
Bounds on the entanglability of thermal states

in liquid-state nuclear magnetic resonance

by

Terri M. Yu

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2003

© Terri M. Yu, MMIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic

in whole or in.
copies of this thesis document
part. MASSACHUSETTS INST TeOF TECHNOLOGY

UL
2 2ELIBRARE

Author
Department of Electrical Engineering and Computer Science

August 22, 2003

Certified by........

Associate Professor, Media Laboratory
Isaac L. Chuang

and Department of Physics
Thesi Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

3ARKE-R

---- ------

Bounds on the entanglability of thermal states

in liquid-state nuclear magnetic resonance

by

Terri M. Yu

Submitted to the Department of Electrical Engineering and Computer Science
on August 22, 2003, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Theorists have recently shown that the states used in current nuclear magnetic res-
onance (NMR) quantum computing experiments are not entangled. Yet it is widely
believed that entanglement is a necessary resource in the implementation of quan-
tum algorithms. The apparent contradiction might be resolved by the experimental
realization of an entangled NMR state. Designing such an experiment requires us to
know whether or not the initial NMR state is entanglable - that is, does there exist
a unitary transform that entangles the state? This computational and theoretical
thesis explores the entanglability of thermal states in N - oz space where N specifies
the number of qubits and a characterizes the polarization of the thermal state. The
thermal state is transformed by the Bell unitary Ubs and the entanglement of the
transformed state is measured by negativity. Here we present numerically generated
negativity maps of N-a space (N < 12) and explicit negativity formulas for Ubs-
transformed thermal states. We also give a general method that uses the symmetry
of a special mixed Bell state family to derive bounds on the entanglement of generic
Bell-transformed thermal states. This approach yields analytical bounds on the en-
tanglability of thermal states and gives an upper limit of N < 20, 054 required to
entangle a thermal state under ideal experimental conditions.

Thesis Supervisor: Isaac L. Chuang
Title: Associate Professor, Media Laboratory and Department of Physics

3

4

Acknowledgments

I wish to thank my advisor, Isaac Chuang, for his patience and thoughtful guidance

throughout this project. Much appreciation goes to my fellow collaborators; thanks

to Joshua Powell for his dedication and valuable numerical contributions, Andrew

Cross for his computational expertise, and Ken Brown for his theoretical insight. I

also wish to acknowledge Julia Kempe for pointing out a crucial reference, Matthias

Steffen for useful conversations about NMR quantum computing, and Aram Harrow

for help on understanding entanglement.

Finally, I would like to express my gratitude to the Quanta Lab members: Jeff

Brock, Andrew Cross, Josh Folk, Andrew Houck, Steve Huang, Murali Kota, and

Matthias Steffen. Their enthusiasm and sense of humor made it fun to come into

work everyday. A special thanks to Josh and Andy who introduced me to their

excellent taste in country music. Those upbeat tunes helped to keep my spirits up

during the writing of this thesis.

I am indebted to my friends, family, and teachers for their encouragement and aid

during my time at MIT. Thank you all, for everything.

5

6

Contents

1 Introduction

1.1 Historical background

1.2 M otivation .

1.3 O utline .

1.4 Contributions to this work

2 Theory and prior work

2.1 Entanglement

2.1.1 Gedankenexperiment

2.1.2 Classification and terminology

2.1.3 Pure state separability

2.1.4 Mixed state separability

2.1.5 Measures of entanglement

2.2 Quantum computation

2.2.1 State

2.2.2 Operations

2.3 Liquid-state NMR quantum computation . . .

2.3.1 Thermal state

2.3.2 Initial state preparation

2.3.3 Unitary operations and readout signal

2.4 Bounds on the entanglement of near maximally

2.4.1

2.4.2

mixed states

Braunstein et. al. separable and nonseparable bounds . .

Implications on liquid-state NMR quantum computation

7

19

19

20

21

22

25

. 25

. 26

. 30

. 31

. 33

. 35

. 41

41

43

46

46

49

52

52

53

58

2.5 Summary .

NMR states for entanglement

3.1.1 Entangling effective pure states . . .

3.1.2 Entangling thermal states

3.2 Experimental approaches to entangling NMR

3.2.1 Enhancing initial polarization

3.2.2 Increasing number of qubits

3.2.3 Algorithmic cooling

3.2.4 Entangling unitary operations

3.3 Problem .

3.3.1 Unitary operations

3.3.2 Measure of mixed state entanglement

3.4 M ethods .

3.4.1 Numerical methods

3.4.2 Analytical methods

3.5 Sum m ary

thermal

4 Numerical negativity maps of Bell-transformed

4.1 A lgorithm .

4.2 H ardware .

4.3 Single-processor software

4.3.1 Package structure and implementation .

4.3.2 QCTM data structure

4.3.3 Execution module

4.3.4 Calculation modules

4.3.5 Post-processing modules

4.3.6 Package performance

4.4 Beowulf cluster software

4.4.1 Cluster architecture

8

3 Approach

3.1 Initial

60

63

63

. 63

states

65

67

68

69

70

70

71

72

74

75

75

76

77

79

79

80

81

81

83

84

85

91

93

97

97

thermal states

4.4.2 qpMATLAB usage examples 102

4.4.3 Calculation modules . 105

4.4.4 Cluster baseline and qpMATLAB application performance . . 110

4.5 Numerical negativity and minimum eigenvalue maps for standard Bell-

transformed thermal states . 114

4.6 Sum m ary . 122

5 Negativity formulas for standard Bell-transformed thermal states 127

5.1 Theoretical analysis for {1, N - 1} bipartite split127

5.2 Empirical analysis for {N/2, N/2} bipartite split 131

5.3 Negativity maps for {1, N - 1} and {N/2, N/2} bipartite splits . . . 137

5.4 Sum m ary . 144

6 General separability and distillability bounds for Bell-transformed

thermal states 147

6.1 Diir-Cirac classification of entanglement in special mixed Bell states . 148

6.1.1 Form alism . 148

6.1.2 Bound on the entanglability of effective pure states 150

6.2 Application to Bell-transformed thermal states 151

6.2.1 Random unitary operation mapping Bell-transformed thermal

states to Diir-Cirac Bell states 151

6.2.2 Separability and distillability of thermal states under Ubs . . 154

6.2.3 Separability and distillability of thermal states under UbsUfan 156

6.2.4 D iscussion . 158

6.3 Majorization approach to obtain bounds on entanglable thermal states 159

6.3.1 M ajorization . 164

6.3.2 Uhlmann's theorem and majorization constraint on von Neu-

m ann entropy . 165

6.3.3 Application to thermal states 166

6.4 Sum m ary . 169

9

7 Conclusion

A Single processor negativity map source code 175

A.1 Code for calculating negativity data 176

A.2 Code for plotting negativity data . 200

B Beowulf cluster negativity calculation module source code 211

10

171

List of Figures

2-1 Bloch sphere representation of a qubit /) = cos 10) + e4' sin |1). . 42

2-2 (a) Quantum gate representations of Pauli operators X, Y, and Z and

Hadamard gate H. (b) Alternative representation of X, the NOT gate. 45

2-3 (a) Quantum gate representation of the CNOT operation. (b) An

example of a quantum circuit. 45

2-4 Comparison of c in NMR effective pure state (solid line) and constraints

on E from the Braunstein et. al. bound on separable pE (dash dotted

line) and from the Gurvits and Barnum bound on separable pE (dashed

line). Here the effective pure state corresponds to an isotropic proton

spin system in a 11.74 T magnetic field at room temperature. 59

3-1 Bounds on the nonentanglability (solid line) and entanglability (dashed

line) of the effective pure state Peff in N - a parameter space where N

specifies the number of qubits and a characterizes the polarization of

the thermal state. If a is right of the solid line, Peff is nonentanglable;

if a is left of the dotted line, Peff is entanglable. 65

3-2 Quantum circuit for Ub,s unitary operation. 73

3-3 Quantum circuit for UbsUfan unitary operation. 74

4-1 Module dependency diagram for single-processor software package. Mod-

ule types are execution (white), calculation (black), and post-processing

(m edium gray). 82

11

4-2 Comparison of mean single-processor run times for C and MATLAB

version of partial transpose operation ({N, 2, N/2} split). The run time

data is acquired by executing the modules 100 times at each N. . . . 91

4-3 Mean single-processor memory usage as a function of N (ordered from

top to bottom): transf orm.m (dashed green line), ptranspose .m (solid

red line), ubs.m (dotted magenta line), thermalden.m (dash dotted

blue line), and mineig.m (solid cyan line). The data is acquired by

executing the modules 100 times at each N. The partial transpose is

computed for the {N/2, N/2} split, using ptHalf C. c. 94

4-4 Mean single-processor run time as a function of N (ordered from top to

bottom at the far left of the graph): calcmineig.m (thick solid black

line), ubs.m (dotted magenta line), ptranspose.m (solid red line),

thermalden.m (dash dotted blue line), mineig.m (solid cyan line), and

transform. m (dashed green line). The data is acquired by executing

the modules 100 times at each N. The partial transpose is computed

for the {N/2, N/2} split, using ptHalf C. c. 95

4-5 Hardware and software layers of Beowulf cluster architecture. 97

4-6 Physical configuration of Beowulf cluster. 98

4-7 Application architecture of Beowulf cluster. The double arrow repre-

sents communication between qpserver and qpclient. 102

4-8 Mean cluster run time as a function of N: pubs () (dotted magenta

line), pthermalden() (dash dotted blue line), ptransform() (dashed

green line), and pptranspose 0 (solid red line). The data is acquired

for each module by averaging over 20 runs. The partial transpose

is computed for the {N/2, N/2} split using the same algorithm as in

ptHalf .m/ptHalf C. c, and the parallel environment consists of 16 Pen-

tium III 1.2 GHz dual-processor machines with each machine having 1

GB RAM and running one process on a 4 x 4 processor grid. 111

12

4-9 Ratio of mean cluster run times from Fig. 4-8 to mean single-processor

run times from Fig. 4-4 as a function of N: ubs (dotted magenta line),

thermalden (dash dotted blue line), transform (dashed green line),

and ptranspose (solid red line). 112

4-10 Color map of E,(ptf) for {N/2, N/2} bipartite split in N - a param-

eter space, overlaid with Gurvits and Barnum bound on the nonen-

tanglability of Peff (solid white line), Braunstein, et. al. bound on the

entanglability of Peff (dashed white line), and bound on the nonsepara-

bility of Ptf (solid yellow line), which is determined by estimating the

a corresponding to Amin = 0. The bar on the right ascribes a color to

each value of E .. 115

4-11 Color map of En(ptf) for {1, N - 1} bipartite split in N - a param-

eter space, overlaid with Gurvits and Barnum bound on the nonen-

tanglability of Peff (solid white line), Braunstein, et. al. bound on the

entanglability of Peff (dashed white line), and bound on the nonsepara-

bility of Ptf (solid yellow line), which is determined by estimating the

a corresponding to Amin = 0. The bar on the right ascribes a color to

each value of E .. 116

4-12 Color map of En(ptf) for {N - 1, 1} bipartite split in N - a param-

eter space, overlaid with Gurvits and Barnum bound on the nonen-

tanglability of peff (solid white line), Braunstein, et. al. bound on the

entanglability of Peff (dashed white line), and bound on the nonsepara-

bility of Ptf (solid yellow line), which is determined by estimating the

a corresponding to Amin = 0. The bar on the right ascribes a color to

each value of E .. 117

4-13 (a) Minimum eigenvalue Amin(Ptf) as a function of logo (a-1) for {N/2, N/2}

split and N = 12. (b) Closeup view of same plot, illustrating the shal-

low slope of the minimum eigenvalue near Amin = 0+. 118

13

4-14 Color map of Amin(pA) for {N/2, N/2} bipartite split in N - oz pa-

rameter space, overlaid with bound on nonseparability of Ptf where

Amin = 0 (solid black line) and from left to right, contours at Amin =

{-0.010, -0.005, 0.005, 0.010} (dashed black line). The bar on the

right ascribes a color to each value of Amin 119

4-15 Color map of Amin(pT}^) for {1, N - 1} bipartite split in N - a pa-

rameter space, overlaid with bound on nonseparability of ptf where

Amin = 0 (solid black line) and from left to right, contours at Amin =

{-0.010, -0.005, 0.005, 0.010} (dashed black line). The bar on the

right ascribes a color to each value of Amin 120

4-16 Color map of Amin(pTA) for {N - 1, 1} bipartite split in N - a pa-

rameter space, overlaid with bound on nonseparability of Ptf where

Amin = 0 (solid black line) and from left to right, contours at Amin =

{-0.010, -0.005, 0.005, 0.010} (dashed black line). The bar on the

right ascribes a color to each value of Amin. 121

5-1 Eigenvalue levels of pf as a function of logio(a- 1) for N = 4. Note

the crossing of the lowest two levels at logio(c- 1) ~ 0.5. 131

5-2 Comparison of eigenvalues derived from Iv-) (dash dotted line) and

lv+) (dotted line) to the true minimum eigenvalue Amin (solid line),

plotted as a function of loglo(a- 1) for N = 6. 132

5-3 Prediction error Amin - Amin as a function of logio(a- 1) for N = 6. . 133

5-4 Comparison of eigenvalue derived from Iv+) (dashed line) to the Amin

(solid line) and the second lowest eigenvalue level (dash dotted line),

plotted as a function of logio(a- 1) for N = 6. 134

14

5-5 Color map of Efl(ptf) for {1, N - 1} bipartite split in N - a param-

eter space, overlaid with Gurvits and Barnum bound on the nonen-

tanglability of Peff (solid white line), Braunstein, et. al. bound on the

entanglability of Peff (dashed white line), and bound on the nonsepa-

rability of ptf from Eq. 5.12 (solid yellow line). The bar on the right

ascribes a color to each value of E.. 139

5-6 Color map of log [Efl(ptf) + 10-10] for {1, N--1} bipartite split in N -a

parameter space, overlaid with Gurvits and Barnum bound on the

nonentanglability of Peff (solid white line), Braunstein, et. al. bound

on the entanglability of peff (dashed white line), and bound on the

nonseparability of ptf from Eq. 5.12 (solid white line). The bar on the

right ascribes a color to each value of log [En(ptf) + 10 0]. 140

5-7 Color map of En(ptf) for {N/2.N/2} bipartite split in N - a param-

eter space, overlaid with Gurvits and Barnum bound on the nonen-

tanglability of Peff (solid white line), Braunstein, et. al. bound on the

entanglability of peff (dashed white line), and bound on the nonsepa-

rability of ptf from Eq. 5.25 (solid yellow line). The bar on the right

ascribes a color to each value of E . 141

5-8 Color map of log [En(ptf) + 10-10] for {N/2.N/2} bipartite split in N-

a parameter space, overlaid with Gurvits and Barnum bound on the

nonentanglability of Peff (solid white line), Braunstein, et. al. bound

on the entanglability of Peff (dashed white line), and bound on the

nonseparability of ptf from Eq. 5.25 (solid white line). The bar on the

right ascribes a color to each value of log [En(ptf) + 10-10]. 142

5-9 Comparison of bounds on nonseparable ptf (Amin = 0) for {1, N -

1} (solid blue line) and {N/2, N/2} (solid red line) bipartite splits,

overlaid with Gurvits and Barnum bound on nonentanglability of Peff

(solid black line) and Braunstein, et. al. bound on entanglability of peff

(dashed black line). 143

15

6-1 Comparison of bounds on the separability and nonseparability of ther-

mal states versus bounds on the entanglability and nonentanglability

of effective pure states derived from Diir-Cirac formalism (plotted up

to 20 qubits): Pth fully separable under Ubs (solid red), Pth fully sepa-

rable under Ub,sUfan (solid blue), Pth fully distillable under Ub,s (dash

dotted red), Pth fully distillable under UbsUfan (dash dotted blue), peff

entanglable (dash dotted black), Peff nonentanglable (solid black). . . 160

6-2 Comparison of bounds on the separability and nonseparability of ther-

mal states versus bounds on the entanglability and nonentanglability

of effective pure states derived from Diir-Cirac formalism (plotted up

to 500 qubits): Pth fully separable under Ub,s (solid red), Pth fully sep-

arable under UbsUfan (solid blue), Pth fully distillable under Ubs (dash

dotted red), Pth fully distillable under UbsUfan (dash dotted blue), Peff

entanglable (dash dotted black), Peff nonentanglable (solid black). . . 161

6-3 Comparison of Diir-Cirac derived fully separable bounds on Bell-transformed

thermal states versus direct numerical calculation of negativity. The

numeric values are computed by finding a such that Amin = 0. 162

6-4 Comparison of Diir-Cirac derived fully distillable bounds on Bell-transformed

thermal states versus direct numerical calculation of negativity. The

numeric values are computed by finding a such that Amin = 0. 163

16

List of Tables

4.1 Linear fits to logarithmic mean single-processor run times in Fig. 4-4

for N = {8,10,12}. The prediction error is defined in Eq. 4.1. 96

4.2 Mean run time for pptranspose () as a function of nmax where nmax is

the maximum number of cumulative swap calls allowed before the clus-

ter is blocked. The partial transpose is applied to an 8-qubit matrix,

and the parallel environment consists of 4 Pentium III dual-processor

machines, each machine having 1 GB RAM and running four processes

on a 4 x 4 process grid. The mean run time is obtained by averaging

over 10 runs.......... 110

4.3 Linear fits to logarithmic mean cluster run times in Fig. 4-8 for N =

{8, 10, 12} except in the case of ptranspose () where N = {6, 8, 10}.

The prediction error is defined in Eq. 4.1. 113

5.1 Calculation steps to find the values of off-diagonal AjV 135

5.2 Explicit formulas for A,, that are needed to derive an analytical for-

m ula for Amin. 136

17

18

Chapter 1

Introduction

1.1 Historical background

Entanglement is hidden information that exists as nonlocal correlations between two

or more quantum degrees of freedom. The phenomenon was first mentioned in a

1935 article authored by Einstein, Podolsky, and Rosen [EPR35]. They claimed that

the existence of entanglement was "unphysical," and therefore quantum mechanics

was an incomplete theory. Einstein suggested that quantum mechanics might be

superseded by a deterministic model based on hidden local variables. In 1964, Bell

presented a rigorous inequality that quantum measurements must satisfy in order for

such a hidden local variable theory to hold [Bel65. He also proved that the pre-

dictions of quantum measurement theory did not always satisfy this inequality. An

experimental test of Bell's inequality was realized thirty years later. From 1981 to

1982, Aspect and his collaborators observed violations of Bell's inequality in pho-

ton pairs [AGR81, AGR82]. Their measurements agreed to within 1% of quantum

mechanical predictions [AGR82]. However, Aspect's experiments and similar ones

by other groups were criticized for having experimental loopholes [Pea70, Fra85], in

particular detector inefficiency1 and locality difficulties2 . Experimentalists have ad-

'Detector inefficiency is problematic because if the photodetector only records a subset of the
actual detection events, it might be the case that the subset happens to give a result that favors
quantum mechanics.

2The locality difficulty occurs because the experimental results rely on observing each particle
in the photon pair in separate detectors at different times. If the two detectors are separated by a

19

dressed the detection [RKM+01] or locality [WJS+98] loophole separately, but no

group has eliminated both simultaneously. Despite these problems, many experi-

ments have confirmed Aspect's work and the general consensus is that entanglement

is a real-world phenomenon.

Entanglement remained an intriguing curiosity until the 1990s, which saw the

emergence of quantum computation - the study of information processing that can

be performed in physical systems which are quantum mechanical in nature. Bennett

and his co-workers showed that entangled pairs of particles are useful for informa-

tion transfer. For instance, quantum teleportation uses an entangled particle pair

and two classical bits to move a quantum state between two spatially separated lo-

cations [BBC+93]. Moreover, theorists found that a quantum computer is not able

only do arbitrary reversible classical operations [Ben80], but it can also execute some

operations faster. Shor broke ground in 1994 with a quantum algorithm that could

find the prime factors of a number with exponentially fewer steps than the best known

classical algorithm [Sho94, Sho97]. Two years later, Grover gave a quantum algorithm

capable of searching an unsorted database with square root smaller steps than the

most efficient classical algorithm [Gro96].

The theoretical promise of quantum computation was quickly realized in experi-

ment. In 1998, the first quantum algorithms were demonstrated in nuclear magnetic

resonance (NMR) experiments, which were conducted by the laboratory groups of

Chuang [CVZ+98] and Jones [JM98]. Many more NMR quantum computing experi-

ments followed, including successful implementations of Grover's algorithm [CGK98],

quantum teleportation [NKL98], and Shor's algorithm [VSB+01].

1.2 Motivation

What makes quantum computers more powerful than classical computers? The lead-

ing candidate is entanglement because it is a feature unique to quantum systems and

space-like distance, then it is possible for the first detector to make a measurement and communicate
the result of that measurement (at speed v < c) to the second detector before it makes its own
measurement.

20

because many quantum algorithms, including Shor's algorithm, seem to require the

creation of entangled states.

This conventional view has now been challenged. In 1999, Braunstein et. al. showed

that the states used in current NMR quantum computing experiments are never en-

tangled at any point in time [BCJ+99]. This startling conclusion raises many doubts

about the validity of NMR quantum computation [FitOO]. How can NMR techniques

demonstrate quantum algorithms without entanglement? Are entangled states neces-

sary resources for quantum computation? These questions are yet to be conclusively

answered, although two authors of the Braunstein et. al. paper later pointed out that

the NMR machines could not be shown to be merely performing classical computation

either [SC99]. This vague state of affairs has left researchers with the uneasy thought:

how can one build a quantum computer without knowing what crucial resources make

it work?

We seek to better understand these issues through a numerical and theoretical

investigation of entangled states in NMR quantum computing. Specifically, this thesis

addresses the problem of designing an NMR experiment to realize an entangled state.

In NMR, we do not have a pure quantum state, but an ensemble of pure states

probabilistically distributed as a function of temperature. We have chosen to study

this naturally mixed state - the thermal state. Can it be entangled in the laboratory?

We will address this central question in what follows.

1.3 Outline

This first chapter introduces the history and motivation for studying entanglement

and summarizes my specific contributions to the field in this thesis work. Chapter 2

describes the theory needed to understand the work described in this thesis. It cov-

ers entanglement, quantum computing abstractions, and liquid-state NMR quantum

computation. We also review the current understanding of entanglement in liquid-

state NMR quantum computation. Chapter 3 discusses the approach we have chosen

to investigate our problem and explains our implementation decisions.

21

In Chapters 4, 5, and 6, we describe the results of this thesis. Chapter 4 presents

numerical entanglement calculations for the thermal state. Chapter 5 derives formulas

for the entanglement of specific Bell-transformed thermal states using direct and

empirically motivated analyses. Chapter 6 draws upon Diir and Cirac's study of

entanglement in mixed Bell states [DCOO] and uses their formalism to derive bounds

on the entanglement of general Bell-transformed thermal states.

Chapter 7 concludes this thesis with a summary of our results and a discussion of

directions for further research.

1.4 Contributions to this work

I began this work in August 2002. Given my experience in programming, I asked my

advisor, Professor Isaac Chuang, for a thesis topic that would involve our Beowulf

cluster. Chuang introduced me to the controversy surrounding NMR state entan-

glement (Section 1.2) and taught me the basics of entanglement and density matrix

formalism (Section 2.1). He suggested that I first try entangling thermal states with

a Bell state transformation (Section 3.3.1) and contributed some MATLAB code for

performing partial transposes (Section 4.3.4). In early September, undergraduate

Joshua Powell joined me on my project. I met with Powell once a week and taught

him enough quantum mechanics and quantum information theory to do research with

me. Meanwhile, I programmed the Bell transformation entanglement calculations in

MATLAB for the {N/2, N/2} bipartite split (Section 4.3) and produced entanglement

maps of NMR parameter space for up to twelve qubits (Section 4.5). Powell and I

worked together to optimize the MATLAB code for short run times and low memory

usage (Section 4.3.6). We thought about ways to calculate the minimum eigenvalue

of a matrix without having to find all the eigenvalues. Graduate student Aram Har-

row suggested a variation on the Jacobi method, and Powell wrote a MATLAB-based

minimum eigenvalue function, which incorporated Harrow's idea.

It became clear that any computations on matrices larger than ten qubits had

to be run in parallel on the Beowulf cluster. Graduate student Geva Patz had been

22

responsible for the initial construction and setup of our Beowulf cluster. In January

2003, graduate student Andrew Cross joined our laboratory group and took over ad-

ministration of the cluster from Patz. Cross, Powell, and I teamed up to implement

entanglement calculations on the Beowulf cluster (Section 4.4). Cross, with some con-

sultation from Patz, concentrated on making cluster operation reliable (Section 4.4.1).

Powell and I wrote C functions for parallel calculation, which could be overloaded on

top of our old MATLAB entanglement code (Section 4.4.3). Cross also revised the

core parallel linear algebra code. In early February, I gave a poster presentation of

the NMR entanglement work at the SQUINT (Southwest Quantum Information Tech-

nology) conference and learned of some interesting numerical entanglement research

by Stockton, Geremia, Doherty, and Mabuchi at Caltech [SGDM03]. Their group

focused exclusively on fully symmetric states and significantly reduced the dimen-

sion of the matrices needed to compute entanglement. Perhaps we could also exploit

symmetry in our calculations. In addition, the Caltech team had experimented with

many bipartite splits, while we had only calculated a specific split.

After I returned from SQUINT, I worked on developing a function that could calcu-

late the minimum eigenvalue of a matrix stored on the Beowulf cluster. This function

was the last piece of code we needed to implement the entanglement calculation on

the cluster. While exploring efficient methods for calculating minimum eigenvalues, I

discovered that the minimum eigenvalue I was trying to find always corresponded to

one of two eigenvectors (Section 5.2). Not only that, the eigenvectors were a simple

function of qubits in the system. This numerical evidence seemed to confirm our

intuition that the transformed thermal state had considerable symmetry. At that

very moment, Kenneth Brown was visiting our laboratory from K. Birgitta Whaley's

group in UC Berkeley. On a hunch, Chuang suggested that Brown and I check to see

if the transformed thermal state was block diagonal in the totally symmetric basis.

Chuang found a numerical method to construct the irreducible representations of the

totally symmetric group, and the three of us wrote MATLAB code to implement it.

While thinking about the NMR entanglement problem, Brown found a direct ana-

lytical derivation for the {1, N - 1} bipartite split (Section 5.1). I began working on

23

finding analytical formulas for other bipartite splits.

In late April, Julia Kempe, a visiting researcher from Universite de Paris-Sud and

UC Berkeley, told me that I could save much work if I used the Diir and Cirac for-

malism mentioned above (Section 6.1). The Bell transformed thermal states we were

studying were not exactly the same as the ones in the formalism, but Chuang con-

structed a random unitary procedure that connected thermal states to Diir and Cirac's

mixed Bell states (Section 6.2.1). I was then able to calculate analytical bounds on

entanglement of the Bell transformed thermal states under any bipartite split (Sec-

tions 6.2.2 and 6.2.3). After achieving this promising result, Chuang suggested that

some key results from majorization theory might allow me to generalize my approach

further. In particular, if the Diir-Cirac state and thermal state satisfied the right

majorization relation, then the connecting random unitary procedure was proven to

exist, eliminating the need for me to search for a construction (Section 6.3.2). Now

the problem was shifted to ensuring that the majorization relation was in fact satis-

fied. I tried several schemes, but only made partial progress (Section 6.3.3). However,

the majorization-based approach looks promising for future work.

24

Chapter 2

Theory and prior work

This chapter introduces the theory of entanglement (Sec. 2.1), quantum computation

(Sec. 2.2), and liquid-state nuclear magnetic resonance (NMR) quantum computa-

tion (Sec. 2.3) and reviews research on entanglement in NMR quantum computation

previous to our work (Sec. 2.4).

The theory sections provide the minimal background for the reader to interpret

our approach and results. More comprehensive references are mentioned in the text.

The review section focuses on the work of Braunstein et. al. [BCJ+99], explaining

how the authors derive bounds on the entanglement of near maximally mixed states

and the implications of their results on liquid-state NMR quantum computation.

In what follows, we assume knowledge of undergraduate quantum mechanics at

the level of Griffith's text Introduction to Quantum Mechanics [Gri95] and a basic

understanding of tensor products, density matrices, and angular momentum at the

level of Sakurai's text Modern Quantum Mechanics [Sak94].

2.1 Entanglement

This section introduces the notion of entanglement. It begins with a simple physi-

cal example to illustrate the concept, followed by formal discussions of entanglement

classification and terminology and definitions for pure and mixed state entanglement.

For further reading, we recommend the text Quantum Computation and Quantum

25

Information by Nielsen and Chuang [NCOO] and the quantum computation and in-

formation lecture notes by Preskill [Pre98].

2.1.1 Gedankenexperiment

At the beginning of the previous chapter, we described entanglement as nonlocal

correlations between two or more quantum degrees of freedom. To illustrate the

meaning of this statement, Einstein, Podolsky, and Rosen originally constructed a

thought experiment or gedankenexperiment [EPR35]. Here we discuss a more modern

version due to Bohm [Boh5l] and Basdevant, Dalibard, and Grangier [BDG02].

A pi meson can decay into an electron and positron:

7r0 -+ e+ + e-. (2.1)

Since the 'r0 has zero spin, the electron and positron must be in the spin singlet

state [Gri95] given by

bep = ~~ t I)1)(2.2)V12

where first ket in each pair corresponds to the electron state and the second ket in

each pair corresponds to the positron state and the kets IT) and 11) are the spin up

and spin down eigenstates of S,. The joint state in Eq. 2.2 is sometimes called an

EPR (Einstein-Rosen-Podolsky) pair and is an example of an entangled state.

Two people, Alice and Bob, decide to perform a experiment. They generate a

large number of EPR pairs. Alice keeps the electrons and stays in Boston while

Bob takes the positrons to Paris. Assume the states of the EPR pairs are perfectly

preserved throughout this process - clearly an idealization. Both of them make spin

measurements with their detectors aligned on the z-axis and write down their results

in an ordered list.

Consider a single EPR pair. If Alice measures the state of the electron and gets IT)

then the total state of the system collapses to IT) 1). If Bob now measures the state of

the positron,' he obtains spin down with absolute certainty. We have only described

'We assume that the time between Alice and Bob's measurements is less than distance between

26

the measurements from Alice's point of view, but the analysis would identical for

Bob making the first measurement. Alice and Bob's measurement results are always

anti-correlated regardless of the order in which the measurements are made. The anti-

correlation is also nonlocal.2 By making a measurement on the spin of her electron,

Alice can perfectly predict Bob's measurement result on the corresponding positron,

no matter how far Bob has traveled.

Returning to the gedankenexperiment, Alice records her list: {TItt ...}. Then

Bob returns to Boston and shows Alice his list: {UIITt ... }. Their measurements

results are exactly as we have explained.

Yet Alice's and Bob's measurements look random on a local level. We now show

this result mathematically by analyzing the case of a single EPR pair. The quantum

state of one EPR pair can be described by the density matrix

PAB =)ep epK) (2.3)
0 0 0 0

1 0 1 -1 0

2 0 -1 1 0

0 0 0 0

in the basis {)T) T),I)It) ,LL))t) }. We label Alice with A and Bob with B

and let AB label quantum information shared by both Alice and Bob.

Alice only possesses the electron and has no knowledge of Bob's positron. As far

as she is concerned, the density matrix relevant to measurements in her Hilbert space

is

PA = tr B(PAB) (2.4)

where tr B denotes the partial trace over Bob's Hilbert space.3 We define the action

them divided by the speed of light, preventing the possibility of classical communication from af-
fecting the outcome.

2 When we use the word "local", we mean pertaining to either Alice's or Bob's portion of the
system only. When we use the word "nonlocal", we mean pertaining to the entire composite system.

3 This definition gives the right expectation values for a measurement operator that only acts in
the Hilbert space of A. For more details, see page 105 in Ref. [NCOO].

27

of tr B on an arbitrary ket in the Hilbert space of AB as

trB(Ia) Ib) (a'I (b'I) = Ia) (a' tr (Ib) (b'I) (2.5)

where 1a) and la') are in the Hilbert space of A and Ib) and Ib') are in the Hilbert

space of B. Applying this definition, we have

PA = tr B(PAB) (2-6)
11 0

2 0 1

in the basis {IT),I)}. In other words, she measures spin up or spin down with equal

probability.4

Analogously, Bob's reduced density matrix is

PB = tr A(PAB) (2.7)

where tr A denotes the partial trace over the Hilbert space of A. A similar calculation

shows that Bob has the same reduced density matrix as Alice. Thus, Alice and

Bob's measurement results are random when viewed separately. This behavior is a

hallmark of entanglement: the global (two-particle) behavior of the system may be

radically different from the local (one-particle) behavior of the system. In this sense,

entanglement is "hidden" information.

We predicted the correlations in the EPR pair from our knowledge of quantum

mechanics, but it can also be explained classically. Imagine a candy factory that

always puts one red gum ball and one green gum ball into each box. The experiment

we described is equivalent to opening each box and distributing one gum ball to Alice

and one gum ball to Bob. If Alice gets a red gum ball, then Bob must have the

green one and vice versa. Moreover, if the distribution of gum balls is unbiased, both

Alice's and Bob's set of gum balls will be approximately evenly divided between red

4We could have also obtained this result by inspection of 1 0),P.

28

and green.

So far, Alice and Bob's EPR pairs appears to be classical. But what if Alice and

Bob make their measurements along the x-axis? To predict the measurement results,

we must rewrite Eq. 2.2 in terms of the Sx eigenstates 1+):

L/)ep = (1+) -) - |-) 1+)) (2.8)

where 1±) = (It) t |t))/v 2. We have a spin singlet again, but this time in the Sx

basis.5

Thus if Alice and Bob measure the spin states of their EPR pairs along the x-

axis, their measurement results are still anti-correlated. We could explain this result

by the candy factory analogy too, except for one important difference: S. and Sx

are not commuting observables. If Alice first measured her electron along the z-

axis and Bob then measured his electron along the x-axis, Bob would find 1+) and

I-) with equal probability; the perfect anti-correlation would be destroyed by the

noncommuting measurements. In general, Alice's measurement axis may differ from

Bob's measurement axis by some angle 9. It can be shown that classical local variable

models cannot explain all of these measurement scenarios. Indeed, the main idea

behind Bell's inequality (see Section 1.1) is that classical local variable models and

quantum theory predict contradictory measurement results for specific values of 9.

All experimental results to date agree with quantum theory.

To summarize, entanglement is a uniquely quantum mechanical phenomenon that

possesses nonlocal correlations. Conversely, non-entangled systems are characterized

by two features: 1) local measurements are independent of one another and 2) cor-

relations between local measurements can be modeled classically. We shall return to

these ideas when we define entanglement formally.

5In fact, IZ),p will have this antisymmetric form for measurements along any axis because a spin
singlet has zero angular momentum and is therefore rotation invariant.

29

2.1.2 Classification and terminology

The gedankenexperiment we just saw is one example of entanglement, but there are

a wide variety of situations where we may call the system entangled. Here we explain

how each of these situations are categorized in the literature.

Suppose we are given an entangled physical system. To classify the type of entan-

glement, we need to ask three questions:

1. What quantum degrees of freedom do each part of the system possess?

2. Which parts of the system are entangled?

3. Is the quantum state of the system pure or mixed?

The first two questions are straightforward, so we do not elaborate on them. As

for the third question, we have pure states when the quantum state of a system can be

described by a ket whose evolution is described by Schr6dinger's equation. Otherwise,

we have mixed states, which can only be described by probabilistic ensembles of kets,

i.e. density matrices. The Alice and Bob gedankenexperiment deals with pure state

entanglement.

In the context of quantum information theory where entanglement is viewed as a

communication resource, we often speak of entanglement between "parties," rather

than "parts of the system." The simplest case is two-party or bipartite entanglement.

In the gedankenexperiment we just examined, Alice and Bob were each a party of a

bipartite system.

We emphasize that each party may possess one or more quantum degree of freedom

and that these degrees of freedom need not be associated with different particles. In

the Alice and Bob gedankenexperiment, we had two entangled quantum degrees of

freedom: the spin of an electron and the spin of a positron. However, we could just

as easily have entanglement between Party A, B, and C in a six-spin system, where

Party A hold the first and second spins, Party B hold the third and fourth spins,

and Party C hold the fifth and sixth spins. Or, we could have entanglement between

30

the vibrational mode and spin state of a single particle, a situation which has been

experimentally realized in trapped ions [SKK+00, GRL+03].

The reader should note that in the literature, entangled is synonymous with non-

separable and nonentangled is synonymous with separable. This thesis will use both

terminologies equally. In fact, most theorists prefer the expressions "nonseparable"

and "separable." The reason is that we only understand what it means for a state to

be nonentangled (separable) and identify all other states as being entangled (nonsep-

arable).

If a state is separable with respect to every quantum degree of freedom in the

system (i.e. the number of parties is equal to the number of quantum degrees of

freedom in the above definition), the state is called fully separable. Such a state must

always be separable, no matter how the quantum degrees of freedom are distributed

among parties. This statement will become clear after we define pure and mixed state

entanglement.

In this thesis, we also introduce a new word: entanglable. We call a state "en-

tanglable" if there exists a unitary, which may be nonlocal, that transforms the state

into an entangled one. A state is nonentanglable if such a unitary does not exist.

2.1.3 Pure state separability

We now define pure state separability, first considering the bipartite case and then

generalizing to an arbitrary number of parties.

Suppose we have a bipartite system with its quantum degrees of freedom dis-

tributed among two parties A and B. We denote Party A's Hilbert space as HA and

Party B's Hilbert space as RB. The state of such a system can always be written as

dA dB

I0AB = Z Z C Ii) 0 1) (2.9)
i=1 j=1

where Ii) E RA, 1j) E HB, dA and dB are the dimensions of 'A and NB respectively,

and the weights cij are complex coefficients such that j IcC 12 = 1.

The bipartite pure state LM)AB is separable (nonentangled) if and only if it can be

31

expressed as

I)AB = 1a) 0 b) (2.10)

where Ia) E 'HA, Ib) E HB.

Conversely, a nonseparable (entangled) bipartite pure state cannot be expressed

in this form.

A separable bipartite pure state can be decomposed into a tensor product of a state

for Party A and a state for Party B. Thus Party A's measurements are independent

of Party B's measurements, and we can classically model correlations between the

measurement results of the two parties.

The expression in Eq. 2.10 is easily generalized to N parties. A state 1b) is N-

separable if and only if it can be expressed as

N

ICCZ", 104(2.11)
k=1

where #), is in the Hilbert space of the kth party.

Let us illustrate the concept of bipartite separability with a few examples. The

state I IT) is separable because it is a product state: IT)0 1 T). In contrast, the electron-

positron pair described in Eq. 2.2 is nonseparable. It is easily shown that this state

cannot be resolved into a tensor product of separate spin states for the electron and

positron, that is, 4)ep 7 (cT 11) + c1 11)) 0 (dT I T) + d1 I)) where cT, c{, dT, and dj are

complex coefficients constrained by the usual normalization relations.

In fact, the electron-positron pair possesses a special kind of entanglement; it

is called a maximally entangled state. When a bipartite state L)AB is maximally

entangled, it means that

tr A(<)AB AB (|) = tr B()AB AB K01) (2.12)

exactly what we found earlier. The identity matrix or maximally mixed state repre-

sents a uniform distribution in any basis. Therefore, measurements on either half of

a bipartite, maximally entangled system look perfectly random.

32

The spin basis {T, } 0 {', I} has a complementary basis composed of four maxi-

mally entangled states:

- (I|t) IT) |) (2.13)

= 1 (2.14)() ± I|t) It)) .(.4

These states are frequently called Bell states and will play an important role in this

thesis.

2.1.4 Mixed state separability

Mixed state separability is defined similarly to pure state separability, with the caveat

that the probabilistic nature of the system must be taken into account. We first give

the condition for bipartite separability, then generalize to an arbitrary number of

parties.

Suppose we have a bipartite system with its quantum degrees of freedom dis-

tributed among two parties A and B. The joint state can always be expressed as a

density matrix

PAB ZPk 10k) (OkI (2.15)
k

where 10k) are in the Hilbert space of AB and the weights Pk are probabilities. A

density matrix can be interpreted as a probabilistic ensemble of pure states. Note

that the states |0k) need not be orthogonal.

The bipartite mixed state PAB is separable (nonentangled) if and only if it can be

expressed as

PAB Pi' 0Bp (2.16)

where p4 and pP are density matrices such that p-4 E NA and pB E RB, and the

weights pi are probabilities.

Conversely, a nonseparable (entangled) bipartite mixed state cannot be expressed

in this form.

33

In view of Eq. 2.16, a separable bipartite mixed state may be interpreted as a

probabilistic ensemble containing tensor products of density matrices in RA with

density matrices in 'HB. Measurement on PAB may be thought of in the following

way. We randomly select one of the tensor products in the sum according to {pi},

then measure it. Thus Party A's measurement can be thought of as acting on the

reduced density matrix tr B(pD ® pP) - p-tr (pP) [NC00]. But since the trace of any

density matrix is always one, we immediately see that p-tr (p') is simply pf, a density

matrix in the Hilbert space of A. Similar reasoning shows that B's measurement acts

only on pP. As a result, Party A's and Party B's measurements are independent of

one another.

Furthermore, a separable bipartite mixed state can always be modeled by classical

correlations between local hidden variables [Wer89]. We might imagine a classical

machine that outputs pure states to Parties A and B according to some probability

distribution. A note of caution must be emphasized. If a density matrix p can be

written in separable form, that does not mean that the system has been physically

prepared as a pure state ensemble. The existence of a separable form merely implies

that the correlations between the measurement made by Party A and Party B on

PAB can be modeled classically.

In general, an N-party mixed state p is N-separable if and only it can be expressed

as
N

p= Epi %) pU . (2.17)
i k=1

where pi are probabilities and p are in the Hilbert space of the kth party.

Unfortunately, the definitions of mixed state separability in Eqs. 2.16 and 2.17 are

impractical to use because von Neumann proved that there are an infinite number of

decompositions for a given mixed state [Per95]. Consider the following example. The

maximally mixed state of two spins can be decomposed in at least two ways:

p= (1)IT)) (T (+ IT)It) (TI (+ 11) IT) (1 (T+]) I1) (I (1) (2.18)
4

34

where I#*) and 4'+) are the Bell states from Eqs. 2.13 and 2.14. Eq. 2.19 suggests

that p is an ensemble of maximally entangled states, tempting us to claim that the

density matrix is nonseparable. Yet Eq. 2.18 plainly shows that p is separable.

In general, we may be given a density matrix decomposed into pure states, some

of which are nonseparable. To determine if the density matrix is entangled, we need

to check all possible decompositions into separable states. However, the number of

decompositions is infinite. Consequently, it is extremely difficult to determine whether

a given mixed state is separable. We will touch on this problem when we consider

measures of mixed state entanglement.

2.1.5 Measures of entanglement

Having defined entanglement rigorously, we desire a method to quantify the entan-

glement of an arbitrary pure or mixed state. While N-party entanglement measures

exist (for instance, N-tangle [WC01]), we focus on bipartite measures in this thesis.

Here we describe the definitive entanglement measure for bipartite pure states, von

Neumann entropy [Per95], and the most commonly used entanglement measure for

bipartite mixed states, negativity [dHSL98, VWO2].

General considerations for pure states

Consider an arbitrary superposition of I) IT) and 11) t):

y)=a IT) T)+ b)) (2.20)

where a and b are complex coefficients such that ja12 + b12 = 1. Let us assume that

Party A possesses the first spin and Party B possesses the second spin.

When a = 1 and b = 0, we have the separable state IT) IT). When a = b = 1/v,

we have the maximally entangled state 10+) from Eq. 2.13. Now let a = 1/2 and

b = V'3/2. Intuitively, we expect that the entanglement of this state is somewhere

between that of 1t) IT) and 10+). But how entangled is it?

One way to measure the entanglement of a bipartite state L'/)AB is to compare

35

VO)AB against a standard state, which we choose to be 10+). To do the comparison,

we must either convert 10+) - I4)AB or 4/)AB * 10+). In the first process, we use k

maximally entangled pairs to form n approximate copies of V-)AB and in the second

process, we start with n copies of 4 ')AB and distill from them k' maximally entangled

pairs. It is reasonable to use the efficiency of these conversion processes as a way to

quantify entanglement. Consequently, we define the entanglement of formation Ef

and the entanglement of distillation Ed for bipartite pure states |)AB:

Ef(I@)B) =lim kmin (2.21)

EdI~AB lM km/ax (2.22)Ed(IO)AB) n--4c max

For pure states, it has been shown that Ef and Ed are not only equivalent; they

are exactly the von Neumann entropies [BBP+96] of the reduced density matrices PA

and PB corresponding to 4 ')AB AB(0. Therefore, we define the entanglement E of a

bipartite pure state 1/)AB to be

E(O)AB) = Ef(I)AB) = Ed(I)AB) (2.23)

= S(pA)

= S(pB)

where S denotes the von Neumann entropy function and the reduced matrices are

given by PA = tr B(0) AB AB (0 1) and PB = trA()AB AB M)*

von Neumann entropy

The von Neumann entropy [Per95] is a measure of disorder for pure quantum states

and is defined by

S(p) -tr [plog2 (p)] . (2.24)

When an analytic function, like a logarithm, is applied to a matrix, the function is

defined in the diagonal basis of the matrix. Since p is Hermitian, it may always be

36

diagonalized as p = UDUt with U being a unitary matrix and D being a diagonal

matrix. Consequently, we have

log2 (p) = UD'Ut (2.25)

with D'3 = Dij = 0 for i # j and Di = log2 (Di).

If this expression is substituted into Eq. 2.24, the entropy becomes

S(p) = -tr (UDUtUD'Ut) (2.26)

- EDii g2 Di,

using the cyclic property of the trace in the first line. Relabeling the elements Dii as

Ai (the eigenvalues of p), we obtain the usual formula for computing von Neumann

entropy:

S(p) = - 1 A log 2(Ai). (2.27)

Some of the eigenvalues may be zero in which case we define 0 log 2 (0) = 0.6

We note several properties of von Neumann entropy that will be useful in this

thesis:

1. Entropy of pure states: S(j0) (41) = 0. Easily proven by writing 1') (01 in an

orthogonal basis where 4 is one of the basis states.

2. Upper bound on entropy: S(p) < log 2 d where d is the dimension of p. The

equality holds when p is the maximally mixed state Md = Id/d with Id being

the d-dimensional identity matrix.

3. Entropy of separable bipartite mixed state: S(p 0 a) = S(p) + S(u). Easily

proven by noting that the eigenvalues of p 0 a are the products of the separate

eigenvalues of p and a.

When p may be decomposed as p = o, the third property yields a simple

6This definition may be argued from im O+ x log2 (X) = 0.

37

formula for the von Neumann entropy:

S(p) = NS(-). (2.28)

Now let us return to the example of Eq. 2.20 and compute the entanglement of

17). First, we compute the reduced density matrices of Party A and B (which are

equal since 1y) is invariant under exchange of the two spins):

PA = PB (2.29)

|a|12 0

0 |bI2

where PA and PB are the reduced density matrices as defined in Eqs. 2.4 and 2.7.

Application of Eqs. 2.23 and 2.27 yields the entanglement

E(Iy)) S(pA) (2.30)

= -1a2 log 2 a 2 - b2 log2 b12 .

This formula gives E(T t)) = 0 and E(1#+)) = 1 for the extreme cases of the separable

and maximally entangled states. What happens when a = 1/2 and b = v43/2? We

calculate E(I-y)) ~ 0.811. Indeed, Iy) possesses an amount of entanglement between

that of IT) IT) and 10+).

General considerations for mixed states

While the von Neumann entropy is an excellent measure of pure state entanglement,

it does not work well for mixed states. The von Neumann entropy captures all of the

disorder in a system whether it is due to classical or quantum correlations. Pure states

may only possess the quantum type, but mixed states can have both. For example,

consider the maximally mixed state (identity matrix). This state has the maximum

possible von Neumann entropy, but it is clearly separable according to Eq. 2.17.

Unlike pure states, there is no widely accepted measure of mixed state entangle-

38

ment. Some well-known bipartite measures of entanglement in the literature include

entanglement of formation [BDSW96], relative entropy of entanglement [VP98], and

negativity[dHSL98, VW02]. The first two measures are all variationally-based and

extremely difficult to compute for arbitrary density matrices with greater than four

dimensions. For instance, the entanglement of formation for a bipartite mixed state

PAB is defined as

Ef (PAB) = min{ IVk)} [PkE(00J (2.31)

where the probabilities Pk and the pure states { 0k)} correspond to a decomposition

(see Eq. 2.15). The variational definition forces us to search over all valid decompo-

sitions of p to find the minimum.

Negativity

In contrast, negativity is simple to compute for density matrices of any dimension

and therefore it is the most widely used measure in the literature. We now describe

how to compute negativity. The calculation relies on a linear algebra operation called

the partial transpose.

We denote the partial transpose of p with respect to Party A as pTA. Now any

bipartite density matrix can be expressed as

P = E Ca,a,bb' a) (a' 0 1b) (b'j . (2.32)
a,a',b,b'

where the eigenstates 1a), la') and 1b), b') live in the Hilbert spaces of Parties A and

B respectively. The constants Ca,a,b,b' are complex and constrained to give p unit

trace. Using this notation, the partial transpose is defined as

P ^ = E Ca,a,b,b' Ia') (al j 1b) (b'I (2.33)
a,a',b,b'

This linear algebra operation simply swaps the bra and ket (row and column index)

in Party A's Hilbert space. The partial transpose depends on Party A's basis, but

the choice of basis does not affect the eigenvalues of pTA.

39

If pTA has all nonnegative eigenvalues, we say that p has positive partial transpose

(PPT). If pTA has at least one negative eigenvalue, we say that p has negative partial

transpose (NPT). Throughout this thesis, we will assume that the phrase "partial

transpose" is equivalent to taking the partial transpose with respect to Party A.

Negativity originates from the following criterion for mixed state entanglement

due to Peres [Per96] and Horodecki [HHH96]:

If the partial transpose of a bipartite system p has a negative eigenvalue,

p must be entangled.

It is easy to see that separable states must have a partial transposition that

possesses nonnegative eigenvalues. Any separable state can be expressed as

Ps = Pi pi 0 pi (2.34)

where pi and pi are density matrices in the Hilbert space of Parties A and B respec-

tively and pi are probabilities such that Es pi = 1. By the definition in Eq. 2.33, the

partial transpose of p, is

TA i)iT i(-5PS = pi (PA ®pB (2.35)

Since p' is Hermitian, (pi)T = ((pi)t)* = (pi)*. Consequently, (pi)T has nonnega-

tive eigenvalues and unit trace, making it a valid density matrix. It follows that pTA

is also a density matrix with nonnegative eigenvalues and unit trace.

Observe that the Peres-Horodecki criterion merely gives a sufficient condition for

entanglement. If it fails, the statement is not known to give any information about the

separability of the state, except in the two qubit case when it becomes both necessary

and sufficient. There are, in fact, so-called "bound" entangled states [Hor97] whose

partial transpose have positive eigenvalues even though the state is nonseparable.

Maximally entangled pure states cannot be distilled from bound entangled states.

After Zyckowski, et.al. [dHSL98] and Vidal and Werner [VW02], we define nega-

tivity of state p as

E,(p) = max{0, -Amin(pT^)} (2.36)

40

where Amin (a) is the most negative eigenvalue of a density matrix -. Notice that

separable states automatically have zero negativity. The major difficulty with neg-

ativity is that it provides no physical intuition since the partial transpose does not

correspond to any physical operation (e.g. measurements or unitaries).

2.2 Quantum computation

A computation requires two ingredients: a state where information is stored and op-

erations that alter the state. This section describes these two abstractions in the

context of quantum computation. For further reading, we recommend the text Quan-

tum Computation and Quantum Information by Nielsen and Chuang [NCOO] and the

quantum computation and information lecture notes by Preskill [Pre98].

2.2.1 State

Quantum bit

In a classical computer, the bit is the smallest unit of information that can store the

state of the system. Likewise, we can define a quantum bit or qubit as a superposition

of two orthogonal quantum states, which we name 10) and 11):

10) = co 10) + ci 1) (2.37)

with complex coefficients co and ci such that IcoI 2 + jcij2 = 1. The labels 10) and 11)

are intended to evoke the analogy of logical "0" and "1" in classical computation. It

will sometimes be useful to think of a qubit in this manner, although the coherent

superposition inherent to the qubit clearly has no classical analogue.

The qubit in Eq. 2.37 may also be expressed as a vector

[co . (2.38)
TChi

This notation is useful to understand how operations (usually written as matrices)

41

act on qubits.

From Eq. 2.37, we see that three continuous degrees of freedom are needed to

describe a qubit (one removed by the normalization constraint). However, an overall

phase cannot be detected in a quantum measurement, leaving us with two continuous

degrees of freedom. Therefore, we can also specify the qubit by a polar angle 9 and

an azimuthal angle #:
9 9

|) = cos 0) + e'4 sin 0I1) (2.39)

This expression is called the Bloch sphere representation. If 10) and 1) are mapped

to ^ and - (the "north" and "south" poles of the Bloch sphere), then 1') can be

thought of as the normalized vector7 n = (sin 9 cos #, sin 9 sin #, cos 9) on the Bloch

sphere, as depicted in Fig. 2-1.

X

-. I

I1)

Figure 2-1: Bloch sphere representation of a qubit ') = cos 2 |0) + e'O sin 2 11).

Any two level quantum system can be considered a qubit. The simplest example

is a spin-1/2 particle. The convention is to map the spins states to computational

states such that

iT) or

7Notation: ii will always be a normalized vector

10)

11) .

throughout this thesis.

42

(2.40)

Multiple qubits

The state of multiple qubits can be expressed as a superposition of tensor products

of 10) and 1). A possible two-qubit state is thus |0) | 0). Tensor products becomes

cumbersome for many qubits, so we adopt a shorthand where the Kronecker product

symbols are dropped: 1') 1) = ') 091#). For example, 10) 0) = 10) 0). This

notation is often simplified further and the digits 0 and 1 are written as a string

inside a single ket. For instance, 100) 1 10) 0 10). The state of two qubits can

subsequently be expressed as

1') = coo 100) + coi 101) + cio |10) + c 1 111) (2.41)

where the cij are complex coefficients such that 4') is properly normalized.

In an alternative notation, the binary number labels in Eq. 2.41 may be rewritten

in decimal base. For example, the state of any N-qubits can be expressed as

2N_1

4') = E ci i) (2.42)
i=O

and the N-qubit generalized Bell states can be defined as

>= 7 (li)1 2 N j _1) (2.43)3 .) = (1j) i2

where 0 < j < 2 N-1 _ 1.

Regardless of what notation is used, 10), 1), and tensor product combinations of

them are called computational basis states. For N qubits, the states {ji)} in Eq. 2.42

form the computational basis.

2.2.2 Operations

From elementary quantum mechanics, we know that a quantum state evolves accord-

ing to a unitary matrix U:

I0(t)) = U(t) I0(0)) (2.44)

43

where U(t) = eit/h and 'R is the Hamiltonian that models the dynamics of the

underlying quantum system.

For the purposes of computation, we only need to know how U maps initial states

to final states; the details of the Hamiltonian or how long it is applied are irrelevant.

Consequently, we can represent operations on qubits by quantum gates.

We draw a one qubit gate as a square box that has an input "wire" on the left

and an output "wire" on the right. Thus, time implicitly flows from left to right. A

single wire "carries" one qubit.

Some common one-qubit operations are the Pauli operators X, Y, and Z (tradi-

tionally also written as ax, -y,) and o-,) and the Hadamard operator H. Their matrix

representations in the computational basis are

0 1
X = (2.45)

1 0-

0 --
Y = (2.46)

i 0

1 0
z = (2.47)

-0 - 1-

H =(2.48)

with corresponding gate representations shown in Fig. 2-2(a). Notice that X applies

the transformation 10) - 1) and 11) - 10), which looks like a classical NOT opera-

tion. Therefore, an alternative gate representation for X is the NOT symbol depicted

in Fig. 2-2(b).

In general, an arbitrary single-qubit unitary can be interpreted as rotating the

qubit's Bloch vector by 0 around the unit vector n in the Bloch sphere:

R(ii, 0) = e- (2.49)

where 0 is a vector of Pauli matrices (X, Y, Z).

An important two-qubit gate is the controlled NOT or CNOT gate. Its matrix

44

X Y

Z H
(a) (b)

Figure 2-2: (a) Quantum gate representations of Pauli operators X, Y, and Z and
Hadamard gate H. (b) Alternative representation of X, the NOT gate.

representation in the computational basis {00) , 01) ,110) , 11)} is

1 0 0 0

0 1 0 0
Uenot = 0 0 0 1 (2.50)

L 0 1 0_

On computational basis states, Uenot behaves exactly like the classical controlled

NOT operation. If the first qubit is 0), Ucnot does nothing; if the first qubit is

11), Uen0 t applies a NOT (X) gate to the second qubit. This interpretation leads to

the gate representation shown in Fig. 2-3(a). It has two horizontal wires, one for the

controlling qubit and one for the target qubit. The dark circle specifies the controlling

qubit while the NOT gate acts on the target qubit.

Control qubit X X

Target qubit

(a) (b)

Figure 2-3: (a) Quantum gate representation of the CNOT operation. (b) An example
of a quantum circuit.

We can assemble quantum gates into a quantum circuit by hooking input wires of

quantum gates to the output wires of other quantum gates [Deu89] as shown in Fig. 2-

3(b). The steps of a composite quantum operation may be illustrated as a quantum

45

circuit. As an abstraction, quantum circuits look like classical circuits, except the

underlying states and operations differ fundamentally in nature.

Finally, we mention an important result in quantum computation. The two-qubit

CNOT operation and the continuous set of one-qubit rotations R(', 0) together can

be used to build any unitary operation for an arbitrary number of qubits [NCOO].

2.3 Liquid-state NMR quantum computation

This section reviews some basic theoretical facts concerning liquid-state nuclear mag-

netic resonance (NMR) quantum computation. We begin by discussing the natural

quantum state in liquid-state NMR - the thermal state. Then we give a proce-

dure for creating initial states that can be used in quantum computation. Finally,

we briefly mention the principles behind unitary operations and readout in liquid-

state NMR. For further reading, we recommend introductory articles by Vandersypen,

et. al. [VYC02] and Jones [Jon0l] and Steffen's PhD thesis [Ste03].

2.3.1 Thermal state

Liquid-state NMR quantum computing experiments are performed on samples con-

taining order 1018 - 1019 identical molecules under a strong, static magnetic field

(typically around 12 T). Each molecule possesses a number of spin-1/2 nuclei, which

represent the qubits. NMR experiments thus work with an ensemble of quantum

computers, one per molecule. The large number of molecules is needed because the

signal from a single nuclear spin is exceedingly weak.

The dynamics of this system are dominated by the Zeeman interaction between

the nuclear spins and the magnetic field [Gri95], which splits the energy of each spin

into two levels. The generic Zeeman interaction for a single spin is

H = - B - B (2.51)

where ' is the magnetic dipole moment of the spin and B is the magnetic field. It

46

can be shown that

M = -7a (2.52)

where ' = (X, Y, Z) as before and -y is the gyromagnetic ratio unique to the chemistry

of the spin and its environment.

If we choose the magnetic field to be along the z-axis such that B = Bo0 and

insert our expression for fl, the Hamiltonian can be rewritten as

H = -- Z (2.53)
2

with the resonance frequency v = -yB corresponding to the Zeeman energy splitting.

Because the resonance frequency depends on B, the strength of the field must be

extremely homogeneous over the volume of the sample. Otherwise, each molecule

will have a different resonance frequency and the overall measurable signal from the

ensemble will be washed out.

In general, we may have many spin-1/2 nuclei per molecule, all with different

resonance frequencies. For convenience in the analysis, throughout this thesis, we

assume that all the spins have the same Zeeman energy splitting and consider a

Hamiltonian of N isotropic nuclear spins:

hv N
1H = -v N i (2.54)

i=1

which has been expressed in the computational/spin bases. 8 Here v is the character-

istic frequency corresponding to the Zeeman energy splitting of one spin, Zi is taken

to be the Pauli Z operator acting on the ith spin, and N is the number of spin-1/2

particles in each molecule. In reality, neighboring spins also interact through an elec-

tron mediated force, giving rise to a J-coupling term hJZiZj between the ith and jth

spins. However, the coupling constant J is typically six orders of magnitude smaller

than the strength of the Zeeman interaction v, so we neglect it in this thesis.

8In NMR quantum computation, generally the qubits are chosen to be spin-1/2 particles, and
the computational basis is taken to be equivalent to the spin basis.

47

Due to the ensemble nature of liquid-state NMR, the natural quantum state of

the system is the thermal state given by the Boltzmann distribution:

e-?i/kT
Pth = (2.55)Z

where H is the Hamiltonian from Eq. 2.54, k is the Boltzmann constant, T is the

absolute temperature, and Z is a constant chosen such that tr Pth = 1.

Notice Pth is diagonal in the computational basis because the Hamiltonian pos-

sesses the same property. The Hamiltonian also has extensive symmetry. It is in-

variant under the exchange of any two spins and its energy eigenvalues are simply

the total azimuthal spin in the computational basis states. The absence of coupling

terms in the Hamiltonian also makes the N-qubit thermal state fully separable:

N

Pth = Pth,1 (2.56)
i=l

where Pth,1 is the thermal state corresponding to any single qubit.

In analytical calculations, we prefer to work with dimensionless quantities if pos-

sible and thus define

a = hv/kT. (2.57)

This dimensionless variable characterizes the polarization of the thermal state because

in the liquid-state NMR regime (a < 1), the one-qubit thermal state is approximately

11+2 0~

Pth,1 - (2.58)
2 0 1-2_

We now rewrite the thermal state in terms of a and a dimensionless Hamiltonian

Rd:

Pth = (2.59)
Z

where Nd = 2 j=N1 Zi and the normalization constant is

Z = (ea/2 + e-a/2)N. (2.60)

48

The diagonal entries of the thermal state in the computational basis are easily

found to be

(il Pth I) = [N-2w(i)Ja/2 I N< < 2 1 (2.61)
Z

where the Hamming weight w(i) is the number of is in the binary expression for i.

The number (il Pth i) is the probability for finding the overall spin state in ji). We

will frequently refer to this formula.

We also use Eqs. 2.27 and 2.28 to calculate the von Neumann entropy of an N-

qubit thermal state:

S(pth) = NS(Pth,l) (2.62)

= -N[plog 2 (p) + (1 -p)log 2 (1 -p)]

where Pth,1 is again the thermal state for a single qubit and p = 1 [1 + tanh a].

2.3.2 Initial state preparation

Most quantum algorithms begin with an initial pure state, but liquid-state NMR

experiments must be performed at room temperature where a < .9 In this limit,

thermal states are extremely close to the maximally mixed state (see Eq.2.61), far from

being pure states. Even for spin species with large Zeeman splittings, the population

difference between IT) and 1) for a single spin is no more than 10- in conventional

NMR magnetic fields.

To solve this problem, liquid-state NMR quantum computing experiments use

initial states of form

Peff = (1 - E)Md + E 10) (01 (2.63)

where the dimension of Peff is d = 2N, Md = Id/d is the maximally mixed state (Id is

the d-dimensional identity matrix), and e characterizes the excess population in the

ground state 10). In typical NMR quantum computing experiments, c ranges between

10-7 and 10-4.

9See Section 3.2.1 for further discussion.

49

Due to the large contribution from the identity matrix, Peff is exceedingly mixed.

However, if a unitary operation is applied to Peff, the identity will remain untouched

as UIU1 = I. Computations may therefore be performed as if they were only acting

on the ground state. For this reason, Peff is called an effective pure state.10

One method of creating an effective pure state is temporal averaging [GC97,

KC98]. We conduct multiple experiments in which the thermal state is prepared

in a different way each time and sum the results afterwards. Unitary operations are

performed on Pth to cyclically permute the diagonal entries that correspond to the

populations of the excited computational basis states. The transformed states are

then summed over all possible cyclic permutations. This procedure is summarized by

the mathematical statement

d-1

Peff = PjUiPthU. (2.64)
j=1

where d is the dimension of Peff, Pj 1/(d - 1) and Uj is a unitary operation that

cyclically permutes the populations of the excited computational basis states ii) # 10)

j - 1 times.

To see how the method works, we demonstrate the procedure for two qubits. In

this case, Pth is a 4 x 4 density matrix whose diagonal entries may be labeled by

alphabetical letters:
a 0 0 0~

0 b 0 0
Pth = 0 0 0 (2.65)

LO 0 0 dj

where the representation is given in the computational basis.

If the excited state populations b, c and d are cyclically permuted once and twice,

ioSometimes an effective pure state is also called a pseudo-pure state in the literature.

50

we obtain the transformed thermal states

a 0 0 0

0 d 0 0
P = 0 0 b 0 (2.66)

_O 0 0 cJ
a 0 0 0~

0 C 0 0
P2 = 0 0 d 0 .(2.67)

O 0 0 b

Now we mix the states together uniformly to form the effective pure state

Peff =1 (Pth + Pi + P2) (2.68)

a 0 0 0

o b+c+d 0 0

o o b+c+d 03

0 0 0 b+c+d
3-

=14 + E 10) (014

where E= a - (b + c+d)/3.

It is straightforward to generalize this analysis to N qubits and obtain an expres-

sion for the excess population in the ground state:

eNa/2 _ - Na/2/Z
6 N exact (2.69)

Na/2
S~2N _- 1, room temperature (2.70)

where we have used the fact that the ground state population in a thermal state is

e-Na/2/Z (see Eq. 2.61) in the first line and taken the limit a < I in the second line.

51

2.3.3 Unitary operations and readout signal

Here we mention a few significant facts about NMR unitary operations and readout

that are relevant to this thesis.

A liquid-state NMR system qualifies as a universal quantum computer since single-

qubit rotations and the CNOT operation can be implemented. Single-qubit rotations

are achieved by applying a radio frequency pulse to a spin at its resonant frequency.

This signal perturbs the large, static magnetic field B with a small sinusoidal field

along an axis orthogonal to . The rotation axis is specified by the phase of the

sinusoid while the rotation angle is specified by the amplitude of the sinusoid. A

CNOT operation is executed by combining the single-qubit radio frequency pulses

with time delays where the J-coupling is allowed to evolve freely.

In liquid-state NMR, the measurable signal S of one spin is proportional to the

expectation value of X or Y with respect to the spin state p:

S oc tr (pX) or (2.71)

S oc tr (pY). (2.72)

This fact justifies use of the effective pure state. When p = I, S = 0 since X and Y

are traceless operators. The measurable signal for UPeffUt thus corresponds to the

excess pure state U 10) (01 Ut, attenuated by factor E. For more spins, the observable

measured is a tensor product of X and Y operators, so the argument holds generally.

2.4 Bounds on the entanglement of near maximally

mixed states

This section reviews research concerning the separability and nonseparability of near

maximally mixed states. We focus on the bounds due to Braunstein, et. al. [BCJ+99],

describing their results and explaining how they were derived. Then we discuss the

implications of the separable bound on liquid-state NMR quantum computation.

52

2.4.1 Braunstein et. al. separable and nonseparable bounds

Formalism

The effective pure state (for small c) is an example of a state with a density matrix

very close to the maximally mixed state. These so-called near maximally states have

the form

P= (1 - e)Md + ep' (2.73)

where d is the dimension of pe, Md Jd/d is the d-dimensional maximally mixed

state as before, p' is an arbitrary density matrix, and c < 1.

The parameter e may be interpreted as the size of a neighborhood around the

maximally mixed state. It is known that all of the states in this neighborhood are

separable if the size of the neighborhood is sufficiently small [dHSL98]. This suggests

that for e below some threshold, p, is always separable.

Braunstein et. al. [BCJ+99] recently established upper and lower bounds on E for

a system of N spin-1/2 particles:

1
for c ; + - p< is always separable (2.74)

1+l 2 2N-1

1
for c > 1 + 2/ - p, can be nonseparable. (2.75)

The upper bound (Eq. 2.74) states that when c is sufficiently small, p, is separable.

The lower bound (Eq. 2.75) states that when e is sufficiently large, there exists some

p' such that p, is nonseparable.

Derivation of separable bound

Proof of the separable bound in Eq. 2.74 relies on the decomposition of the near

maximally mixed state into a particular continuous and separable basis. The rea-

soning behind the proof may be summarized as follows. If a state has nonnegative

coefficients for a separable, continuous decomposition, then the coefficients can be

interpreted as probability densities and the state itself must be separable. To deter-

mine when p, = (1 - c)Md+ ep' has nonnegative coefficients, we individually calculate

53

the coefficients for Md and p'. The maximally mixed state Md is clearly separable, so

all its coefficients are nonnegative. The state p' may be entangled. If so, it must have

at least one negative coefficient. Yet we can always lower e until all coefficients of the

overall state p, are nonnegative. The goal of the proof is to determine the value of c

where this transition happens.

Now we describe the details of the derivation. A separable basis for N spins is

the continuous set of fully separable spin states,11 parameterized by N Bloch spheres.

The decomposition of a density matrix in this basis is

N

p= dQ1 ... dQN W0(1i --. -i N Pi (2.76)

where Qi is the solid angle of the ith Bloch sphere, w(ii1, ... , i7 N) are the coefficients

of the decomposition, and Pl = 1(12+ - 6) are the projectors corresponding to the

spin state pointing in the ni direction on the Bloch sphere.

Because the basis used in Eq. 2.76 is overcomplete, there are no unique coefficients.

We now produce a specific decomposition by introducing a discrete basis formed from

tensor products of Pauli matrices. The decomposition of an arbitrary density matrix

in this discrete basis is
1 N

~C~1 O~T 0 ~(2.77)P = TCal ...-aN a
i=1

where the coefficients cl-...-N specify the decomposition, the indices ac take on the

values {0, 1, 2, 3}, and the - operators are the Pauli matrices defined as UO ' I2,

91 = X, U2 - Y, and U3 = Z. To avoid unwieldy notation, here we have adopted the

Einstein convention and implicitly sum over repeated instances of ac. The coefficients

of the decomposition are given by

. N~

Cl--- N tr . (2.78)

"The fully separable spin state has form i=1 ?$)k where [4') is an arbitrary state of the ith

spin.

54

The continuous coefficients w(Rit, ..., iN) are generated via the relationship

1 3r
--oai = - j dQ (ni) a,P (2.79)2 47r

where (nii)a, is the ai-th component of the Bloch vector ni and we set (ni)= 1/3.

Inserting this expression into the discrete Pauli decomposition of Eq. 2.77, we get

3 jN N N

P = dQ1... dQN Ca...aN ni a, ' 2.8
i=1 (j=1

Comparing this relation with Eq. 2.76, we find the continuous coefficients

n)N N
W(Ca, ... ,ThN Cai... N fi)aj. (2.81)

Substituting Eq. 2.78 for cal- ,-...aN we obtain the promised decomposition

1)N ."N
w,...(t (12+ o (2.82)

Now let us calculate the coefficients for Md and p' under the representation in

Eq. 2.82. The maximally mixed state Md has uniform coefficients

W (17, ... , nN) (1/47r) (283)

as the total solid angle of any Bloch sphere is 47r.

The density matrix p' is unspecified, but we can derive a lower bound on its

coefficients. Each matrix in the tensor product 12 + 3ni - 0 has eigenvalues -2 and 4

because i4 - o has eigenvalues -1 and 1.12 The largest eigenvalue of a density matrix

is 1. Since the eigenvalues of a product matrix are the products of the factor matrix

eigenvalues, the most negative possible value of the trace in Eq. 2.82 is 4 N-1(2) _

"An easy way to understand this result is to recall the Hamiltonian of a spin-1/2 particle in a
magnetic field oriented in the ni- direction.

55

-2 2N-1, yielding a bound on the coefficients of p':

Putting together these

constrained by

We(n1, ... , nN

results, the coefficients of p,, as defined in Eq. 2.82, are

=)1 -)wM I, . . , -- ,N) + ('i, ... , riN)

1- 2 2N-1

- (4 7r)N (47)N

(2-85)

(2.86)

These coefficients must be nonnegative when

1
- 1 +22N-1' (2.87)

which is exactly the separable bound of Eq. 2.74.

Derivation of nonseparable bound

The nonseparable bound of Eq. 2.75 derives from a specific construction for p,. The

main steps are:

1. Divide the N-spin system into two parties, each containing N/2 spins.

2. Construct a state of form p, such that p' corresponds to a specific maximally

entangled state shared between the two parties.

3. Project the constructed state into a Werner state [Wer89]. Application of a

condition on entangled Werner states yields a bound on nonseparable p, .

Now we go over the details. In the first step, the system is condensed into two

spin-(r - 1)/2 particles where r = 2 N/2 and each aggregate spin particle is composed

by adding together N/2 spin-1/2 particles. Moreover, each aggregate spin particle has

r angular momentum eigenstates [Sak94]. This construction is simply a physically

motivated method to divide the system into two parties.

56

22N-1
W'(n1, .. , N) > (47) N

(2.84)

For the second step, we consider the near-maximally mixed state

P = (1 -)M2 + E |/) ('/ . (2.88)

with maximally entangled state

r
77) = - f) if) .(2.89)

n=1

The kets If) are angular momentum eigenstates. The first ket in each ket pair corre-

sponds to the first aggregate spin and the second ket in each ket pair corresponds on

the second aggregate spin.

In the final step, we project p' into the subspace spanned by 1) and 12), yielding

-2 14 + -(11) 1) + 12)12)) ((1 1 + (21(21)] (2.90)
C .r r

where the constant C = (4/r 2)[1+ e(d/2 - 1)] normalizes p- properly.

Some rearranging gives

= (1 - E')M 4 + E') (1 (2.91)

with a new parameter
2E/r Er/2 (2.92)

C 1+ E(r/2 - 1)

and a new maximally entangled state

1
|s) =-(1) 1) + 12)12)). (2.93)

Now , of Eq. 2.91 is an instance of a Werner state. Because Werner states are

always entangled [Wer89, Pop94, BBP+96] for E' > 1/3,13 we find

1 _ 1
6> 1 - 1+2 N/2' (2.94)

'In Chapter 6, we derive a more general version of this condition.

57

precisely the Braunstein et. al. bound on nonseparable near maximally mixed states.

Improved separable bound

In the past year, Gurvits and Barnum [GB03] tightened the bound on the separability

of near maximally-mixed states to

1

2 N/2-1 (2 N - 1) (2.95)

This bound scales as 2 -3N/2, an improvement over the corresponding Braunstein et. al.

bound, which scales as 2 -2N. The derivation of the Gurvits-Barnum result lies beyond

the scope of this thesis.

2.4.2 Implications on liquid-state NMR quantum computa-

tion

When liquid-state NMR quantum computation was first proposed in 1997, many

scientists were skeptical. Most quantum algorithms require entangled states, but the

effective pure state contains a minute fraction of pure state. It seemed implausible

that such a state could be entangled since its density matrix lies so close to the

maximally mixed state, which is clearly separable. Despite these criticisms, numerous

quantum algorithms were successfully demonstrated in liquid-state NMR [CVZ+98,

CGK98, CPM+98, JM98, JMH98, LBF98, NKL98].

But a year after the initial experiments, Braunstein and his collaborators applied

their bounds on near maximally mixed states to NMR and proved that the states

used in current NMR quantum computations were never entangled at any moment

in time, since pc is separable for N < 12 under ideal experimental conditions, as seen

in Fig. 2-4. The bound they derived in Eq. 2.74 is clearly applicable because NMR

machines can only transform a state of form p, to another state of form p,. In fact,

the tighter Gurvits-Barnum bound shows that c remains in the separable regime for

any computation using less than 23 qubits (also plotted in the same figure). This

situation still holds today because the largest NMR quantum computer on record

58

100

1 0 - - ..--.-. .-.-.-. .- - .-

Y 1 0 - - - -- -
0

10 201
0 5 10 15 20 25 30

Number of qubits

Figure 2-4: Comparison of c in NMR effective pure state (solid line) and constraints
on E from the Braunstein et. al. bound on separable pE (dash dotted line) and from
the Gurvits and Barnum bound on separable p, (dashed line). Here the effective pure
state corresponds to an isotropic proton spin system in a 11.74 T magnetic field at
room temperature.

uses 7 qubits [VSB+01].

How should we interpret the Braunstein et. al result? There are two possibilities.

1. NMR machines are merely simulating quantum computation.

2. Entangled states are not a necessary resource for quantum computation.

Neither possibility has been ruled out, but all attempts to classically model separa-

ble NMR quantum computation have been unsuccessful thus far. Shortly after the

Braunstein et. al. result was published, Schack and Caves constructed a model [SC99]

where the NMR quantum state is expressed as a probability distribution over the

orientation of Bloch vectors and the effect of a quantum gate is described by a con-

tinuous set of transition probabilities that map the initial probability distribution to

the final one. The model accurately simulates separable NMR quantum computation.

However, compared to the true physical, measurable signal, the signal in the model

decreases exponentially as a function of the number of entangling gates (nonseparable

59

unitary operations). In 2002, Caves and Menicucci [MC02] constructed another clas-

sical model that also fails because the number of hidden classical variables required

increases exponentially as a function of the number of qubits.

Though far from conclusive, these preliminary results admit several interpreta-

tions. First, even if NMR machines are not performing true quantum computation,

they might still be more efficient than classical computers. Second, the fact that

the signal in the first model decreases after the application of each entangling gate

suggests that entangling operations, rather than entangled states, may be the cru-

cial resource for quantum computation. This conjecture is supported by the recent

result that universal quantum computation can be performed with any entangling

interaction and local unitary operations [DNBT02].

2.5 Summary

In this chapter, we covered basic definitions and concepts in entanglement, quantum

computation, and liquid-state NMR quantum computation and ended with a review

of bounds on entanglement in NMR quantum computation.

We defined the notion of separability for quantum states. A bipartite pure state

1O)AB is separable if and only if it can be expressed as

-0A =a) 0 1b) (2.96)

where 1a) E RA and 1b) E NB. A bipartite mixed state PAB is separable if and only

if it can be expressed as

PAR B mj4p (2.97)PAB pi Pi (2) P

where p E NA, pP E NB, and pi are probabilities.

We also described two measures of bipartite entanglement - von Neumann entropy

for pure states and negativity for mixed states. The entanglement of a bipartite pure

state V)AB is given by

E(IO)AB) = S(pA) = S(pB) (2.98)

60

where S denotes the von Neumann entropy function and the reduced matrices are

given by PA = trB(O)AB AB (01) and PB = tr A(10 AB AB (b). The von Neumann

entropy of a state p can be calculated in terms of its eigenvalues A with the formula

S(p) = - 1 A log 2(A). (2.99)

The negativity of a bipartite mixed state PAB is given by

E,(p) = max{0, -Amin(P')} (2.100)

where Amin(-) is the most negative eigenvalue of a density matrix a-.

We learned that in quantum computation, the state of the computer can be stored

in information units called qubits and the operations on the state are performed by

unitary transforms. The qubit is a superposition of two orthogonal states 10) and 11):

10) = co l0) + ci 11) (2.101)

with co and ci being complex coefficients such that Ico1 2 + cu12 = 1. The states 10),
11), and tensor product combinations of 10) and 1) are called computational basis

states. We can represent a unitary operation by a quantum gate and a series of

unitary operations by a quantum circuit.

Quantum computations have been realized on nuclear spins in liquid-state NMR.

The natural NMR quantum state is the thermal state

Pth = eHda (2.102)

where the dimensionless parameter a = hv/kT characterizes the polarization of Pth

(v is the resonance frequency and T is absolute temperature), Z is a normalization

constant, and (d is the dimensionless Hamiltonian

N

Rd = EZi (2.103)
i=1

61

where Zi is the Pauli Z operation acting on the ith spin. The thermal state is

inherently mixed while most quantum algorithms require an initial pure state. To

solve this problem, transformed thermal states can be mixed together to form an

effective pure state

Peff = (1 - C)Md + 6 10) (01 (2.104)

where the maximally mixed state Md is Id/d (Id being the d-dimensional identity

matrix), 10) is the ground state, and c is a parameter much smaller than one. Since

Md is not affected by unitary operations and is not measurable in NMR, computations

on Peff can be implemented solely on the pure state 10). The effective pure state is

an instance of a near maximally mixed state

PE = (1 - C)Md + Ep' (2.105)

where p' is an arbitrary density matrix.

Although many quantum algorithms have been successfully demonstrated using

NMR machines, Braunstein et. al. showed that the states used in current liquid-state

NMR quantum computations are separable. Specifically, they found bounds on the

separability and nonseparability of near-maximally mixed states in terms of e and the

number of qubits N:

1
for 1 + 2 2N-1 P. is always separable (2.106)

1
for E > > == p, can be nonseparable. (2.107)

1 +2N/2

As illustrated in Fig. 2-4, the separable bound shows that if effective pure states are

used for initialization and N < 12, an NMR quantum computer with spins at room

temperature under standard laboratory magnetic fields can never realize an entangled

state in the laboratory.

62

Chapter 3

Approach

This chapter outlines the approach we use to investigate entanglement in liquid-state

NMR. From this point on, we present original work that builds upon the theoretical

background in Chapter 2.

The connection between mixed state entanglement and quantum algorithms is

poorly understood. To shed light on this puzzle, we wish to investigate the theoretical

issues behind mixed state entanglement in an NMR experiment.

Here we discuss the considerations involved in realizing an entangled NMR state.

First, the difficulty in experimentally entangling effective pure states leads us to study

thermal states (Section 3.1). Then we evaluate the different experimental approaches

to entangling a thermal state (Section 3.2). Finally, we explain the central problem

we have chosen to pursue in this thesis (Sections 3.3) and describe the methods we

will use to solve that problem (Section 3.4).

3.1 Initial NMR states for entanglement

3.1.1 Entangling effective pure states

Current NMR experiments rely on thermal equilibrium at room temperature to set

the value of c - the excess population in the ground state in Peff. The resulting 6 is

small and gives an effective pure state that is nonentanglable as a short calculation

63

now shows.

We have already found this result in Chapter 2, but it will be useful to re-derive

the bounds on p, in terms of a. Recall from Sections 2.3.2 and 2.4 that the fraction

of ground state in the effective pure state is given by

eNa~/2 1 N-/
6 = Na/2 - ,exact (3.1)

z 2N _- 1

Na12
~2N _ 1, room temperature (3.2)

and the bounds on the entanglability of effective pure states are

1
6 2 N/2-1 (2 N - 1) Peff nonentanglable (3.3)

1
6 1 2 /2 . Peff entanglable. (3.4)

S> 1+ 2N/2

The reader should understand that "bounds on near-maximally mixed states" are

equivalent to "bounds on entanglability of effective pure states" since Peff has form p,

and unitary operations preserve the form of p,. The term "entanglability" removes

reference to the NMR unitary operation that performs peff F-+ p,. For Eq. 3.3, we

have used the bound due to Gurvits and Barnum (Eq. 2.95) since it is tighter than

the Braunstein et. al. bound (Eq. 2.74).

Using the above two sets of equations, we derive conditions that a must satisfy

for peff to be nonentanglable and entanglable. Notice that in the nonentanglable case,

a < 1, so the room temperature approximation for 6 holds. The approximation does

not apply to the entanglable case since a is not necessarily small. Setting Eq. 3.3

equal to Eq. 3.2 and Eq. 3.4 equal to Eq. 3.1, we obtain the bounds

2
a N2N/21 Peff nonentanglable (3.5)

a > - ln(v/2 - 1) =- peffentanglable, (3.6)

which are plotted in Fig. 3-1. The nonentanglable bound goes as a ~ N 1 2N/2 , and

the entanglable bound is constant with N. Notice that these bounds are far from

64

30

25-

E

z 10 - -- - - --.-

0
-1 -0.5 0 0.5 1 1.5 2 2.5 3

1og 0 (a-)

Figure 3-1: Bounds on the nonentanglability (solid line) and entanglability (dashed
line) of the effective pure state Peff in N - a parameter space where N specifies the
number of qubits and a characterizes the polarization of the thermal state. If a is
right of the solid line, Peff is nonentanglable; if a is left of the dotted line, Peff is
entanglable.

tight. There is a large area of parameter space between the two bounds for which

we have no information; this region might very well contain additional thermal states

that can be entangled.1

In a typical NMR spectrometer operating with a 11.74 T magnetic field at room

temperature, the largest attainable polarization is that of the proton nuclear spin:

a = 8.79 x 10- 5 . Fig. 3-1 shows that an effective pure state with this value of a is

separable for N < 22, agreeing with our calculation from Section 2.4.2. Current NMR

quantum computing experiments lie in the separable regime, but if a and/or N were

sufficiently increased, an effective pure state could be entangled in the laboratory.

3.1.2 Entangling thermal states

Most NMR quantum computing experiments begin with effective pure states because

quantum algorithms use a known initial pure state. However, we are simply interested

'In Chapter 6, we give a better bound for the entanglability of effective pure states due to Diir
and Cirac [DCOO].

65

in obtaining an entangled state by any means. The thermal state is a better initial

state for reasons we now explain.

Recalling the discussion from Section 2.3.2, an effective pure state can be expressed

as a mixture of transformed thermal states:

d-1

Peff = ZPjUjPthU (3.7)
j=1

where d is the dimension of Peff, P = 1/(d - 1) and Uj is a unitary operation that

cyclically permutes the populations of the excited computational basis states ii) $ 10)

j - 1 times.

Since the numbers pj are probabilities, Peff satisfies the mathematical definition

of a convex combination [Wei02]. Now entanglement is generally a convex function 2

and therefore is reduced under convex combination. Hence, an individual transformed

thermal state UjPthU may possess more entanglement than an effective pure state

of the same dimension. Eq. 3.7 shows that Peff may be interpreted as a probabilistic

distribution of transformed thermal states. We roll a d - 1 sided die and obtain the

state UiPthU with probability pj. The introduction of this randomness dilutes the

entanglement of the system, an undesirable procedure for our objective.

These considerations motivate us to focus on entangling NMR thermal states in

this thesis. In using thermal states over effective pure states, we hope to uncover

entanglable NMR parameter space that was previously ruled out by the bound of

Eq. 3.5.

2Most theorists choose entanglement measures to be convex. Convexity is desirable in entan-
glement because if two parties randomly select a state from an ensemble (the situation of a mixed
state), the average entanglement the parties possess when they have knowledge of the state should
be equal or greater than the entanglement when they have no knowledge of the state.

66

3.2 Experimental approaches to entangling NMR

thermal states

We wish to entangle an NMR thermal state in the laboratory. There are two parts

to such an experiment.

1. Prepare the initial thermal state Pth with number of qubits N and polarization

a.

2. Apply a unitary operation to entangle the thermal state: Pth - UPthUt.

Let us first focus on Step 1. There are several ways we can alter the parameters

to yield an entanglable thermal state:

1. Enhance the initial polarization: a

* Lower the temperature of the experiment: T J

" Increase the strength of the magnetic field: B I

" Induce polarization above thermal equilibrium by non-magnetic means.

2. Increase the number of qubits (spins) per molecule: N T

Recall that a = hv/kT where the resonance frequency v = yB and y is the gyromag-

netic ratio (see Section 2.3.1).

We expect that increased polarization will yield a thermal state that is more easily

entangled. Doing so moves the thermal state away from the maximally mixed state.

Raising the number of qubits should have the same effect, but the intuition behind this

conjecture is weaker. As we have already seen, the bound on nonentanglable effective

pure states in Eq. 3.5 relaxes as N increases. Moreover, current research seems to

indicate that the volume of separable states decreases as Hilbert space dimension

grows. Vidal and Tarrach [VT99] find a lower bound for the volume of separable

states which decreases exponentially with N. Numerical evidence (see for instance

Zyczkowski, et. al. [dHSL98]) supports the same trend.

67

We now examine the viability of each approach. Some of the discussion is drawn

from a review article by Jones [JonOO]. As a starting point, we will assume that the

ideal state-of-the-art liquid-state NMR quantum computing experiment uses a seven

proton nuclear spin molecule at room temperature. The corresponding parameters

are N = 7, a = 8.79 x 10--5, B = 11.74 T, and T = 298 K.

3.2.1 Enhancing initial polarization

Lowering the temperature of the experiment is impractical because any appreciable

improvement in polarization demands a dramatic drop in temperature, to the point

where the sample becomes solid. For instance, boosting a by an order of magnitude

corresponds to T ~ 27 K. The crystalline structure of a solid allows spins to interact

with each other through strong magnetic dipole couplings. Unless the spin system

is dilute, these interactions break the massive degeneracy in the previously weakly

coupled liquid-state system and smear out the spectrum. A dilute spin system could

be used, but we ideally desire large N. There are several proposals for solid-state

NMR quantum computers that address these problems [YY99, CLK+00]. However,

since these proposals have not yet been realized, we concentrate on liquid-state NMR

in this thesis.

Using a larger magnetic field as a way to increase initial polarization is also limited.

In NMR spectrometers, the magnetic field is generated from a superconducting coil.

However, the coil can only sustain a limited amount of current and thus the largest

available NMR magnet provides a 21.1 T field, which would double a. Technologies for

delivering higher magnetic fields exist [BLM01]. Unfortunately, they are impractical

and ill-suited for liquid-state NMR. DC Bitter resistive magnets can generate fields

of 33-45 T, but an enormous apparatus is required to cool the setup. Capacitively-

driven magnets can give pulsed fields of 50-60 T, but the pulses only last for a split

second, much too short of a time scale for typical NMR experiments. Moreover, these

magnets explode after 500-800 pulses. For both the resistive and capacitively-driven

magnets, the resulting fields are too spatially inhomogeneous to be used in liquid-

state NMR. In addition, these type of magnets require so much energy to run that

68

they are only operated at special institutions like the National High Magnetic Field

Laboratory in Florida [Nhm03].

Inducing higher polarization by other means, in particular chemical and optical,

is a more promising approach. Two experiments have succeeded in attaining signif-

icantly higher polarization. By optically pumping xenon, Verhulst et. al. [VLS+01]

have experimentally demonstrated a tenfold polarization increase in a two qubit

molecule. Another factor of three or four may be possible if the xenon is isotropically

pure. Thus, optical pumping can potentially give an overall polarization increase of

40. Even higher polarizations are possible if hyperpolarized xenon is used. Verhulst

et. al. used 1% polarized xenon, but polarizations in excess of 65% have recently

been achieved [ZAB02]. Hiibler, et. al. [HBGOO] have shown that para hydrogen (two

protons in the singlet state) can be used to increase the polarization of the thermal

state. By reacting para hydrogen with another molecule, they obtained four orders

of magnitude improvement in o compared to thermal equilibrium.

3.2.2 Increasing number of qubits

Raising the number of qubits is also a possibility, but this approach is severely lim-

ited by substantial fundamental problems. Since individual spins are addressed by

selective excitation (see Section 2.3.3), the resonance frequencies corresponding to the

individual spins must be be well-separated. This requirement can be satisfied by using

nuclear spins of different chemical species. Unfortunately, only five distinct spin-1/2

nuclei are available (1H, 13C, 1 5N, 19F, and 31 P). Spins of the same type may also be

used, but the largest number of homogeneous spins demonstrated in an experiment

thus far is 6 [LKF99]. To compound the problem, when N increases, the molecule

size also increases, reducing the period over which the quantum evolution of the spins

is coherent.3 The diminished coherence time, in turn, decreases the resolution of the

signal and the number of quantum operations that can be performed during a single

3 The NMR Hamiltonian also contains strong couplings between spins which are mediated by
the magnetic dipole-dipole interaction. These interactions are usually spatially averaged out by the
tumbling motion of the molecules in liquid. However, when the molecule size increases, the tumbling
rate decreases and the dipolar coupling is no longer completely averaged away.

69

experiment. Taking these considerations together, the largest practical liquid-state

NMR quantum computer might contain 30 qubits.

3.2.3 Algorithmic cooling

Another method, the Schulman-Vazirani procedure [SV99], combines both of the

previous approaches - enhancing the polarization and increasing the number of qubits.

Schulman and Vazirani propose to start with No qubits in thermal equilibrium at

polarization ao and extract from these initial qubits a string of order (ao) 2 No qubits

each with Po > 1 - !N(- 10 where po is the probability of measuring 10). This method

gives excellent polarization but at a high cost for the polarizations used in current

NMR experiments. When the initial polarization is ao = 8.79 x 10-, we need

approximately 1.29 x 108 initial qubits to obtain just one qubit in (nearly) pure state

form. The enormous number of initial qubits are needed because the Schulman-

Vazirani procedure preserves the entropy of the system. If entropy conservation is

disregarded, better results are possible. Boykin et. al. [BMR+02] propose a scheme

where there is a set of spins, in addition to the qubits, that act as a heat bath. This

method can be used to create an effective pure state with a initial to final qubit ratio

of 50.

If a can be boosted with some of the techniques we previously mentioned, then

the Schulman-Vazirani procedure becomes practical. For example, beginning with

No = 30 and ao = 0.183, we obtain one highly polarized qubit.

3.2.4 Entangling unitary operations

We now turn to the second step of our entangling NMR experiment. Even though

Pth is clearly separable, we can apply a unitary transform to move Pth from the

separable part of Hilbert space into an entangled region. Currently, it is not known

what unitaries might optimally entangle mixed states except for the special case of

two qubits [VABM01].

However, progress has been made in related-research in entangling operations, in

70

particular, the ability for a quantum operation or Hamiltonian to create entanglement,

the communication resources needed to implement a bipartite unitary operation, and

the quantity of classical information that can be communicated using quantum oper-

ations.4 One group has even proposed general quantitative measures to characterize

the strength of entangling operators [NDD+02].

3.3 Problem

The last section discussed three approaches to creating an entangled thermal state in

NMR. In this thesis, we follow the last approach and concentrate on the problem:

Where are the entanglable thermal states in N -a parameter space?

If we find entanglable parameter space that is experimentally accessible (where N

and a are small), we can design an experiment to entangle a thermal state. If we do

not, we gain insight into how much the experimental techniques must improve.

Before we can begin to solve the problem, it must be refined into a concrete,

answerable question. Specifically, two issues must be addressed:

1. How do we know if a given thermal state is entanglable? In principle, for every

point in parameter space, we must apply every possible unitary transform until

we find one that entangles the thermal state. We need to choose a limited set

of unitaries {U(N, a)} to try.

2. How do we know that a transformed thermal state is entangled? We need a

measure of mixed state entanglement.

We now describe the set of unitaries and the measure of mixed state entanglement

used in this thesis as well as the rationale behind selecting them.

4See the first section of Nielsen, et. al.. [NDD+02] for references.

71

3.3.1 Unitary operations

The set of unitaries {U(N, a)} should ideally possess the following qualities:

" Optimally entangling - {U(N, a)} should entangle thermal states in the maxi-

mum fraction of parameter space that is most experimentally accessible, essen-

tially the region where N and a are small.

* Scalable - {U(N, a)} should be at least polynomially describable and realizable.

" Tractable to theoretical analysis - Analytical information about the transformed

thermal state provides physical intuition and verifies numerical entanglement

calculations or eliminates the need for them altogether.

There are clearly infinite choices for sets of unitaries, but we select the family

of transformations Ub that maps the computation basis to the Bell state basis. For

example, a Bell state unitary might transform a computational basis state 1000) to

the Bell state (1000) + 1111))/V2'. We have chosen Ub as a starting point because

it generates maximal entanglement when applied to the ground state. The thermal

state has the greatest population in the ground state, so Ub may also be effective in

entangling Pth-

In this thesis, we define a standard Bell state unitary Ubs. The other unitaries in

the Bell transformation family are permuted versions of Ub,s:

Ub(P) = PUb,sPt (3.8)

where P is a permutation matrix.

The operation Ubs can be represented by a quantum circuit that first applies

a Hadamard gate to the first qubit and then uses the first qubit to control NOT

operations on the other N - 1 qubits [NCOOI. This circuit is depicted in Fig. 3-2.

The symmetry in the circuit reveals that Ub,s is invariant under exchange among the

latter N - 1 qubits.

72

Qubit 1 H -

Qubit 2

Qubit 3

Qubit N
*

Figure 3-2: Quantum circuit for Ub,s unitary operation.

The unitary Ubs also has a simple matrix form. For example, Ubs for N = 3 is

Ub,s =
V'2

~1

0

0

0

0

0

0

1

0

1

0

0

0

0

1

0

0

0

1

0

0

1

0

0

1

0

0

0

0

0

0

-1

0

1

0

0

0

0

-1

0

0

0

1

0

0

-1

0

0

0~

0

0

1

-1

0

0

0_

(3.9)

expressed in the computational basis.

In Chapter 6, we will encounter another Bell unitary, which can be generated by

permuting Ubs with Ufan. The unitary Ufan is also known as the fanout gate because

it bit flips the latter N - 1 qubits if the first qubit is in state 11). The fanout gate

can be viewed as a massive NOT gate on the latter N - 1 qubits controlled by the

first qubit, exactly like Ub,s but without the initial Hadamard gate on the first qubit.

The overall unitary Ub,sUfan is depicted in Fig. 3-3.

73

Qubit 1

Qubit 2

Qubit 3

Qubit N

0
0
0

H

Figure 3-3: Quantum circuit for UbsUfan unitary operation.

The unitary Ub,sUfan has a matrix form similar to Ub,s. For example, UbsUfan for

N = 3 is

Ub,sUfan =

expressed in the computational

1 0

0 1

0 0

0 0

0 0

0 0

0 1

_1 0

basis.

0

0

0

1

-1

0

0

0

0

0

1

0

0

-1

0

0

0

1

0

0

0

0

-1

0

1 ~

0

0

0

0

0

0

-1

(3.10)

It is easy to see that in the computational basis, Ubs and Ub,sUfan always have

two diagonals and two anti-diagonals. The straightforward pattern allows a computer

program to quickly generate either Bell unitary for any N. Hence, they fulfill the

scalability requirement. As we shall see in Chapter 6, any generic Bell unitary Ub

also satisfies the criterion for analytical tractability.

3.3.2 Measure of mixed state entanglement

We need a way to quantify how well a given unitary entangles thermal states. Recall

from the discussion in Section 2.1.5 that negativity is the only computable measure of

mixed state entanglement for density matrices with dimension greater than four. Since

N may be arbitrarily large, we choose negativity to be our measure of entanglement.

74

If the negativity varies monotonically in parameter space, then the value where

Amin = 0 bears special significance. It marks the boundary in parameter space be-

tween states that are known to be entangled and states whose separability properties

are unknown.

Finally, we explain our notation in specifying bipartite splits. The thermal state is

totally symmetric, and the unitary transforms we consider in this thesis are symmetric

among the latter N - 1 spins. Therefore, it is sufficient to assign the first q spins to

one party and the remaining N - q spins to another party. We write such a bipartite

split as {q, N - q}. In general, we would also have to consider all permutations of the

spins.

3.4 Methods

We use both numerical and analytical methods to study thermal state entanglability

in NMR parameter space. The numerical part of this work is the subject of Chapter 4

while the analytical portion is the subject of Chapters 5 and 6.

3.4.1 Numerical methods

Our numerical approach is to generate negativity maps of Bell-transformed thermal

states in N-a parameter space, using the following procedure:

1. Compute the thermal state Pth for given N and a.

2. Apply the generalized Bell-state transformation: Pth F-- UbPthU . We define

the Bell transformed state as Ptf = UbPthU'.

3. Calculate the negativity of the transformed state En(ptf).

4. Repeat the above for all points in N-a space.

Numerical analysis is an excellent means to explore arbitrary unitary transforms,

but the calculations quickly become memory-intensive and time-consuming as the

number of qubits grows. When N increases by one, the size of a 2N x 2 N density

75

matrix increases by four. The exponential scaling in required memory resources makes

large qubit computations cost-prohibitive. The computation time of the negativity

calculation also grows exponentially. Matrix multiplication must be performed for the

unitary transformation and the minimum eigenvalue calculations. The fastest known

algorithm for d x d matrix multiplication is O(dc) where c = 2.3755 [CW90]. The

number of steps needed to implement the partial transpose operation also increases

exponentially with the size of Party A's Hilbert space.

For these reasons, we search for ways to reduce the computational resources

needed. In some cases, the matrices involved in the computation are sparse. Then

we need only store the nonzero elements and their coordinates in the matrix. For

our particular problem, the number of nonzero elements in Pth and Ub scales linearly,

a vast improvement over the previously mentioned exponential growth in required

memory resources. It may also be possible to exploit symmetry if parts of the full

density matrix are invariant under particular operations. In these cases, we only have

to work with the active part of the matrix.

The matrices in our problem, the thermal state Pth and the family of Bell unitaries

Ub, are always sparse in the computational basis. In addition, both Pth and Ub possess

substantial symmetry. As we have already seen, Pth is diagonal in the computational

basis and totally symmetric under spin exchange while Ubs and Ub,sUfan are invariant

under exchange among the latter N - 1 of the qubits. However, the partial transpose

operation poses a problem because it can break the symmetry of the transformed

thermal state, depending on the bipartite split.

3.4.2 Analytical methods

Numerical methods are constrained by finite memory resources. However, analytical

methods can be used if the negativity calculation possess a high degree of symmetry

or if entanglement of the state of interest can be bounded by the entanglement of

another state.

As we shall see in Chapter 5, the symmetries of the standard Bell-transformed

thermal state UbsPthUbs can be exploited to find explicit negativity formulas. Some-

76

times, the symmetry is obvious (Section 5.1) while in other cases, patterns in numer-

ical data can reveal a buried symmetry of the system (Section 5.2).

Chapter 6 uses a more general method to find bounds on the separability and

nonseparability of transformed thermal states. Suppose we have a state p' whose

entanglement is easy to analytically classify. However, it is difficult to analytically

determine whether a transformed thermal state is entangled. If we can find a quantum

operation that converts the transformed thermal state into p' without generating

any new entanglement, then the entanglement of p' bounds the entanglement of the

transformed thermal state.

3.5 Summary

This chapter described the problem we will pursue in this thesis and the approach

that will be used to solve this problem. Before defining our problem, we discussed two

important considerations for realizing an entangled NMR state: 1) the initial NMR

state and 2) the experimental approaches to entangling an NMR state.

We showed that the thermal state may be easier to entangle than the effective

pure state, the conventional initial state used in liquid-state NMR quantum computa-

tion. An effective pure state can be expressed as a convex combination of transformed

thermal states. Since entanglement is reduced under convex combination, the max-

imally entangled thermal state must possess at least as much entanglement as the

corresponding maximally entangled effective pure state. Therefore, we decided to

focus on thermal states in this thesis.

We also discussed three approaches to experimentally entangle a thermal state:

1) enhancing the initial polarization a, 2) increasing the number of qubits N, and 3)

applying a unitary operation U to entangle the state. A promising method to increase

a was to induce higher polarization via optical pumping or para hydrogen. Combining

these techniques with algorithmic cooling could yield nearly pure qubits. In contrast,

the possibilities for raising the number of qubits were limited and impractical.

In this thesis, we decided to study the third approach, specifically exploring the

77

problem:

Where are the entanglable thermal states in N-a parameter space?

To investigate this question, we chose to study the entanglement of Bell-transformed

thermal states. The Bell transforms were given by the set of permuted unitaries

Ub(P) = PUb,s Pt (3.11)

where P is a permutation matrix and Ubs is the standard Bell unitary whose quantum

circuit diagram is shown in Fig. 3-2. Our measure of entanglement was negativity, as

defined in Eq. 2.36.

The entanglement of Bell-transformed thermal states can be classified with either

numerical or analytical methods. Here we list the methods used in this thesis:

1. Compute negativity maps of N-a! space (numerical).

2. Exploit the symmetry of Bell-transformed thermal states to derive explicit neg-

ativity formulas (analytical).

3. Bound the entanglement of a given transformed thermal state with the entan-

glement of another state (analytical).

78

Chapter 4

Numerical negativity maps of

Bell-transformed thermal states

This chapter focuses on numerical negativity calculations in N-a space performed on

either a single processor or a parallel machine. First, we outline the general algo-

rithm that is used to compute a negativity map (Section 4.1). Next, we describe the

hardware specifications of our single processor and our parallel machine - a Beowulf

cluster (Section 4.2). We then discuss the single processor and Beowulf cluster soft-

ware packages, how the different modules and/or architectural layers interact, and

how the algorithm is implemented in both packages (Sections 4.3 and 4.4). Finally,

we calculate negativity and minimum eigenvalue maps on a single processor for up to

12 qubits and evaluate the results (Section 4.5).

4.1 Algorithm

The calculation of a negativity map follows the algorithm:

1. Generate a Bell unitary Ub for given N.

2. Compute the thermal state Pth for given N and a.

3. Transform the thermal state: Pth F-* Ptf = UbPthU'.

79

4. Perform the partial transpose on Ptf to yield p T.

5. Find the minimum eigenvalue Amin of pTA. Store this value, so the information~tf*ivausthinomtn

can be used later to calculate the negativity E,.

6. Repeat the above for all points in N-a space.

The algorithm saves the intermediate minimum eigenvalue because Amin by itself

contains useful information and because E, is trivially derived from Amin via Eq. 2.36.

Note that since fractional qubits have no physical meaning, N must be computed at

positive integer values. In this thesis, the even split {N/2, N/2} bears special interest,

so we only compute negativity for even positive integer values of N.

4.2 Hardware

Negativity calculations are implemented on either a single processor or a massive

parallel machine. The single processor is a 997 MHz Pentium III PC that has 879

MB RAM and runs LINUX as its operating system. The massive parallel machine

consists of 32 dual-processor 1.2 GHz Pentium III PCs also running LINUX. Each PC

stores and manipulates a portion of the overall matrix. Of the 32 PCs, 24 computers

each have 1 GB RAM and 32K cache while the other 8 computers each have 768

MB RAM. The individual PCs communicate with one another across a 1000BaseT

Ethernet fabric using TCP/IP protocol. This type of setup - off-the-shelf CPUs

linked together for parallel operation - is generically called a Beowulf cluster.

As we discussed in Section 3.4.1, the negativity calculations are constrained by

memory resources - the amount of RAM available. The memory bottleneck is matrix

multiplication, an operation that requires the simultaneous storage of three matrices:

the two factors and the product. Floating point arithmetic typically uses 8 byte

doubles. A N-qubit matrix contains 2 N x 2 N doubles for a total memory usage of

2 2N-17 MB. Therefore, with our setup, a single processor can compute negativity

up to N = 12 while the Beowulf cluster can calculate negativity up to N = 15.1

'For a 215 x 215 matrix, the memory required per processor is 213 MB / matrix x 3 matrices /

80

These numbers assume that the calculations do not optimize for sparse matrices or

symmetry.

4.3 Single-processor software

This section describes the numerical software package for calculating negativity maps

on a single processor. First, we explain the structure of the package and give an

overview of how the negativity map calculation is implemented. Next, we describe

the data structure that stores the results of the negativity calculation and the imple-

mentation details of each module. Finally, we evaluate the memory usage and run

time performance of the package. For the source code, see Appendix A.

4.3.1 Package structure and implementation

The single-processor software package consists of three major module types: exe-

cution, calculation, and post-processing. The package structure is depicted in the

module dependency diagram of Fig. 4-1. The arrows in the module dependency

diagram indicate the flow of execution. The modules are written in LINUX-based

MATLAB v6.1 [Matol] and executed on the same platform. We chose MATLAB

because it is easy to program and because it contains many built-in functions for

plotting, efficient linear algebra operations, and numerical optimization. The M-file

extension .m specifies a file as a MATLAB function.

We now explain how the modules interact to implement the negativity map cal-

culation:

1. The execution module runexpt .m runs a "numerical experiment" to calcu-

late Amin in user-specified N-ar space. It calls the master calculation module

calcmineig.m for every value of N.

2. The module calcmineig.m computes Amin for all values of a while holding

N fixed. Since Ub only depends on N, calcmineig.m generates Ub once for

multiplication x 1 / 32 processors = 768 MB RAM required per processor.

81

,expt.m

tnig~ rtqt

I

Figure 4-1: Module dependency diagram for single-processor software package. Mod-
ule types are execution (white), calculation (black), and post-processing (medium
gray).

the entire computation over a. At present, the package can either create Ub,s

(ubs .m) or UbUfan (ubsuf an.m). Then the algorithm of Section 4.1 is performed

for each value of a:

(a) The submodule thermalden.m generates the thermal density matrix Pth

for given N and a.

(b) The submodule transf orm.m executes the matrix multiplication UbPthUb

to give the transformed thermal density matrix Ptf-

(c) The submodule ptranspose.m carries out the partial transpose on the

transformed density matrix for a specified bipartite split {q, N - q} to

give p^. The splits currently implemented are {N/2, N/2} (ptHalf .m),

{1, N - 1} (ptone.m), and {N - 1, 1} (ptNMinusOne.m).

(d) The submodule mineig.m finds the minimum eigenvalue Amin of Pt.f-

82

After calcmineig.m finishes computing Amin for all values of a, it records Amin

and other relevant information in a temporary structure.

3. Now the negativity calculation is complete for one value of N and runexpt .m

calls the post-processing module writeqctm.m, which writes the temporary

structure plus some additional information to a QCTM data structure (ex-

plained in the next section) on disk.

4. Repeat Steps 2-3 for each value of N.

5. After Amin has been calculated for all points in N-a space, runexpt .m combines

all the QCTM structures into a structure array, which is also written to disk.

The intermediate writing of QCTM structures is done at individual values of N

so that if the numerical experiment is interrupted, at least part of the calculation

will be saved. For low-level utility tasks and plotting, the package includes other

post-processing functions that will be described in Section 4.3.5.

To evaluate the performance of our software, we also collect memory usage and

run time data from the calculation submodules. The memory usage is obtained

by running the MATLAB function whos.m inside a submodule, and the run time

is clocked by the command sequence: 'tic; submodule-operat ions; t=toc;'. The

MATLAB command tic begins the timer; toc ends the timer and returns the elapsed

time to the variable t.

4.3.2 QCTM data structure

The Quantum Computing Treasure Map (QCTM) structure contains all the informa-

tion needed to reconstruct a Amin calculation at fixed N.

Fields

* Filename: string, which always has the format '<user-specified string> <date>q

<number of qubits>.mat', e.g. 'ubshalf28JunO3-134322q4.mat'. The user-

specified part of the filename is optional.

83

'28JunO3-134322', which should be read as time

13:43:22 on 28 June 2003.

" Hostname of processor that ran the calculation: string, e.g.

'turing.media.mit . edu'.

* Name of unitary: string, e.g. 'ubs'.

" Number of qubits: positive even integer.

* Number of qubits in Party A's partition: positive integer between 1 and N - 1.

" Range in a: array of positive doubles, e.g. (10-3.0, 10-2.9, 10-2.8, ... , 100.9, 101.0).

* Minimum eigenvalue Amin: array of doubles corresponding to range in a.

" Run time of Amin calculation in seconds: positive double.

* Submodule data: structure storing information about each calculation submod-

ule with fields listed below.

- Name of submodule: string, e.g. 'thermalden'.

- Memory usage in bytes: array of positive integers corresponding to range

in a.

- Run time in seconds: array of positive doubles corresponding to range in

a.

4.3.3 Execution module

runexpt .m

Function

This module computes Amin in N-a space, calling calcmineig.m to perform the

calculation for sections of parameter space at each value of N. After calculating Amin

for each N, it calls writeqctm. m to save Amin and other relevant data inside a QCTM

84

o Date of file: string, e.g.

structure, which is written to disk. At the end of the entire calculation, it merges all

the QCTM structures into an array, which is also written to disk.

Inputs

" Bell unitary: handle pointing to a submodule that generates the Bell unitary

as a function of N.

* Range in N: even positive integer array, e.g. (2, 4, 6, 8, 10, 12).

" Range in a: array of positive doubles.

" Number of qubits in Party A's partition: positive integer array, e.g. for the

example range in N given above, we could specify the {N - 1, 1} split with the

array (11, 9, 7, 5, 3, 1). This format requires that the size of the array specifying

the partition must be the same as the size of the array specifying the range in

the number of qubits. Each element in the partition array must be between 1

and N - 1.

Output

Data from numerical experiment: array of QCTM structures.

4.3.4 Calculation modules

calcmineig.m

Function

The master calculation module is calcmineig.m, which calls various calculation

submodules to find Amin over a range of a values, at fixed N. First, it directs

ubs . m/ubsuf an. m to create the Bell unitary matrix and stores the matrix in a global

variable. Recall that this unitary depends solely on N, so it only needs to be calculated

once. Then for each value of a, it calls thermalden. m, transform.m, ptranspose.m,

and mineig.m in sequential order. The output matrix of each submodule is passed

onto the next submodule as input.

Inputs

85

" Bell unitary: handle pointing to a submodule that generates the Bell unitary

as a function of N.

" Number of qubits (N): even positive integer.

* Range in a: array of positive doubles.

* Number of qubits in Party A's partition: positive integer between 1 and N - 1.

Output

A temporary structure whose fields contain information for writeqctm.m to create

a QCTM structure. The fields of the temporary structure are exactly the same as in

the QCTM structure except there are no fields for filename, file date, or hostname.

ubs.m/ubsuf an.m

Function

Both submodules construct a Bell unitary matrix in the computational basis for

given N; ubs.m creates Ub,s and ubsufan.m creates Ub,sUfan. In either case, the

submodule first initializes the elements of a 2N x 2 N matrix to zero. Then it sets the

diagonals and anti-diagonals to ±1/v/2 (see Section 3.3.1).

Input

Number of qubits (N): positive even integer.

Outputs

" Unitary matrix: 2 N x 2 N matrix of doubles.

" Name of unitary: 'ubs'/'ubsuf an'.

" Memory usage in bytes: positive integer.

" Run time in seconds: positive double.

86

thermalden.m

Function

This submodule constructs the thermal density matrix in the computational basis

for given N and a. It calculates the diagonal entries of Pth according to Eq. 2.61 and

places the values into an array. Then the MATLAB function diag.m creates a diag-

onal matrix with the diagonal entries derived from the array. The Hamming weight

of the (iI Pth Ii) matrix element is found by using the MATLAB function bitget .m

to count the number of binary digits in i that are 0.

Inputs

" Number of qubits (N): positive even integer.

" Polarization (a): positive double.

Outputs

" Thermal density matrix Pth: 2 N x 2 N matrix of doubles.

" Memory usage in bytes: positive integer.

" Run time in seconds: positive double.

transform.m

Function

This submodule transforms the input thermal density matrix by performing the

matrix multiplication UbPthUt. Notice that Ub is not one of the inputs because it is

stored as a global variable in the scope of calcmineig.m.

Inputs

Thermal density matrix Pth: 2 N x 2N matrix of doubles.

Outputs

* Transformed thermal density matrix ptf: 2 N x 2 N matrix of doubles.

" Memory usage in bytes: positive integer.

" Run time in seconds: positive double.

87

ptranspose .m

Function

This submodule calculates the partial transpose of a square matrix in the compu-

tational basis for either the {N/2, N/2}, {1, N - 1}, or {N - 1, 1} splits by calling

helper submodules ptHalf .rm, ptOne.rm, or ptNMinusOne.rm respectively. At present,

other splits have not been implemented. The submodule returns an error if the square

matrix does not have a dimension that is a power of 2 or if the partition is invalid.

Inputs

" Transformed thermal density matrix ptf: square matrix of doubles with dimen-

sion 2 N

" Number of qubits in Party A's partition: positive integer between 1 and N - 1.

Outputs

" Partial transposed matrix pf ̂: square matrix of doubles with dimension 2N

" Memory usage in bytes: positive integer.

" Run time in seconds: positive double.

ptHalf . m/pt One . m/ptNMinusOne .m

Function

These helper submodules calculate the partial transpose of 2N x 2 N matrix for the

{N/2, N/2}, {1, N -1}, or {N -1, 1} splits respectively. As seen in Section 2.1.5, the

partial transpose is simply a set of swap operations between matrix elements. For a

split {q, N - q}, a swap only occurs when the outer product ji) (j corresponding to

Party A's subspace (the first q qubits) is off-diagonal, that is i = j. We now describe

how each of the submodules computes the partial transpose.

The code in ptHalf .m actually implements the partial transpose with respect to

Party B, but the change in convention does not affect the calculated Amin since the

{N/2, N/2} split is symmetric in our problem. The submodule ptHalf .m examines

88

the matrix elements where the outer product |i) (j corresponding to the latter N/2

qubits is off-diagonal and has i < j (so the same swap is not performed twice). For

each off-diagonal outer product, the submodule cycles through the matrix elements

corresponding to all possible indices for the first N/2 qubits and performs the appro-

priate swap operation for each matrix element.

For the {1, N - 1} split, the first qubit only has off-diagonal outer products in

the upper righthand corner and the lower lefthand corner of the matrix. In fact, an

element in the upper righthand corner always swaps with an element in the lower

lefthand corner. Therefore ptOne.m swaps all the elements in the upper righthand

corner of the matrix to calculate the partial transpose.

For the {N - 1, 1} split, the partial transpose exchanges elements between the

lower triangle (under the diagonal) and the upper triangle (above the the diagonal)

of the matrix. Thus ptNMinusOne . m examines just the elements of the lower triangle.

Not all of these matrix elements have an off-diagonal outer product in Party A's

subspace (the first N - 1 qubits). Thus, in addition, the submodule must check to

see if a swap is necessary.

Inputs

Same as ptranspose.m.

Outputs

Same as ptranspose.m.

Additional considerations

As noted in Section 3.4.1, the number of swap operations in the partial transpose

grows exponentially with N. Consequently, it is essential to carry out each swap with

as few steps as possible. Consider the MATLAB code for ptHalf .m:

function mpt = ptHalf(matin)

n = length(matin); % n = size of matrix

nhalf = sqrt(n); % nhalf = size of one party's subspace

mpt = matin; % mpt = partial transposed matrix

89

for a = :nhalf:n-1

for b = :nhalf:n-1

for j = 0:nhalf-1

for k = j+1:nhalf-1

mpt(a+j+1,b+k+1)

mpt(a+k+1,b+j+1)

% Row index of Party B's subspace

% Column index of Party B's subspace

% Row index of Party A's subspace

% Column index of Party A's subspace

= matin(a+k+1,b+j+1); % Swap: line 1

= matin(a+j+1,b+k+1); % Swap: line 2

end

end

end

end

Here matin is the input matrix and mpt is the partial transpose of matin. The

indices of the swapped elements are sums, and it is evident from the code that each

sum appears twice. For instance, a+j+1 occurs in both lines of the swap. An efficient

compiler usually recognizes this kind of redundancy and only computes each sum once.

However, the MATLAB compiler apparently does not. If ptHalf .m is rewritten in

the C programming language, we get a dramatic improvement in run time as seen

in Fig. 4-2. When N=4, the C version ptHalf C. c runs 3.84 times faster than its

MATLAB counterpart. The speedup increases to a factor of 142 at N=10.

mineig.m

Function

This submodule calculates the minimum eigenvalue of a square matrix. It calls

the MATLAB function eig.m to compute all the eigenvalues of the matrix and then

applies MATLAB function min.m to find the minimum of these numbers.

Input

marxTAPartial transposed matrix ptf square matrix of doubles.

Output

e Minimum eigenvalue Amin of pT: double.

90

1.

0.

0-1.

3 4 5 6 7

Number of qubits

8

Figure 4-2: Comparison of mean single-processor run times
sion of partial transpose operation ({N, 2, N/2} split). The
by executing the modules 100 times at each N.

9 10

for C and MATLAB ver-
run time data is acquired

* Memory usage in bytes: positive integer.

" Run time in seconds: positive double.

4.3.5 Post-processing modules

writeqctm.m

Function

This module takes the temporary structure produced by calcmineig.m, assigns

it a filename, and writes a QCTM structure containing the temporary structure,

filename, file date, and hostname of the processor where writeqctm.m was executed.

This seems trivial, but we keep calculational tasks separate from post-processing tasks

to allow easier maintenance of the package.

Inputs

" Information from calcmineig.m: structure (see Section 4.3.4).

" Filename (optional): string.

91

5
__C

- - MATLAB

5

0

5

5-

2-

5 - -.. .

2

-2.

Output

Results of Amin calculation at fixed N: QCTM structure.

Utility submodules

Here we list the utility submodules and their functions:

" dt .m: Runs UNIX date command to obtain current time.

" estzalpha.m: Estimates the a that corresponds to Amin = 0, given a QCTM

structure. Currently, this submodule is very primitive; it simply returns the a

that has Amin closest to 0.

" hostnaine.m: Runs UNIX hostname command to obtain the name of the pro-

cessor where hostname.m is called.

" totmem. m: Adds up the memory used by variables within the scope of a function

given a structure array that is created by calling the MATLAB function whos .m

inside the function.

Plotting modules

Here we list the plotting modules and their functions:

* plotnegmap.m: Plots E, as a two dimensional colormap with logio(a- 1) on the

x-axis and N on the y-axis, 2 given an array of QCTM structures. The negativity

is calculated from Amin by applying Eq. 2.36.

* ploteigmap.m: Plots Amin as a two-dimensional colormap with logo(a--1) on

the x-axis and N on the y-axis, given an array of QCTM structures. This

module also gives the option to plot contours of Amin-

* plotmineig.m: Plots Amin in a line graph as a function of a for each value of

N, given an array of QCTM structures.

2Throughout this thesis, we will graph NMR parameter space with N on the vertical axis and
logio(a- 1) on the horizontal axis. We use c- 1 rather than a so that higher temperature lies towards
the right side of the plot.

92

" plotmem.m: Plots the logarithm of the memory used by ubs.m/ubsfan.m,

thermalden.m, transform.m, ptranspose.m, and mineig.m as a function of

N.

" plotruntime.m: Plots the logarithm of the run times for ubs.m/ubsfan.m,

thermalden.m, transf orm.m, ptranspose.m, mineig.m, and calcmineig.m as

a function of N.

4.3.6 Package performance

Here we assess the memory usage and run time performance of the single-processor

software package. The mean memory usage and run times of the calculation sub-

modules are plotted in Figs. 4-3 and 4-4 respectively at N = {2, 4,6,8,10, 12}.

Here ptranspose.m uses ptHalfC.c to calculate the partial transpose. The data

is collected by running each module 100 times and averaging over the iterations

at each value of N. We also clock the run time of the master calculation module

calcmineig. m for Ubs-transformed thermal states at N = {2, 4,6,8, 10, 12} and 100

logarithmically spaced points in the range a = [10-3, 101].

Our assessment ignores several submodules. First, ubsuf an. m is not plotted since

its performance is well-modeled by ubs.m. The helper submodules ptOne.m and

ptNMinusOne .m are also left out of our study since we have not yet written efficient

C versions of them.

The memory usage for all submodules should scale as 4 N since memory is primar-

ily consumed by the storage of N-qubit matrices. Fig. 4-3 confirms this expectation.

The submodule transf orm. m uses the most memory, followed by ptranspose . m. The

submodules ubs.m, thermalden.m, and mineig.m use roughly the same amount of

memory and consume the least memory among the submodules. This result can be

explained by the fact that transform. m must store three N-qubit matrices simul-

taneously (Ub, Pth, and Ptf) while ptranspose.m holds two such matrices (Ptf and

T
pt^) in memory. The submodules ubs.m, thermalden.m, and mineig.m each hold

one matrix (Ub,s/Pth/Ptf^) in memory. Indeed, the memory usage of transform.m

93

ubs.m
. - - thermalden.m

2 -- - transform.m
- ptranspose.m
- mineig.m

1---

- - --

E

-4
2 4 6 8 10 12

Number of qubits

Figure 4-3: Mean single-processor memory usage as a function of N (ordered from
top to bottom): transform.m (dashed green line), ptranspose.m (solid red line),
ubs.m (dotted magenta line), thermalden.m (dash dotted blue line), and mineig.m
(solid cyan line). The data is acquired by executing the modules 100 times at each
N. The partial transpose is computed for the {N/2, N/2} split, using ptHalf C. c.

is vertically offset from that of thermalden.m/mineig.m by log 0 3, corresponding

to a memory usage ratio of 3:1. Similarly, the separation between ptranspose .m

and thermalden. m/mineig. m is log1 o 2. As a final verification, the memory used by

transform. m for N = 12 is 384 MB, exactly the size of three 212 x 212 matrices.

Now let us examine the run time performance of the package. In view of absolute

run times at N = 12, the fastest submodule is ubs.m, followed by thermalden.m,

ptranspose.m, transform.m, and mineig.m. These results are expected because

ubs. m and thermalden. m create matrices whose nonzero entries scale linearly, whereas

the other submodules perform matrix operations.

Based on the discussion in Section 3.4.1, we expect the run times to also scale

exponentially. Yet Fig. 4-4 shows that this is not the case. All of the submodules ex-

cept for thermalden.m exhibit run times with much shallower slope at N = {2, 4, 6}

94

- ubs.m
5 - - thermalden.m

- - transform.m
- ptranspose.m

4 --- mineig.m
- calcmineig.m

3-

0 -

-4

2 4 6 8 10 12
Number of qubits

Figure 4-4: Mean single-processor run time as a function of N (ordered from top to
bottom at the far left of the graph): calcmineig .m (thick solid black line), ubs. m
(dotted magenta line), ptranspose. m (solid red line), thermalden...m (dash dotted

blue line), mineig.m (solid cyan line), and transf orm.m (dashed green line). The
data is acquired by executing the modules 100 times at each N. The partial transpose
is computed for the {N/2, N/2} split, using ptHalf C. c.

than N = {8, 10, 12}. In fact, the run time of ptranspose.m decreases from N = 2

to N = 4. We know that the number of steps required to calculate the transformed

thermal density matrix and the partial transpose scale exponentially, so the anoma-

lous behavior must be caused by unknown system overhead like cache size, as the

run time data does not show any fluctuations. That thermalden .m is not affected

may be due to the fact that it only creates a matrix where as the other submodules

manipulate matrices through element accesses and matrix multiplication.

We assume that the system overhead does not dominate for N = {8, 10, 12} since

the run times here are much longer. The logarithmic run times for these qubit values

are close to straight lines, implying an exponential scaling. The results of a linear fit

analysis for the logarithmic data points is given in Table 4.1 with the prediction error

95

defined as

e = - i)2 (4.1)
n tj

where i and tj denote the predicted and actual run time data points and n is the

total number of data points. Note that the fit is done for log2(run time) and not

logio(run time).

Submodule Linear fit to log 2(run time) Prediction error

ubs.m 1.75 N - 37.0 0.0077

thermalden.m 1.43 N - 16.0 0.0662

transform.m 2.94 N - 26.7 0.0100

ptranspose.m 2.00 N - 22.9 0.0479

mineig.m 3.13 N - 28.0 0.0160

calcmineig.m 2.98 N - 19.0 0.0043

Table 4.1: Linear fits to logarithmic mean single-processor run times in Fig. 4-4 for
N = {8, 10, 12}. The prediction error is defined in Eq. 4.1.

The results in the table show that thermalden.m has the best run time scal-

ing, followed by ubs.m, ptranspose.m, transform.m, and mineig.m. The low error

suggests that the fits are reasonably accurate. The fits gives reasonable scalings for

transform.m and ptranspose .m. The d2.94 scaling (where the dimension d = 2 N)

of transform. m run times is close to the d3 scaling of naive matrix multiplication.

Similarly, the number of swaps in ptHalfC.c is 23N/2-1(1 + 2 N/2), which scales as

approximately 2 2N. The run times of ubs .m and thermalden.m should scale linearly,

but the actual scaling is a little worse for inexplicable reasons. As mineig.m is a

built-in MATLAB function, we do not comment on its run time here.

More importantly, the fit for the run time of calcmineig.m demonstrates that

even with unlimited memory resources, run times are prohibitively long on a single

processor for N > 12. The same calculation run at N = 15 would take 630 days. In

the next section, we turn to parallel computing to perform calculations where N > 12.

Overall, the submodules transform.m and mineig.m perform most poorly and

dominate the run time of the Amin calculation. The situation could be vastly improved

96

if transform. m used sparse matrix multiplication and if mineig. m was optimized to

look for the smallest eigenvalue as opposed to first calculating all the eigenvalues and

then finding the minimum.

4.4 Beowulf cluster software

This section describes our work to adapt the single-processor software package for

operation on a Beowulf cluster. First, we explain how the cluster architecture is con-

figured to perform parallel linear algebra. Then we discuss the implementation of the

Beowulf cluster package and calculation modules. We end with some remarks on the

general performance of the cluster and calculation modules. More information on our

Beowulf cluster architecture and software is available in Patz's masters thesis [Pat03]

and at our cluster webpage [CC03].

4.4.1 Cluster architecture

Here we explain the layers of the Beowulf cluster architecture: physical, operating

system, messaging, and applications. A diagram of the cluster architecture is shown

in Fig. 4-5. Each layer depends on the lower layers to run properly. Failure of any

layer may cause malfunctions in the layers above it.

Applications

Messaging

Operating system

Physical

Figure 4-5: Hardware and software layers of Beowulf cluster architecture.

We now explain how each architectural layer is implemented.

97

Physical

The physical layer consists of 32 Pentium III machines that are linked together for

parallel operation. Their hardware specifications were given in Section 4.2. The user

controls the cluster machines via the client machine named Qubit, which is a quad

processor Pentium III with 3 GB RAM. The cluster machines also have access to files

on Alexandria, a server for user home directories. Alexandria, Qubit, and the cluster

machines are connected to one another via a gigabit Ethernet network. Fig. 4-6

depicts the physical configuration we have just described.

gigabit Ethernet network

Alexandria

0000

C C C

0) a00
0D - 0 0 Cr
C C

(file server)

Qubit
(client)

Dual Pentium III, 768 MB RAM Dual Pentium 1l1, 1 GB RAM

Figure 4-6: Physical configuration of Beowulf cluster.

Any subset of the 32 cluster machines may be selected to perform parallel com-

putations, although some configurations may be more optimal than others depending

on the application. Each active machine in the parallel environment is called a node.

Operating system

All of the nodes run Red Hat LINUX v7.3 as their operating system. We use the

standard operating system configuration with three major modifications:

" Nodes mount the entire filesystem over the network via NFS.

" Users can start remote jobs on any node.

* The cluster allows remote access to user home directories on Alexandria and

Qubit.

98

The ability to mount an entire filesystem over the network allow the nodes to be

diskless. When the cluster starts up, each node boots its operating system kernel off

a floppy disk and mounts its root file system from Qubit. We selected this setup so

that only the user node hard disk needs to maintained.

The ability to start remote jobs on each node is essential to the operation of the

message passing software as we explain shortly. Remote access to home directories

lets users access the same copy of a file on every node such that only one set of files

needs to be managed.

Messaging

PVM (Parallel Virtual Machine) [GBD+94] is the software package that handles prim-

itive message passing between nodes. In typical cluster operation, PVM starts up on

Qubit, then spawns copies of itself on user-requested nodes via remote job startup.

Once PVM is established across the cluster, nodes can send point-to-point messages,

broadcast messages to multiple nodes, or gather information from other nodes. An

important function of PVM is synchronization of the nodes. Suppose the cluster

performs one step of a calculation. The next step of the calculation may require in-

formation to be gathered from all the nodes. PVM can block nodes from continuing

to the next step until every node is finished with the current step.

Applications

The cluster runs three major applications: BLACS, ScaLAPACK, and qpMATLAB.

The first two packages are industry standard applications for high performance linear

algebra on parallel machines while the last package contains our specific routines for

implementing quantum simulations on a Beowulf cluster.

The BLACS (Basic Linear Algebra Communication Subprograms) package [DW97]

performs inter-process communication that is optimized for high performance linear

algebra. It calls primitive PVM routines to implement high level message passing,

e.g. sending an array to all the processes holding a particular row of a matrix. In ad-

dition, BLACS sets up the cluster for parallel computation. First, it starts processes

99

on nodes where PVM has been established. The number of processes is specified by

the user, and more than one process may run on a machine. Once all the processes

are running, it creates the process grid, which assigns unique grid coordinates to every

process. This procedure allows BLACS to easily identify the processes, so it can pass

messages between them. It also facilitates the distribution of parallelized matrices

and implementation of parallel calculations by ScaLPAPACK. For example, BLACS

might start one process on each of the machines n09, n10, n1l and n12 and assign

the processes coordinates (0,0), (0,1), (1,0), and (1,1) in a 2 x 2 process grid.3

The ScaLAPACK (Scalable Linear Algebra PACKage) application [BCC+97] im-

plements sophisticated parallelized linear algebra routines. The ScaLAPACK pack-

age calls BLACS routines for communication between processes and PBLAS (Paral-

lel Basic Linear Algebra Subprograms) [CDO+95] routines for simple linear algebra

operations like addition of vectors and matrix multiplication. By combining the

functionality of the BLACS and PBLAS packages, ScaLAPACK implements complex

operations such as eigenvalue finding and singular value decomposition. The ScaLA-

PACK software also handles the distribution of a parallel matrix to all processes in

the BLACS-created processor grid such that each process on an active node locally

stores and manipulates a section of the overall matrix. When we call linear algebra

routines, we think of the matrices as whole objects whose elements are indexed by co-

ordinates (i, j). However, each element (i, j) actually corresponds to a matrix element

(k, f) in the local submatrix of a process located at coordinates (p, q) of the processor

grid. ScaLAPACK and any parallel computation program must keep track of this

mapping. We call the coordinates in the mathematical abstraction global coordinates

and the coordinates on the physical cluster local coordinates.

The qpMATLAB (Quantum Parallel MATLAB) package [Pat03] implements the

specialized routines needed to calculate negativity. However, more generally, it is an

integrated environment for simulating quantum computation on classical computers.

The qpMATLAB package consists of three components: 1) a C-based library of rou-

tines to run quantum simulations on a Beowulf cluster, 2) a MATLAB-based user

100

3BLACS uses zero based indexing.

interface to direct the simulations, and 3) management of communication between

the user and the cluster.

The qpMATLAB library is written in C for simple integration of the BLACS and

ScaLAPACK packages, which use C and Fortran languages. The library contains four

types of routines:

1. Matrix operations: matrix-matrix multiplication, matrix-vector multiplication,

matrix-scalar multiplication, .matrix-scalar division, and matrix-matrix addi-

tion. These operations are implemented by pre-existing BLACS and ScaLA-

PACK routines.

2. Matrix creation: zero matrix, identity matrix, random matrix, thermal density

matrix, standard Bell unitary matrix.

3. Matrix manipulation: transfer a matrix from cluster to user, transfer a matrix

from user to cluster, return one element of a parallel matrix, partial transpose

of a matrix.

4. Utility operations: free the memory of a parallel matrix, free the memory of all

parallel matrices on the cluster, shutdown qpMATLAB.

Internal to the library are functions that map global coordinates to local coordinates.

We use a MATLAB-based interface to enhance high-level portability of code be-

tween the single processor and the Beowulf cluster. User-cluster communication is

implemented by using TCP/IP protocol to transmit serial strings between the two

parties.

When a user issues a command in the MATLAB interface on the client machine

(typically Qubit), that command is communicated to a special process on the cluster

named the master process, which acts as the server. This process then implements

the user's command by directing the other processes in the grid to call routines from

the qpMATLAB library. The machine running the master process is the master node.

The non-master processes are child processes. We emphasize that the master process

101

can run on any machine on the cluster and that the identity of the master process

can be easily changed from session to session.

The client-server communication occurs through two major programs, qpclient

and qpserver. The qpclient program runs on the client and transmits user-specified

commands to the qpserver program running on the master process, which interprets

the command and orchestrates the implementation of the appropriate operation on the

cluster. When the operation is complete, qpserver on the master process returns a

message to qpclient. If the command was unsuccessful, an error message is returned;

otherwise, the message returns a result (e.g. a number or a reference to a parallel

matrix).

The application architecture we have described is shown in Fig. 4-7.

SERVER CLIENT

qpserver 4 qpclient

ScaLAPACK MATLAB

BLACS PBLAS

Figure 4-7: Application architecture of Beowulf cluster. The double arrow represents
communication between qpserver and qpclient.

4.4.2 qpMATLAB usage examples

Rather than explaining the implementation details of qpMATLAB, we give examples

to show how the package is used. The first example demonstrates the typical startup

procedure for a qpMATLAB session, and the second example illustrates the commu-

nication processes that occur during the execution of a user-specified command.

Example startup procedure for qpMATLAB session

(done on Qubit)

102

1. Start PVM on Qubit by typing 'cd /cluster/pvm/lib3; . /pvm'.

2. Sixteen cluster nodes are added to PVM's host list with the command 'add n09

n10 n1l n12 n13 n14 n15 n16 n17 n18 n19 n20 n21 n22 n23 n24'.

3. Machine n09 is designated to be the master node by editing the file qs-ip to

contain the number '09'.

4. Remotely log onto the master node (n09) with the command 'rsh n09'. Then

startup the server by running the command

'cd /cluster/matlab-6.1/qpmatlab/Server; ./qpserver m n'onn09. This

action causes BLACS to spawn one process on every machine n09-n24, create

a m x n processor grid and spawns copies of qpserver on every process in the

grid.

5. On Qubit, change to the qpMATLAB client directory and start the desktop

version of MATLAB: 'cd /cluster/matlab-6.1/qpmatlab/Client; matlab

-nojvm -nosplash'.

6. Now the user can type commands at the MATLAB prompt to perform parallel

operations on the cluster.

Example qpMATLAB session for creating a 14-qubit Ub,s matrix

This example will describe a qpMATLAB session first from the client's point of view,

then from the server's point of view.

Client-side session

1. The user enters the MATLAB command 'U=pubs(14)' at the console prompt.

The argument to pubs specifies the number of qubits.

2. The MATLAB function pubs.m calls qpclient with the command

'val=qpclient(18,16384,16384)' where the first value in the parentheses is

the command number for pubs.m and the latter two values are the number of

103

rows and columns in the desired matrix. The program qpclient is actually a

MEX file, a specialized C program that can be called inside MATLAB.

3. Now the qpclient program performs the following sequence:

(a) Sends the string 'UUBS 16384 16384' to the master process on the cluster

over a TCP/IP socket.

(b) Listens on the TCP/IP socket, waiting for the cluster to finish executing

the user-specified command.

(c) Receives the string 'OKSR 1' from qpserver running in the master process.

The string 'OKSR' signals that the command was successful and the string

'1' is a reference to the 214 x 214 Ub s matrix residing on the cluster.

(d) Calls a built-in MATLAB function to convert '1' from a string to an integer,

which is stored in a MATLAB integer array.

(e) Returns the array pointer to the MATLAB variable val.

4. An object of the pmatrix class is created via the call

'pmatout = pmatrix (val,16384,16384)'. Here pmatout is a reference to a

structure object containing information about the parallel matrix, including

the original array pointer in val.

5. The pubs.m function returns the value of pmatout to the external MATLAB

variable U and prints the console message 'Parallel distributed matrix:

16384-by-16384 [server ref = 11' to let the user know that command was

performed successfully.

Server-side session

1. The master process listens on the TCP/IP socket for commands from the client.

2. The master process receives the string 'UUBS 16384 16384' from qpclient.

3. The qpserver program running in the master process interprets the string as

a command to generate a 16384 x 16384 Ub,s matrix and instructs all the child

processes to create a local submatrix containing a portion of Ub,s-

104

4. The qpserver program running on each child process receives the instruction

and calls the specific qpMATLAB routine that creates the local submatrix con-

taining part of Ub,s. Meanwhile, the master process creates its own portion of

the Ub,s matrix and blocks any further action until the child processes finish.

5. When the matrix generation is complete, the master process sends the string

'OKSR 1' to qpclient. The string '1' is a reference to the Ub,s matrix.

6. The master process awaits next command from the client.

Notice that the server only passes references to the client, not the actual par-

allel matrices. We keep all the calculations on the server side because user-client

communication is slow and prone to protocol error for large amounts of transmitted

information.

4.4.3 Calculation modules

Here we describe the negativity calculation modules in the qpMATLAB package:

pubsO, pthermalden(), ptransform(), and pptranspose(). At present, the mini-

mum eigenvalue module pmineig() is still incomplete. The character 'p' prefixes the

parallel version of a calculation module, and the notation 0 denotes a qpMATLAB

module.

The Beowulf numerical package is designed to overload the single-processor pack-

age, so the user may run calculations with either the single processor or Beowulf

software transparently. Therefore, the input and output variables are the same as

described in Section 4.3.4. The methods to calculate memory usage and run time for

each module are also the same as those used for the single-processor modules (see

Section 4.3.1).

We now sketch the implementation details of each module. In the description that

follows, we have left implicit the calls to determine the mapping between global and

local coordinates as these are common to any parallel computation. For the module

source code, see Appendix B.

105

pubs()

This module generates the standard Bell unitary Ub,s for given N. The implementa-

tion is quite trivial. Each process sets nondiagonal entries to zero and sets diagonal

entries to i/v'/2 according to the pattern in Section 3.3.1.

pthermalden()

This module creates the thermal density matrix Pth for given N and a, following the

procedure:

1. Every process sets its nondiagonal entries to zero and sets diagonal entries to

values corresponding to the unnormalized thermal density matrix. Thus, the

value of the (i, i) entry would be Di e[N- 2 w(i- 1)]a/ 2 where w(i - 1) is the

number of Is in the binary expression for i - 1. Here we assume one-based

indexing of the matrix elements.

2. Each child process computes the sum of all its diagonal entry values and sends

this number to the master process.

3. The master process blocks the child processes until it receives sums from all of

the children. It adds the sums together to obtain the normalization constant

Z - 2i Di. Then the master process sends Z to all the children.

4. All processes divide the values of their diagonal entries by Z to properly nor-

malize the thermal density matrix.

ptransf orm ()

This module computes the Bell transformed thermal state, given parallel matrix refer-

ences to Pth and Ub. This function is accomplished by matrix multiplication, exactly

like the single-processor version transf orm. m. The multiplication is performed in two

explicit steps. First, the PBLAS routine for matrix multiplication calculates Ub * Pth-

This product is passed to another PBLAS routine for computing transposed matrix

multiplication, which calculates UbPth * U T , yielding the desired transformed thermal

106

state. Here we can use the transpose instead of the Hermitian conjugate since all our

matrices are real.

pptranspose 0

This module calculates the partial transpose of a matrix. Currently, only the

{N/2, N/2} bipartite split can be computed, although our approach is easily ex-

tended to splits with pre-existing single-processor implementations. Unlike the single-

processor version, pptranspose 0 performs the partial transpose on the matrix in

place to economize memory usage.

Our implementation of pptranspose () for the {N/2, N/2} split uses the same

algorithm as the single-processor version to decide which elements must be swapped.

However, in parallel machine, the swap operation is more complicated because the

swapped elements are usually located in different processes. We now describe how a

generic swap is executed on the cluster.

Following the single-processor algorithm, the master process determines which

elements must swap. Suppose first swapped matrix element has complex value ci and

local coordinates (ki, f1) on the process located at (pi, q1) in the process grid, and the

second swapped matrix element has complex value c2 and local coordinates (k2 , f 2)

on the process located at (P2, q2) in the process grid. We also note that qpserver

automatically defines the process grid coordinates of the master process to be (0,0).

There are four cases that we must consider:

1. Swap elements inside the master process, i.e. Pi = P2 = q= q2 = 0.

2. Swap elements inside a single remote process, i.e. Pi = P2 # 0 and qi = q2 # 0.

3. Swap elements between the master process and a remote process, i.e. pi = qi =

0, P2 # 0, and q2 # 0 or P2 =2 = 0, P1 # 0, and q, # 0.

4. Swap elements between two different remote processes, i.e. Pi # P2, q1 q2,

and {pi, qi, P2, q2} # 0.

107

The swap procedure is facilitated by sending 5-element message arrays between

the nodes. The first element of any message array is a single character representing

a specific instruction. The codes are:

'*' internal swap inside node that receives the message

* '%' = send data to remote node

* '>' = process incoming data

S'$' = wait for other nodes to finish their tasks

0 '.' = partial transpose finished

Now we describe the implementations details of each case for a given swap.

1. The first case is trivial.

2. In the second case, the master process sends a message array ['*' ki fi k2 £2] to

the process at (pi, qi). The process reads the prefix '*' as a directive to swap

elements (ki, f1) and (k 2, f2) of its local submatrix.

3. For the third case, we will consider the situation where the first matrix element

belongs to the master process and the second matrix element belongs to the

remote process since the protocol for the reverse situation follows immediately.

First, the master process sends the remote process the message array ['%' k2 f2

0 0]. The message prefix '%' tells the receiving process to send data to another

process. Therefore, the remote process interprets the message as a directive

to transmit the element in its local submatrix at (k2, £2) to the master process

at (0,0). It sends the master process the message array ['>' Re(c 2) Im(c 2)

X X] where the Xs represent garbage information. Similarly, the master array

sends the remote node the message ['>' Re(ci) Im(ci) X X]. The remote process

receives the master process' message and sets value of the matrix element at

(P2, q2) to ci. The master process performs the analogous procedure.

108

4. In the fourth case, the master node transmits the message ['%' ki fi P2 q2] to

first remote node and the message ['%' k2 e2 Pi q1] to the second remote node.

These messages direct each remote node to send the appropriate local submatrix

element to the other remote node. The first and second remote nodes send each

other the requested data using the messages of form ['>' Re(ci) Im(ci) X X] and

set the value of their local submatrix element to the received data value. This

action is exactly the same as in the third case except both the swapping nodes

are remote.

While our swap procedure works in principle, the communication traffic grows

heavy for large matrices. Since it takes much longer to process the data than to send

a message, the nodes are overwhelmed with more swap requests than they can handle.

The simplest solution is to continuously record the cumulative number of swap calls

in a variable we will call n. If n reaches a fixed limit %max, the master node sends a

'$' message to all the nodes, which instructs them to wait until the remaining pending

swap requests are fulfilled. Then the block is released, n is set back to 0, and the

master process is free to send more swap instructions.

In Table 4.2, we have listed the mean run times of pptranspose o for various

values of nmax. In all cases, the partial transpose is applied to an 8-qubit matrix,

and the parallel environment consists of 4 Pentium III dual-processor machines, each

machine having 1 GB RAM and running four processes on a 4 x 4 process grid.

The data in the table indicates that nmax = 200 is optimal. The mean run times

do not change significantly when nmax is varied between 200 and 800, implying that

4 machines can handle a load of up to 800 cumulative swap requests. However, if

we decrease nmax below 200, then the mean run time grows quickly as the frequent

blocking begins to slow down the partial transpose operation. The particularly large

increase in mean run time when nmax drops from 25 to 0 demonstrates the importance

of limiting communication traffic.

109

nmax Mean run time (min)

0 0.6150

25 0.0881

50 0.0792

100 0.0767

200 0.0758

400 0.0758

800 0.0755

Table 4.2: Mean run time for pptranspose 0 as a function of nmax where nmax is
the maximum number of cumulative swap calls allowed before the cluster is blocked.
The partial transpose is applied to an 8-qubit matrix, and the parallel environment
consists of 4 Pentium III dual-processor machines, each machine having 1 GB RAM
and running four processes on a 4 x 4 process grid. The mean run time is obtained
by averaging over 10 runs.

4.4.4 Cluster baseline and qpMATLAB application perfor-

mance

Cluster benchmark

The baseline cluster memory usage and run time performance was assessed with the

High Performance Computing Linpack (HPL) benchmark [PWDCOO]. To test the

maximum performance of the cluster, HPL used machines n09-n32 to solve a 50000 x

50000 real linear system (A- = b) on a 8x6 processor grid. From the benchmark

results, we estimate a memory usage division of 18.6 GB storage, 3.7 GB overhead,

and 1.7 GB free out of a total available memory of 24 GB (from the 24 nodes). In

the best run, our Beowulf cluster completed the problem in 59 minutes, equivalent to

an effective benchmark of 23.5 gigaflops. 4

Comparison of our benchmark with the benchmarks of commercially available

computers suggests that our Beowulf cluster is comparable to a Sun Fire 12K machine

with sixteen 900 MHz processors [Don03].

4 A gigaflop is equal to 109 floating point operations per second.

110

qpMATLAB calculation module run times

We also clock the run times of the calculation submodules and plot the mean run

times at N = {4, 6,8,10, 12, 14}' in Fig. 4-8. For these calculations, we used 16

Pentium III 1.2 GHz dual-processor machines with each machine having 1 GB RAM

and running one process on a 4 x 4 processor grid.

Comparing absolute mean run times, pubs() is the fastest submodule followed

by pthermalden(), ptransf orm(), and pptranspose 0. As in the single-processor

assessment, the submodules pubs 0 and pthermalden() run substantially faster than

the other submodules because they create matrices and do not manipulate them.

. pubs(
pthermalden()

2 - - ptransform()
pptranspose()

E

2

0 - - ...-- -. . -. --. -

4 6 8 10 12 14
Number of qubits

Figure 4-8: Mean cluster run time as a function of N: pubs 0 (dotted magenta
line), pthermalden() (dash dotted blue line), ptransf orm() (dashed green line), and
pptranspose() (solid red line). The data is acquired for each module by averaging
over 20 runs. The partial transpose is computed for the {N/2, N/2} split using the
same algorithm as in ptHalf .m/ptHalf C. c, and the parallel environment consists of
16 Pentium III 1.2 GHz dual-processor machines with each machine having 1 GB
RAM and running one process on a 4 x 4 processor grid.

To compare the mean run times on the cluster with the mean run times on the

single processor, we have plotted their ratios in Fig. 4-9. As the number of qubits

increases, all the cluster submodules except pptranspose 0 quickly outpace their
5No data point was measured for pptranspose 0 at N = 14 because the run time was too long.

111

----ubs
1.5-- ---transform

-- ptranspose

E 1

2
'4 0 .5 --- --.--..-..--..-. .-- .- ..-. .- .- ..-- ...- ..-- ..-- ..-.- --

-_ 0 - ...-- ..-... .-.... ..-0.5 - - -

- . .- ...44

-1.5
4 5 6 7 8 9 10 11 12

Number of qubits

Figure 4-9: Ratio of mean cluster run times from Fig. 4-8 to mean single-processor
run times from Fig. 4-4 as a function of N: ubs (dotted magenta line), thermalden
(dash dotted blue line), transf orm (dashed green line), and ptranspose (solid red
line).

single-processor counterparts with their mean run times growing exponentially faster

than the single-processor mean run times for small N. The exponential behav-

ior stabilizes for larger N such that the cluster submodule run times (except for

ptranspose()) are about a tenth shorter than the corresponding single-processor

run times at N = 12. The superior cluster performance is due to the large amount

of computing power available in 1(dual-processor machines. Even greater speedup

might be possible if all 32 cluster machines were included in computation.

The pptranspose C) submodule lsalw&ys rnuth slower than ptranspose.m. The

mean runtime ratio increases exponentially with low N before tapering off at higher

N. The worst cluster performance ocows, at A\X = 10 where the pptranspose)

performs the partial transpose 191 times slower than the ptranspooe . m. As discussed

in Section 4.4.3, the sluggishnessof pptranspose Ois due to heavy message traffic over

the process grid. We have tried to remedy the situation by blocking communication

112

I2.l

at fixed intervals, but the messages themselves are uneconomical as they contain a

large fraction of header compared to a small portion of actual data. A future solution

would be to consolidate the messages by node destination, thereby reducing the traffic

problem.

As discussed in Section 4.3.6, we expect the run times to scale exponentially, but

clearly this behavior is not exhibited for low N, particularly in the cases of pubs()

and pthermalden(). We again make the assumption that the anomaly is due to

unknown system overhead (e.g. cache size) whose impact on run time diminishes at

larger N. Consequently, we fit the run times for the last three data points in N and

give the results in Table 4.3.

Submodule Linear fit to log2(run time) Prediction error

pubs () 1.92 N - 25.4 0.0077

pthermalden() 1.83 N - 23.9 0.0662

ptransform() 1.87 N - 18.0 0.0100

pptranspose() 2.03 N - 15.7 0.0398

Table 4.3: Linear fits to logarithmic mean cluster run times in Fig. 4-8 for N =

{8, 10, 12} except in the case of ptranspose () where N = {6,8, 10}. The prediction
error is defined in Eq. 4.1.

Comparing the cluster mean run time scaling in Table 4.3 with that of the sin-

gle processor in Table 4.1, we see that the scaling of ptransf orm() is in fact better

than transform. m, the scaling of the partial transpose for both the cluster and sin-

gle processor is about the same, and the scaling of pubs 0 and pthermalden 0 are

significantly worse than their single-processor counterparts. The erratic differences in

scaling cannot be explained by the additional complexity of the cluster architecture

because it would affect all submodules equally.

113

4.5 Numerical negativity and minimum eigenvalue

maps for standard Bell-transformed thermal

states

Here we present negativity and minimum eigenvalue maps for the standard Bell-

transformed thermal state ptf = Ub,sPthUt 5 in N-a space.6 The calculations are

performed on the single-processor software package, according to the steps outlined

in Section 4.3.1. All maps were generated by computing Amin at N = {2, 4, 6, 8,10, 12}

and 100 logarithmically spaced points in the range a = [10-3, 101].

The negativity maps for the {N/2, N/2}, {1, N - 1}, and {N - 1, 1} splits are

plotted in Figs. 4-10, 4-11 and 4-12 respectively. Bounds on the nonseparability of

Ub,sPthUb,s were determined with estzalpha.m, as described in Section 4.3.5. To

compare the entanglability of thermal states versus effective pure states, the Braun-

stein et. al. bound on entanglable Peff (Eq. 3.4) and the Gurvits-Barnum bound on

nonentangable Peff (Eq. 3.3) are also marked in parameter space. We note that the

negativity maps look quite uniform for log 0 a- 1 > 0.5 because Amin varies very slowly

in this region. To illustrate this point, we have plotted Amin for N = 12 ({N/2, N/2}

split) in Fig. 4-13.

Comparing the negativity maps for the three splits, the {1, N - 1} partition gives

the tightest bound on nonseparable ptf since its bound lies farthest to the right.

We speculate that this result is due to the symmetry of Ubs. The standard Bell

unitary appears to give the first qubit a special status because the state of the latter

N - 1 qubits is controlled by the first qubit through a massive CNOT. Moreover, all

three splits give bounds on nonseparable Ptf that capture additional parameter space

beyond the bound on entanglable Peff. Given that a bound on nonseparable Ptf is

equivalent to a bound on entanglability Pth, it appears that thermal states are more

easily entangled than effective pure states with the same parameters N and a.7

'We defer discussion of Ub,sUfan-transformed thermal states until Chapter 6 as the motivation
for studying these states appears there.

7 We make this statement in the context of the numerical results. However, in Chapter 6, we
derive tighter bounds on both thermal states and effective pure states. The comparison of these

114

120.45

U bs transformed pth
nonseparable 0-4

10

C',z
0.35

1..2

1 -5 00.1.2 0.25

= 1 -6. ef 0..215 2 .

log(0

Figure 4-10: Color map of En(ptf) for {N/2, N/2} bipartite split in N - a parameter
space, overlaid with Gurvits and Barnum bound on the nonentanglability of peff (solid
white line), Braunstein, et. al. bound on the entanglability of Peff (dashed white line),
and bound on the nonseparability of Ptf (solid yellow line), which is determined by
estimating the a corresponding to Amin = 0. The bar on the right ascribes a color to

each value of E,.

115

12
12Ub~ transformed ph 0.45

nonseparable
U) 0.4

10

-0.35

U, C

8-0.3

0.25
CD

E p ef nonentanglable

20
-1 -0. 0f 0.0.215 2 .

z (Gurvits-Barnum)

0.15
4

0.1

2 0.05

-1 -0.5 0 0.5 1 -1 1.5 2 2.5 3
logjogc)

Figure 4-11: Color map of E,,(ptf) for { 1, N - 1} bipartite split in N - a parameter
space, overlaid with Gurvits and Barnum bound on the nonentanglability Of Peff (solid
white line), Braunstein, et. al. bound on the entanglability of peff (dashed white line),
and bound on the nonseparability of Ptf (solid yellow line), which is determined by
estimating the a corresponding to Amin = 0. The bar on the right ascribes a color to
each value of E,.

116

).45

-1 -0.35

0 0.3

0.2

Elf er nonentanglable .
e o(G u rvits- Barnum)

0.1

0.

2? 0.15

white line), Braunstein, et. al. bound on the entanglability of Peff (dashed white line),
and bound on the nonseparability of Ptf (solid yellow line), which is determined by
estimating the a corresponding to Amin = 0. The bar on the right ascribes a color to
each value of En.

117

1 a

0.1 _0_4

3-
0 - -

2-

8 -0.1

-0 .2 - 0 - -.- .-.-.

E E

- 0 .4 - -.-- -.---..--.

-3-

.-1_ -0.5 0 0.5 1 1.5 2 2.5 . 3 0.4 0.5 0.6 0.7
0glo a log, 0 CC

(a) (b)

Figure 4-13: (a) Minimum eigenvalue Amin(Ptf) as a function of logl(&') for
{N/2, N/2} split and N = 12. (b) Closeup view of same plot, illustrating the shallow
slope of the minimum eigenvalue near Amin = 0+.

While our negativity maps admit some interesting conclusions, they do not tell us

if a thermal state can be entangled under ideal experimental conditions. Assuming

that N < 30 is experimentally reachable (see Section 3.2.2), we are lacking informa-

tion on an enormous region of experimentally accessible parameter space. How can

we fill in the missing data? Direct computation is not possible because our single

processor only has enough memory to compute E. up to N = 12 and because the

Beowulf cluster implementation of the negativity calculation is currently incomplete.

One viable solution is to extrapolate the bounds on nonseparable Ptf to higher N.

Unfortunately, this method is unworkable as we now show.

The bound on nonseparable Ptf is exactly the line of constant Amin = 0 as explained

in Section 3.3.2. Because we are interested in extrapolating the nonseparable bound,

we find the contours for minimum eigenvalues near Amin = 0. Here we chose the

numbers: Amin = {-0.010, -0.005,0.005, 0.010}. In Figs. 4-14, 4-15, and 4-16, we

draw the contours over minimum eigenvalue maps for the {N/2, N/2}, {1, N- 1}, and

{N - 1, 1} splits. For all cases, the contours diverge rapidly from the nonseparable

bound. It is impossible to tell whether the extrapolated bound will bend left to follow

the negative contours or bend right to follow the positive contours. We conclude that

bounds gives a more ambiguous conclusion.

118

extrapolation is useless for meaningful analysis of thermal state entanglability. The

Beowulf cluster software package for negativity map calculations, if completed in the

future, could be helpful in addressing this problem.

12

10

Cn

0

E
z

). 1

I 1 0

-0.1

-0.2

-0.3

-0.4

-1 -0.5 0 0.5 1 1 1.5 2 2.5 3
log 1 (a-)

Figure 4-14: Color map of Amin(pT^) for {N/2, N/2} bipartite split in N-a parameter
space, overlaid with bound on nonseparability of Ptf where Amin = 0 (solid black line)
and from left to right, contours at Amin = {-0.010, -0.005,0.005, 0.010} (dashed
black line). The bar on the right ascribes a color to each value of Amin-

119

t min 0.1

10 ii

IM'
'I

%@, I I
I I

z -0.2
If

4 -0.3

-0.4
2

-1 -0.5 0 0.5 1 1.5 2 2.5 3
1og 0(r)

Figure 4-15: Color map of Amin((pTA) for { 1, N -1} bipartite split in N - a parameter
space, overlaid with bound on nonseparability of Ptf where Amin = 0 (solid black line)
and from left to right, contours at Amin = {-0.010, -0.005, 0.005, 0.010} (dashed
black line). The bar on the right ascribes a color to each value of Amin-

120

1 r

ml

II
"

"I
tI
II

II

Em
mm

mm
ml
mm

-1 -0.5
0a.'

0

X . =0min

0.5 1 1 1.5 2 2.5 3
Ioglo(a)

Figure 4-16: Color map of Amin(p ^) for {N - 1, 1} bipartite split in N - a parameter
space, overlaid with bound on nonseparability of Ptf where Amin = 0 (solid black line)
and from left to right, contours at Amin = {-0.010, -0.005,0.005, 0.010} (dashed
black line). The bar on the right ascribes a color to each value of Amin.

121

1c

Cl,

4-

0

E
z

). 1

I1 0

-0.1

-0.2

-0.3

-0.4

4.6 Summary

This chapter described the numerical methods that were used to calculate negativity

maps in N-a space.

The calculation of a negativity map followed the general algorithm:

1. Generate a Bell unitary Ub for given N.

2. Compute the thermal state Pth for given N and a.

3. Transform the thermal state: Pth '-+ Ptf = UbPthU .

4. Perform the partial transpose on Ptf to yield p^.

5. Find the minimum eigenvalue Amin of PI. Store this value, so the information

can be used later to calculate the negativity E,.

6. Repeat the above for all points in N-a space.

We implemented the algorithm on two different platforms: a single processor and

a Beowulf cluster. The single processor was a 997 MHz Pentium III PC with 879

MB RAM. The cluster consisted of 32 dual 1.2 GHz processor Pentium III PCs, with

24 machines having 1 GB RAM and 8 machines having 768 MB RAM. The individ-

ual PCs communicated with one another across a 1000BaseT Ethernet fabric using

TCP/IP protocol. For both platforms, all machines ran LINUX as their operating

system. Based on fundamental memory constraints, the single processor was capable

of calculating negativity up to N = 12 while the Beowulf cluster could calculate up

to N = 15.

In the single-processor software package, each step of the above algorithm was

implemented as a submodule: ubs.m and ubsufan.m, thermalden. m, transf orm.m,

ptranspose.m, and mineig.m. A negativity map was calculated by executing the

module runexpt .m, which called a master module named calcmineig.m to compute

Amin at even positive integer values of N while varying a in parameter space. In turn,

calcmineig.m called the calculation submodules in sequential order to find Amin. At

122

the end of the calculation at each value of N, calcmineig.m gathered the results of

the Amin computation, which was written to a QCTM structure by writeqctm.m.

The package structure and execution flow were depicted in the module dependency

diagram of Fig. 4-1.

We evaluated the memory usage and run time performance of the individual calcu-

lation submodules in the single-processor package. Mean memory usage was plotted

in Fig. 4-3, and mean run time was plotted in Fig. 4-4. For all modules, storage

of N-qubit matrices dominated memory usage. The submodule transform.m re-

quired the most memory because it needed to store three matrices: Ub, Pth, and Ptf-

We did not analyze the run times at lower N because they showed nonexponential

scaling. For N = {8,10,12}, transform.m and mineig.m ran substantially slower

than the other modules. This result was expected since the transform.m module

performs matrix multiplication and mineig.m calculates all eigenvalues of a matrix,

both time intensive operations when compared with the matrix creation tasks as-

signed to ubs .m/ubsuf an. m and thermalden. m. Moreover, at these values of N, the

run times were well-modeled by exponential scaling. Our fit predicted that a single

run of calcmineig.m would require 630 days to execute. Thus, aside from mem-

ory constraints, any hope of extending the single-processor package to calculating at

N > 12 would require the run times of transform.m and mineig.m to be reduced

significantly.

Development of the Beowulf cluster software package involved two primary tasks:

configuring the cluster architecture to implement parallel linear algebra operations

and adapting the single-processor modules to the cluster. The cluster architecture

was made of four layers as shown in Fig. 4-5. We briefly describe them here from

bottom to top:

1. Physical - The 32 cluster machines, in addition, to being connected to one

another, also communicate with a client machine and a file server. The setup

is shown in Fig. 4-6.

2. Operating system - RedHat Linux v7.3 fine tuned for parallel operation by

123

allowing filesystem mounting over the network, capability to start remote jobs

on cluster machines, and remote access to files on the client machine and the

file server.

3. Messaging - Implemented by PVM, a primitive message passing package.

4. Applications - BLACS, ScaLAPACK, and qpMATLAB. BLACS performed high-

level message passing optimized for parallel linear algebra operations, ScaLA-

PACK implemented complex parallel linear algebra operations, and qpMAT-

LAB was our home-developed software package for simulating quantum com-

putation in parallel environments. A parallel environment was established by

calling BLACS routines to spawn processes on available machines and assigned

each process coordinates in a processor grid. During a parallel computation,

each process stored and manipulated a local portion of the overall matrix.

The qpMATLAB package itself contained three parts: a library of C routines for

simulating quantum computation, a MATLAB-based user interface to direct the sim-

ulations, and management of communication between the user and the cluster. One

designated process, the master process, implemented user commands by directing the

other processes to call routines from the qpMATLAB library. All user-cluster com-

munication was passed between the program qpclient on the client machine and the

program qpserver on the master process. The overall application architecture was

shown in Fig. 4-7.

The cluster-based negativity calculation modules used the same algorithms as the

single-processor versions. Thus the bulk of the development work for the cluster

modules involved incorporating the appropriate message passing between processes.

Inter-process communication was particularly important for implementing the swap

operations needed to perform the partial transpose on a matrix.

We assessed the performance of our cluster in performing simple linear algebra

operations and in executing the negativity calculation modules from the qpMATLAB

package. Using the HPL benchmark, our cluster solved a 50000 x 50000 real linear

system on 24 dual-processor Pentium III machines and a 8 x 6 process grid. The

124

problem required 59 minutes to run, giving a benchmark of 23.5 gigaflops. To gauge

the efficiency of the qpMATLAB negativity calculation modules, we clocked their run

times in a parallel environment consisting of 16 dual-processor Pentium III machines

laid out in a 4 x 4 process grid. In general, the cluster modules performed much

faster than their single-processor versions as seen in Figs. 4-8 and 4-9. The mean

run time ratio between the cluster and the single processor decreased exponentially

with small N, then tapered to approximately 0.1 at N = 12. The exception was

the cluster-based partial transpose module, which ran more slowly than its single

processor counterpart. The slowdown was as much as 191 times at N = 12 and was

caused by heavy communication traffic derived from swap operations.

Finally, we computed negativity maps of Ub,s-transformed thermal states for N =

{2, 4,6, 8, 10, 12} and the range oz = [10-3, 101]. The maps were plotted in Figs. 4-

10, 4-11, and 4-12). The line where Amin = 0 gave a bound on the entanglability of

thermal states. Experimenting with several bipartite splits, we found that {1, N - 1}

split gave the tightest bound on thermal state entanglability. To see if a thermal

state could be entangled under ideal experimental conditions, we required negativity

data from parameter space at higher N. Unfortunately, because the cluster software

package was unfinished, our negativity calculations were limited to N < 12. Attempts

to extrapolate the entanglability bound also failed since the contours near Amin = 0

diverged sharply from the bound (see Figs. 4-14, 4-15, and 4-16).

125

126

Chapter 5

Negativity formulas for standard

Bell-transformed thermal states

This chapter derives analytical expressions for the negativity of the standard Bell-

transformed thermal state Ptf = Ub,sPthUbs. First, we calculate negativity under the

{1, N - 1} bipartite split using a direct theoretical analysis (Section 5.1). Second, we

calculate negativity under the {N/2, N/2} bipartite split using an empirically-based

analysis (Section 5.2). Finally, we plot entanglement maps for the two splits and

discuss the features of these maps as well as the experimental feasibility of realizing

Ptf (Section 5.3).

5.1 Theoretical analysis for {1, N-1} bipartite split

In this section, we analytically calculate the negativity of Ptf under the {1, N - 1}

bipartite split.

The quantum circuit for Ubs (see Fig. 3-2) suggests that the first qubit is special.

The expression for the thermal state from Eq. 2.59 can be rewritten to separate the

behavior of the first qubit from the others:

Pth = (5.1)z
127

= exp - > Z
Z _ 1 1 N -

= exp .z Za exp - Z) 1

E [ea/2 0) (01 + ea/2 11) (1] em | Ij, m) (j, ml

where in the second line, we have substituted Eq. 2.54 and in the third line, we have

used the fact that the Zi commute with one another. The first qubit's state is ex-

pressed in the computational basis { 0) , 1) }. The terms ea/2 and e-a/2 are the energy

contributions when the first qubit is spin up 10) and spin down 1) respectively. We

have inserted a complete set of angular momentum states, Ij, m) (j, ml, to represent

the collective spin state of the latter N - 1 qubits [Sak94]. The symbol j denotes the

total spin angular momentum, and m = -j, -j+ 1, ... , j - 1, j represents the total

azimuthal spin angular momentum in the z-direction. Since the Hamiltonian simply

counts the total azimuthal spin, the latter N - 1 qubits contribute an overall factor

e-" to the energy.

Eq. 5.1 can be rewritten more compactly to give

Pth 1 eaz/2 - j, m) (j, mI (5.2)

where Z1 is the Pauli Z operator acting on the first qubit.

Now we examine the effect of Ub,s on the thermal state. It is easier to analyze

the problem if we break the unitary into two parts: the application of the Hadamard

gate on the first qubit (H1) followed by a massive controlled NOT on the other qubits

(Unot) or mathematically, Ubs = H1 Uenot.

Applying a Hadamard operation to the first qubit of Pth (note that H, HI)

yields the state

Pth = HlPthHl (5.3)

= I eax1/2eM'a j, m) (j, mI

128

since HZH = X. The operator X1 represents a Pauli X operation on the first qubit.

Expanding eaX1/ 2 , this equation can be rewritten as

Pth I cosh) I1 + sinh X) X1] e-m fj, m) (j, mT (5.4)
) ,m 2 2

E cosh (10) (0| +1) (ll) +sinh'(10) (1| + 1) (01) e-m j)(,m

where in the first line, I, is the two-dimensional identity matrix acting on the first

qubit and in the second line, we have expanded I, and X 1 in the outer products of

the computational basis states.

To obtain the fully transformed state, we apply the CNOT operation: UcnotP't Ut
th not~

Since Uenot 10)1j, m) = 10) j, m) and Uenot 1) Ij, m) = 11) 1j, -n), we see that ptf is

composed of two-dimensional subspaces spanned by 10) j, m) and 11) Ij, -M):

-ma cosh 2 sinh a
Ptf = 2 2 (5.5)

j,m Z sinh 2 cosh (.

Next, we calculate the partial transposed state p with respect to the {1, N - 1}

split. The partial transpose solely mixes the eigenstates 10) j, ±m) and 11) j, tm)

according to Eq. 2.33. Thus we need only look at the subspace

emQ cosh 2 em" sinh 2 0 0

1 e m " sinh 2 ema cosh c 0 0
(5.6)

z 0 0 e-ma cosh 2 e-ra sinh (

0 0 e ma sinh 2 e-ma cosh 2

in the basis 10) Ij, -m), 11) ji, m), 10) j, m), and 11) Ij, -m).

Performing the partial transpose with respect to the {1, N - 1 } split on the above

129

subspace gives

ema cosh 22

e m sinh 22

0

0

e-ma sinh 2

ema cosh 2

0

0

0 e-Ma cosh 22

0 e Ma sinh 22

0

0

emae sinh 22

e-ma cosh 2
2 -

This matrix is in block diagonal form, and we can easily solve for its eigenvalues.

Using the fact that

tr M ± V(tr M)2 - 4 det(M)
A+ = (5.8)

2

for a 2 x 2 matrix M, the eigenvalues of the matrix in Eq. 5.7 are

ema cosha ± e' sinh a2 2

Z

Because the largest possible m-value is (N - 1)/2 [Sak94], the minimum eigenvalue

of p for a {1, N - 1} bipartite split is

e-(N-1)a/2 cosh 2 - e(N-1)a/ 2 sinh a-
Amin = 2 2 {1,N- 1} split (5.10)

which can be inserted into Eq. 2.36 to give the negativity.

When Amin is negative, Ptf is entangled. Since Amin is monotonic in N and a, the

values of N and a where Amin = 0 give a bound on Ptf being nonseparable. From the

previous equation, we see that the minimum eigenvalue becomes zero when

(5.11)e(N 1)a tanh = 1.
2

Changing the equal sign to a greater than sign, we obtain a bound on nonseparable

Ptf:

(5.12)e(N- 1)a tanh > 1.
2

130

(5.9)

1
(5.7)

5.2 Empirical analysis for {N/2, N/2} bipartite split

We now derive an analytical formula for the negativity of the Bell-transformed thermal

state under the {N/2, N/2} partition. The analysis that follows is empirically derived,

but it will be theoretically confirmed in the next chapter.

If we plot the eigenvalue levels of the partial transposed density matrix p as

a function of log 10(a-1), we discover that Amin always corresponds to one of two

eigenvectors at fixed N. Beginning at low values of a--1, the minimum eigenvalue

has a constant eigenvector which suddenly changes to a different eigenvector at a

transition point in a-'. In fact, the transition point corresponds to the point where

the two lowest eigenvalue levels cross, as shown in Fig. 5-1.

0.5

0.4

0.3

&O 0.2
0.1

CU 0
0

-0.1
(D

(-0.2-

-2-0.3-

-0.4

-0.5-
-1 -0.5 0 0.5 1 1.5

log 0(a-)

Figure 5-1: Eigenvalue levels of p T^ as a function of
crossing of the lowest two levels at log 10(a-1) ~ 0.5.

2 2.5 3

log 10(a-1) for N = 4. Note the

Moreover, the two eigenvectors are easily predicted as a function of N and sparse

in the computational basis. Based on numerical evidence, we conjecture that the

eigenvector corresponding to the minimum eigenvalue is given by

I Vmjn) = IV-) , Oz- 1 < Ozr 1

= IV+), a-1 > afe.'

(5.13)

131

i

with atr being the polarization value where the transition in eigenvectors occurs and

V_) 1= (2 N/2) N 2 N/2)

Iv+) = (2N-1 _ _N-1))

(5.14)

(5.15)

The decimal labels inside the kets represent the computational basis state when it is

expressed in binary notation, i.e. 2N-1 - 1) = 10111) when N = 4. Fig. 5-2 shows

the excellent agreement in eigenvalue when these vectors are used.

0 0.5 1
og(

1.5 2 2.5 3

Figure 5-2: Comparison of eigenvalues derived from Iv_) (dash
(dotted line) to the true minimum eigenvalue Amin (solid line),
of log 10(a-1) for N = 6.

dotted line) and Iv+)
plotted as a function

We numerically verify the conjecture in Eq. 5.13 for N = {2, 4, 6, 8, 10} by defining

a prediction error Amin - Amin where Amin is the minimum eigenvalue of p T^ calculated

by MATLAB and Amin is the minimum eigenvalue derived from the hypothesized

eigenvectors above. The prediction error is always smaller than 1015 and thus below

MATLAB floating point precision. A sample plot of the prediction error is shown in

Fig. 5-3 for the case N = 6.

How can we interpret these mysterious eigenvectors? One might think that they

correspond to the two lowest eigenvalue levels of the partial transposed state. Unfor-

132

0.1

0

-0.1 -

W

-0.2-
0

-0.3-

-041

-- -
- '- Min. - Eigenvalue derived from Iv >

Eigenvalue derived from Iv+>

....................... ~ ~ ~ -..

.....-. -.. -..

-n
Z1 -0.5

-

-x 1016

-1 -0.5 0 0.5 1 1 1.5
1og 10(cC

2 2.5 3

Figure 5-3: Prediction error Amin - Imin as a function of log 10(a- 1) for N = 6.

tunately, a more thorough comparison of the actual and predicted eigenvalues proves

this hypothesis false. Fig. 5-4 shows that the eigenvector in Eq. 5.15 tracks the second

lowest level at very low a-1, but deviates as a-' increases.

Numerical evidence suggests that the transition from one eigenvector to the other

is abrupt. However, since we are varying a continuous parameter a, we expect the

transition to be smooth; Amin would have the eigenvector Iv-) at low a-1, gradually

acquire a component in the direction of Iv+), before switching entirely to eigenvector

iv+). The mixing might occur in such a tiny range of a-1 that the behavior escapes

numerical examination.

To test this hypothesis, we calculate the mixing terms in the 4 x 4 computational

TAsubspace of ptf spanned by Iv_) and Iv+). The elements of the subspace may be

labeled
All A 12

A 21 A 22
A=

A 3 1 A 32

A4 1 A 42

with basis ordering 2 N/2 _ 1 2 N - N/2

nitions, the mixing terms are A13 , A 1 4, A 23,

A 13 A 14 ~

A 2 3 A 24

A 33 A 34

A 43 A 44 j

N-- 1), and 2N-1) With this defi-

A 2 4 , A 3 1 , A 3 2 , A 4 1 , and A 4 2 .

133

CD

a_

min
- - Second lowest eigenvalue level

0.02 - Eigenvalue derived from Iv >

0 - -

-1 -0.5 0 0.5 lo,1 d 1.5 2 2.5 3:

Figure 5-4: Comparison of eigenvalue derived from Iv+) (dashed line) to the Amin
(solid line) and the second lowest eigenvalue level (dash dotted line), plotted as a
function of logl0(a-) for N = 6.

Before we calculate them, let us explain our notation. Greek symbols, for instance

A,,,, are numeric indices. Roman letters, for instance ji) (jj, represent computational

basis states in binary notation. Note-that AJA = At,, sp we need only calculate half of

the mixing terms. This property follows from the facts that ptf is real and Hermitian

and that the partial transpose preserves Hermiticity: (1j) (jj)T^ ((Ij) (il)TA~t

We compute A,, with the following steps:

1. Write out the outer product |i) (jj corresponding to AAV = (i I ptf A 1j)

2. Perform the {N/2, N/2} split partial transpose on the outer product to find

1k) (11 = (|i) (jl)T^. This new outer product 1kc) (11 gives us the matrix coordi-

nates for the entry (k| Iptf 11) that is equal to A,,.

3. Calculate (k Iptf 11). Since Ub,s is so sparse and Pth is diagonal, (k Iptf 11) is equal

to a sum of entries in Pth or zero.

We are essentially backtracking through the original negativity calculation described

in Section 3.4.1.

134

To illustrate the process, we carry out the calculation for A 41. The term cor-

responds to the 2 N-1 2N/2 - 1 outer product and can be rewritten in binary

notation as 110...0 : 00...0) (00...0 11...11.1 The partial transpose of the matrix el-

ement is 100...0 : 00...0) (10...0 : 11...11 = 10) 2N-1 + N/2 - 1 . Therefore we have

K2 N-1 T 2 N2 i) = (01 Ptf 2 N-1 +2 N/2 - 1). By looking at the structure of Ub,s

and Pth, we see that (01 Ptf 2 N-1 + N/2 - 1 only nonzero if 2 N-1 ± 2 N/2 _ 2N

which is true for N = 2.

The calculation results for all the mixing A,, are summarized in Table 5.1.

Term pjj outer product Ptf outer product Value of term

A31 = A 13 101...1 11...1) (00...0I11...1 2 N/2 _ 1)2N-1 - 1 0 unless N = 2

A 41 = A 14 110...0100...0)(00...011...11 10)(2N-1 N/2 - 1 0 unless N = 2

A 32 = A 23 101...1100...0) (11...1100...01 2 N _) N-1 - 2 N/2 0 unless N = 2

A 42 = A 24 110...000...0)(11...100...0 N 2 N/2)2 N-1 0 unless N = 2

Table 5.1: Calculation steps to find the values of off-diagonal A,

The results in Table 5.1 show that there is no mixing unless N = 2. However,

when N = 2, Iv-) = Iv+). We conclude that vectors Iv-) and Iv+) do not mix under

the {N/2, N/2} bipartite split.

We can also obtain an analytical formula for the hypothesized minimum eigen-

value. Using the fact that A lv±) = A± Iv±), we find

Amin min(A_, A+) (5.17)

where

A = Al1 - A 21 (5.18)

A+= A33 - A 4 3 . (5.19)

Table 5.2 gives the formulas for A1 1 , A 2 1 , A 33 , and A 4 3 , which are calculated in the

same way as the mixing terms.

'Notational note: The colon in the middle of the ket and bra divide the first N/2 qubits from
the latter N/2 qubits.

135

Term Value of term

All 1 [(2N/2 _ 1 Pth N/2 _ 1 N/2 _ N-1 - 1 Pth 2 N/2 ± 2 N-1 _

A 21 2 (1| Pth 10) + 2N1 Pth 2 N-1

A33 (2N-1 - 1 Pth 2 N-1 - 1) + K2N - 1 Pth 2 N _ i)]

A 4 3 1 L2N-1 - 2 N/2 Pth 2 N-1 - 2 N/2) - (2N - 2 N/2 Pth 2 N - N/2]

Table 5.2: Explicit formulas for A,, that are needed to derive an analytical formula
for Amin-

The formulas in Table 5.2 may be re-expressed in terms of a using the formula

(il Pth) = [N-2w(i)]a/2 (5.20)

from Eq. 2.61. The Hamming weight w(i) is the number of Is in the binary expression

for i.

Now we can calculate the eigenvalues corresponding to lvmin) by substituting

results from Table 5.2 into Eqs. 5.18-5.19. For v_), we have

1 + e-, - e Nc/2 _ (N- 2)a/2 (5.21)

2Z
e,-/ 2(cosh 2 - eNa/2 sinh g)

2 , {)1fN/2, N/2} split

For Iv+), we have

e(-N+2)a/ 2 + e-Na/2 _ ea + I
A+ =Z (5.22)

2Z
ea/2 (e-Na/2 cosh 2 - sinh c)

2Z 2, {N/2, N/2} split

Eqs. 5.17, 5.21, and 5.22 can be used to calculate the negativity of Ptf under the

{N/2, N/2} bipartite split.

136

An interesting question is where do A+ and A_ cross? Note that A+ - A- is a

monotonic function in a since

e(-N+2)a + -Na _ 2a _ -2a e Na _ e(N- 2)a (
A+ - A- =--2 (5.23)2Z

cosh(Na) - sinh [(N - 2)a] - cosh(2a)

Z

Therefore, there is only one crossing, which occurs at Amin = A+ = A- = 0. If we set

Eqs. 5.21 and 5.22 to zero, we obtain

eNa/ 2 tanh a- = 1 (5.24)
2

for both expressions. Changing the equal sign to a greater than sign, we find a bound

on nonseparable ptf:

eNa/2 tanh a > 1 (5.25)
2

5.3 Negativity maps for {1, N - 1} and {N/2, N/2}

bipartite splits

The results from the previous two sections allow us to plot the negativity E" in

N - a parameter space for the {1, N - 1} and {N/2, N/2} bipartite splits. First, we

examine the {1, N - 1} split. Fig. 5-5 shows the negativity plotted up to 500 qubits.

The bound on nonseparable Ptf bends to the right of the Braunstein et.al. bound on

effective pure state nonentanglability, implying that there are entanglable thermal

states not captured by the bound.

In addition, Amin, as a function of a, behaves differently at large fixed N than

at small fixed N. As the number of qubits increases, the value of a corresponding

to Amin = 0 decreases, but the derivative of the minimum eigenvalue around this a

becomes increasingly shallow. This behavior is seen most clearly in the negativity map

plotted in Fig. 5-6 where we have plotted the logarithm of negativity to accentuate

small variations from E, = 0. One might speculate that as number of qubits increases,

137

it is easier to entangle a thermal state with Ubs but the unitary's entanglement power

diminishes. Unfortunately, since the quantitative interpretation of negativity is poorly

understood, it is hard to justify this statement without additional information.

The negativity maps for the {N/2, N/2} case are qualitatively the same as in the

{1, N - 1} split (see Figs. 5-7 and 5-8). The major difference is that the bound on

nonseparable Ptf bends closer to the left; it is less tight for the {N/2, N/2} split, as

seen in Fig. 5-9. Thus, the {1, N - 1} split gives better entanglement information.

Finally, can we entangle a thermal state in experimentally accessible parameter

space? By numerically solving Eq. 5.12, we find that for the highest experimentally

feasible polarization (a = 8.79 x 10-5), we require at least 114,135 qubits to achieve

entanglement. This number is clearly impractical, but it dramatically improves upon

the Schulman-Vazirani bound of 1.29 x 10' qubits from Section 3.2.

138

50(

450 0.45

400 0.4

350 0.35

z 300 -0.3C,,

0S250 0.2 5

E
S200 .z0.

150 0.15

100 0.1

50 0.05

-1 -0.5 0 0.5 1 1 1.5 2 2.5 3
1og10 (a-

Figure 5-5: Color map of E,(ptf) for {1, N - 1} bipartite split in N - a parameter
space, overlaid with Gurvits and Barnum bound on the nonentanglability of Peff (solid
white line), Braunstein, et. al. bound on the entanglability of Peff (dashed white line),
and bound on the nonseparability of Ptf from Eq. 5.12 (solid yellow line). The bar on
the right ascribes a color to each value of E,.

139

2C

18 ''~-4

16 6-6

14 c-
C,,

-10
cr12

-12
-010
E
z

-1 -0.5 0 0.5 1 11.5 2 2.54

8 *d pnonentnglabl

Figure 5-6: Color map of log [En(ptf) + 10-10] for {1, N - 1} bipartite split in N - oz
parameter space, overlaid with Gurvits and Barnum bound on the nonentanglability
Of Peff (solid white line), Braunstein, et. al. bound on the entanglability Of Peff (dashed
white line), and bound on the nonseparability of Ptf from Eq. 5.12 (solid white line).
The bar on the right ascribes a color to each value of log [En,(ptf) + 101'0].

140

-2

500

450 0.45

400 0.4

350 0.35

:5 300 -0.3cn

.0

z 1 50 0.25

100 0.1

50 0.05

-1 -0.5 0 0.5 1 1 1.5 2 2.5 3
1og 0 (cc-)

Figure 5-7: Color map of En(ptf) for {N/2.N/2} bipartite split in N - a parameter
space, overlaid with Gurvits and Barnum bound on the nonentanglability of peff (solid
white line), Braunstein, et. al. bound on the entanglability of Peff (dashed white line),
and bound on the nonseparability of ptf from Eq. 5.25 (solid yellow line). The bar on
the right ascribes a color to each value of E,.

141

-2

18 '-4

-6

-8

-1 -10
cr 12

-12
-0 10 -
E -

=3 -14

-16

parmetr sace ovrlad wth urvts nd (aruvtbon um)h oenagablt

6
-18

4 -20

2 -22

-1 -0.5 0 0.5 1 11.5 2 2.5 3
logge(ac-)

Figure 5-8: Color map of log [En(ptf) + 10-'0] for { N/2.N/2} bipartite split in N - a

parameter space, overlaid with Gurvits and Barnum bound on the nonentanglability

of Peff (solid white line), Braunstein, et. al. bound on the entanglability of peff (dashed
white line), and bound on the nonseparability of Ptf from Eq. 5.25 (solid white line).
The bar on the right ascribes a color to each value of log [En(ptf) + 10-10].

142

2C

......... ,

- - I.. . -

-- - - --.- I

- 1-

-- - -I-

-- - - - - - -

* C

..-

ci)

* 0).'
C IO

C

* CI:

.

-0.5

.

.......I- - -- - --.. --.

U transformed p
b~s th ---

-nonse.ar - ----- - -.-- - -.-- -
{N/2,N/2} bipartite split

U transformed p

nonseparabla
{1,N-1} bipartite split

...... ..-. .-- -- -- - -.- --......... ...- -- .-

pf nonentaglable(Gu.-. ts Barnum).
(Gutvits-Barhumn)

0 0.5 1 1.5
log(a)

2 2.5 3

Figure 5-9: Comparison of bounds on nonseparable ptf (Amin = 0) for {1, N - 1}
(solid blue line) and {N/2, N/2} (solid red line) bipartite splits, overlaid with Gurvits
and Barnum bound on nonentanglability of Peff (solid black line) and Braunstein,
et. al. bound on entanglability of peff (dashed black line).

143

50C

450

400'

350'

C)-'

n 3001

0250
0

E
=200z

150

100

50

I

01
-1

5.4 Summary

In this chapter, we calculated the negativity of the standard Bell-transformed thermal

state Ptf = Ub,sPthUt~ for the {1, N - 1} and {N/2, N/2} bipartite splits.

For the {1, N - 1} split, we computed the negativity through direct theoreti-

cal analysis. By exploiting the symmetry of the Ub,s transform, we found that the

minimum eigenvalue of p was

e-(N-1)a/2 cosh - - e(N-1)a/2 sinh -
Amin = 2 z , (5.26)

which gave a bound on the nonseparability of Ptf that was determined by the expres-

sion

e(N 1)a tanh > 1. (5.27)
2

The negativity E, could be calculated from Amin with the formula

E.(p) = max{O, -Amin}. (5.28)

For the {N/2, N/2} split, we computed the negativity through an empirically mo-

tivated analysis. Numerical exploration suggested that the eigenvector corresponding

to Amin was

Ivmin) = v_), a- < a (5.29)

SIv+) , a-' a-

with atr being the polarization value where the transition in eigenvectors occurs and

V)= 1(2N/21) 1 N _ N/2)) (5.30)

Iv+) = (2 N-1 _ NN1)) . (5.31)

144

Knowledge of Ivmin) allowed us to predict the minimum eigenvalue

Amin = min(A, A+) (5.32)

with A+ and A- given by

=e-/
2 (cosh 2 - eNa/2 sinh)A- = z 2 (5.33)

e a/2 (e-Na/ 2 cosh 2 - sinh ')
A+ = 2 . (5.34)

From these expressions, we derived a bound on the nonseparability of ptf:

eNa/2 tanh a > 1. (5.35)
2

These results enabled us to generate entanglement maps for the standard Bell-

transformed thermal state. The negativity of p and the bounds on nonseparable

Ptf were plotted in Figs. 5-5 and 5-6 for the {1, N - 1} split and in Figs. 5-7 and 5-8

for the {N/2, N/2} splits. Both splits gave entanglable thermal states outside of the

Braunstein et. al. bound for entanglable peff. The {1, N - 1} split, however, yielded

more entanglable thermal state parameter space than the {N/2, N/2} split.

The overall conclusion from the analyses of this chapter was that at least 114,135

qubits were required to entangle a thermal state at ideal experimental conditions

(ce = 8.79 x 10-').

145

146

Chapter 6

General separability and

distillability bounds for

Bell-transformed thermal states

This chapter focuses on the analytical derivation of separability and distillability

bounds on Bell-transformed thermal states under any bipartite split. The crux of

the derivation is to take a state p' with known entanglement properties and find a

random unitary operation that performs UbpthUb F- p'. Since such an operation

cannot increase the entanglability of the initial state, the entanglement of p' gives a

lower bound on the entanglement of the Bell-transformed thermal state UbpthU .

A candidate state for p' is provided by a family of mixed Bell states PN whose en-

tanglement has been classified by Dir and Cirac [DCOO]. We first review their formal-

ism (Section 6.1) and then apply it to Bell-transformed thermal states (Section 6.2).

We derive fully separable and distillable bounds on Bell-transformed thermal states

by constructing a random unitary operation that implements UbpthUt '-- PN- This

result gives improved bounds on the entanglability of Pth. Finally, we sketch a ma-

jorization based approach that may yield even tighter bounds without having to

specify a particular unitary (Section 6.3).

147

6.1 Diir-Cirac classification of entanglement in spe-

cial mixed Bell states

Here we review the Diir and Cirac formalism for classifying entanglement in a specific

family of mixed Bell states and an application of this classification to effective pure

states. The discussion is drawn from their article in Physical Review A [DCOO].

6.1.1 Formalism

Diir and Cirac consider a special family of mixed Bell states parameterized by the

number of qubits N. They are defined by

2(N-1)_1

j=1

where the generalized Bell states (in the computational basis) are given by

[0) j) t Ii) I3)] , (6.2)

3) =(2 N-1 - j - 1)) is the bit-flipped version of 1j), and 1 j < 2 N-1 - .

Notice that A± and Af are simply the eigenvalues of PN. Moreover, since PN is

a density matrix, A' > 0, A± > 0, and E2N-1 (4 +A+ - 1. We also choose

A+ - > 0. The state of the first qubit and the latter N - 1 qubits are given by the

first ket/bra and second ket/bra of the pair respectively. This formulation is slightly

altered from the notation used by Diir and Cirac for later convenience in matching

our thermal state formulas.

We specify a bipartite split with the nonnegative integer k, which when expressed

in binary, labels the qubits that are in Party A with Is and the qubits in Party B with

Os. For example, if k = 010110, then the second, fourth, and fifth qubits are in Party

A, and the first, third, and sixth qubits are in Party B. With no loss in generality, we

require the first qubit to always be in Party B, i.e. the most significant bit is always

0. Therefore, the possible bipartite splits lie in the range 1 < k < 2 N-1 _ 1

148

This notation allows us to obtain an elegant condition on PN to have positive

partial transpose (PPT) or negative partial transpose (NPT). To derive it, we perform

the partial transpose on PN in the computational basis. We first note that application

of Eq. 6.2 yields

qf +) (q = 10) lj) (01 (il + I) IS) (1 (SI , (6.3)

which is diagonal in the computational basis and invariant under partial transposition.

In view of Eqs. 6.1 and 6.3, the partial transpose of PN under bipartite split k is

p = [10)100...0) (01 (00...0 + 1) I11...1) (11 (11...1I] (6.4)2
A+- + A-

+ 2 [10) k) (lI +±|1) Ik) (01 (k]

2(N -1)_

+ E [10) li) (01 (j1 + 1i) IS) (i1 (l].
j=1

The density matrix pT is diagonal in the computational basis except in the subspace

spanned by 10) k) and 11) k):

[2 A/2] (6.5)

where A = A - A--. The eigenvalues of this subspace are Ak ± A/2. Since A > 0,

we conclude that PN has the following properties:

Ak > A/2 P PN has positive partial transpose (PPT) (6.6)

Ak < A/2 PN has negative partial transpose (NPT). (6.7)

More importantly, we can characterize the full separability and distillability of PN

by taking the partial transposition over all possible bipartite splits. Diir and Cirac

proved the following criteria [DCOO]:

1. Consider all possible bipartite splits of a N qubit system. If and only if each

of these splits has PPT, then PN is fully separable, i.e. separable under any

149

partition of the system.

2. Consider all possible bipartite splits of a N qubit system. If and only if each

of these splits has NPT, then PN is fully distillable, i.e. a maximally entangled

pair can be distilled from any two particles in the system.

Thus the PPT/NPT conditions on PN give bounds on the separability and distilla-

bility of pN:

A < 2 min{k} [Ak] P PN fully separable (6.8)

A > 2 maxfk}[Ak] P PN fully distillable (6.9)

where the minimum and maximum are taken over all possible bipartite partitions k.

We note that the bound on full distillability is important because it gives the

regions in parameter space where useful entanglement (maximally mixed pairs) can

be obtained.

6.1.2 Bound on the entanglability of effective pure states

As Diir and Cirac point out, the fully distillable criterion gives a simple bound on the

entanglability of effective pure states that is tighter than the Braunstein et. al. ex-

pression in Eq. 3.4.

Recall from Section 2.3.2 that the effective pure state is given by

Peff = Id + 6 10) (01 (6.10)d

where c characterizes the fraction of pure state and the dimension d = 2 N We

can apply a unitary that transforms 10) to the maximally entangled Bell state 0),

yielding a new state

p d Id + e ''(X (6.11)

that fits the form of PN. It is easy to see that A' = (1 - E)/d+c, A- = (1 - E)/d, and

Aj = (1 - E)/d. Therefore, A = E.

150

Using Eq. 6.9, we find that full distillabilityl of peff requires

> 1 (6.12)

Furthermore, recall from Section 2.3.2 that E can be expressed in the parameters

N and a:
eNa2 e Na1 2

Z . (6.13)Z 2N _ I

Inserting this expression in Eq. 6.12, we find a bound on the entanglability of effective

pure states in NMR parameter space:

a > - In 1 . (6.14)
3

Unlike the Braunstein et. al. entangled bound of Eq. 3.4, this new bound depends on

the number of qubits.

6.2 Application to Bell-transformed thermal states

Here we apply the Diir-Cirac formalism to obtain bounds on the entanglement of

Bell-transformed thermal states. We describe a random unitary operation that maps

Bell-transformed thermal states to states of form PN, allowing us to derive analytical

bounds on the separability and distillability of thermal states under two specific Bell

unitary transforms.

6.2.1 Random unitary operation mapping Bell-transformed

thermal states to Dfir-Cirac Bell states

Since the thermal state Pth is diagonal, the transformed state has form

Ptf = UbPthUt (6.15)

'According to Eq. 6.8, we also obtain a condition for full separability of the transformed effective
pure state in Eq. 6.11. However, this criterion is relevant to a specific group of unitaries and therefore
does not give as much information as the Braunstein et. al. and Gurvits-Barnum separable bounds.

151

2 (N-1)_1

o-=i j=1

The state is diagonal in the generalized Bell basis { 4,j , but is not of the form PN

because generally At -4 A-.

Not all is lost. Suppose we can find a random unitary operation 8FU such that

8 U(Ptf) has form PN. The action of any random unitary operation on Ptf can always

be expressed as a probabilistic mixture of unitaries Ui:

SU(P) = EpiUpU/ (6.16)

where pi is the probability of applying the unitary Ui. We can interpret U(p) as a

convex combination of transformed thermal states. In Chapter 3, we showed that the

effective pure state had the same form and that the entanglement available from Peff

could never be as much the maximum entanglement attainable from Pth. Analogous

reasoning tells us that a random mixture of unitaries cannot increase entanglement;

the creation of an effective pure state is merely a specific case of this general statement.

Thus, the entanglement of EU (Ptf) bounds the entanglement of Ptf-

Now we present a random unitary operation E, that performs the desired trans-

formation. Consider the following procedure:

1. Start with the transformed Bell state Ptf, which is diagonal in the generalized

Bell basis.

2. Apply mixing operation RO, where R = NfRi and

edi 0~
Ri = 0 1(6.17)

in the computational subspace {I0), 1)} of the ith qubit. Essentially, Ri mul-

tiplies the ith qubit by a random phase #. if the qubit is in the state 10). Here

we assume that #i is random and uniformly distributed over [-7r, 7r] subject to

the constraint Ei #i = 27r. This requirement is chosen so that RO Pg) = .

152

3. Average R 4 over all possible values of #i from 0 to 27r.

Let us verify that .g produces a state of form PN- First, we calculate the effect of

RO on each generalized Bell state:

(6.18)
N

i1=1

- .L[ei~ 130) Ii)+ e-kiIi) i)]

where we define

(6.19)S= z #qi.
{ilqo==O}

Note that j1) 3) gains a phase of -Oj because it is the bit-flipped version of 10) 1j).

Next, we find the state that results when R, acts on the entire Bell-transformed

thermal state:

R4ptfRt =
2(N-1)_

E
j=0

At x+) Kxt + A- X) X 1] (6.20)

with the outer products being

xi [1 = () l (U1 + I1) j) (ii (iI)

± (e2ilj 10) 1j) (11 (iI + e-2.Ij 11) 1j) (01 (j) .

When we average Eq. 6.20 over #i (recall that 4j is a function of /i from Eq. 6.19),

the last two terms (j 7 0) in Eq. 6.21 vanish because f_1 f02 die 2zii = 0. When

j = 0, g4 has no effect as #j = 27r. The final state after application of g is conse-

quently

2 (N-1)_ At + A
S4(Ptf) = AT Oi') ('g + 3 L

O-=i j=1 2
(6.22)i) (Tt + IT) (T-D

153

(6.21)

which is indeed of form PN- Matching this expression with Eq. 6.1, we find that

A 2 (6.23)

We emphasize that 60 is just one possible random unitary operation that gives the

needed transformation. Moreover, random unitary operations generally decrease the

entanglement of the system. We ideally desire a procedure that preserves as much

thermal state entanglement as possible. In the next subsection, we make a few re-

marks about the effectiveness of g in this regard.

6.2.2 Separability and distillability of thermal states under

Ubs

We now calculate separability and distillability bounds on Pth. First, we examine the

case where the transformed thermal state is Ptf = Ub,sPthUb~s

Inspection of the matrix in Eq. 3.9 shows that Ubs maps computational basis

states to Bell states in the following manner:

j)), 0 j < 2N-1 (6.24)

N-1 N
3j 7 'Il2(N-1)) 1 -< N

Recall from Section 2.3.1 that the diagonal entries of the thermal state are given

by

(i Pth 1i) [N-2w(i)]a/2 10 <i < 2 - 1 (6.25)

where the Hamming weight w(i) is the number of is in the binary expression for 1i).

Combining this formula with Eq. 6.24, we find

K zt Ptf e qf tt [N-2w(i)]a/2 O<i< 2 N-1 (6.26)

[N-2w(i)-2/2 2 N-1 < <j2<N(6.27)
qI Ptf ,2-1

154

Now we perform the procedure of the last subsection to obtain a new state SO(Ptf).

Applying Eq. 6.23, &,(ptf) expressed in form of PN has parameters

= 1 Na/2(_ -a) (6.28)
Z

Ak = 1 [N-2w(k)]a/2(I + ca) (6.29)
2Z

where 1 < k < 2 (N-1) - 1.

Inserting the parameters into Eqs. 6.6 and 6.7, we establish conditions for the

thermal state to be PPT/NPT under Ub,s and bipartite split k,

tanh < e- - Pth PPT under Ub,s (6.30)
2

tanh 2 > e-W Pth NPT under Ub,s.2

Notice that the {1, N - 1} and {N/2, N/2} bipartite splits correspond to 1k)

being 1011...1) and 100...0 : 11...1),2 which have Hamming weights N - 1 and N/2

respectively. If we insert these weights into the above equations, then we recover

the same separability constraints calculated in Eqs. 5.12 and 5.25. Our procedure S4

seems to be a good one; it does not decrease the entanglement of UbsPthUt5 for the

{1, N - 1} and {N/2, N/2} splits.

It is straightforward to calculate separability and distillability bounds by mini-

mizing and maximizing Eq. 6.30 over all bipartite splits, and we find

tanh a < e-(N- 1)a ~* Pth fully separable under Ubs (6.31)
2

tanh - > e~ -> Pth fully distillable under Ub,s. (6.32)
2

The separable bound corresponds to the {1, N - 1} split while the distillable bound

corresponds to the {N - 1, 1} split.

2Following the notation established in Chapter 5, the colon in the middle of the ket separates the
first N/2 qubits from the latter N/2 qubits.

155

6.2.3 Separability and distillability of thermal states under

UbS Ufan

Here we calculate separability and distillability bounds on thermal states under a Bell

unitary that is obtained by acting with a permutation matrix Ufan before applying

Ubs. This new Bell transform Ub,sUfan gives much improved results over Ubs, as we

now show.

The tightness of any bound derived from the Diir-Cirac formalism depends heavily

on A, which measures the size of the gap between A' and A-. In the case where we

transform Pth with Ub,s, A scales as 2 N. We give a short derivation here:

A = I eNa/ 2 (- C) (6.33)

eNe/ 2 (- ea)

(ea/2 + e-/ 2)N

1 -e-

(1 + e-)N

~ (a < 1

where we have used Eq. 2.60 for the partition function. We observe that A is smaller

than it could be. By choosing the Bell transform to be Ub s, we have A+ = eNa/ 2 /Z

and AO = e(N- 2)a/2 /Z. If we alter the unitary mapping between computational basis

states and Bell states, we can shuffle the values of A4 and A) to maximize A over all

permutations of Ub's. The optimization allows us to achieve tighter bounds on the

entanglability of thermal states.

The largest possible gap occurs when we select A: = eIN,/ 2 /Z, or

'A =2 sinh(Na/2) (6.34)
Z

Following a similar calculation to the one above, we see this choice scales as

A ~ N2N. (6.35)

156

We can realize this gap with a new mapping:

1j) -I Tt), O<j<2 N-1 _ (6.36)

N2N-J1 , 2N 1 - < N

In fact, this mapping is reproduced by the Bell unitary UbsUfan, with the permutation

matrix Ufan reshuffling the old mapping in Eq. 6.24 to give Eq. 6.36.

Now we calculate the PPT condition for the transformed thermal state

Ptf = Ub,sUfanPthUfanUbs. Using the mapping in Eq. 6.36 and the formula in Eq. 6.25,

we have

(6.37)Ak 1 [e-[N-2w(k)]a/2 + [N-2w(k)]a/2

cosh [(N - 2w(k))]

Comparing Eqs. 6.34 and 6.37, Pth under the transform Ub,sUfan and bipartite

split k is PPT/NPT if and only if

tanh(ka/2)

tanh(ka/2)

< e-[N-w(k)]a * Pth PPT under UfanUb,s

> e--[N-w(k)]a = Pth NPT under UfanUb,s.

Minimizing and maximizing the above conditions over all possible bipartite splits,

we find that the fully separable bounds are

Pth fully separable under UbsUfan if and only if

tanh(Na/4) eNa/2 or (6.40)

sinh(Na) < 1 (6.41)

and that the fully distillable bounds are

157

(6.38)

(6.39)

Pth is fully distillable under UbsUfan if and only if

tanh [(N - 1)a/2] > e-c or (6.42)

a
tanh 2 > e-(N-)a. (6.43)

Eqs. 6.40 and 6.41 are derived from the {N/2, N/2} split while Eqs. 6.42 and 6.43

correspond to the {1, N - 1} and {N - 1, 1} splits respectively. These two splits give

the same bound because Ak in Eq. 6.37 is symmetric under replacement of w(k) by

N -w(k).

6.2.4 Discussion

How do the separable and distillable bounds on thermal states under the two Bell uni-

taries compare? Are the bounds on thermal state entanglability more favorable than

the bounds on effective pure states entanglability? We now analyze these questions.

In Figs. 6-1 and 6-2, we plot the Diir-Cirac derived bounds on full separability and

distillability of thermal states under Ubs (Eqs. 6.31 and 6.32) and UbsUfan (Eqs. 6.41

and 6.43) as well as bounds on the entanglability (Diir and Cirac, Eq. 6.12) and

nonentanglability (Gurvits and Barnum, Eq. 2.95) of effective pure states.

Earlier in Section 6.2.2, we remarked that the NPT condition on Ub,sPthUb s

matched the negativity formulas we calculated in Chapter 5 for the {1, N - 1 } and

{N/2, N/2} splits. Similarly, we can check the fully separable and distillable bounds

by numerically finding the a where Amin = 0. Figs. 6-3 and 6-4 show that the

analytical and numerical values match for N = {2, 4, 6, 8, 10}. The excellent agree-

ment implies that our random unitary procedure preserves the entanglement of Bell-

transformed thermal states.

Comparing Ub,s and Ub,sUfan, the latter unitary clearly gives tighter bounds on full

separability and distillability. The Dfir-Cirac derived fully separable bounds on Pth

lie far from the Gurvits-Barnum bound on the entanglability of Peff, simply because

the bounds on Pth apply to specific unitaries whereas the bounds on Peff hold for any

quantum operation. Interestingly enough, the fully distillable bound on Pth under

158

Ub,s exactly coincides with the Braunstein bound on the nonentanglability of Peff

(not shown in the figures; for comparison, see for instance Figs. 5-5 and 5-6), and the

fully separable bound for Ub,s exactly matches the fully distillable bound for UbsUfan-

We also evaluate the fully distillable bound for UbsUfan transformed thermal states

against the corresponding bound for effective pure states. The Ub,sUfan thermal state

bound encompasses more parameter space at low N, but the effective pure state

bound does better for N > 9. Yet we motivated the study of NMR thermal states in

Chapter 3 by observing that thermal states can be more easily entangled than effective

pure states. The apparent contradiction suggests that Ub,sUfan is not the optimal

unitary for entangling thermal states.

Thermal states with parameter values to the left of the Ub,sUfan separable bound

have at least one NPT bipartite split, meaning that at least one maximally entangled

pair can be distilled. Consequently, this bound gives an upper limit on the number of

qubits needed to entangle a thermal state in ideal experimental conditions (a = 8.79 x

10'). Solving the separable bound in Eq. 6.41, we compute an upper bound of 20,054

qubits for an entanglable thermal states. This result is a substantial improvement

over the lower bound of 114,135 qubits we derived at the end of Chapter 5.

6.3 Majorization approach to obtain bounds on

entanglable thermal states

We have seen how the Diir-Cirac formalism is a powerful tool for obtaining bounds

on the separability and nonseparability of Bell-transformed thermal states. The key

is to find a random unitary operation that maps the Bell-transformed thermal state

to a state of form PN- In principle, we can always try to construct the needed

quantum operation, but this method is time-consuming and wasteful. Knowing such

a procedure exists is enough.

Here we discuss a new approach that uses the concept of majorization to address

this problem. Uhlmann's theorem [Uhl70, Uhl7l, Uhl72, Uhl73] provides a majoriza-

159

2 0 -----.....--- --..r..-.. ..-. .: - -- : - - - --- --..-- .-. ..- -.-.- ...-
U trarsformed : : + U U :transformed p

b,s - b,s fan: th

P fully separable! fully separable

U U: -----
b,s fan I : I

transformed p
fully distillable

1 4

Peff entanglable
.95 :! : (Dur-Cirac)

o1 I . ~................................-

- - -. - --.-

00
E

6 :

3 5 p :nonentanglableI -ef. -

-- -- - - - - - e - - - - - - - - - - - - -- - - - - - --- - - - - - - - - - - - - -....(u v t - a

E

6 - - - -- - - - - - .- - - - - - - - - - - - . . - - - - - --- -- - - . - -20

-1 -0.5 0 0.5 1 1 1.5 2 2.5 3
log10Qx

Figure 6-1: Comparison of bounds on the separability and nonseparability of ther-
mal states versus bounds on the entanglability and nonentanglability of effective pure
states derived from Diir-Cirac formalism (plotted up to 20 qubits): Pth fully separable
under Ub,s (solid red), Pth fully separable under UbsUfan (solid blue), Pth fully distil-
lable under Ub,s (dash dotted red), Pth fully distillable under Ub,sUfan (dash dotted
blue), Peff entanglable (dash dotted black), Peff nonentanglable (solid black).

160

---..-....

- V

........ O

.. 0

-C:

-U

c

5 0 0 r --. -.. -.. . -....

-1 -0.5 0 0.5 11
log(Q~)

1.5 2 2.5

Figure 6-2: Comparison of bounds on the separability and nonseparability of ther-
mal states versus bounds on the entanglability and nonentanglability of effective pure
states derived from Diir-Cirac formalism (plotted up to 500 qubits): Pth fully sepa-
rable under Ub,s (solid red), Pth fully separable under Ub,sUfan (solid blue), Pth fully
distillable under Ub,s (dash dotted red), Pth fully distillable under UbsUfan (dash
dotted blue), peff entanglable (dash dotted black), peff nonentanglable (solid black).

161

.:.-.......-............-...-..--............-..--..............

.- .- - . -- . .-
U transformed:p

b,s :th
Ifully separable
-r........

U U transformed P- b,s fan - th
fully distillable. -. -

.. - -
p entanglableeff

.-.-- .:--
U

b,s lan
transf Ormed p:... .- . - -.......-. - . . - ..-. th :

S-fully separable:

- . . --. -- ..--

........ --..
P nonentanglable
(Gurvits- Barnum).. ---...-%. . -

450-

4001.

350-

C,,

S300
C
0~
,_250
-0
E

200

I-

I..

150 -

100 -

501.

3
0

L. --

10

9

81

Cl)

%4-
0

E
z

7

6

5

4

3

2
0

Figure 6-3:

0.2 0.41
log 1 (c-)

0.6 0.8

Comparison of Diir-Cirac derived fully separable bounds on Bell-
transformed thermal states versus direct
numeric values are computed by finding a

numerical calculation of negativity.
such that Amin = 0.

162

U {1,N-1 } split (numeric)

* UFan {N/2,N/2} split (numeric)
- U fully separable (analytic)

U fully separable (analytic)UFan flysprbe(nltc

- - -.-.-

..

The

..........

..........

..........

..........

-

10

UBell {N-1,1} split (numeric)
9 -- .-.- .UFan {1,N-1} split (numeric) -

UFan {N-1,1} split (numeric)

8 - UBell fully distillable (analytic)
_ UFan fully distillable (analytic)

w :.......C-

Lo- 6

E

2-
0 0.1 0.2 0.3 p.4 0.5 0.6 0.7

log(Q-)

Figure 6-4: Comparison of Diir-Cirac derived fully distillable bounds on Bell-
transformed thermal states versus direct numerical calculation of negativity. The
numeric values are computed by finding a such that Amin = 0.

163

tion criterion for the existence of a random unitary operation that maps one density

matrix to another. The majorization relation between two density matrices also con-

strains their von Neumann entropies.

In this section, we first define majorization and explain its physical significance.

The account closely follows Nielsen's lecture notes [Nie02]. Then we describe Uhlmann's

theorem and the majorization condition on von Neumann entropy and illustrate how

these tools could potentially give tighter bounds on entanglable thermal states. Fi-

nally, a numerical approach for deriving the bounds is outlined, although no results

are presented.

6.3.1 Majorization

Majorization is a mathematical relation that determines whether one probability

distribution is more disordered than another. We first give an intuitive definition

of majorization, followed by a definition more amenable to actual calculation.

Suppose we have two real vectors, F = (ri, r 2 , ... rdi) and S = (si, S2, ... , Sd2). If

d, $ d2, we pad the shorter vector with extra zeros so that the dimension of both

vectors is d = max(di, d2). We say "s majorizes F' if there exists a set of permutation

matrices P and probability distribution p3 such that

-_ = -ys (6.44)

The statement "S majorizes F' is equivalent to the mathematical shorthand ' -< S.

We may think of F as being more "disordered" than S because it can be expressed as

a random sum of permuted copies of S. An easy way to understand the concept of

majorization is to consider the completely random distribution (1/d, 1/d, 1/d, ..., 1/d)

where d is the dimension. Any vector will majorize this distribution. Simply take

p3 = 1/d and let P be cyclic permutation performed j times. This result agrees with

the intuition that a perfectly uniform distribution contains the maximum amount of

disorder.

While the definition in Eq. 6.44 furnishes us with a clear physical understanding of

164

majorization, a more practical definition is the following. Let rI and sI be the vectors

f and S' with their components (zero-padded if necessary) arranged in non-decreasing

order, that is rf < rl < ... < r and vice versa. We have r' -< S if and only if

k k

E rj > E s (6.45)
j=1 j=1

for k = 1, 2, ..., d and with the equality holding for k = d.

When majorization is applied to quantum mechanics, we take i and Sgto be vectors

containing the eigenvalues of density matrices. Given two density matrices p and -,

we have p -< u if and only if X(p) -< X(a) where X(p) is a vector containing the

eigenvalues of p.

This interpretation makes sense because the eigenvalues define a probability dis-

tribution on an orthogonal set of states. Thus, majorization amounts to comparing

the disorder of two probability distributions. The concept is related to von Neumann

entropy in the sense that p -< a = S(p) < S(u) [Nie02].

6.3.2 Uhlmann's theorem and majorization constraint on von

Neumann entropy

Majorization has many beautiful applications to quantum measurement, quantum

operations, and density matrix decomposition. We now discuss two fundamental

results that will be useful for our purposes: Uhlmann's theorem and the majorization

constraint on von Neumann entropy.

Uhlmann's theorem states that given two Hermitian matrices A and B, there exists

a random unitary operation SU such that A = SU(B) if and only if B majorizes A.

Mathematically, we write

A -< B * 3 SU s.t. A = EU(B) (6.46)

where the action of SU is given in Eq. 6.16.

Suppose Pth majorizes p', a state of form PN- Then Uhlmann's theorem says that

165

P = Ei UipthUt. The same convexity argument from Section 6.2.1 establishes that

the entanglement of p' gives a lower bound on the maximum entanglement attainable

from thermal states.

We have converted the problem of calculating the entanglement of Upth(N, a)Ut

to finding a density matrix p' that majorizes pth(N, a). If p' has an analytically

tractable formulation (in terms of N and a), we can derive analytical bounds on

entanglable thermal states.

Although we have changed our approach, the majorization approach is not neces-

sarily simpler. We need to guess a form for p' that will majorize Pth and compare as

many as 2 N eigenvalues to see if the majorization actually holds. There is, however,

a constraint on the majorization that can be much easier to check. A well-known re-

sult 3 says that given two density matrices p and a, if o majorizes p, the von Neumann

entropy S(u) must be at least as much as the von Neumann entropy S(p):

p -< 0 -> S(p) > S(u-) . (6.47)

Notice the majorization relation is merely necessary and not sufficient.

We can calculate the von Neumann entropy of p and o and check if the entropies

satisfy the correct relation for majorization in a particular direction. For example,

if S(p) < S(o), then it is impossible for u to majorize p. Since there is often an

analytical formula for the von Neumann entropy, we can sometimes avoid the time-

consuming task of checking that the desired majorization holds.

6.3.3 Application to thermal states

Let us apply these two majorization theorems to the problem of entangling NMR

thermal states. First, we use the entropy relation in Eq. 6.47 to establish a condition

specifying when p' does not majorize Pth. The condition yields a lower bound on

the number of qubits N needed to entangle a thermal state under ideal experimental

conditions (a = 8.79 x 10-). Second, we outline an algorithm that uses Uhlmann's

3 For a proof, see Ref. [Nie02].

166

theorem to iteratively search for a better bound by incrementing N until the ma-

jorization relation Pth -< p' holds. The entropy-based bound sets the initial value of

N for the algorithm.

Entropy constraint on thermal state majorization

Here we derive an entropy constraint on p' -< Pth. The following analysis assumes

fixed N and a, although this assumption is not always explicitly stated. Now the

majorization always fails when S(p') < S(pth). Thus we must maximize S(p') to

obtain a tight constraint on the majorization. Intuitively, S(p') is maximized when

the eigenvalues of p' are distributed as equally as possible. At the same time, p'

must be nonseparable. Otherwise, its entanglement is zero, and we do not gain any

information on thermal state entanglement.

Consider the following construction for p', which we call ps. We set A- = 0 for

convenience, letting A = A. For ps to be nonseparable, at least one bipartite split

must be NPT. We can choose any split k such that Ak = A/2 - A+/2. To maximize

the entropy, we evenly distribute the remainder of the trace over the other 2 N - 4

eigenvalues. Our construction becomes

A0 = 0 (6.48)

Ak = A4/2, k#= 0 (6.49)

1 - 2A+
Aj = 2 N 0 1 < j (N) 1,j #k (6.50)

with A+ yet to be determined. This construction has entropy

A + A+_-2 1-2A+
S(ps) -A+1og 2 A+ -21 - _(2 N og 2 2 N (6.51)

1 - 2A+
= -2Aog2 A + A+ - (1 - 2A+) log 2 2 N 4

To maximize S(ps) with respect to A, we compute

as 2A+ 1 - 2A+
-2 logA 1n2 +1±21g 2 0

a+ g2 0A+ n 2 +g2N _(652)

167

I - 2A+
Sog 2 -21og 2 A+ + 21og 2 2,

1 2 0 -22-+4

= log A+)2 2N_42

Setting the above expression to zero (and checking that the second derivative is neg-

ative at this point), we get

A + . (6.53)0 2N- _4+2V

Now we can verify our assumption that only split k is NPT:

A3 < Ak (6.54)

1 - 2A+
2N_4 /

1
A + > N-

where we have used Eqs. 6.49 and 6.50 in the second line. Substituting Eq. 6.53 into

the last expression above, we see that A, < Ak holds for all positive N.

Examination of Eq. 6.51 shows that for low N, S(ps) < S(pth). Furthermore, the

deviation of S(ps) from the maximum entropy N decreases exponentially. In contrast,

at fixed a, the thermal state entropy deviation from maximum entropy scales linearly

with N (see Eq. 2.62). Therefore, at some value of N, the entropy of ps will exceed

that of the thermal state. Applying Eq. 6.51 and 6.53, numerical calculation shows

that at a = 8.79 x 10-, S(ps) > S(pth) when N > 26.

The state ps is not the best construction. In fact, if we let A- be a free parameter

and numerically maximize S(p') with respect to both A+ and A-, we obtain slightly

higher entropies that give a lower bound: N > 25. However, ps may be useful in the

future since it is analytically tractable.

168

Algorithm for upper bound on N required to entangle a thermal state in

ideal experimental conditions

Here we present an algorithm for finding a lower bound on the number of qubits

necessary to entangle an NMR thermal state. Assume that the polarization is fixed

at a = 8.79 x 10- 5 and that we possess an analytical formulation for p'.

We begin the algorithm initially at N = 25, according to the entropy bound

we calculated previously. Then for each value of N, we calculate and compare the

entropies of p' and Pth to see if the possibility exists for Pth to majorize p'. If it does,

the next step is to check if the majorization relation actually does hold. When the

majorization succeeds, Uhlmann's theorem applies and we are finished. Otherwise,

we increment N and try again. Here is a detailed description of the algorithm:

1. Set the initial number of qubits to N = 25, according to the entropy bound

calculated previously.

2. Calculate the thermal state von Neumann entropy S(pth).

3. Calculate the von Neumann entropy S(p'). If p' depends on parameters other

than N, maximize S(p') with respect to the extra parameters.

4. If S(p') ;> S(pth), check if the desired majorization relation holds: p' -- Pth-

5. If the majorization relation does not hold, increment the number of qubits by

one (N F-4 N + 1) and go back to Step 2. Otherwise, stop.

The missing link is a construction for p' that is efficiently majorized by Pth. It must

be different from ps because in our previous formulation, A0 = 0 and therefore ps

can never majorize another density matrix. We leave the construction of p' for future

work.

6.4 Summary

In this chapter, we used the separability conditions on Diir's and Cirac's PN Bell states

to bound the entanglement of thermal states transformed under two Bell unitaries.

169

For U = Ub,s, we found that UPthUt was fully separable if and only if

tanh < e-(N-1)a (6.55)

and that UPthUt was fully distillable if and only if

tanh a > e-'. (6.56)
2

For U = Ub,sUfan, we found that UPthUt was fully separable if and only if

tanh(Na/4) < eN,1 2 or (6.57)

sinh(Na) < 1

and that UPthUt was fully distillable if and only if

tanh [(N - 1)a/2] > e- or (6.58)

tanh - > e-
2

These separable and distillable bounds were plotted in NMR parameter space as

depicted in Figs. 6-1 and 6-2. The unitary UbsUfan gave tighter bounds on ther-

mal state entanglability than Ubs. However, the bounds on effective pure state en-

tanglability gave a larger volume of entangled parameter space for N > 9, suggesting

that Bell unitaries may not be the optimal entangling unitaries for thermal states.

Finally, we discussed an alternative, majorization-based approach to finding bounds

on the entanglability of thermal states. It had two attractive features. First, the ap-

proach was analytically tractable unlike the numerical computation of negativity.

Second, it was more general than our application of the Dfir-Cirac formalism, which

was limited to Bell transforms. Unfortunately, our approach lacked a construction for

a density matrix of form PN that is majorized by a given thermal state. Still, future

attempts to bound the entanglability of NMR thermal states may fruitfully follow

this approach.

170

Chapter 7

Conclusion

This thesis was inspired by the controversy surrounding entanglement in liquid-state

NMR quantum computation. Braunstein et. al. showed that the states used in current

NMR quantum computing experiments are not entangled. Yet it is widely believed

that entangled states are needed to perform quantum computations. Based on this

evidence, some have claimed that NMR machines do not perform true quantum com-

putation. Others have said that the role of entanglement in quantum computation is

poorly understood.

We sought to address the controversy by studying the entanglability of NMR

thermal states in a parameter space defined by the number of qubits N and the

polarization a. Our goal was to bound the areas in N-a space where thermal states

could be entangled. If these regions were also experimentally accessible, it might

be possible to create an entangled NMR state in the laboratory, beginning with an

initial thermal state. This idea was novel because conventional implementations of

quantum algorithms in NMR begin with effective pure states. We became interested

in thermal states because more entanglement may be attainable from a thermal state

than from a near-maximally mixed state.

To simplify our problem, we investigated the entanglement of thermal states that

had been transformed by a family of unitaries Ub that mapped computational basis

states to Bell states. First, we pursued a numerical approach. A negativity map

was computed on a single processor, for the standard Bell-transformed thermal state

171

Ub,spthUb . The map gave a bound on the entanglability of thermal states, but

memory requirements restricted N < 12. Due to the strong diverging behavior of the

contours near the bound, extrapolation of the bound to higher N was infeasible.

To map larger regions of parameter space, we began adapting the single processor

negativity software to a Beowulf cluster. This work, however, was put aside when

we discovered alternative analytical approaches that exploited the symmetry of Bell-

transformed thermal states. We found explicit negativity formulas for the standard

Bell-transformed state (Ptf = Ub,sPthUb5) under the {1, N - 1} and {N/2, N/2}

bipartite splits. Derivation of the {1, N - 1} split negativity formula relied on the

invariance of the latter N - 1 qubits under the Ub s and partial transpose operations.

A simple pattern in the eigenvectors of the partial transposed state ptf provided

the crucial step to deriving the {N/2, N/2} bipartite split negativity formula. A

calculation based on these negativity formulas showed that at least 114,135 qubits

were required to entangle a thermal state in ideal experimental conditions.

After our initial breakthrough, we found a more general method that could be

used to analytically bound the nonseparability of Bell-transformed thermal states for

any Ub and any bipartite split. We constructed a random unitary operation SU that

could convert a given Bell-transformed thermal state into a Diir-Cirac mixed Bell

state PN, whose entanglement could easily be determined. This operation allowed us

to bound the entanglement of UbpthUb with a negative partial transpose condition on

PN- With these tools, we derived conditions on the full separability and distillability of

thermal states transformed by the Bell unitaries Ub,s and UbsUfan. The distillability

condition provided improved bounds on the entanglability of thermal states, which,

for N < 9, captured more entanglable parameter space than the corresponding bound

on near-maximally mixed states. From these results, we found a new upper limit of

20,054 qubits required to entangle a thermal state in ideal experimental conditions.

The success of this method suggested a promising new direction. For a given

transformed thermal state and Diir-Cirac state, Uhlmann's theorem gave a majoriza-

tion criterion that the pair had to satisfy for SU to exist. If the correct majorization

relation was satisfied, we could apply the same formalism as before to bound the

172

entanglement of the transformed thermal state. Now the burden of the analysis was

shifted from the difficult task of constructing the required random unitary operation

to the somewhat easier task of constructing a state of form PN that could be ma-

jorized by pth(N, a). Unfortunately, we have not yet developed a systematic way to

construct the desired PN-

Although our results thus far do not motivate an NMR experiment, we have de-

veloped a numerical and analytical toolkit that will facilitate further study of thermal

state entanglability. First, we created a software package for calculating the nega-

tivity of transformed thermal states. The software may be easily extended to search

for unitaries that entangle the maximum fraction of parameter space. On a single

processor, the search can be implemented by using MATLAB numerical optimiza-

tion functions to minimize Amin with respect to a set of parameters that specify a

unitary transformation. Second, we began building a software library to implement

negativity calculations on a Beowulf cluster. Although that work is unfinished, we

have since then acquired a more developed parallel linear algebra package, which we

plan to use for future cluster calculations. This software, Matlab *P v2.0, is being

developed by the Applied Computing Group at the Massachusetts Institute of Tech-

nology [Cho02] and allows easy integration of user-written packages into the main

library. In addition, we may explore optimization for sparse matrices, as prototype

applications for these special matrices already exist [Li03]. Finally, we found a power-

ful and generically applicable analytical method for deriving bounds on thermal state

entanglability. The combination of majorization techniques with this approach may

lead to tighter bounds yet.

More importantly, we have completed the first study of NMR entanglement that

goes beyond near-maximally mixed states. Our work, while preliminary, demon-

strates that much fertile ground remains to be explored in the field of mixed state

entanglement.

173

174

Appendix A

Single processor negativity map

source code

This appendix gives MATLAB source code for generating entanglement maps as

described in Chapter 4.

The execution function is runexpt .m. It takes a function handle for the trans-

forming unitary, vectors specifying a square block of parameter space in a and N, a

vector specifying the partition (which must match the N data points), and an output

file name and then saves a QCTM (Quantum Computing Treasure Map) structure

that contains the calculated minimum eigenvalue of the partial transposed state at

every point in the specified parameter plus some useful information. The QCTM

structure can be passed to a plotting function like ploteigmap.m or plotneg.m to

output a minimum eigenvalue or negativity map. To load a saved QCTM file, use the

command 'load f ilename. mat'.

Here is an example for generating a negativity map with the unitary Ub's under

the {N/2, N/2} bipartite split.

alpha = logspace(-3,1,100); % alpha ranges from 0.001 to 10

nq = (2:2:10); % number of qubits = {2,4,6,8,10}

partHalf = nq./2; % Use partition {N/2,N/2}

option = 0; % Set option to just plot negativity and no contours

qctmvec = runexpt(Lubell, partHalf, alpha, nq, 'bellhalf ');

175

plotneg(qctmvec, option);

A.1 Code for calculating negativity data

% File:

% Usage:

% Date:

% Author:

% Function

% Notes:

% Input:

% Returns:

176

calcmineig. m

qctminfo = calcmineig(Ogenunit, part, alpha, nq)

30-Sept-02

Terri Yu <teryugmit.edu>

Calculates minimum eigenvalue of partial transposed

thermal state for a specified number of qubits and a

range in alpha.

alpha is a dimensionless quantity equal to h\nu/kT.

Ogenunit - function handle pointing to unitary generator

part - number of qubits in first half of bipartite split

alpha - a vector of points specifying the range in alpha

nq - number of qubits (not a vector)

qctminfo - structure of information for writeqctm.m

qctminfo.alpha - alpha vector

qctminfo.mineig - minimum eigenvalues for each alpha

qctminfo. unitary - a string describing the unitary

that was used to transform thermal state

qctminfo.nqubits - number of qubits

qctm.partition - number of qubits in first half of

bipartite split

qctminfo.funcdata - memory usage and runtimes for

individual functions

qctminfo.runtime - total runtime

function qctminfo = calcmineig(genunit, part, alpha, nq)

global U;

alen = length(alpha);

mineig = zeros(alen,1);

% Save names of functions into structure

funcdata(1).name = 'thermalden';

funcdata(2).name = 'transform';

funcdata(3).name = 'ptranspose';

funcdata(4).name = 'mineig';

funcdata(5).name = 'genunit ';

% Start timer

tic;

% Generate unitary transform for nqubits

[U, Uname, funcdata(5).mem, funcdata(5).rt] = feval(genunit,nq);

% Calculate minimum eigenvalues

for i=1:alen

[rho, funcdata(1).mem(i), funcdata(1).rt(i)] = thermalden(alpha(i), nq);

[rho, funcdata(2).mem(i), funcdata(2).rt(i)] = transform(rho);

[rho, funcdata(3).mem(i), funcdata(3).rt(i)] = ptranspose(rho, part);

[mineig(i), funcdata(4).mem(i), funcdata(4).rt(i)] = mineig(rho);

end

for i=1:4

funcdata(i).mem = funcdata(i).mem';

funcdata(i).rt = funcdata(i).rt';

end

% Stop timer

runtime = toc;

% Make structure to feed into writeqctm.m

177

[rows cols] = size(alpha);

% Make sure alpha is saved as a column vector

if (cols == 1)

qctminfo.alpha = alpha;

else

qctminfo.alpha = alpha';

end

qctminfo.mineig mineig;

qctminfo.unitary Uname;

qctminfo.nqubits = nq;

qctminfo.partition = part;

qctminfo.funcdata = funcdata;

qctminfo.runtime = runtime;

% Clear memory of large matrices

clear rho U ID X Z H;

% File: dt.m

% Usage: dt()

% Date: ??

% Author: Isaac Chuang <ichuang@media.mit.edu>

% Function: Returns date using UNIX command

% Input: Nothing

% Returns: dt - date in format: <day><month><year> -time

function dt = dt(

[s,x] = unix(' date +"%dbYy-XHXMXS"');

dt = x(1:end-1);

% File: transform.m

178

% Usage: [rhoent, mem, rt] = transform(rho)

% Date: 30-Sept-02

% Author: Terri Yu <teryu@mit.edu>

% Function: Transforms given density matrix using globally

% defined unitary U

% Input: rho - density matrix (assume it's square)

% Returns: rhotf - transformed state, U*rho* U'

mem - memory used in bytes

rt - runtime in seconds

function [rhotf, mem, rt] = transform(rho)

global U

% Start timing

tic;

% Perform unitary transformation on rho

rhotf = U * rho * U';

% Count memory usage

s = whos;

mem = totmem(s);

% End timer

rt = toc;

% Clear variables

clear rho starttime s endtime;

% File:

% Usage:

% Date:

% Author:

estzalpha. m

zalpha = estzalpha(qctmvec)

01-Jun-03

Terri Yu <teryugmit.edu>

179

% Function: Estimates the alpha where the minimum eigenvalue goes to zero

% Input: qctmvec - QCTM structure

% Returns: zalpha - vector of alpha where the minimum eigenvalue goes

%0 to zero, corresponding to each QCTM structure

function zalpha = estzalpha(qctmvec)

qlen = length(qctmvec);

for i=1:qlen

% Find alpha data point corresponding to minimum eigenvalue

% closest to zero

[mineig index] = min(abs (qctmvec(i).mineig));

% Force alpha and mineig to both be column vectors

[rows cols] = size(qctmvec(i).alpha);

if (cols == 1)

x = qctmvec(i).alpha(index- 1:index+ 1);

else

x = qctmvec(i).alpha(index-1:index+1)';

end

[rows cols] = size(qctmvec(i).mineig);

if (cols == 1)

y qctmvec(i).mineig(index- 1:index+ 1);

else

y qctmvec(i).mineig(index-1:index+1)';

end

% Fit line to alpha data point and its two closest neighbors

p = polyfit(x,y,1);

% Find zero of line

zalpha(i) = roots(p);

end

180

% File: hostname.m

% Usage: hostname()

% Date: 01-Oct-02

% Author: Terri Yu <teryu@mit.edu>

% Function: Returns hostname of machine using UNIX command

% Input: Nothing

% Returns: Hostname string

function hostname = hostname()

[s, x] = unix('hostname');

hostname = x;

% File: mineig.m

% Usage: lambda = mineig(rho)

% Date: 17-Sept-02

% Author: Terri Yu <teryudmit.edu>

% Function: Uses MATLAB eig function to find the minimum eigenvalue

% of a matrix, assuming that the matrix is square and real

% Input: mtx - a square matrix

% Returns: mineig - minimum eigenvalue of mtx

mem - memory usage of function

rt - runtime of function

function [mineig, mem, rt] = mineig(mtx)

% Start timing

tic;

% Returns eigenvalue with smallest real part

181

mineig = min(eig(mtx));

% Count memory usage

s = whos;

mem = totmem(s);

% End timer

rt = toc;

% Clear variables

clear starttime endtime s;

% File: ptHalf.m

% Usage: [mpt, mem, rt] = ptHalf(mat)

% Date: 22-Oct-02

% Author: Isaac Chuang <ichuang@media.mit.edu>

% Terri Yu <teryu@mit.edu>

% Function: Compute the partial transpose of a n-qubit

matrix density matrix using the {N/2,N/2} split.

% Notes: Assumes that the input matrix is square and even

(which is the case if we truly have an n-qubit

density matrix.

% Input: mat - input (square) matrix

% Returns: mpt - output partial transpose matrix

% mem - memory used in bytes

%W rt - runtime in seconds

function [mpt, mem, rt] = ptHalf(mat)

% Start time

tic;

mpt = ptHalfC(mat);

% Count memory use

182

s = whos;

mem = totmem(s);

% End timer

rt = toc;

% Clear variables

clear starttime endttime s;

7*
File: ptHalf.c

Date: 14-Oct-02

Author: I. Chuang <ikedmedia.mit.edu>

Partial transpose function written in C as a MEX (matlab extension) file.

Usage: mout = ptHalf(min)

Where:

min - input matrix (must be square, and dimension a power of two)

mout - output matrix

*/

#include <math.h>

#include "mex.h"

/* Input Arguments *7

#define MIN prhs[O]

/* Output Arguments *7

#define MOUT plhs[O]

183

void usage(

{

printf("Usage: mout = ptHalfC (min)\n");

printf(" \nWhere:\n\n");

printf("min - input matrix (must be square and dimension a power of

two)\n");

printf("mout - output matrix\n");

}

void mexFunction(int nlhs, mxArray *plhs[],

int nrhs, const mxArray*prhs[]

{
double *ptr-min, *ptr-mout;

double tmp;

unsigned int a,b,i,j ,m,n,sizemsize ,nsize;

/* Check for proper number of arguments *7

if (nrhs != 1) {
usage(;

mexErrMsgTxt("One input argument required.");

} else if (nlhs > 1) {
usage(;

mexErrMsgTxt("Too many output arguments.");

}

/* should also really check that matrix is type REAL (doubles) here *7

/* Check the dimensions of MIN */

184

msize mxGetM(MIN);

nsize = mxGetN(M-IN);

if(msize!=nsize){

usage(;

mexErrMsgTxt(" Input matrix not square.");

}

m = rint(log((double)msize)/log(2));

if(1<<m != msize){

usage(;

mexErrMsgTxt("Input matrix dimension not power of two.");

}

/* setup */

size = sqrt(msize);

MOUT = mxCreateDoubleMatrix(msize, nsize, mxREAL);

ptr-mout = mxGetPr(MOUT); /* assign memory pointers */

ptr-min = mxGetPr(MIN);

/* MOUT = MIN */

memcpy (ptr-mout,ptr-min,sizeof (double) *msize*nsize);

/* note that matlab stores its matrices columnwise! */

185

/* Do the transposition */

for (a=;a<size;a++){

for (b=O;b<size;b++){

m = a*size; /* Calculate the temporary vertical offset */

n = b*size; /* Calculate the temporary horizontal offset */

for (i=O;i<size;i++){

for (j=O;j<i;j++){

tmp = *(ptr-mout+(m+i)*nsize+n+j);

*(ptr.-mout+(m+i)*nsize+n+j) = *(ptr.mout+(m+j)*nsize+n+i);

*(ptr-mout+(m+j)*nsize+n+i) = tmp;

}

}
}

}
return;

}

File: ptNMinusOne.m

Usage: fmpt, mem, rt] = ptNMinusOne(mat)

Date: 11-Apr-03

Author: Terri Yu <teryugmit.edu>

Function: Compute the partial transpose of a n-qubit

matrix density matrix using the {N-1,1} split.

Notes: Assumes that the input matrix is square and even

(which is the case if we truly have an n-qubit

density matrix.

Input: mat - input (square) matrix

Returns: mpt - output partial transpose matrix

mem - memory used in bytes

186

rt - runtime in seconds

function [mpt, mem, rt] = ptNMinusOne(mat)

% Start timer

tic;

matsize = length(mat); % size of matrix, assume it's square!

n = log2(matsize);

mpt = mat;

% Swap in lower triangle of matrix

% a = rows, b = cols

for a=1:matsize

for b=1:a-1

% Check if first N-1 qubits are the different

if (bitshift(a-1,-1) ~= bitshift(b-1,-1))

% Check if states have the same parity

if (mod(a+b,2) == 0)

mpt(a,b) = mat(b,a);

mpt(b,a) = mat(a,b);

% Check if a has even binary representation

elseif (mod(a-1,2) == 0)

mpt(a,b) = mat(b-,a+1);

mpt(b-1,a+1) = mat(a,b);

% Then a has odd binary representation

else

mpt(a,b) = mat(b+1,a-1);

mpt(b+1,a-1) = mat(a,b);

end

end

end

187

end

% Count memory use

s = whos;

mem = totmem(s);

% End timer

rt = toc;

% Clear variables

clear starttime endttime s;

% File: ptOne.m

% Usage: fmpt, mem, rt] ptOne(mat)

% Date: 11-Apr-03

% Author: Terri Yu <teryugmit.edu>

% Function: Compute the partial transpose of a n-qubit

% matrix density matrix using the {1,N-1} split.

% Notes: Assumes that the input matrix is square and even

(which is the case if we truly have an n-qubit

density matrix.

% Input: mat - input (square) matrix

% Returns: mpt - output partial transpose matrix

mem - memory used in bytes

rt - runtime in seconds

function [mpt, mem, rt] = ptOne(mat)

% Start timer

tic;

matsize = length(mat); % size of matrix, assume it's square!

n = log2(matsize);

mpt = mat;

188

msb = 2^(n-1); % numerical value of most significant bit

% Swap in upper righthand corner of matrix

% a = rows, b = cols

for a=1:matsize/2

for b=matsize/2+1:matsize

mpt(a,b) = mat(a+msb,b-msb);

mpt(a+msb,b-msb) = mat(a,b);

end

end

% Count memory use

s = whos;

mem = totmem(s);

% End timer

rt = toc;

% Clear variables

clear starttime endttime s;

% File:

% Usage:

% Date:

% Author:

% Functio

% Notes:

% Input:

n

ptranspose. m

/mpt, mem, rtj = ptranspose(mat, part)

22-Oct-02

Terri Yu <teryu@mit.edu>

Performs partial transpose of a n-qubit matrix,

given the number of qubits in first half of the

bipartite split.

Only { 1,N-1}, { N/2,N/2}, and { N-1,1} partitions implemented.

Prints error if input matrix size is not a power of 2

and if the total number of qubits is less than the

number specified in first half of the bipartite split

mat - a 2 ^n x 2 n matrix where n is an even positive integer

part - number of qubits in first half of biparite split

189

% Returns: mpt - partial transposed verson of mat

mem - memory used in bytes

rt - runtime in seconds

function [mpt, mem, rt] = ptranspose(mat, part)

% Start timer

tic;

nq = log2(length(mat));

if ((round(nq) == nq) & (nq > part))

switch part

% {1,N-1} split

case 1,

mpt = ptOne(mat);

% {N/2,N/2} split

case nq/2,

mpt = ptHalf(mat);

% {N-1,1} split

case nq-1,

mpt = ptNMinusOne(mat);

otherwise,

mpt = mat;

disp('Error -- partition not recognized');

end

else

disp('Error -- input matrix is invalid');

end

% Count memory usage

s = whos;

mem = totmem(s);

190

% End timer

rt = toc;

% Clear variables

clear starttime s endtime;

% File:

% Usage:

% Date:

% Author:

% Function

% Input:

% Returns:

runexpt.m

qctmvec = runexpt(genunit, part, alpha, nq, filename)

29-Oct-02

Terri Yu <teryuJmit.edu>

Calculates minimum eigenvalue for each point in a vector

for number of qubits, given the specified alpha range,

the unitary generating function, and the partition.

Writes a QCTM structure for each qubit value using the

filename '<filename> <date> q< nq(i)>. mat'.

Writes an overall QCTM vector structure using the

filename '<filename> vec< date>.mat'.

Ogenunit - function handle pointing to unitary generator

part - vector specifying number of qubits in first half

of bipartite split

alpha - vector specifying the range in alpha

nq - vector specifying the number of qubits

filename - string for beginning of filename

qctmvec - vector of QCTM structures corresponding

to each component of nq

function qctmvec = runexpt(genunit, part, alpha, nq, filename)

nqlen = length(nq);

date = dt;

191

for i=l:nqlen

qctminfo = calcmineig(genunit, part(i), alpha, nq(i))

qctmvec(i) = writeqctm(qctminfo, strcat([' f ilename' ' ' strcat(filename,

date)]));

end

vecfile = strcat('/home/terri/entanglement/data/', filename, date,

'vec.mat');

save(vecfile, 'qctmvec');

% File:

% Usage:

% Date:

% Author:

% Function

%0

%0

%

% Input:

%

%6 Returns:

% /

% V

thermalden.m

[rho, mem, rt] = thermalden(alpha, n)

30-Sept-02

Terri Yu <teryuomit.edu>

Calculates the thermal density matrix = exp(-H * alpha)

for a specified number of qubits.

The Hamiltonian H is the homogenous sum of single Sz

operations on each qubit.

For example, for 3 qubits, H = 1/2*(ZII + IZI + IIZ)

[here we set \hbar = 1].

alpha - dimensionless quantity h\nu/kT

n - number of qubits

rho - thermal density matrix

mem - memory used in bytes

rt - runtime in seconds

function [rho, mem, rt] = thermalden(alpha, n)

% Start timer

tic;

% Initialize Hamiltonian

192

hvec = zeros(2n,1);

for i=1:2^n

weight = 0;

if (i ~ 1)

for j=1:ceil(log2(i-1))+1

weight = weight + bitget(i-1,j);

end

end

hvec(i) = -1 * (n - 2 * weight);

end

hvec = hvec/2;

rho = diag(exp(-hvec*alpha));

clear hvec; % Remove large matrix from memory

rho = rho/trace(rho); % Make sure rho is normalized

% Count memory usage

s = whos;

mem = totmem(s);

% End timer

rt = toc;

% Clear variables

clear starttime n s endtime alpha c;

% File: totmem.m

% Usage: musage = totmem(varstruct)

% Date: 04-Oct-02

% Author: Terri Yu <teryu@mit.edu>

% Function: Calculates amount of memory used with a struct array input

% that is created externally by running the "whos" command.

% Notes: The struct only has information about the variables in

% its scope. Typically, it is created inside a function

193

% Input:

% Returns:

and therefore totmem() calculates the memory usage for

that function.

varstruct - structure that contains information on

workspace variables

musage = total memory usage in the scope of varstruct

function musage = totmem(varstruct)

size = length(varstruct);

musage = 0;

for i=1:size

musage = musage + varstruct(i).bytes;

end

% File: ubs.m

% Usage: [U, Uname, mem, rt] = ubs(nq)

% Date: 23-May-03

% Author: Terri Yu <teryu~mit.edu>

% Function: Creates a standard unitary transform that maps the computational

basis to the Bell state basis

Example for 2 qubits:

U = [1 0 1 0; 0 1 0 1; 0 1 0 -1; 1 0 -1 0

% Input: nq - number of qubits

% Returns: U - unitary transform

Uname - string describing unitary U

mem - memory usage of function

rt - runtime of function in seconds

function [U, Uname, mem, rt] = ubs(nq)

% Start timer

194

tic;

size = 2^nq;

U = zeros(size);

for i=1:size/2

U(ii) = 1;

U(size-i+1,i) = 1;

end

for i=size/2+1:size

U(i-size/2,i) = 1;

U(3*size/2-i+1,i) = -1;

end

U = U/sqrt(2);

Uname = 'ubs';

% Count memory usage

s = whos;

mem = totmem(s);

% End timer

rt = toc;

% Clear variables

clear starttime endtime s;

% File: ubsufan.m

% Usage: [U, Uname, mem, rt] ubsufan(nq)

% Date: 30-May-03

% Author: Terri Yu <teryu@mit.edu>

% Function: Creates a unitary transform that maps the computational

basis to the Bell state basis

Example for 2 qubits:

U = [1 0 0 1; 0 1 1 0; 0 1 -1 0; 1 0 0 -]

% Input: nq - number of qubits

195

% Returns: U - unitary transform

Uname - string describing unitary U

mem - memory usage of function

rt - runtime of function in days

function [U, Uname, mem, rt] = ubsufan(nq)

% Start timer

tic;

size = 2^nq;

U = zeros(size);

for i=1:size/2

U(i,i) = 1;

U(size-i+1,i) = 1;

end

for i=size/2+1:size

U(size-i+1,i) = 1;

U(i,i) = -1;

end

U = U/sqrt(2);

Uname = 'ubsuf an';

% Count memory usage

s = whos;

mem = totmem(s);

% End timer

rt = toc;

% Clear variables

clear starttime endtime s;

% File: writeqctm.m

196

% Usage: qctm = writeqctm(qctminfo, options)

% Date: 18-Nov-02

% Author: Terri Yu <teryugmit.edu>

% Function: Saves a structure "qctm" with the following data:

% qctm.filename - date followed by number of qubits

% qctm.filedate - date file was created

%V qctm.hostname - computer calculation was run on

1 qctm. unitary - a string describing the unitary

%0 that was used to transform thermal state

qctm.nqubits - number of qubits

qctm.partition - number of qubits in first half of

bipartite split

/ qctm.alpha - alpha data

qctm. mineig - minimum eigenvalue data

qctm.runtime - total runtime

%0 qctm.funcdata - memory/runtime data for each function

If options = 'plot', the function will also plot the data.

%0 If options = 'filename <filename-string>', the function will save

qctm using the filename: '<filename-string> q< #qubits>. mat'

If options = 'beowolf <filename-string> <machine-number>',

% the function will save qctm using filename:

% '<filename-string> q< #qubits> r<machine-number>. mat'

% If neither 'filename' or 'beowolf' are used as options,

% then qctm will be saved using filename: '<data> q< #qubits>. mat'

% Input: qctminfo - QCTM info structure created by calcmineig.m

options - a string specifying plotting and file name options

(see above)

% Returns: qctm - QCTM structure containing data from numerical experiment

197

function qctm = writeqctm(qctminfo, options)

% Construct filename

[argl, rem] = strtok(options);

date = dt;

if (strcmp(argl,'beowof'))

[arg2, rem] = strtok(rem);

[arg3, rem] = strtok(rem);

filename = sprintf('%sq%dr%02d', arg2, qctminfo.nqubits, str2num(arg3));

elseif (strcmp(argl, 'filename'))

[arg2, rem] = strtok(rem);

filename = strcat(arg2, 'q', int2str(qctminfo.nqubits));

else

filename = strcat(date, 'q', int2str(qctminfo.nqubits));

end

% Calculate total memory used on average for one data point

totusage = 0;

for i=1:4

totusage = totusage + mean(qctminfo.funcdata(i).mem);

end

% If argi = 'plot', make plot of minimum eigenvalue versus temperature

if strcmp(argl,'plot')

figure;

semilogx(1./qctminfo.alpha,qctminfo.mineig);

xlabel(' log_10 (\alpha^{-1}) ');

ylabel(' Minimum eigenvalue ');

tlabel = strcat(' [', filename, ']', '-Minimum eigenvalue versus

temperature');

title(tlabel);

grid on;

198

end

% Create quantum computing treasure map structure

qctm.filename = filename;

qctm.filedate = date;

qctm.hostname = hostname;

qctm.unitary = qctminfo.unitary;

qctm.nqubits = qctminfo.nqubits;

qctm.partition = qctminfo.partition;

qctm.alpha = qctminfo.alpha;

qctm.mineig = qctminfo.mineig;

qctm.runtime = qctminfo.runtime;

qctm.funcdata = qctminfo.funcdata;

% Save qctm structure as .mat file in data directory

save(strcat(' /home/terri/entanglement/data/',filename,' .mat '),'qctm');

% File: zcutoff.m

% Usage: vout = zcutoff(vin)

% Date: 29-Sept-02

% Author: Terri Yu <teryu@mit.edu>

% Function: Every entry in vector "vin" greater than 0 is set to 0.

%0 The other entries are left alone.

% Notes: Assumes input vector is real

% Input: vin - input vector of numbers

% Returns: vout - output vector with positive entries forced to zero

function vout = zcutoff(vin)

size = length(vin);

vout = zeros(size, 1);

for i=1:size

199

if (vin(i) > 0)

vout(i) = 0;

else

vout(i) = vin(i);

end

end

A.2 Code for plotting negativity data

% File:

% Usage:

% Date:

% Author:

% Function

% Notes:

% Input:

% Returns:

ploteigmap.m

[x, y, z] = ploteigmap(qctmvec, titlestr)

30-Sept-02

Terri Yu <teryu@mit.edu>

Plots a colormap of minimum eigenvalue in parameter

space with log_{10}(\alpha^{-1}) on the x-axis and number of

qubits on the y-axis, given a vector of QCTM structures.

alpha is a dimensionless quantity equal to h\nu/kT.

Requires that the range of alpha is the same for each

QCTM structure; otherwise an error is displayed.

qctmvec - vector of QCTM structures

titlestr - additional notes in title of plot

x - vector for log_{10}(\alpha^{-1})

y - vector for number of qubits

z - minimum eigenvalue

function [x, y, z] = ploteigmap(qctmvec, titlestr)

qlen = length(qctmvec);

alpha = qctmvec(1).alpha;

flag = 0;

200

% Checks that qctmvec(i). alpha is consistent for each

% QCTM structure in the qctmvec vector

if (qlen > 1)

i = 2;

while ((flag == 0) & (i <= qlen))

if (length(alpha) length(qctmvec(i).alpha))

flag = 1;

else

check = (qctmvec(i).alpha == alpha);

flag = (sum(check) ~= length(check));

end

i = i +1;

end

end

% If alpha is consistent for all the structures,

% construct matrix containing minimum eigenvalues

if ~flag

nq = qctmvec(1).nqubits;

mineig = qctmvec(1).mineig;

for i=2:qlen

nq = [nq qctmvec(i).nqubits];

mineig = [mineig qctmvec(i).mineig];

end

nq = nq';

mineig = mineig';

% Gurvits bound for separability

gsep = -1/2*log(2.*(2.^(nq/2 - 1)./(2.^(nq/2 - 1) + 1)).^(1./nq) - 1);

% Braunstein bound for nonseparability

bnonsep = - 1/2*log(sqrt (2)-1) *ones(length(nq), 1);

% Construct vector of transition alpha values

201

% These are the values of alpha where the minimum

% eigenvalue is zero

for i=1:qlen

trans(i) = estzalpha(qctmvec(i).alpha);

end

figure;

imagesc(log1O(alpha. (-1)), nq, mineig);

axis xy;

hold;

plot(log1O(gsep.(-1)), nq, 'k', log1O(bnonsep.^(-1)), nq, 'k--');

plot (log1O(trans.^(-1)), nq, 'k-. ');

xlabel(' log10 (\alpha^{ -1}) ');

ylabel('Number of qubits');

date = dt;

title(strcat('Map of minimum eigenvalue [', date, ']-', titlestr));

colormap(jet);

colorbar;

% Set return values for future plotting

x = log10 (alpha.^(1));

y = nq;

z = mineig;

else

disp('Error: alpha of each qctm structure must be the same');

end

% File: plotmem.m

% Usage: plotmem(qctmvec)

% Date: ??-Sept-02

% Author: Terri Yu <teryu@mit.edu>

% Function: Plots the logarithm of the average overall and individual

202

function memory usage in bytes vs. number of qubits,

given a vector of QCTM structures.

Each QCTM structure stores the memory usage for

calculations at every data point in alpha, which we

%0 average over in the plot.

% Notes: alpha is a dimensionless quantity equal to h\nu/kT.

% Input: qctmvec - vector of QCTM structures

% Returns: Nothing

function plotmem(qctmvec)

qctmlen = length(qctmvec);

for i=1:qctmlen

nq(i) = qctmvec(i).nqubits;

% Total memory used by calculation for one alpha data point

totusage(i) = qctmvec(i).meantotusage;

% Memory used for thermalden()

td(i) = mean(qctmvec(i).funcdata(1).mem);

% Memory used for transform()

tf(i) = mean(qctmvec(i).funcdata(2).mem);

% Memory used for ptranspose()

pt(i) = mean(qctmvec(i).funcdata(3).mem);

% Memory used for mineig()

me(i) = mean(qctmvec(i).funcdata(4).mem);

% Memory used for genunit)

gu(i) = mean(qctmvec(i).funcdata(5).mem);

end

totusage=loglO(totusage);

td=loglO(td);

tf=loglO(ent);

203

pt=loglO(pt);

me=loglO(pt);

figure;

subplot(2,1,1);

plot (nq,totusage);

title('Average total memory usage');

xlabel('Number of qubits');

ylabel(' log{10} (memory) [bytes]');

subplot (2,1,2);

plot (nq,td,nq,tf,nq,pt ,nq,me,nq,gu);

title('Average memory usage for individual functions');

xlabel('Number of qubits');

ylabel(' loglO (memory) [bytes] ');

legend(' thermalden' , 'transf orm', ' ptranspose ','mine ig' , ' genunit');

% File: plotmineig.m

% Usage: plotmineig(qctmvec)

% Date: 30-Sept-02

% Author: Terri Yu <teryugmit.edu>

% Function: Plots minimum eigenvalue versus alpha^(-1) with a

%/ semi-log x-axis, given a vector of QCTM structures.

%/ Each QCTM structure is plotted in a separate figure.

% Notes: alpha is a dimensionless quantity equal to h\nu/kT.

% Input: qctmvec - QCTM structure

function plotmineig(qctmvec)

qctmlen = length(qctmvec);

date = dt;

for i=1:qctmlen

204

figure;

semilogx((qctmvec(i).alpha). (-1),qctmvec(i).mineig, ' -o');

xlabel('logflO} \alpha^{-1}');

ylabel('Minimum eigenvalue');

str = strcat('Minimum eigenvalue vs. temperature [', date, '1, ');

str = strcat(str,int2str(qctmvec(i).nqubits), ' qubits');

title(str);

grid on;

end

% File:

% Usage:

% Date:

% Author:

% Function

% Notes:

% Input:

% Returns:

plotnegmap. m

[x, y, z] = plotnegmap(qctmvec, option)

31-Mar-03

Tern Yu <teryu@mit.edu>

Plots a colormap of negativity for the partial

transposed thermal state in parameter space

with log_{10}(\alpha^{-1}) on the x-axis and number of

qubits on the y-axis, given a vector of QCTM structures.

Converts QCTM minimum eigenvalue to negativity with

the formula: negativity = max{0,-mineig}.

alpha is a dimensionless quantity equal to h\nu/kT.

alpha - vector specifying range in alpha

nq - vector specifying range in number of qubits

(components must be even positive integers)

option - if a nonzero number is specified, contours are

also plotted for the minimum eigenvalues

{-0.01, -0.005, 0.005, 0.01}.

x - vector for log_{10}(\alpha-{-1})

y - vector for number of qubits

z - negativity

205

function [x, y, z] = plotnegmap(qctmvec, option)

qlen = length(qctmvec);

alpha = qctmvec(1).alpha;

flag = 0;

% Check to see that data structure is consistent

if (qlen > 1)

i = 2;

while ((flag == 0) & (i <= qlen))

if (length(alpha) length(qctmvec(i).alpha))

flag = 1;

else

check = (qctmvec(i).alpha == alpha);

flag = (sum(check) ~= length(check));

end

i = i + 1;

end

end

% Data structure OK, proceed

if ~flag

nq = qctmvec(1).nqubits;

zmineig zcutoff(qctmvec(1).mineig);

mineig = qctmvec(1).mineig;

for i=2:qlen

nq = [nq qctmvec(i).nqubits];

zmineig = [zmineig zcutoff(qctmvec(i).mineig)]; % cutoff mineig

mineig = [mineig qctmvec(i).mineig]; % preserved mineig

end

nq = nq';

206

zmineig = (-1*zmineig)';

mineig = (-1*mineig)';

% Gurvits bound on separability of effective pure states

gsep = -log(2.*(2.^(nq/2 - 1)./(2.^(nq/2 - 1) + 1)).^(1./nq) - 1);

% Braunstein bound on nonseparability of effective pure states

bnonsep = -log(sqrt (2)-1) *ones(length(nq),1);

figure;

% Plot negativity colormap

imagesc(log1O(alpha. (-1)), nq, zmineig);

axis xy;

colormap(jet);

H = colorbar;

%set(H, 'LineWidth', 3);

hold;

if option

% Plot negativity contours

V= [-0.01 -0.005 0.005 0.01];

xi = loglO(alpha. (-1));

yi = nq;

zi= mineig;

[C, H] = contour(xi,yi,zi,v,'y--');

%set(H, 'LineWidth', 3);

end

% Plot various bounds on effective pure state

plot (log10(gsep.^-(- 1)), nq, 'k', log10(bnonsep.^(-1)), nq, 'k--');

xlabel(' log10 (\alpha^{-1}1)')

ylabel('Number of qubits');

date = dt;

str = strcat('Map of negativity, N(\rho)=max(min\{-\lambda-i\},0) [');

str = strcat(str, date, '1');

207

title = str;

% Set return values

x = loglO(alpha. (-1));

y = nq;

z = zmineig;

else

disp('Error: alpha of each qctm structure must be the same');

end

% File: plotruntime.m

% Usage: plotruntime(qctmvec)

% Date: 30-Sept-02

% Author: T. Yu <teryu@mit.edu>

% Function: Plots runtime versus number of qubits, given a vector of

%0 QCTM structure "qctm"

function plotruntime(qctmvec)

qctmlen = length(qctmvec);

for i=1:qctmlen

nq(i) = qctmvec(i).nqubits;

% total run time for calcmineig

totrt(i) = qctmvec(i).runtime;

% thermalden runtime

td(i) = mean(qctmvec(i).funcdata(1).rt);

% transform runtime

tf(i) = mean(qctmvec(i).funcdata(2).rt);

% ptranspose runtime

pt(i) = mean(qctmvec(i).funcdata(3).rt);

% mineig runtime

208

me(i) = mean(qctmvec(i) .funcdata(4).rt);

% genunit runtime

gu(i) = mean(qctmvec(i).funcdata(5).rt);

end

figure;

clf;

% Plot total run time

subplot(2,1,1);

hold on;

plot(nq, loglO(totrt), '*');

xlabel('Number of qubits');

ylabel('log_{10}(run time) [seci ');

date = dt;

title(strcat('Runtime vs. number of qubits [', date, '1-'));

grid on;

% Plot runtimes for individual functions

subplot(2,1,2);

plot (nq,logl0 (td),nq,loglO(ent) ,nq,loglO(pt),nq,logl0 (me));

xlabel('Number of qubits');

ylabel('log_{10}(run time) [min] ');

date = dt;

title(strcat('Runtime vs. number of qubits [', date, ']'));

legend(' thermalden' ,'transform' ,'ptranspose ', 'mineig ','genunit');

grid on;

209

210

Appendix B

Beowulf cluster negativity

calculation module source code

Here we give the server side code for generating the standard Bell transform and ther-

mal density matrix and for calculating the partial transpose operation. To match the

text in Chapter 4 with the source code, the reader should bear in mind that the follow-

ing module and function names are equivalent: pubs 0 = qpcnth(), pthermalden()

= qp-thdm(), and pptranspose () qp-ptran(.

/* Name: qp-cnth(matrix *)

Author: Terri Yu and Joshua Powell

Generates a submatrix of a CNOT+Hadamard matrix and stores it in 'i'.

More specifically this generates a square matrix representing the

operator

CNTH = CNOT_{1n}... CNOT-{13}CNOT_{12}H-1

mapping the computational basis to the Bell basis.

void qp-cnth(matrix * m) {
int ictxt, nprow, npcol, myrow, mycol, icurrow, icurcol, lda;

long i, j, ii, jj;

211

DBG("qp-cntho: creating CNOT+Hadamard matrix %d\n", m->num);

ictxt = m->desc[1];

Cblacs-gridinfo(ictxt, &nprow, &npcol, &myrow, &mycol);

icurrow m->desc[6];

icurcol = m->desc[7];

Ida = m->desc[8];

DBG("qp-cntho: nprow=%d myrow=%d npcol=%d mycol=%d m->x=/d\n",

nprow, myrow, npcol, mycol, m->x);

DBG("qp-cntho: icurrow=%d icurcol=%d lda=Xd\n", icurrow, icurcol, Ida);

for(jj=1; jj<=m->x/npcoI; jj++) {
j = (((jj-1)/m->desc[5])*npcol+mycol) * m->desc[5] -

(jj%m->desc[5]) + 1;

for(ii=1; ii<=m->y/nprow; ii++) {

i = (((ii-1)/m->desc[4])*nprow+myrow) * m->desc[4] -

(ii%m->desc[4]) + 1;

if(i<=((m->y)/2-1) && j<=((m->x)/2-1)) {
CSET(m->m, ii+(jj-1)*lda,(i==j)?SQRTHALF:0.0,0.0);

DBG("qp-cntho: top left corner\n");

}

if(i<=((m->y)/2-1) && j>((m->x)/2-1)) {
CSET(m->m, ii+(jj-1)Ada,((i+(m->x)/2)==j)?SQRTHALF:0.0,0.0);

DBG("qp-cntho: top right corner\n");

}

if(i>((m->y)/2-1) && j<=((m->x)/2-1)) {
CSET(m->m, ii+(jj-1)*da,((i+j+1)==(m->x))?SQRTHALF:0.0,0.0);

DBG("qp-cntho: bottom left corner\n");

}

212

if(i>((m->y)/2-1) && j>((m->x)/2-1)) {

CSET(m->m, ii+(jj-1)*da,((i+j+1)==(3*(m->x)/2))?

-1*SQRTHALF:0.0,0.0);

DBG("qp-cntho: bottom right corner\n");

}

DBG("qp-cntho: ID=(Xd,Xd) [%d]=(Xd,%d) [%f+Xfi] on (%d,%d)

p=%ld\n",

ii, jj, ii+(jj-1)*lda, i, j, RGET(m->m, ii+(jj-1)*lda),

IGET(m->m, ii+(jj-1)*lda), myrow, mycol, m->m);

}

}
DBG("qp~snth(): done\n");

}

/* Function to calculate base 2 logarithm */

float log2(float num) {

float result;

result = log(num)/og(2.0);

return result;

}

/* Calculates Hamming weight, the number of 1's */

int weight(long num) {

int count;

count = 0;

while (num > 0) {

213

if ((num & 0x1) == 1)

count ++;

num >= 1;

}

return count;

}

/* Generate thermal density matrix */

/* Master process */

int qp-thdm(matrix * m, FLOAT alpha) {

int ictxt, nprow, npcol, myrow, mycol, Ida, flag;

long i, j, ii, jj, pi, pj;

FLOAT n, val, trace;

FLOAT comm[SMALL-MSGSIZE];

#ifdef FDEBUG

fprintf(stderr, "Generating thermal density matrix for serial =%d\n",

m->num);

#endif

ictxt = m->desc[1];

Cblacs-gridinfo(ictxt, &nprow, &npcol, &myrow, &mycol);

Ida = m->desc[8];

Cblacs-barrier(ictxt, "All");

((char *)comm)[0] = '$';

((FLOAT *)comm)[1] = alpha;

Cigebs2d(ictxt, "All", " ", SMALLMSGSIZE, 1, comm, SMALLMSGSIZE);

n = (FLOAT)log2((float)m ->x);

trace = 0.0;

flag = 0;

#ifdef FDEBUG

214

fprintf(stderr, "Calculate entries of thermal density matrix\n");

#endif

for(jj=1; jj<=m->x/npcol; jj++) {

j = (((jj-1)/m->desc[5])*npcol+mycol) * m->desc[5] - (jj%m->desc[5])

+ 1;

for(ii=1; ii<=m->y/nprow; ii++) {

i = (((ii-1)/m->desc[4])*nprow+myrow) * m->desc[4] - (ii%m->desc[4])

+ 1;

if (i == j) {

val = exp((n - 2.0 * (FLOAT)weight(i)) * alpha);

CSET(m->m, ii+(jj-1)*lda, val, 0.0);

trace += val;

}

else

CSET(m->m, ii+(jj-1)*lda, 0.0, 0.0);

}

}
Cblacs-barrier(ictxt, "All");

#ifdef FDEBUG

fprintf(stderr, "Normalizing by trace\n");

#endif

for (pi = 0; pi < nprow; pi++)

for (pj = 0; pj < npcol; pj++)

if ((pi != 0) 1 (pi != 0)) {
((char *)comm)[0] = '>';

((FLOAT *)comm)[1] = 0.0;

Csgesd2d(ictxt, SMALL-MSGSIZE, 1, comm, SMALLMSGSIZE, pi, pj);

Csgerv2d(ictxt, SMALLMSGSIZE, 1, comm, SMALL-MSGSIZE, pi, pj);

if (((char *)comm)[0] == '<')

trace += ((FLOAT *)comm)[1];

215

else

flag = -1;

}

Cblacs.barrier(ictxt, "All");

((char *)comm)[0] = '*';

((FLOAT *)comm)[1] = trace;

Cigebs2d(ictxt, "All", " ", SMALL.MSGSIZE, 1, comm, SMALLMSGSIZE);

#ifdef FDEBUG

fprintf(stderr, "Divide by trace\n");

#endif

for(jj=1; jj<=m->x/npcol; jj++) {

j = (((jj-1)/m->desc[5])*npcol+mycol) * m->desc[5] - (jj%m->desc[5])

+ 1;

for(ii=1; ii<=m->y/nprow; ii++) {

i = (((ii-1)/m->desc[4])*nprow+myrow) * m->desc[4] - (ii%m->desc[4])

+ 1;

if (i == j)

CSET(m->m, ii+(jj-1)*lda, RGET(m->m, ii+(jj-1)*Ida)/trace, 0.0);

}

}
return flag;

}

/* Child process */

int qp-thdm-child(matrix * m) {

int ictxt, nprow, npcol, myrow, mycol, Ida, flag;

long i, j, ii, jj, pi, pj;

FLOAT n, val, trace, alpha;

FLOAT comm[SMALLMSGSIZE];

216

#ifdef FDEBUG

fprintf(stderr, "[Child] Generating thermal density matrix for serial =

%d\n", m->num);

#endif

ictxt = m->desc[1];

Cblacs-gridinfo(ictxt, &nprow, &npcol, &myrow, &mycol);

Ida m->desc[8];

flag = 0;

Cblacs-barrier(ictxt, "All");

Cigebr2d(ictxt, "All", " ", SMALLMSGSIZE, 1, comm,

SMALLMSGSIZE, 0, 0);

if (((char *)comm)[0] ==

alpha = ((FLOAT *)comm)[1];

else {

alpha = 0.0;

flag = -1;

}

/* Cblacs.barrier(ictxt, "All"); */

#ifdef FDEBUG

fprintf(stderr, "[Child] Calculating entries of thermal density

matrix\n");

#endif

n = (FLOAT)log2((float)m->x);

trace = 0.0;

for(jj=1; jj<=m->x/npcol; jj++) {

j = (((jj-1)/m->desc[5])*npcol+mycol) * m->desc[5] - (jj%m->desc[5])

+ 1;

for(ii=1; ii<=m->y/nprow; ii++) {

i= (((ii-1)/m->desc[4])*nprow+myrow) * m->desc[4] - (ii%m->desc[4])

+1;

217

if (i == j) {
val = exp((n - 2.0 * (FLOAT)weight(i)) * alpha);

CSET(m->m, ii+(jj-1)*lda, val, 0.0);

trace += val;

}

else

CSET(m->m, ii+(jj-1)*lda, 0.0, 0.0);

}
}
Cblacs.-barrier(ictxt, "All");

#ifdef FDEBUG

fprintf(stderr, " [Child] Normalize by trace\n");

#endif

Csgerv2d(ictxt, SMALLMSGSIZE, 1, comm, SMALLMSGSIZE, 0, 0);

if (((char *)comm)[0] == '>') {

((char *)comm)[0] =

((FLOAT *)comm)[1] trace;

Csgesd2d(ictxt, SMALLMSGSIZE, 1, comm, SMALLMSGSIZE, 0, 0);

Cblacs-barrier(ictxt, "All");

Cigebr2d(ictxt, "All", " ", SMALL-MSGSIZE, 1, comm, SMALLMSGSIZE,

0, 0);

if (((char *)comm)[0] =-

trace = ((FLOAT *)comm)[1];

else

flag -1;

}
else

flag = -1;

#ifdef FDEBUG

fprintf(stderr, "[Child] Divide by trace\n");

218

#endif

for(jj=1; jj<=m->x/npcol; jj++) {

j = (((jj-1)/m->desc[5])*npcol+mycol) * m->desc[5] - (jj%m->desc[5])

+ 1;

for(ii=1; ii<=m->y/nprow; ii++) {

i (((ii-1)/m->desc[4])*nprow+myrow) * m->desc[4] - (ii%m->desc[4])

+1;

if (i==j)

CSET(m->m, ii+(jj-1)*da, RGET(m->m, ii+(jj-1)*Ida)/trace, 0.0);

}
}
return flag;

}

void

qp-ptran(matrix * m) {
FLOAT comm[5];

int ictxt, nprow, npcol, myrow, mycol;

int n, nhalf, ra, ca, rb, cb;

int il, j1, i2, j2, pi, pj;

int count = 0;

ictxt = m->desc[1];

Cblacs-gridinfo(ictxt, &nprow, &npcol, &myrow, &mycol);

n = m->x; /* Size of matrix, assumes matrix is square */

nhalf = sqrt(m->x); /* Assumes matrix dimension is a square

#ifdef DEBUG

fprintf(stderr, "n: %d, nhalf: %d\n", n, nhalf);

#endif

for(rb = 0; rb <= n-1; rb += nhalf) { /* Row B */

for(cb = 0; cb <= n-1; cb += nhalf) { /* Column B */

219

for(ra = 0; ra <= nhalf-1; ra++) { /* Row A */

for(ca = ra+1; ca <= nhalf-1; ca++) { /* Column A */

il = ra + rb + 1;

j1 = ca + cb + 1;

i2 = ca + rb + 1;

j2 = ra + cb + 1;

qp-swap(m,il-1,j 1- 1,i2-1,j2-1);

#ifdef PPT

fprintf(stderr, "Swapping (%d, %d) and (%d, %d)\n", il, ji, i2, j2);

#endif

count++;

if(count > SWAPNUM) {

((char *)comm)[0]=' $'

for(pi=0; pi<nprow; pi++)

for(pj=0; pj<npcol; pj++)

if(pi!=0 II pj!=0)

Csgesd2d(ictxt, 5, 1, comm, 5, pi, pj);

Cblacs-barrier(ictxt, "All");

count = 0;

}
}

}
}

}
#ifdef DEBUG

fprintf(stderr, "Swapping (%d, %d) and (%d, %d)\n", 0, 3, 3, 0);

#endif

7* qp-swap(m, 0, 3, 3, 0);*/

/* Tell children that partial transpose is complete *7

#ifdef DEBUG

220

fprintf(stderr, "Sending message to children to quit partial

transpose\n");

#endif

((char *)comm)[0]=' . ';

for(pi=0; pi<nprow; pi++)

for(pj=0; pj<npcol; pj++)

if(pi!=-0 11 pj!= 0)

Csgesd2d(ictxt, 5, 1, comm, 5, pi, pj);

}

/* Swap function for master process */

/* TY: I don't do any with the flag, might want error checking in the future */

int

qp.swap(matrix *m, int il, int j1, int i2, int j2) {

FLOAT comm[5];

int pi, pj, pil, pjl, pi2, pj2, iil, jjl, ii2, jj2;

int ictxt, nprow, npcol, myrow, mycol, Ida;

FLOAT tmp.re, tmp-im;

int flag;

/* Get BLACS info */

ictxt = m->desc[1];

Cblacs-gridinfo(ictxt, &nprow, &npcol, &myrow, &mycol);

Ida = m->desc[8];

/* Find process coordinates corresponding to global matrix coordinates */

pil = (il/m->desc[4])%nprow;

pjl = (j1/m->desc[5])%npcol;

pi2 = (i2/m->desc[4)%nprow;

pj2 = (j2/m->desc[5])%npcol;

/* Transform global to local coordinates */

iil = (il/(m->desc[4] * nprow))*m->desc[4] + (il%m->desc[4]);

jjl = (jl/(m->desc[5] * npcoi))*m->desc[5] + (jl%m->desc[5]);

221

ii2 = (i2/(m->desc[4] * nprow))*m->desc[4] + (i2%m->desc[4]);

jj2 = (j2/(m->desc[5] * npcol))*m->desc[5] + (j2%m->desc[5]);

#ifdef PPT

fprintf(stderr, "Initiating swap between processi (%d, %d) and process2

(%d, %d) with local coordinates (%d, %d) and (%d, %d)\n", pil, pjl,

pi2, pj2, iil, jjl, ii2, jj2);

#endif

/* Check if the swap happens inside same process/node */

if ((pil == pi2) && (pjl == pj2))

/* Check if master owns the matrix elements we want to swap */

if ((pil == 0) && (pjl == 0)) {

#ifdef DEBUG

fprintf(stderr, "Swap inside master\n");

#endif

tmp-re = RGET(m->m, iil+jjl*lda+1);

tmp-im = IGET(m->m, iil+jjl*lda+1);

CSET(m->m, iil+jjl*lda+1, RGET(m->m, ii2+jj2*lda+1), IGET(m->m,

ii2+jj2*lda+1));

CSET(m->m, ii2+jj2*lda+1, tmp-re, tmp-im);

flag = 0;

}
/* Otherwise direct remote process to swap its matrix elements*/

else {

#ifdef DEBUG

fprintf(stderr, "Swap inside remote process\n");

#endif

((char *)comm)[0] =

((int *)comm)[1] = ii1;

((int *)comm)[2] = jjl;

((int *)comm)[3] = ii2;

222

((int *)comm)[4] = jj2;

Csgesd2d(ictxt, 5, 1, comm, 5, pil, pjl);

flag = 0;

}

/* Master has part of the matrix and needs to swap with a remote node */

else if ((pil == 0) && (pjl == 0)) {

#ifdef DEBUG

fprintf(stderr, "Swap between master (process 1) and remote node\n");

#endif

/* Master tells remote node which matrix element it needs and *7

/* where to send it *7

((char *)comm)[0] = 'X';

((int *)comm)[1] = ii2;

((int *)comm)[2] = jj2;

((int *)comm)[3] = pil;

((int *)comm)[4] = pjl;

Csgesd2d(ictxt, 5, 1, comm, 5, pi2, pj2);

/* Send remote node data for swap *7

((char *)comm)[0]='>';

((FLOAT *)comm)[1] = RGET(m->m, iil+jjl*lda+1);;

((FLOAT *)comm)[2] = IGET(m->m, iil+jjl*lda+1);;

((int *)comm)[3] = ((int *)comm)[4] = 0;

Csgesd2d(ictxt, 5, 1, comm, 5, pi2, pj2);

/* Get ready to receive data *7

flag = 1;

while(flag == 1) {

Csgerv2d(ictxt, 5, 1, comm, 5, pi2, pj2);

if(((char *)comm)[0] == '>') {

#ifdef PPT

fprintf(stderr, "Master received data from process (%d,Xd)\n", pi2,

223

pj2);

#endif

tmp-re = ((FLOAT *)comm)[1];

tmp-im = ((FLOAT *)comm)[2];

#ifdef PPT

fprintf(stderr, "(Master) tmp.re: %f, tmpjim: %f\n", tmp-re,

tmplim);

#endif

CSET(m->m,iil+jjl*lda+1, tmp-re, tmp-im);

flag = 0;

}

else

flag = -1;

}
flag = 0;

}
else if ((pi2 == 0) && (pj2 == 0)) {

#ifdef DEBUG

fprintf(stderr, "Swap between master (process 2) and remote node\n");

#endif

/* Master tells remote node which matrix element it needs and *7

/* where to send it */

((char *)comm)[0]='X';

((int *)comm)[1]=iil;

((int *)comm)[2]=jjl;

((int *)comm)[3]=pi2;

((int *)comm)[4]=pj2;

Csgesd2d(ictxt, 5, 1, comm, 5, pil, pjl);

/* Master sends data to remote node *7

((char *)comm)[0]='>';

224

((FLOAT *)comm)[1] = RGET(m->m, ii2+jj2*lda+1);;

((FLOAT *)comm)[2] = IGET(m->m, ii2+jj2*lda+1);;

((int *)comm)[3] = ((int *)comm)[4] = 0;

Csgesd2d(ictxt, 5, 1, comm, 5, pil, pjl);

/* Master prepares to receive data from remote node */

flag = 1;

while(flag == 1) {
Csgerv2d(ictxt, 5, 1, comm, 5, pil, pjl);

if(((char *)comm)[0] == '>') {
#ifdef PPT

fprintf(stderr, "Master received data from process (%d,%d)\n", pi2,

pj 2);

#endif

tmp-re = ((FLOAT *)comm)[1];

tmplim = ((FLOAT *)comm)[2];

#ifdef PPT

fprintf(stderr, "(Master) tmp.re: %f, tmp-im: %f\n", tmp-re,

tmplim);

#endif

CSET(m->m,ii2+jj2*lda+1, tmp-re, tmp-im);

flag = 0;

}

else

flag = -1;

}
flag = 0;

}
else {

#ifdef DEBUG

fprintf(stderr, "Swap between remote nodes\n");

225

#endif

/* Tell first process which matrix element it needs to send where *7

((char *)comm)[0]='%';

((int *)comm)[1]=iil;

((int *)comm)[2]=jj1;

((int *)comm)[3]=pi2;

((int *)comm)[4]=pj2;

Csgesd2d(ictxt, 5, 1, comm, 5, pil, pjl);

/* Tell second process which matrix element it needs to send where *7
((char *)comm)[O]='';

((int *)comm)[1]=ii2;

((int *)comm)[2]=jj2;

((int *)comm)[3]=pil;

((int *)comm)[4]=pj1;

Csgesd2d(ictxt, 5, 1, comm, 5, pi2, pj2);

flag = 0;

}
return flag;

}
/* Partial transpose function for child process *7

void

qp-ptran-child(matrix *m) {

FLOAT comm[5];

int pi, pj, ii, jj, iil, jjl, ii2, jj2;

int ictxt, nprow, npcol, myrow, mycol, Ida;

FLOAT tmp-re, tmp-im;

int flag;

/* Get BLACS info *7

ictxt = m->desc[1];

Cblacs-gridinfo(ictxt, &nprow, &npcol, &myrow, &mycol);

226

Ida = m->desc[8];

flag = 1;

/* Child waits for broadcast *7

while (flag == 1) {

#ifdef DEBUG

fprintf(stderr, "child node waiting for broadcast\n");

#endif

Csgerv2d(ictxt, 5, 1, comm, 5, 0, 0);

#ifdef DEBUG

fprintf(stderr, "got something: Xc\n", ((char *)comm)[0]);

#endif

switch(((char *)comm)[0]) {

case '*': /* Swap elements within local matrix *7

iil = ((int *)comm)[1];

jjl = ((int *)comm)[2];

ii2 = ((int *)comm)[3];

jj2 = ((int *)comm)[4];

tmp-re = RGET(m->m, iil+jjl*lda+1);

tmp-im = IGET(m->m, iil+jjl*lda+1);

CSET(m->m, iil+jjl*lda+1, RGET(m->m, ii2+jj2*lda+1), IGET(m->m,

ii2+jj2*lda+1));

CSET(m->m, ii2+jj2*lda+1, tmp..re, tmp-im);

#ifdef DEBUG

fprintf(stderr, "completed swap inside remote node\n");

#endif

break;

case '%'V: /* Swap elements with another node *7

/* Coordinates of matrix element that it needs to send *7

ii = ((int *)comm)[1];

jj = ((int *)comm)[2];

227

/* Coordinates of process data needs to be sent to */

pi = ((int *)comm)[3];

pj = ((int *)comm)[4];

#ifdef PPT

fprintf(stderr, "Process (%d, %d) received command to send data to

process (%d, %d)\n", myrow, mycol, pi, pj);

#endif

/* Send data to remote node */

((char *)comm)[O] = '>';

((FLOAT *)comm)[1] = RGET(m->m, ii+jj*lda+1);

((FLOAT *)comm)[2] = IGET(m->m, ii+jj*lda+1);

((int *)comm)[3] = ((int *)comm)[4] = 0;

Csgesd2d(ictxt, 5, 1, comm, 5, pi, pj);

/* Receive data from remote node */

Csgerv2d(ictxt, 5, 1, comm, 5, pi, pj);

switch(((char *)comm)[0]) {
case '>':

tmp-re ((FLOAT *)comm)[1];

tmpim ((FLOAT *)comm)[2];

#ifdef PPT

fprintf(stderr, "tmp.re: %f, tmpjim: %f\n", tmp.re, tmp.im);

#endif

CSET(m->m, ii+jj*lda+1, tmp-re, tmp-im);

break;

default:

flag = -1;

}

break;

case '$' : /* Stop here *7
Cblacs.barrier(ictxt, "All");

228

break;

case ': /* Stop listening */

flag = 0;

break;

default:

flag -1;

}
}

}

int qp-peek(matrix *m, int s, int row, int col){

FLOAT re, im;

FLOAT comm[4];

FLOAT buf[4];

int ictxt, nprow, npcol, myrow, mycol, icurrow, icurcol, Ida;

long i, j;

int Ii, lj;

ictxt = m->desc[1];

Cblacs-gridinfo(ictxt, &nprow, &npcol, &myrow, &mycol);

icurrow = m->desc[6];

icurcol = m->desc[7];

Ida = m->desc[8];

i = processIndex(row, nprow, m->desc[4]);

j = processIndex(col, npcol, m->desc[5]);

1i = locallndex(row, nprow, m->desc[4]);

lj = localIndex(col, npcol, m->desc[5]);

if(s!=0) { /* We are the parent */

229

DBG("qppeeko: (%d,%d) maps to process (%d,%d) and local (Xd,%d)\n",

row, col, (int)i, (int)j, ii, ij);

if(i==O && j==O)

{
/* The server process has the matrix element */

/* The ?GET macros require 1-based indicies */

re = RGET(m->m, Ii + lj*lda + 1);

im = IGET(m->m, Ii + lj*lda + 1);

} else {

/* One of the children has the matrix element */

Csgerv2d(ictxt, 4, 1, comm, 4, i, j);
DBG("qp-peeko: Got %f+%f from (Xd,Xd)\n", (float)comm[O],

(float)comm[1], (int)i, (int)j);

re = (float)comm[O];

im (float)comm[1];

}

/* Transmit the element to the client */

DBG("qp-peeko: server sending %f+%fi\n", re, im);

((char *)buf)[O]='#';

((char *)buf)[1]= ' \n';

buf[1] = re

buf[2] = im;

if(write(s, buf, sizeof(buf))==-1)

perror("Write");

if(read(s, buf, sizeof(buf))==-1)

perror("Read");

} else { /* We are a child */

230

if(m==NULL){

fprintf(stderr, "qp-peeko: matrix pointer is null\n");

return 1;

}

if(i==myrow && j==mycol)

{

comm[] = RGET(m->m, Ii + lj*lda + 1);

comm[1] =JGET(m->m, ii + lj*lda + 1);

DBG("qp.peeko: send Xf+%fi from (%d,%d)\n",

comm[O], comm[1], myrow, mycol);

Csgesd2d(ictxt, 4, 1, comm, 4, 0, 0);

}
}
return 0;

}

/* Name: void qp-rand(matrix *)

Author: Joshua Powell & Terri Yu

Fills a matrix's entries with random floating point numbers between 0

and 1.

JP formerly called this function qpjfvec() because it was used to create

a fake random vector.

*7

void

qp-rand(matrix * m) {

int ictxt, nprow, npcol, myrow, mycol, icurrow, icurcol, Ida;

long i, j, ii, jj, imax, jjmax;

float new-entry;

231

long new-entryl;

long new-entry2;

unsigned t;

#ifdef DEBUG

fprintf(stderr, "Generating random matrix for serial = %d\n", m->num);

#endif

ictxt = m->desc[1];

Cblacs-gridinfo(ictxt, &nprow, &npcol, &myrow, &mycol);

icurrow m->desc[6];

icurcol m->desc[7];

Ida = m->desc[8];

new-entry 0.0; /* Ratio of two randoms */

new-entryl = 0; /* First random */

new-entry2 = 0; /* Second random */

#ifdef DEBUG

fprintf(stderr, "nprow: %d myrow: %d npcol: %d mycol: %d\n",

nprow, myrow, npcol, mycol);

fprintf(stderr, "icurrow: %d icurcol %d lda; %d\n", icurrow, icurcol, Ida);

#endif

/* Jjmax = (m->x 1)?1:m->x/npcol; *7

/* iimax = (m->y 1)?1:m->y/nprow; *7

if (m->x == 1) {

jjmax = m->y/npcol;

iimax = 1;

}
else if (m->y == 1) {

jjmax = 1;

232

imax = m->x/nprow;

}

else {

jjmax = m->x/npcol;

Himax = m->y/nprow;

}

t = (unsigned) time(NULL);

for (jj=1; jj<=jjmax; jj++){

j = (((jj-1)/m->desc[5])*npcol+mycol) * m->desc[5] - (jj%m->desc[5])

+ 1;

for(ii=1; ii<=iimax; ii++){

i = (((ii-1)/m->des[4)*nprow+myrow) * m->desc[4] - (ii%m->desc[4])

+ 1;

if ((((m->x != 1) && (m->y != 1)) ((m->x == 1) &&

(myrow == 0)))

((m->y == 1) && (mycol == 0))) {

t++;

srand(t);

new-entryl = randO; /* Assign first random long integer */

new-entry2 = rand(; /* Assign second random long integer*/

/* Divide smaller rand by larger one */

new-entry = (new-entryl > new-entry2)?((float)new-entry2)/

((float)new-entryl): ((float)new-entry 1)/((float)new-entry2);

/* Set entry in left-most column equal to ratio */

CSET(m->m, ii+(jj-1)*lda, new-entry, 0.0);

#ifdef DEBUG

fprintf(stderr, "ID: (%d, %d) [7d] = (%d, %d) [%f+ %fi] on (%d, %d)

p=%ld\n",

ii, jj, ii+(jj-1)*lda, i, j, RGET(m->m, ii+(jj-1)*da),

IGET(m->m, ii+(jj-1)*da), myrow, mycol, m->m);

233

#endif

}

else

/* Set entry in left-most column equal to ratio *7

CSET(m->m, ii+(jj-1)*lda, 0.0, 0.0);

}
}

}

234

Bibliography

[AGR81] A. Aspect, P. Grangier, and G. Roger. Experimental tests of realistic

local theories via Bell's Theorem. Phys. Rev. Lett., 47, 460-463, 1981.

[AGR82] A. Aspect, P. Grangier, and G. Roger. Experimental realization of

Einstein-Podolsky-Rosen-Bohm gedankenexperiment: A new violation of

Bell's inequalities. Phys. Rev. Lett., 49, 91-94, 1982.

[BBC+93] C. H. Bennett, G. Brassard, C. Cr6peau, R. Jozsa, A. Peres, and W. K.

Wootters. Teleporting an unknown quantum state via dual classical and

Einstein-Podolsky-Rosen channels. Phys. Rev. Lett., 70, 1895-1899, 1993.

[BBP+96] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin,

and W. K. Wooters. Purification of noisy entanglement and faithful tele-

portation via noisy channels. Phys. Rev. Lett., 76, 722-725, 1996.

[BCC+97] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel,

I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stan-

ley, D. Walker, and R. C. Whaley. ScaLAPACK Users Guide, 1997.

http://www.netlib.org/scalapack/slug/.

[BCJ+99] S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and

R. Schack. Separability of very noisy mixed states and implications for

NMR quantum computing. Phys. Rev. Lett., 83, 1054-1057, 1999.

235

[BDG02] J.-L. Basdevant, J. Dalibard, and P. Grangier. Entangled states, EPR

paradox, and Bell's inequality. In Quantum Mechanics. Springer-Verlag,

Berlin, Germany, 2002.

[BDSW96] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters.

Mixed state entanglement and quantum error correction. Phys. Rev. A,

54, 3824, 1996.

[Bel65] J. S. Bell. Physics, 1, 195-200, 1965.

[Ben80] P. Benioff. The computer as a physical system: A microscopic quantum

mechanical Hamiltonian model of computers as represented by Turing

machines. J. Stat. Phys., 22, 563-591, 1980.

[BLMO1I] C. Berthier, L. P. Levy, and G. Martinez, editors. High magnetic fields:

applications in condensed matter physics and spectroscopy. Springer Ver-

lag, Berlin, Germany, 2001.

[BMR+02] P. 0. Boykin, T. Mor, V. Roychowdhury, F. Vatan, and R. Vrijen. Al-

gorithmic cooling and scalable NMR quantum computers. Proceedings of

the National Academy of Sciences (U.S.A.), 99, 3388-3393, 2002.

[Boh5l] D. Bohm. Quantum Theory. Prentice Hall, Englewood Cliffs, NJ, 1951.

[CC03] A. C. Cross and I. L. Chuang. Quanta Beowulf Cluster, 2003.

http://qubit.media.mit.edu.

[CDO+95] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and R. C.

Whaley. A proposal for a set of parallel basic linear algebra subprograms,

July 1995. http://www.netlib.org/lapack/lawnspdf/lawn100.pdf.

[CGK98] I. L. Chuang, N. Gershenfeld, and M. Kubinec. Experimental implemen-

tation of fast quantum searching. Phys. Rev. Lett., 80, 3408-3411, 1998.

[Cho02] R. Choy. Matlab*p 2.0: Interactive supercomputing made practical. Mas-

ter's thesis, Massachusetts Institute of Technology, June 2002.

236

[CLK+00] D. G. Cory, R. Laflamme, E. Knill, L. Viola, T. F. Havel, N. Boulant,

G. Boutis, E. Fortunato, S. Lloyd, R. Martinez, C. Negrevergne,

M. Pravia, Y. Sharf, G. Teklemariam, Y. S. Weinstein, and W. H.

Zurek. NMR based quantum information processing: achievements and

prospects. Fortschr. Phys., 48, 875-907, 2000.

[CPM+98] D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H. Zurek,

T. F. Havel, and S. S. Somaroo. Experimental quantum error correction.

Phys. Rev. Lett., 81, 2152-2155, 1998.

[CVZ+98] I. L. Chuang, L. M. K. Vandersypen, X. Zhou, D. W. Leung, and S. Lloyd.

Experimental realization of a quantum algorithm. Nature, 393, 143-146,

1998.

[CW90] D. Coppersmith and S. Winograd. Multiplication via arithmetic progres-

sions. Journal of Symbolic Computation, 9, 251-280, 1990.

[DCOO] W. Dur and J. I. Cirac. Classification of multiqubit mixed states: Sepa-

rability and distillability properties. Phys. Rev. A, 61, 042314, 2000.

[Deu89] D. Deutsch. Quantum computational networks. Proc. R. Soc. Lond. A,

425, 73, 1989.

[dHSL98] K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein. Volume of

the set of separable states. Phys. Rev. A, 58, 883-892, 1998.

[DNBT02] J. L. Dodd, M. A. Nielsen, M. J. Bremner, and R. T. Thew. Universal

quantum computation and simulation using any entangling hamiltonian

and local unitaries. Phys. Rev. A, 65, 040301, 2002.

[Don03] J. J. Dongarra. Performance of various comput-

ers using standard linear equations software, 2003.

http://www.netlib.org/benchmark/performance.ps.

237

[DW97] J. J. Dongarra and R. C. Whaley. LAPACK Working Note 94, A User's

Guide to the BLACS vi.1, 1997. http://www.netlib.org/blacs/lawn94.ps.

[EPR35] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical de-

scription of physical reality be considered complete? Phys. Rev., 47,

777-780, 1935.

[Fit00] R. Fitzgerald. What really gives a quantum computer its power? Physics

Today, pp. 20-22, January 2000.

[Fra85] J. D. Ranson. Bell's theorem and delayed determinism. Phys. Rev. D,

31, 2529-2532, 1985.

[GB03] L. Gurvits and H. Barnum. Separable balls around the maximally mixed

multipartite quantum states. arXive eprint quant-ph/0302102, 2003.

[GBD+94] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sun-

deram. PVM: Parallel Virtual Machine, a users' guide and tutorial

for networked parallel computing. MIT Press, Cambridge, MA, 1994.

http://www.netlib.org/pvm3/book/pvm-book.html.

[GC97] N. Gershenfeld and I. L. Chuang. Bulk spin-resonance quantum compu-

tation. Science, 275, 350-356, 1997.

[Gri95] D. J. Griffiths. Introduction to Quantum Mechanics. Prentice-Hall, Upper

Saddle River, NJ, 1995.

[GRL+03] S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner, H. Hiffner,

F. Schmidt-Kaler, I. L. Chuang, and R. Blatt. Implementing the Deutsch-

Jozsa algorithm on an ion-trap quantum computer. Nature, 421, 48-50,

2003.

[Gro96] L. K. Grover. Quantum mechanics helps in searching for a needle in a

haystack. Phys. Rev. Lett., 79, 350-356, 1996.

238

[HBG00] P. Hiibler, J. Bargon, and S. J. Glaser. Nuclear magnetic resonance quan-

tum computing exploiting the pure spin state of para hydrogen. Journal

of Chemical Physics, 113, 2056-2059, 2000.

[HHH96] M. Horodecki, P. Horodecki, and R. Horodecki. Separability of mixed

states: Necessary and sufficient conditions. Phys. Lett. A, 223, 1-8, 1996.

[Hor97] P. Horodecki. Separability criterion and inseparable mixed states with

positive partial transposition. Phys. Lett. A, 232, 333-349, 1997.

[JM98] J. A. Jones and M. Mosca. Implementation of a quantum algorithm on

a nuclear magnetic resonance quantum computer. J. Chem. Phys., 109,

1648-1653, 1998.

[JMH98] J. A. Jones, M. Mosca, and R. H. Hansen. Implementation of a quantum

search algorithm on a quantum computer. Nature, 393, 344-346, 1998.

[Jon00] J. A. Jones. NMR quantum computation: A critical evaluation. Fort.

der. Physik, 48, 909-924, 2000.

[Jon0l] J. A. Jones. NMR quantum computation. Progr. NMR Spectr., 38, 325-

360, 2001.

[KC98] E. Knill and I. L. Chuang. Effective pure states for bulk quantum com-

putation. Phys. Rev. A, 57, 3348-3363, 1998.

[LBF98] N. Linden, H. Barjat, and R. Freeman. An implementation of the

Deutsch-Jozsa algorithm on a three-qubit NMR quantum computer.

Chem. Phys. Lett., 296, 61-67, 1998.

[Li03] X. S. Li. SuperLU, 2003. http://crd.lbl.gov/-xiaoye/SuperLU.

[LKF99] N. Linden, E. Kupee, and R. Freeman. NMR quantum logic gates for

homonuclear spin systems. Chem. Phys. Lett., 311, 321-327, 1999.

[Mat0l] MATLAB Version 6.1.0.450 Release 12.1, 2001.

http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.shtml.

239

[MC02] N. C. Meniucci and C. M. Caves. Local realistic model for the dynamics of

bulk-ensemble NMR information processing. Phys. Rev. Lett., 88, 167901,

2002.

[NC00] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum

Information. Cambridge University Press, Cambridge, MA, 2000.

[NDD+02] M. A. Nielsen, C. M. Dawson, J. L. Dodd, A. Gilchirst, D. Mortimer,

T. J. Osborne, M. J. Bremner, A. W. Harrow, and A. Hines. Quantum

dynamics as a physical resource. arXive eprint quant-ph/0208077, 2002.

[Nhm03] National High Magnetic Field Laboratory (NHMFL), 2003.

http://www.magnet.fsu.edu.

[Nie02] M. A. Nielsen. An introduction to majorization

and its applications to quantum mechanics, 2002.

http://www.qinfo.org/talks/2002/maj/book.ps.

[NKL98] M. A. Nielsen, E. Knill, and R. Laflamme. Complete quantum teleporta-

tion using nuclear magnetic resonance. Nature, 396, 52-55, 1998.

[Pat03] G. Patz. A parallel environment for simulating quantum computation.

Master's thesis, Massachusetts Institute of Technology, June 2003.

[Pea70] P. Pearle. Hidden variable example based upon data rejection. Phys. Rev.

D, 2, 1418-1425, 1970.

[Per95] A. Peres. Quantum Theory: Concepts and Methods. Kluwer, Dordrecht,

1995.

[Per96] A. Peres. Separability criterion for density matrices. Phys. Rev. Lett., 77,

1413-1415, 1996.

[Pop94] S. Popescu. Bell's inequalities versus teleportation: What is nonlocality?

Phys. Rev. Lett., 72, 797, 1994.

240

[Pre98] J. Preskill. Lecture Notes for Physics 229: Quantum Information and

Computation, 1998. http://www.theory.caltech.edu/~preskill/ph229.

[PWDCOO]

[RKM+01]

A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary.

- A portable implementation of the high-performance

pack benchmark for distributed-memory computers,

http://www.netlib.org/benchmark/hpl.

HPL

lin-

2000.

M. A. Rowe, D. Kielpinski, V. Meyer, C. A. Sackett, W. M. Itano, C. Mon-

roe, and D. J. Wineland. Experimental violation of a Bell's inequality with

efficient detection. Nature, 409, 791-794, 2001.

[Sak94] J. J. Sakurai. Modern Quantum Mechanics: Revised Edition. Addison

Wesley Longman, Reading, MA, 1994.

[SC99] R. Schack and C. M. Caves. Classical model for bulk-ensemble NMR

quantum computation. Phys. Rev. A, 60, 4354-4362, 1999.

[SGDM03] J. K. Stockton, J. M. Geremia, A. C. Doherty, and H. Mabuchi. Char-

acterizing the entanglement of symmetric many-particle spin-! systems.

Phys. Rev. A, 67, 022112, 2003.

[Sho94] P. W. Shor. Algorithms for quantum computation: Discrete logarithms

and factoring. Proceedings of the 35th Annual Symposium on Foundations

of Computer Science, 1994.

[Sho97] P. W. Shor. Polynomial-time algorithms for prime factorization and dis-

crete logarithms on a quantum computer. SIAM J. Sci. Statist. Comput.,

26, 1484, 1997.

[SKK+00] C.A. Sackett, D. Kielpinsky, B.E. King, C. Langer, V. Meyer, C.J. Myatt,

M. Rowe, Q.A. Turchette, W.M. Itano, D.J. Wineland, and C. Monroe.

Experimental entanglement of four particles. Nature, 404, 256-258, 2000.

241

[Ste03] M. Steffen. A Prototype Quantum Computer Using Nuclear Spins in Liq-

uid Solution. Ph.D. thesis, Stanford University, June 2003.

[SV99] L. J. Schulman and U. Vazirani. Scalable NMR quantum computation.

Proc. 31'st A CM STOC (Symp. Theory of Computing), pp. 322-329, 1999.

[Uhl70] A. Uhlmann. On the Shannon entropy and related functionals on convex

sets. Rep. Math. Phys., 1, 147-159, 1970.

[Uhl71] A. Uhlmann. Sdtze fber dichtematrizen.

Univ. Leipzig, 20, 633-637, 1971.

[Uhl72] A. Uhlmann. Endlich-dimensionale dichtematrizen

Univ. Leipzig, 21, 421-452, 1972.

[Uhl73] A. Uhlmann. Endlich-dimensionale dichtematrizen

Univ. Leipzig, 22, 139-177, 1973.

[VABM01]

Wiss. Z. Karl-Marx-

i. Wiss. Z. Karl-Marx-

i. Wiss. Z. Karl-Marx-

F. Verstraete, K. Audenaert, De Bie, and De Moor. Maximally entangled

mixed states of two qubits. Phys. Rev. A, 64, 012316, 2001.

[VLS+01] A. S. Verhulst, 0. Liivak, M. H. Sherwood, H.-M. Vieth, and I. L. Chuang.

Non-thermal nuclear magnetic resonance quantum computing using hy-

perpolarized xenon. Appl. Phys. Lett., 79, 2480-2482, 2001.

[VP98] V. Vedral and M. B. Plenio. Entanglement measures and purification

procedures. Phys. Rev. A, 57, 1619-1633, 1998.

[VSB+01] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. Sher-

wood, and I. L. Chuang. Experimental realization of Shor's quantum

factoring algorithm using nuclear magnetic resonance. Nature, 414, 883-

887, 2001.

[VT99] G. Vidal and R. Tarrach. Robustness of entanglement. Phys. Rev. A, 59,

141-155, 1999.

242

[VW02] G. Vidal and R. F. Warner. A computable measure of entanglement.

Phys. Rev. A, 65, 032314, 2002.

[VYC02] L. M. K. Vandersypen, C. S. Yannoni, and I. L. Chuang. Liquid state

NMR quantum computing. In D. M. Grant and R. K. Harris, editors,

The encyclopedia of nuclear magnetic resonance, Advances in NMR. John

Wiley and Sons, West Sussex, England, 2002.

[WC01] A. Wong and N. Christensen. Creating Bell states and decoherence effects

in a quantum-dot system. Phys. Rev. A, 63, 062307, 2001.

[Wei02] E. W. Weisstein. CRC Concise Encyclopedia of Mathematics, Second

Edition. CRC Press, Boca Raton, Florida, 2002.

[Wer89] R. F. Werner. Quantum states with Einstein-Podolsky-Rosen correlations

admitting a hidden-variable model. Phys. Rev. A, 40, 4277-4281, 1989.

[WJS+98] G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger. Vio-

lation of Bell's inequality under strict Einstein locality conditions. Phys.

Rev. Lett., 81, 5039-5043, 1998.

[YY99] F. Yamaguchi and Y. Yamamoto. Crystal lattice quantum computer.

App. Phys. A, 68, 1-8, 1999.

[ZAB02] A. L. Zook, B. B. Adhyaru, and C. R. Bowers. High capacity production

of > 65% spin polarized xenon-129 for NMR spectroscopy and imaging.

Journal of Magnetic Resonance, 159, 172-182, 2002.

243

