int numpeek = self.getPeekInto);

//sync one

int initcost = costperitem * numreps * (numpop + numpush);

if(printsperexec > 0)

initcost = initcost / printsperexec;

//System.err.println'syncfactor bool is " + synccost);

if(synccost)

{

SIRFilter origFilter = null;

if (fizzedFiltersToOriginal. containsKey(self))

origFilter = (SIRFilter) fizzedFiltersToOriginal.get(self);

else

origFilter = (SIRFilter)newToOrigGraph.get(self);

int fizzfactor = ((Integer)filterTimesFizzed.get(origFilter)) .intValue(;

//System.err.println("Synchro fizzfactor is " + fizzfactor);

91

int synchrocost = initcost * (f izzfactor - 1) / fizzfactor;

initcost += synchrocost;

}

filterCommunicationCosts.put(self, new Integer(initcost));

}//void visitFilter

/** postVisitSplitJoin:

* Ah, annoying procedure #1. Use getSplitFactor to return what N value should be

* used in synchronization calculation, based on potential parent splitjoins.

* Then use flatnode to find the (filtery) children and add the synchro. cost to

* its current synchro cost.

*/

public void postVisitSplitJoin(SIRSplitJoin self, SIRSplitJoinIter iter)

{

int fconstant = 2;

MutableInt syncfactor = new MutableInto;

SIRSplitter splitter = self.getSplittero);

FlatNode flatSplitter = flatGraph.getFlatNode(splitter);

SIRSplitType splitterType = splitter.getTypeo);

if((splitterType.equals(SIRSplitType.ROUNDROBIN)) 11 (splitterType.equals(SIRSplitType.DUPLICATE)) II

splitterType.equals(SIRSplitType.WEIGHTEDRR))

{

if(((splitterType == SIRSplitType.ROUNDROBIN) 11

(splitterType == SIRSplitType.WEIGHTEDRR)) &&

(synccost))

{

syncfactor.mutint = self.getParallelStreamso).size();

int blah = self.size();

}

else

{

syncfactor.mutint = 1; //if duplicate, don't include the size in the cost

}

getSplitFactor(syncfactor, flatSplitter); //recursion happens in this procedure

for(int i = 0; i < flatSplitter.edges.length; i++)

92

{

if (flatSplitter.edges [i] .contents instanceof SIRFilter)

{

SIRFilter currentFilter = (SIRFilter) flatSplitter. edges [i] . contents;

NumberGathering execNumbers = new NumberGatheringo;

int numreps = work.getReps(currentFilter);

execNumbers.getPrintsPerSteady(flatGraph.getFlatNode(currentFilter), executionCounts);

int printsperexec = execNumbers.printsPerSteady;

int oldCommCost = ((Integer) filterCommunicationCosts. get (currentFilter)). intValue();

int fancost = 0;

if(printsperexec > 0)

fancost = (fconstant * currentFilter.getPopInt() * numreps) / printsperexec;

else

fancost = fconstant * currentFilter.getPopInto) * numreps;

int scost = fancost - (fancost/(syncfactor.mutint));

int newCommCost = oldCommCost;

if(syncfactor.mutint != 0)

newCommCost = oldCommCost + fancost - (fancost/(syncfactor.mutint));

filterCommunicationCosts.put (currentFilter, new Integer(newCommCost));

}

//if not a filter, do nothing!

}

}

/** getSplitFactor(MutableInt syncfactor, FlatNode flatsplitter)

* recurses up to find if it has any top level splitters. If so, keep adding to syncfactor

public void getSplitFactor(MutableInt syncfactor, FlatNode flatsplitter)

{

FlatNode incomingNode = flatsplitter. incoming [01;

if (incomingNode. contents instanceof SIRSplitter)

{

SIRSplitter topSplitter = (SIRSplitter)incomingNode.contents;

if ((topSplitter.getType) .equals(SIRSplitType.ROUND-ROBIN)) 11 (topSplitter.getTypeC).equals(SIRSplitType.WEIGHTEDRR))

{

syncfactor.mutint += topSplitter.getWays);

getSplitFactor(syncfactor, incomingNode);

}

if (topSplitter.getType) .equals(SIRSplitType.DUPLICATE))

{

93

getSplitFactor(syncfactor, incomingNode);

}

}

else

{

SIRSplitter splitter = (SIRSplitter)flatsplitter.contents;

if ((splitter.getTypeo).equals(SIRSplitType.ROUNDROBIN)) II (splitter.getType(.equals(SIRSplitType.WEIGHTEDRR))

{

syncfactor.mutint += splitter.getWayso;

}

}

}//getSplitFactor

}//class ParallelSyncVisitor

/** BasicVisitor:

* Class that takes the original

* as an initial state

*/

input stream, and populates filterTimesFizzed with (1) values

static class BasicVisitor extends EmptyStreamVisitor

{

static HashMap filterTimesFizzed;

public BasicVisitor(HashMap fizzmapping)

{

filterTimesFizzed = fizzmapping;

}

public void visitFilter(SIRFilter self, SIRFilterIter iter)

{

filterTimesFizzed.put(self, new Integer(l));

}

}//class BasicVisitor

/** NoSyncVisitor:

* Used in no communication model. All it does is increment numfilters,

* and populate filterWorkEstimates and filterCommunicationCosts

94

static class NoSyncVisitor extends EmptyStreamVisitor {

static MutableInt numFilters;

static HashMap filterWorkEstimates;

static HashMap filterCommunicationCosts;

static HashMap filterTimesFizzed;

static WorkEstimate work;

static GraphFlattener flatGraph;

static HashMap[] executionCounts;

public NoSyncVisitor

(WorkEstimate wrk, HashMap filterwork, HashMap filtercomm,

HashMap fizzmapping, HashMap[] execcounts,

GraphFlattener graph, MutableInt nfilts)

{

numFilters = nfilts;

filterWorkEstimates = filterwork;

filterCommunicationCosts = filtercomm;

work = wrk;

flatGraph = graph;

executionCounts = execcounts;

filterTimesFizzed = fizzmapping;

}

public void visitFilter(SIRFilter self, SIRFilterIter iter)

{

filterTimesFizzed.put(self, new Integer(1));

NumberGathering execNumbers = new NumberGathering();

execNumbers.getPrintsPerSteady(flatGraph.getFlatNode(self), executionCounts);

int printsperexec = execNumbers.printsPerSteady;

int costperitem = 3; //can be varied

int workestimate = work.getWork(self);

int numreps = work.getReps(self);

if(printsperexec > 0)

filterWorkEstimates.put(self, new Integer(workestimate /printsperexec));

else

filterWorkEstimates.put(self, new Integer(workestimate));

//add initial comm cost for all filters, based on their push/pop/peek rates

int numpop = self.getPopInto);

int numpush = self.getPushInto;

int numpeek = self.getPeekInto;

95

//sync one

int initcost = costperitem * numreps * (numpop + numpush);

if(printsperexec > 0)

initcost = initcost / printsperexec;

filterCommunicationCosts.put(self, new Integer(initcost));

numFilters.mutint = numFilters.mutint + 1;

}

}//class NoSyncVisitor

}//class ParallelizationGathering

96

Appendix B

Benchmark Source Files

int->int filter MutableFilter(int pushrate, int poprate, int workiter) {

init {

}

int

int

int

int

int

for

work

a;

k;

x;

(j =

{

push pushrate pop poprate {

0; j < poprate; j++)

a = pop();

}

int b = 2;

for(i=0; i<workiter; i++)

{

b++;

x+= b *i;

}

for (k = 0; k < pushrate; k++)

{

push(x);

}

97

}

}

int->void filter nullSink(int datarate){

init{}

work push 0 pop datarate{

int i;

int x;

print(i);

for(i = 0; i < datarate; i++)

{

x = pop();

}

}

}

void->int filter nullSource(int datarate){

init{}

work push datarate pop 0 {

for(int i = 0; i < datarate; i++)

{

push(1);

}

}

}

void->void pipeline MutablePipelineCompBalanced() {

98

add nullSource(2);

add MutableFilter(2,2,1000);

add MutableFilter(2,2,1000);

add nullSink(2);

}

void->void pipeline MutablePipelineCompImbalanced() {

add nullSource(2);

add MutableFilter(2,2,300);

add MutableFilter(2,2,1000);

add nullSink(2);

}

void->void pipeline MutablePipelineCommBalanced() {

add nullSource(70);

add MutableFilter(70,70,500);

add MutableFilter(70,70,500);

add nullSink(70);

}

void->void pipeline MutablePipelineCommImbalanced() {

add nullSource(70);

add MutableFilter(70,70,100);

add MutableFilter(70,70,700);

add nullSink(70);

}

int->int splitjoin DefaultSplitJoini()

{

split duplicate;

add MutableFilter(2,2,1000);

add MutableFilter(2,2,1000);

join roundrobin(2,2);

}

99

void->void pipeline MutableSplitJoinCompBalanced() {

add nullSource(2);

add DefaultSplitJoini();

add nullSink(4);

}

int->int splitjoin DefaultSplitJoin2()

{

split duplicate;

add MutableFilter(2,2,50);

add MutableFilter(2,2,1000);

join roundrobin(2,2);

}

void->void pipeline MutableSplitJoinCompImbalancedo) {

add nullSource(2);

add DefaultSplitJoin2();

add nullSink(4);

}

int->int splitjoin DefaultSplitJoin3()

{

split duplicate;

add MutableFilter(35,70,500);

add MutableFilter(35,70,500);

join roundrobin(35,35);

void->void pipeline MutableSplitJoinCommBalancedo) {

add nullSource(70);

add DefaultSplitJoin3();

add nullSink(70);

}

int->int splitjoin DefaultSplitJoin4()

100

{
split duplicate;

add MutableFilter(35,70,100);

add MutableFilter(35,70,700);

join roundrobin(35,35);

}

void->void pipeline MutableSplitJoinCommImbalanced() {

add nullSource(70);

add DefaultSplitJoin4();

add nullSink(70);

}

int->int splitjoin DefaultSplitJoin5()

{

split roundrobin(i,1);

add MutableFilter(70,70,700);

add MutableFilter(70,70,700);

join roundrobin(i,i);

}

void->void pipeline RoundRobinBalanced() {

add nullSource(140);

add DefaultSplitJoin5();

add nullSink(140);

}

int->int splitjoin DefaultSplitJoin6()

{

split roundrobin(2,1);

add MutableFilter(70,70,700);

add MutableFilter(35,35,350);

join roundrobin(2,1);

}

void->void pipeline RoundRobinlmbalanced() {

add nullSource(105);

101

add DefaultSplitJoino;

add nullSink(105);

}

102

Appendix C

Simulation Graphs for Round

Robin Splitting

103

Computation Heavy, Balanced Pipeline

10 15 20

Extra Processors

.=.. Basic Metric, NormFactor 5026 -- Sync Metric, NormFactor 5026

-4- MagNet, NormFactor 6054 Raw, NormFactor 6054

Computation Heavy, Imbalanced Pipeline

10 15 20

Extra Processors

Basic Metric, NormFactor 5026 -4- Sync Metric, NormFactor 5026
-U- MagNet, NormFactor 6054 Raw, NormFactor 6054

Figure C-1: Graphical comparison of Synchronization Metric to Raw simulator for
Computation Heavy Pipelines

104

1.2

1

0.8-

0.4

0.2

0
25

1.2

1

0.8
0

0.6

0.4
2

0.2

0
25

Communication Heavy, Balanced Pipeline

1.2-

0.8

0.4

0.2

0
0

Communication Heavy, Imbalanced Pipeline

10 15 20

Extra Processors

-N- Basic Metric, NormFactor 4410 --- Sync Metric, NormFactor 4410
-N- MagNet, NormFactor 5282 Raw, NormFactor 5282

Figure C-2: Graphical comparison of Synchronization Metric to Raw simulator for
Communication Heavy Pipelines

105

5 10 i5 20

Extra Processors

-- Basic Metric, NormFactor 3410 -4- Sync Metric, NormFactor 3410
---U- MagNet, NormFactor 4082 Raw, NormFactor 4082

25

1.2

1

0.8

0.6

E 0.4
Z

0.2

0
255

Computation Heavy, Balanced Splitjoin

10 15 20

Extra Processors

- Basic Metric, NormFactor 2504 -- Sync Metric, NormFactor 2522

--- MagNet, NormFactor 6026 Raw, NormFactor 6026

Computation Heavy, Imbalanced Splitjoin

1.2

0

0.8

0.

Bas
-0- Ma

2510 15 20

Extra Processors

ic Metric, NormFactor 2510 -4- Sync Metric, NormFactor 1685
gNet, NormFactor 3020 Raw, NormFactor 3020

Figure C-3: Graphical comparison of Synchronization Metric to Raw simulator for
Computation Heavy Splitjoins

106

1.2

1

0.8

0.6

0.4

0.2

0
25

Communication Heavy, Balanced Splitjoin

10 15

Extra Processors

20

Basic Metric, NormFactor 3025 -+- Metric, NormFactor 3025

-I- MagNet, NormFactor 1752 Raw, NormFactor 2265.5

Communication Heavy, Imbalanced Splitjoin

10 15 20 25

Extra Processors

-x- Basic Metric, NormFactor 3325 -+ Metric, NormFactor 3325
-*- MagNet, NormFactor 2443.5 Raw, NormFactor 3118.5

Figure C-4: Graphical comparison of Synchronization Metric to Raw simulator for

Communication Heavy Splitjoins

107

1.2-

1

*U 0.6-

0.4-

0.2

0
25 30

1.4

1.2

.0.8

0.6

Z 0.4

0.2

0
30

108

Bibliography

[1] Rajeev Barua, Walter Lee, Saman Amarasinghe, and Anant Agarwal. Com-

piler support for scalable and efficient memory systems. IEEE Transactions on

Computers, 50(11), November 2001.

[2] Ian Buck. Brook specification, 2003. http://merrimac.stanford.edu/brook/brookspec-

v0.2.

[3] Michael Gordon, William Thies, Miqhal Karczmarek, Jeremy Wong Henry

Hoffmann, David Maze, and Saman Amarasinghe. A stream compiler for

communication-exposed architectures. Proceedings of the Tenth Conference on

Architectural Support for Programing Languages and Operating Systems, 2002.

[4] Ujval Kapasi, William J. Dally, Scott Rixner, John D. Owens, and Brucek

Khailany. The Imagine stream processor. In Proceedings 2002 IEEE Interna-

tional Conference on Computer Design, pages 282-288, September 2002.

[5] Michal Karczmarek, William Thies, and Saman Amarasinghe. Phased scheduling

of stream programs. In Languages, Compilers, and Tools for Embedded Systems,

San Diego, CA, June 2003.

[6] R.J. Lipton and D.N. Serpanos. Uniform-cost communication in scalable multi-

processors. International Conference on Parallel Processing, 1990.

[7] Scott Rixner and et al. A bandwidth-efficient architecture for media processing.

HPCA, 1998.

109

[8] Jaspal Subhlok, David O'Hallaron, Thomas Gross, Peter A. Dinda, and Jon

Webb. Communication and memory requirements as the basis for mapping task

and data parallel programs. IEEE Proceedings of Supercomputing, 1994.

[9] Jaspal Subhlok and Gary Vondran. Optimal use of mixed task and data paral-

lelism for pipelined communications. Journal of Parallel and Distributed Com-

puting, 2000.

[10] Jinwoo Suh, Eun-Gyu Kim, Stephen P. Crago, Lakshmi Srinivasan, and

Matthew C. French. A performance analysis of pim, stream processing, and tiled

processing on memory-intensive signal processing kernels. IEEE Symposium on

Computer Architecture, 2003.

[11] Michael Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae Ghodrat, Ben-

jamin Greenwald, Henry Hoffman, Jae-Wook Lee, Paul Johnson, Walter Lee,

Albert Ma, Arvind Saraf, Mark Seneski, Nathan Shnidman, Volker Strumpen,

Matthew Frank, Saman Amarasinghe, and Anant Agarwal. The raw microproces-

sor: A computational fabric for software circuits and general purpose programs.

IEEE Micro, May 2002.

[12] William Thies, Michal Karczmarek, Michael Gordon, David Maze, Jeremy Wong,

Henry Hoffman, Matthew Brown, and Saman Amarasinghe. Streamit: A com-

piler for streaming applications. Technical report, MIT/LCS, 2002.

110

GOCS- qC1

