
Barnyard Politics: A Decision Rationale Representation for

the Analysis of Simple Political Situations

by

Arian Shahdadi

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the Massachusetts Institute of Technology

August 9, 2003

Copyright 2003 Arian Shahdadi. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and distribute publicly
paper and electronic copies of this thesis and to grant others the right to do so.

Department of Electrical Engineering and Computer Science
August 9, 2003

Certified by..:. l
Patrick H. Winston

Ford Professor of Artificial Intelligence and Computer Science
Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

MASSACHUSETTS fNST1 E
OF TECHNOLOGY

JUL 2 0 2004

LIBRARIES
BARKER

2

Barnyard Politics: A Decision Rationale Representation for the Analysis
of Simple Political Situations

by
Arian Shahdadi

Submitted to the Department of Electrical Engineering and Computer Science
on August 9, 2003, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

How can a computational system understand decisions in the domain of politics? In order
to build computational systems that understand decisions in the abstract political space,
we must first understand human decision-making and how human beings, in turn, are able
to understand ideas in abstract realms such as politics. The work of Jintae Lee attempted
to address the problem of understanding decision rationales in a non-domain specific way.
His work falls short, however, when applied to decision problems in politics. I present a
new representation, the Augmented Decision Rationale Language (ADRL) that attempts
to address the shortcomings of Lee's work in this regard. ADRL expands Lee's vocabulary
of relations to include forms of causation such as enablement and gating. ADRL also refines
the relations and primitives of Lee's representation and focuses primarily on States, Actions
and Goals as the basic units of decisions. Finally, ADRL grounds itself in spatial under-
standing using the Lexical Conceptual Semantics of Jackendoff, in contrast to the DRL,
which ignores the text associated with a decision rationale. An implementation of a subset
of this representation is displayed, along with a matcher that is able to create analogies
between two decision scenarios cast in the representation. The matcher is presented an
existence proof that this representation can be used to readily structure decision scenarios
and make analogies between them.

Thesis Supervisor: Patrick H. Winston
Title: Ford Professor of Artificial Intelligence and Computer Science

3

4

Acknowledgments

Thanks to: My parents, Patrick Winston, Paul Gray and my many instructors and mentors
at MIT.

This research was supported in part by the National Science Foundation, Award Number
IS-0218861.

5

6

Contents

1 Introduction

2 A Representation for Political Decision Rationales
2.1 Some Motivating Examples
2.2 DRL: Lee's Decision Rationale Language

2.2.1 The Primitives of the DRL
2.2.2 Relations of the DRL
2.2.3 Representing Our Examples in the DRL . . .

2.3 ADRL: A New Language for Decision Rationales . .
2.3.1 Primitives of the ADRL
2.3.2 Relations of the ADRL
2.3.3 Representing Our Examples in the ADRL . .

2.4 A Limited Implementation of ADRL

3 Augmenting a Decision Rationale Representation
tics

with a Spatial Seman-

3.1 Representing Political Ideas with Jackendoff Frames
3.1.1 State and Causation .
3.1.2 Possession and Control .
3.1.3 D esire .
3.1.4 Encouragement and Discouragement
3.1.5 Transitions of State .
3.1.6 Coercion and Permittance

3.2 An Implementation of Jackendoff Frames Using the Bridge System

35
. 35
. 35
. 36
. 38
. 38
. 39
. 40

41

4 A Matcher for Facilitating Analogies Between Scenarios 43
4.1 Converting Jackendoff Frames to Flat-Graph Structures 43
4.2 Combining Flat-Graphs into Full Scenario Graphs 45
4.3 Performance Analysis of the Graph Conversion Algorithm 48
4.4 Thing M atchers . 48
4.5 The Alignment Issue and Matching Flat-Graphs 50
4.6 Finding the Best Match . 52
4.7 Performance Analysis of the Matcher . 53
4.8 A Simple Application Using the Matcher . 53
4.9 A Tabular Mechanism for Relating Components of a Decision Rationale . . 55

7

13

17

17

19
19
21
22

26
26
28
30
33

5 Future Work 57
5.1 Possible Applications of the Matcher and Current Implementation 57
5.2 Dealing with Inter-Structure Relations: A Learning Opportunity 59
5.3 Improvements and Other Future Work . 59

6 Contributions 61

A A Reference for the Augmented Decision Rationale Language (ADRL) 63

B Jackendoff Structures for Political Concepts 69

C An Overview of Relevant Aspects of the Bridge System 89
C.1 The Thing Framework . 89
C.2 Jackendoff Frames in the Bridge System . 90
C.3 The BridgeSpeak Parser . 90

D Foundations 95

8

List of Figures

2-1 The full vocabulary of the DRL, including primitives and relations. This
diagram is adapted from an identical diagram in Lee's thesis, pp. 43. 20

2-2 The DRL expression of the basic example, referenced by number: 1-4 are
Claims, 5 and 6 are Goals, 7-10 are Alternatives. 24

2-3 The full set of primitives in the ADRL. 27
2-4 The full set of relations in the ADRL. 29
2-5 The ADRL expression of the basic example, referenced by number: 1-4 are

States, 5 and 6 are Goals, 7-10 are Actions. 31

4-1 The flat-graph for "Billy ran to the ball." 44
4-2 The flat-graph for "Billy ran to the tree because Billy ate the pie." 46
4-3 The flat-graphs for "Billy ate the pie" and "Billy ran to the pole" connected

by a "SAM E" relation. 47
4-4 How flat-graphs connect to each other and the possible relations between them. 47
4-5 The flat-graph for the first two sentences of our basic example scenario: "Billy

bought the toy" and "Billy owns the toy." 49
4-6 The blank matcher application. Precedents are entered and displayed on the

left and Situations are entered and displayed on the right. 54

C-1 A typical BridgeSpeak parse and the corresponding Jackendoff frame. Red
bars (such as go) are Relations, blue bars (such as to and at) are Derivatives,
gray bars (such as billy and tree) are Things and black bars (such as trajec-
toryLadder and path) are Sequences. Notice the recursive structures of the
representation. Notice also the additional information displayed about each
object. This information is an output of the content on the prime thread for
each object as well as the information on the description thread. 91

C-2 A BridgeSpeak parse of a causal relation. 92

9

10

List of Tables

5.1 The types of questions answerable by systems able to make analogies be-
tween decision rationales. * indicates that my system currently implements
functions that can provide these answers. 58

11

12

Chapter 1

Introduction

In the new global political climate, fear and uncertainty abound. The old ways of analyzing
and understanding political situations have proved fallible at best, as terrorism and recent
wars demonstrate. A significant point of failure in current methods of political analysis is
the human analyst. With the sheer volume and complexity of the information that analysts
must process, it is no wonder that many disasters are not identified and averted. For
this reason, we seek to create computationally oriented applications to help analysts better
understand and utilize information.

One application in particular that could be of great importance is called a blunder
stopper. A blunder stopper is an application that can automatically analyze a decision
scenario and tell a user if, based on past precedents, the current decision-making process
may lead to unexpected and possibly disastrous outcomes. Thus, the question becomes,
how can we best make analogies between past precedents and current situations?

In order to create an application like a blunder stopper, we must first understand how
human beings structure decisions in the political space. To this end, we must have a
computational representation that captures the essential aspects of political decisions. The
representation must also facilitate the construction of analogies between decision scenarios
cast in its language.

This work takes the first steps toward the vision by introducing a representation for
decision rationale in the political domain. The representation expands and refines the
work of Jintae Lee. [6] Lee's work introduces the DRL (Decision Rationale Language), a
language meant for use in collaboration tools. His language takes eight basic primitives and
describes the possible relationships between them in an arbitrary decision situation. Take
the following short example:

Jane kicked to the ball.
The ball moved to the tree.

In Lee's conception, this situation would be represented by two objects with a relation
between them. The sentences associated with these objects are the so-called textual content.
Lee's work does not concern itself with the textual content of the decision. Rather, the only
important aspects of a decision scenario in Lee's representation are the classes of objects in
the system and the types of relations between them. This is, in part, because Lee wanted
to create a system that did not rely on domain-specific knowledge.

I believe, however, that the textual content of the decision is crucial to its understanding.
In particular, it would be very difficult for a computational system to discern similarities and

13

differences between decision situations without some knowledge inherent to the specifics of
the situation. This does not mean that we must rely entirely on domain specific representa-
tions. Rather, we can use a non-domain specific representation that enables understanding
of specific domains. I will argue that Lee's representation is insufficient to enable meaningful
analogies between political decision scenarios without the help of an augmenting represen-
tation for the textual content of the decision. To enable these analogies, I have refined Lee's
representation in the following ways:

1. I have clarified and narrowed Lee's set of primitives to five basic types: Scenarios,
Elements, States, Actions and Goals.

2. I have removed relations, such as those dealing with alternatives to a decision and
questions about a decision, that are not crucial to understanding past precedents.

3. I have expanded Lee's relation vocabulary to encompass more diverse relations, espe-
cially focusing on kinds of causation, such as enablement and gating.

4. I have augmented the decision rationale representation to include a semantic repre-
sentation of the textual content of the decision rationale.

The new relations and my refinement of Lee's primitives are inspired by the work of
Robert Abelson. [1] Abelson sought to create a computational system that would understand
political concepts in texts. His work clearly outlined many different types of causation in
political systems and also delineated the need for three primitive types representing the
current state of the world, the possible actions that can be taken in the world and the
overall purpose that is being achieved.

I selected the Lexical Conceptual Semantics (LCS) representation of Jackendoff for the
semantics of sentences in a decision rationale. Jackendoff's work represents notions both
concrete and abstract in terms of places and paths in space. Using Jackendoff's work as a
basis, I have developed LCS representations for 42 different sentences useful in describing
simple political situations. These situations represent politics in a so-called "barnyard" of
agents, objects and actions. I do not attempt to address complex political situations or
vocabulary, although I am confident that they can be represented in the same way with
very little additional representational apparatus.

In order to show that the representation is useful and to take the first steps toward cre-
ating a blunder stopper, I have implemented a subset of the representation and developed
a matcher that can match decision scenarios in the new representation. The matcher appli-
cation allows users to enter decision scenarios in an efficient manner as a series of sentences
and numerical references to relations between them. The application will then match them
up based on their spatial semantic representations and relations. If a match occurs, the
returned match represents the base commonalities between the two scenarios and shows the
relations that are common and missing among scenario elements. A functioning matcher
represents a valid first step toward a blunder stopper, because such an application would
need a way to match up scenarios to determine possible blunders.

The remainder of this document will present the details of my work. Chapter 2 discusses
the decision rationale representation I developed and contrasts it to Lee's work. Chapter 3
presents the structures I developed for representing sentences in the barnyard world and
briefly touches on the implementation of these structures via the Bridge system. Chapter 4
presents the details of the matcher, specifically the process of converting scenarios repre-
sented in the ADRL into a graph structure more suitable for matching and how the matcher

14

operates on these structures. Chapter 5 presents avenues for future work. Chapter 6 is a

discussion of the salient contributions of this thesis. Appendix A is a reference for the

decision rationale language presented in this thesis. Appendix B is a reference for the LCS
structures developed to support this work. Appendix C gives a brief overview of the Bridge

system and how it was used to develop the matcher. Finally, Appendix D gives an overview

and discussion of some of the related works used as a foundation for this thesis.

15

16

Chapter 2

A Representation for Political
Decision Rationales

Jinate Lee's work on decision rationale is inspired by the pioneering work of Toulmin, who
sought to describe the primitives necessary for structuring an argument. Lee's Decision
Rationale Language (DRL) addresses this problem from the standpoint of extreme gener-
ality, where no domain-specific knowledge is necessary for describing and understanding a
decision. Where Lee falls short, however, is in his insistence that the textual content of a
decision has no merit in terms of describing its structure. I will show that, in fact, Lee's
representation is insufficient for creating meaningful analogies between decision scenarios
in the political domain. I will present my refinements of Lee's work, which include changes
to his set of primitives and his relation vocabulary, as well as the addition of augment-
ing representations for the specific sentences describing the various aspects of a decision
rationale.

2.1 Some Motivating Examples

In order to show the differences between Lee's work and my own, and specifically, to show
why my changes to his representation were necessary, it is important to look at some
examples. The problem that we are trying to solve is one of analogy: how can we represent
scenarios such that a computational system can readily make analogies between similar, but
not identical, decision rationales? What sort of representation for the scenarios is necessary
for this task?

Let us address a simple example of a decision scenario in the barnyard world. Billy is
a young boy who buys a toy at the local store. Now that Billy has this toy, he wishes to
put it in a secure place. Billy is in possession of a box, but this box doesn't have a lock
on it. Therefore, the box is insecure. Now, Billy wants to keep this toy that he has just
purchased. At the same time, the local bully, Joel, knows that Billy has this toy and wants
it for himself. Billy, realizing this, is faced with several options. Billy can keep the toy on
himself at all times, perhaps by putting it in his pocket. Billy could also put the toy in the
box. If he is feeling apprehensive, Billy could very well give the toy up to Joel. Billy could
also go down to the local "bank" (his parents) and ask them to store the toy for him.

Our basic example is a simple story. How are we to represent this story computationally?
The first step would be to decompose the story into several smaller and distinct sentences
that reveal the relations between aspects of this decision. One such decomposition is as

17

follows:

Billy bought the toy.

Billy owns the toy.

The box does not possess a lock.

The box is insecure.

Billy wants to keep the toy.

Joel wants to own the toy.

Billy puts the toy in his pocket.

Billy gives the toy to Joel.

Billy puts the toy into the box.

Billy sends the toy to the bank.

Let us say that this is our "basic" example. What sorts of scenarios could we try to com-
pare this to, such that the comparison will inform us about the power of the representations
we are looking at?

Consider another example. In the far future, the Earth is fighting a war with Mars. The
Earth has purchased a special hypership from alien arms dealers. The Earth, for obvious
reasons, would like to keep this ship and store it in a secure location. One location that
has been considered is a space-port orbiting the moon. The space-port, however, has a
very light set of military defenses and is not very secure. The Martians have taken note of
the Earth's purchase and would desperately like to procure it for themselves. The Earth's
government is faced with faced with several options. It could send the hypership to the
space-port. The Earth could also keep the hypership in one of it's countries, like Canada.
The Earth also has access to a battle-platform orbiting Venus, which could both store and
defend the hypership. Finally, if they were so inclined, Earth's governors could accede and
give the hypership to Mars willingly, perhaps as a peace offering.

As any human reader can notice, this decision story is analogous to the previous story
about Billy. This is easier to notice if the story is decomposed as follows:

The Earth bought the hypership.

The Earth owns the hypership.

The space-port does not possess a military.

The space-port is insecure.

The Earth wants to keep the hypership.

Mars wants to own the hypership.

The Earth puts the hypership in Canada.

The Earth gives the hypership to Mars.

The Earth puts the hypership into the space-port.

The Earth sends the hypership to the battle-platform.

Let us consider an example where there is no similarity. The following sentences describe
the new story:

1. Billy bought the toy.

2. Billy owns the toy.

3. Joe has the fish.

4. Joe ate the fish.

5. Billy wants to keep the toy.

18

6. Joe wants to own the car.

7. Billy puts the toy in his pocket.

8. Joe buys the car.

9. Joe's mother buys the car for Joe.

10. Billy sends the toy to the bank.

One can see that this story seems structurally similar to our basic example. Note,
however, that the two stories are quite different. In particular, a good representation should
elucidate this difference so that it can be exploited by applications trying to find or invalidate
matches between decision rationales.

We can look at the story about Billy in another way as well. What if we simplified the
story? Say that we reduce the set of sentences in the basic example to the following:

Billy bought the toy.
Billy owns the toy.

The box is insecure.

Billy wants to keep the toy.

Billy puts the toy in his pocket.

Billy puts the toy into the box.

To the human reader, the essential details of the story have not changed. The main
difference is that some of the less relevant details have been removed. A good representation
should capture the essence of the story so that a proper matcher will be able to tell that
this version is more or less the same as our basic example.

Using these examples, we will examine Lee's DRL and my own augmented version of
the DRL to determine the areas where each representation succeeds and falls short.

2.2 DRL: Lee's Decision Rationale Language

Lee created the DRL as a way to capture active decision-making processes. His language
is well suited for collaborative purposes and the implementation that he demonstrates is of
a collaboration tool for multiple users. The following sections present an overview of the
DRL, beginning with the primitives and continuing on with the relations. The final section
attempts to represent some of our example scenarios with the DRL.

2.2.1 The Primitives of the DRL

Figure 2-1 shows a diagram of the DRL vocabulary, including primitives and relations. As
we can see from the figure, DRL has eight primitives, all descending from a single base
primitive, DRL object. The primitives are: Alternative, Goal, Claim, Question, Group,
Viewpoint, Procedure and Status. Also, a Decision Problem is a special class that represents
an overall decision scenario, and is a type of Goal. Decided is a special type of Status that
marks decisions that have already been made.

In order to understand how we can apply these primitives in structuring a decision,
we must first discuss what they represent. A Claim is the basic unit of the DRL. Claims
represent ideas noted by the people making the decision. Claims have an associated truth
value as well, called the plausibility measure. If this value is high, they can be considered
facts. If low, they can be taken as assumptions, hypotheses, or any number of other types

19

DRLott

Akmartiw

U A Good AhAVMenI 0f Aktte. D F'sx) ftobmi
CO - Desmtm /

rSmppattChA rCtim I

ts.o*uil 06wGout
Cimr R dwrdTo - hzS*%imwoaDj m "1= Dezim Prckm)

kAnsr(Medflo)ate;ndeQetm

haRmS ItudhtPoccdurf

TO tec4Fj cj.0
JCAIjcl, Otea15,1Kbd jek bjm f

CowaiesA 0")ea

31810 DUXIC

Figure 2-1: The full vocabulary of the DRL, including primitives and relations. This dia-
gram is adapted from an identical diagram in Lee's thesis, pp. 43.

20

of information as specified by the user. The threshold for these values is also set by the
user. Claims also have a value called degree, which represents the importance of the claim
in the overall scenario. This is a subjective valuation that can change as a decision situa-
tion evolves. A Claim itself is a very general category, and so analyses of decisions using
Claims must rely on the extra information contained in the dynamic plausibility and degree
valuations.

A Goal is a state that the decision-makers wish to achieve. Essentially, the decision
problem involves the users setting up a series of Claims and deciding what actions need to be
taken to achieve a set of Goals. Goals can be sub-goals of other goals, which means explicitly
that the sub-goal must be accomplished in order for the overall goal to be accomplished.

An Alternative is a possible action that can be taken in the decision. Alternatives
represent the steps that can be taken to accomplish a goal, and can encompass many
sentences depending on the level of granularity chosen by the users. Alternatives have
several attributes, including status (an indication of whether or not the alternative was
selected) and evaluation (a value that describes the evaluation of this alternative in relation
to the goals it is meant to achieve).

The other five primitive values are meant to support collaborative decision-making.
The Question primitive stores a question that a user has for other members of the decision-
making team, and relates this question to other objects in the decision. The Group primitive
is a container that allows grouping of arbitrary classes into a larger set that is related in
some way specified by the user. A Viewpoint contains pointers to a set of DRL objects that
represent one opinion about the current decision. A Procedure defines a set of steps used
to perform a task in the rationale. Procedure objects can hold both executable code and
informal descriptions. Finally, the Status object describes the current status of the decision
scenario.

2.2.2 Relations of the DRL

Although the primitives of the DRL are primarily focused on group collaboration in decision-
making, the set of relations DRL encompasses are more general and can support a broader
array of computations on decision rationales. They can be broken down into four categories:

1. Relations among Claims.

" Supports(Claim, Claim)

" Denies(Claim, Claim)

" Presupposes(Claim, Claim)

2. Relations between Claims and other objects.

" Answers(Claim, Question)

" Is a Result of(Claim, Procedure)

3. Relations involving Goals.

" Achieves(Alternative, Goal)

" Is a Sub-Goal of(Goal, Goal)

4. Relations useful for collaborative analysis.

21

" Is an Answering Procedure for(Procedure, Question)

* Tradeoffs(Object, Object, Attribute)
" Is a Kind of(Object, Object)

" Suggests(Object, Object)

The first set of relations deals with the ways that Claims can connect to other Claims.
Supports and Denies are two opposing relation types that describe how one Claim can
impact the truth value of another. For example, if I had one Claim that stated "Pat is a
woman" and another that stated "Pat is a man," the two Claims would deny each other.
Presupposes deals with a relationship where one Claim needs to be true in order for a
subsequent Claim to also be true. For example, the Claim "Bobby can run" presupposes
something like "Bobby has legs." Note that there are no relations dealing with causation
among Claims, and only a very limited vocabulary for Support and Denial.

The second set of relations involving Claims is also limited. Because Claims are central
to the expression of a decision rationale, one would expect that they interact with the other
classes (especially Goals and Alternatives) in many ways. That is not the case, however.
Answers describes how a stated Claim can answer a Question that has been posted to the
scenario by a user. Is a Result of describes how a stated Procedure object can lead to
stated Claim. This relation is our first hint of causal descriptions in Lee's representation.
Note, in particular, that this only describes causation between a Procedure and a Claim.
When trying to describe a larger scenario with many past states and current actions, a
much richer vocabulary of causation is needed, as we will see.

The third set of relations is small, but powerful. In particular, the Achieves relation
is very important, because it allows the user to specify what particular Alternatives will
lead to accomplishing a Goal. This knowledge is important for analyzing a decision and
represents the only other form of causation evident in Lee's vocabulary. The Sub-Goal
relation presents a formal way of specifying sub-goals. The relation also invites a question:
why are there not other similar "sub" relations for some or all of the other primitives? The
Presupposes relation is close, but one can imagine situations where certain Alternatives
enable others to occur in a manner similar to how a sub-goal must be completed to enable
the completion of an overarching goal.

The final set of relations deals primarily with ways to express relations among elements
of the representation meant explicitly for collaboration. Is an Answering Procedure for de-
scribes how a Procedure object contains the information necessary for answering a Question
posed by a user of the system. Tradeoffs gives the tradeoffs between two objects (presum-
ably choices in the system) as a list of attribute differences. Is a Kind of allows users to note
similarities between objects in the system even when the basic vocabulary cannot express
these similarities. Finally, the Suggests relation is a way for users to annotate decisions.
Note that in figure 2-1, this relation is a superclass of Comments, which is the formal way
of entering uninterpreted user comments into the decision.

2.2.3 Representing Our Examples in the DRL

Now that we have Lee's representation at hand, how are we to judge its usefulness? I will
focus on attempting to represent our previous examples in Lee's framework. I will show
that Lee's vocabulary is too limited to fully express the scenarios in a meaningful way. This
becomes even more apparent when we consider that the DRL does not take the textual
content of the examples into account.

22

Look once again at our basic example, this time with the sentences numbered for easy
reference.

1. Billy bought the toy.

2. Billy owns the toy.

3. The box does not possess a lock.

4. The box is insecure.

5. Billy wants to keep the toy.

6. Joel wants to own the toy.

7. Billy puts the toy in his pocket.

8. Billy gives the toy to Joel.

9. Billy puts the toy into the box.

10. Billy sends the toy to the bank.

Our first step is to cast the sentences in terms of Lee's primitives. Sentences 1 through
4 can all be set up as Claim objects, because they make a statement about the world as
it is at the time of the decision. Sentences 5 and 6 are clearly Goals, although we have an
interesting problem here, because the goals depend on the point of view of the user. If the
user is Joel, then our focus would be on accomplishing 6. If the user is Billy, then the focus
would be on accomplishing 5. In the DRL, there is no explicit way to describe Goals from
the perspective of individual actors, because it is always assumed that all stated Goals are
equally important to all users of the scenario. Finally, we have four possible Alternatives
in sentences 7 through 10.

Now, let us specify the relations between the objects of this decision, because those are
the key to representing decisions in the DRL. Figure 2-2 is a diagram of a plausible set of
relations for this situation. Sentence 2 presupposes sentence 1 and sentence 4 presupposes
sentence 3. These are the obvious causal relations among the Claims. Sentences 7 and 10
seem to achieve Billy's goal, in the same way that sentences 8 and 9 seem to accomplish
Joel's. Thus, we have our DRL representation of this situation.

Consider our second example, with the planetary dispute between Earth and Mars.
Again, the following are the sentences, annotated with numbers:

1. The Earth bought the hypership.

2. The Earth owns the hypership.
3. The space-port does not possess a military.
4. The space-port is insecure.
5. The Earth wants to keep the hypership.

6. Mars wants to own the hypership.

7. The Earth puts the hypership in Canada.

8. The Earth gives the hypership to Mars.

9. The Earth puts the hypership into the space-port.

10. The Earth sends the hypership to the battle-platform.

This story is structurally similar to our basic example and also well aligned. Numbers
1-4 are Claims, numbers 5 and 6 are Goals and numbers 7-10 are Alternatives. As we can
see, the relational structure is also the same; the graph in figure 2-2 could just as easily
apply to this scenario as our basic example. In this way, DRL is adequate for representing
the two scenarios and finding the analogy. There is, however, a significant problem here.
Notice that the structures for the two presuppose relations and the two achieve relations

23

t*-I-

I k 'l7

B

9 achic~t

achici~

6
Figure 2-2: The DRL expression of the basic example, referenced by number: 1-4 are
Claims, 5 and 6 are Goals, 7-10 are Alternatives.

24

PMP34F- 4

are identical in each graph. How are we to know the correspondence between the different
decisions? Because we have no representation for the semantic content of the decisions, we
can never be sure of the exact alignment between the two scenarios, nor can we even be sure
of alignment issues within a given scenario itself! The alignment facilitated by the DRL is
too coarse to be useful in most situations. Furthermore, because there is no representation
for the sentences, we have no way of knowing the specifics of the analogy we just made. For
example, let's say we would like to know that the Earth and Billy fulfill similar roles in the
two stories. DRL does not allow us to extract this information and in fact gives us no way
of representing it.

Another problem is that the relation vocabulary is not rich enough to describe all of
the inter-structure relations that might help to make up for the lack of an internal sentence
representation. Take another of our examples:

1. Billy bought the toy.

2. Billy owns the toy.

3. Joe has the fish.

4. Joe ate the fish.

5. Billy wants to keep the toy.

6. Joe wants to own the car.

7. Billy puts the toy in his pocket.

8. Joe buys the car.

9. Joe's mother buys the car for Joe.

10. Billy sends the toy to the bank.

This situation is quite different from our basic example, in that we have two distinct
and non-intersecting decision problems here. Note, however, that in terms of the DRL, this
situation looks exactly the same as our previous two examples. Sentences 1-4 are Claims,
5 and 6 are Goals and 7-10 are Alternatives. The relations, as specified in figure 2-2 all
hold, but this scenario should not match our example. One way of alleviating this would
be to set up special relations between those objects that have the same agents, but again,
DRL neither has these relations nor does it have the representational apparatus to support
automatic discovery of them.

Finally, consider the stripped down version of the original example:

1. Billy bought the toy.
2. Billy owns the toy.

3. The box is insecure.

4. Billy wants to keep the toy.

5. Billy puts the toy in his pocket.

6. Billy puts the toy into the box.

How would we represent this in the DRL? Sentences 1-3 are Claims, sentence 4 is a Goal
and sentences 5 and 6 are Alternatives. We can see that this stripped down version of our
original scenario is merely a subset of the original set of objects and relations. A simple
comparison using DRL decisions would note this, but again, would analogize this simple
situation to any number of similar structures that do not match it at all. Again, we face
this problem because the DRL neither gives us no way of knowing the structures within the
objects, nor does it have any additional relations in the language to compensate for this.

25

2.3 ADRL: A New Language for Decision Rationales

The decision rationale language presented in this section addresses the shortcomings of the
DRL. Specifically:

" The language restricts the set of primitives to those necessary for analyzing and analo-
gizing decision scenarios, and focuses primarily on five main primitives: Scenarios,
Elements, States, Actions and Goals.

" The language expands the relations between primitives, not only allowing for a broader
range of relational expressions similar to those of Lee, but also adding many relations
dealing with types of causation, like enablement.

" The language explicitly represents the semantic content of the sentences associated
with the decision scenario and uses this representation in making analogies and defin-
ing relations.

The next sections explore the primitives and relations of the language, as well as dis-
cussing how we can use it to represent our previous examples.

2.3.1 Primitives of the ADRL

The primitives of the language are very similar to those of the DRL. They are, however,
more inspired by the work of Abelson than of Lee, because the new set of primitives does
away with much of the apparatus Lee put in place to support collaborative decision-making
in favor of a more descriptive language for describing the interrelations between the aspects
of the decision. Figure 2-3 shows the primitives of the ADRL.

Element is the base class of the important ADRL primitives. An Element encapsulates
a sentence or phrase that is a part of the decision scenario. An Element by itself has little
meaning except that it can participate in a variety of relations that do not depend any
specific Element sub-type.

Scenario is a class that encapsulates a single decision rationale situation. It is merely
a list of the sentences in the situation stored in their respective Element sub-types, along
with a record of the Relations between the Elements. Scenario objects are the basic unit of
analogies: that is, analogies are made only between whole Scenario objects.

Goal is a representation of a desired state of the world. A Goal is something that the
user wishes to achieve. We can also model the Goals of other actors in the situation using
the Actor-Goal sub-type. The set of Goals and Actor-Goals defines the important desirable

(or undesirable) possible outcomes of the Scenario.
Action represents a possible action in the current Scenario. An Action, when taken,

will result some State or Goal. The possible actions that the user can take are modeled by
Action objects, while Actor-Actions allow a user to model those Actions that other actors
in the Scenario can take.

State represents a piece of information about the current state of the world. A State
is presumed to be true or at least assumed to be true for the purposes of analyzing the
decision. State has two sub-types, Claim and Result. A Claim is a piece of uncertain
state information. Unlike in the DRL, Claims have no numerical values associated with
them. Rather, a Claim is presumed to be uncertain enough that it should be used with
some care, but this uncertainty is not quantified. This, to some extent, makes decomposing

26

Result

State
Claim

Action Actor-Action

Goal N Actor-Goal

Unknown

Figure 2-3: The full set of primitives in the ADRL.

27

Scenario

Element

decision situations easier and also leaves the handling of uncertainty up to the user. A
Result represents a State that exists due to a previous Action. For example, let us say that
we have the following small decision scenario:

GOAL: John wants the ball.
ACTION-1: John gets the ball.
ACTION-2: Jody gets the ball.

If the Action "John gets the ball" is taken, a possible Result is "John has the ball."
Result objects are attached to their related Scenarios and Actions, allowing a computational
system to trace back the causes of certain events. This information also allows for a system
to predict possible outcomes after analogies have been made between two Scenarios.

Unknown is a special class that represents a piece of information unavailable to the
current analysis. It is a marker of sorts for something important that is not yet quantifiable
but may have some bearing on the current decision. Unknowns are generally not to be
considered when performing computations using the ADRL, but this is an implementation
choice at the very least.

2.3.2 Relations of the ADRL

The set of relations in the ADRL is much richer than those of the DRL in terms of describing
the dynamic and static relationships among the elements of a decision rationale. Figure 2-
4 is a diagram of the relation hierarchy of the ADRL. The relations in the diagram are
separated into categories based primarily on the type of objects on which they operate on
(this does not hold for causal and temporal relations, as these operate on all Element types).

Causal relations are those that describe different types of causation effects that can take
place between two Elements. There are three main types of causation that the representation
embodies: typical causation ("The boy kicked the rock" causes "The boy hurt his foot"),
enablement ("Joe opened the door" enables "Jody walked through the door") and gating.
Gating is somewhat more complex than the other types of causation. As described by
Abelson, gating occurs when a state allows a distinct action to lead to a certain outcome.
Take the following example:

The robbers rob the bank.
The getaway driver waits outside the bank with the getaway car.
The robbers exit the bank.

The robbers escape the bank quickly.

In this case, the driver waiting outside is gating the possibility of the robbers making
a quick exit from the bank. Gating situations are rather complex and so the arguments
are slightly different. A gating situation is expressed as an Element gating the interaction
between two other Elements. Note in the relation diagram that the causal relationships
also have symmetric opposites: caused by, enabled by and gated by. There is no strict
requirement that both of the symmetric relations be in place in a scenario decomposition,
but this is often a good sanity check.

State relations are between State classes. They describe the structural relations between
States and give ways of relating one State to the veracity of another. Strengthens describes
how one state increases the importance of, or our belief in, another. It means that the
source of the relation applies a net positive influence on the target. On the other hand,

28

Causes(Element, Element)

Enables(Element, Element)

Gates(Element, (Element, Element))

Caused By(Element, Element)

Enabled By(Element, Element)

Gated By((Element, Element), Element)
Causal

Strengthens(State, State)

State Weakens(State, State)

Invalidates(State, Claim)

Validates(State, Claim)

Relation Presupposes(State, State)

Sub-State of(State, State

Prevents(Action, (Action

Action Accomplishes(Action, (A

Hinders(Action, (Action

Aids(Action, (Action or

Goal Sub-Goal of(Goal, Goal)

Parallel-To(Element, Ele

Temporal After(Element, Element)

I

or Goal))

ction or Goal))

or Goal))

3oal))

ment)

A

Figure 2-4: The full set of relations in the ADRL.

29

BefoirE Ulen, EF CJJJCJI)

weakens describes the opposite condition, where a state decreases the importance of, or
our belief in, another. Weakening represents a net negative relationship between two states.
Validates and invalidates have a similar positive and negative relation to Claims, except that
these relations are more clearcut. Validation means that a State has provided us with the
information needed to verify the target Claim. Invalidation, again, is the opposite, where
a State has provided the information necessary to declare a Claim to be false. Presupposes
is a special causal relation between States, where one State relies on another in order to
be true. This is nearly identical to the DRL version of the relation. Finally sub-state of
allows a user to group States with subordinate relations. These groups can be combined
informally into "mega-states", which encapsulate a set of information about a given topic.
For example, if we had the State "Dr. Evil is evil" as an overall mega-state, the various
pieces of evidence supporting this assertion would be sub-states of the primary assertion.

Action relations are between Actions and other Elements. They describe the effect that
a source Action can have these Elements. Prevents describes how an Action can prevent
a Goal or another Action from occurring. For example, the Action "John closes the door"
would prevent the Action "Joe walks through the door" or the Goal "Anna wants to bring
the apples through the door." Accomplishes is the opposite, telling of how an Action
explicitly leads to a Goal state or achieves the same end as another Action. For example,
"John opens the door" would accomplish the same Goal as the Action "Bill opens the
door." Hinders is a less severe form of prevents, where an Action can make another Action
or Goal difficult to perform or accomplish. For example, the action "John locks the door"
would make the Action "Joe opens the door" and any accompanying Goals more difficult to
achieve. Aids is the opposite, describing how an Action can facilitate the accomplishment
of another Action or Goal.

Because Goals are our end states and have not yet been achieved, there are very few
ways to describe the dynamics between them. One relation among goals is sub-goal of,
which describes how certain sets of Goals can be grouped. Just as in the subordinate
relation among States, sub-goal of allows Goals to be grouped into larger "mega-goals" that
can only be accomplished after the subordinates. The relation between subordinates and
the mega-goal also need not be necessary (that is, one may not need to accomplish all of
the sub-goals in order to accomplish the mega-goal), but this is a choice that is up to the
user of the representation.

Temporal relations describe constraints on the temporal sequencing between Elements.
Parallel-to tells the system that two elements have occurred or must occur in parallel. After
describes how the source Element occurs after the target and before describes how the source
Element occurs before the target. This sort of temporal sequencing is often unnecessary
for describing decision rationales, but the existence of these relations allows for an added
degree of flexibility in structuring the rationale decomposition.

2.3.3 Representing Our Examples in the ADRL

Now that we have presented the ADRL, we must show that it can succeed where Lee's DRL
did not. Once again, let us examine our basic example:

1. Billy bought the toy.
2. Billy owns the toy.

3. The box does not possess a lock.

4. The box is insecure.

30

causes
12 7 aids

hinders
5

causes accomplishes
3 4 10

prevents

prevents
8

accomplishes
6

hinders

9 aids

Figure 2-5: The ADRL expression of the basic example, referenced by number: 1-4 are
States, 5 and 6 are Goals, 7-10 are Actions.

5. Billy wants to keep the toy.

6. Joel wants to own the toy.
7. Billy puts the toy in his pocket.

8. Billy gives the toy to Joel.

9. Billy puts the toy into the box.

10. Billy sends the toy to the bank.

We can decompose this into States, Actions and Goals in the same way as we did for
the DRL. Sentences 1-4 are States, sentences 5 and 6 are Goals and sentences 7-10 are
Actions. If we wished to model the situation with a bit more complexity, we could take the
perspective of Billy and say that 6 is an actor-goal for Joel, whereas before we could not do
such modeling with the DRL.

Figure 2-5 shows one possible ADRL relational decomposition of the basic example.
Besides the causal relationships, the main ones to take note of are the hinders, aids, prevents
and accomplishes relationships between the possible Actions and the Goals. Note that many
of the relations here are flexible depending on interpretation. For example, we could consider
that Billy putting the toy into his pocket is secure enough that it would accomplish his goal
rather than merely aid it. Rather than a weakness, this ambiguity is a strength of the
representation, because it allows multiple perspectives on the same situation. One could
imagine a system where analogies can only be made to Scenarios authored by a certain user
who's point of view is somehow desirable.

Let us look once again at another one of our examples:

1. The Earth bought the hypership.
2. The Earth owns the hypership.
3. The space-port does not possess a military.

4. The space-port is insecure.

5. The Earth wants to keep the hypership.

6. Mars wants to own the hypership.

31

7. The Earth puts the hypership in Canada.

8. The Earth gives the hypership to Mars.

9. The Earth puts the hypership into the space-port.

10. The Earth sends the hypership to the battle-platform.

Because this example is so similar to our basic example, the decomposition could be the
same as the one shown in figure 2-5. This would present us with an interesting problem.
How is this different from the coarseness problem that we had with the DRL? It seems
that analogies between different scenarios that should not match would still be made even
with this representation. One key addition with the ADRL, however, is that we are now
considering the textual content. Specifically, we have a structured semantic representation
that will allow us to compare structures between this Scenario and our basic example. It
is the presence of this information that facilitates our ability to make analogies, not the
primitive and relational structure of the language. To demonstrate this, let's look once
again at the example that foiled the DRL:

1. Billy bought the toy.
2. Billy owns the toy.
3. Joe has the fish.
4. Joe ate the fish.
5. Billy wants to keep the toy.
6. Joe wants to own the car.
7. Billy puts the toy in his pocket.
8. Joe buys the car.
9. Joe's mother buys the car for Joe.
10. Billy sends the toy to the bank.

In this case, the decomposition could, once again, look the same as in figure 2-5. The
way we can avoid a false match, however, is to note that structurally the two Scenarios are
not at all the same. The roles that Billy and Joe play in this example do not exactly fit the
roles that Billy and Joel play in the basic example. A good semantic representation of the
sentences, along with a matcher that recognized the structural differences, would be able
to tell these Scenarios apart.

Now, look again at our abbreviated version of the basic example:

1. Billy bought the toy.
2. Billy owns the toy.
3. The box is insecure.
4. Billy wants to keep the toy.
5. Billy puts the toy in his pocket.
6. Billy puts the toy into the box.

Previously, the DRL couldn't precisely match this with the first story because the rela-
tional structure was different. If we consider the internal structure of the textual content,
however, we can make analogies between the agents of the two stories, and their Goals and
Actions. These analogies would allow a computational system to note that the two stories
are fundamentally similar and signal a match.

The lesson here is that, even with the great improvements we have made to the DRL, the
significant change is the addition of the information we receive from the semantic content of

32

the text associated with the Scenario. In the next chapter we will examine the representation

that I selected for this information and see how it facilitates meaningful analogies between

Scenarios.

2.4 A Limited Implementation of ADRL

I have implemented a subset of the ADRL for future use in a blunder-stopping application.

The subset does not deal with uncertain information, and therefore does not implement

Claims or any of the relations involving them. In the implementation, Scenario objects
can hold any number of State, Action or Goal objects. Each of these objects, in turn,
has pointers to the other State, Action or Goal objects to which it is related based on

four different categories: (causes), (caused-by), (strengthens), (weakens). I have not fully

implemented the relation taxonomy of the ADRL for the sake of simplicity. One can notice

that (strengthens) and (weakens) simply represent positive and negative effects respectively.

Because there is no constraint in the implementation on the objects that can be targeted

by the relations, the current implementation is actually more general than that prescribed

by the language itself. Essentially, any Element can have a positive or negative effect on
any other Element, and these effects are not made specific. A part of the implementation
is an XML file format that stores Scenario information in a way easily accessible to both
computer and human readers.

Below is a possible decomposition of the basic example of this chapter in terms of the
language subset that I have implemented.

- State:

- State:

- State:

- State:

- Goal:

- Goal:

- Action:

- Action:

- Action:

- Action:

Billy bought the toy. causes:2

Billy owns the toy. caused-by:1

The box does not possess a lock. causes:4

The box is insecure. caused-by:3

Billy wants to keep the toy. weakens:6

Joel wants to own the toy. weakens:5

Billy puts the toy in his pocket.

Billy gives the toy to Joel.

Billy puts the toy into the box.

Billy sends the toy to the bank.

33

1
2

3

4
5

6

7
8

9

10

34

Chapter 3

Augmenting a Decision Rationale
Representation with a Spatial
Semantics

The key to increasing the power of the representation we have introduced is giving meaning
to the textual content associated with a decision scenario. To this end, I chose to apply
the work of Jackendoff. [5] Jackendoff's Lexical Conceptual Semantics (LCS) representation
brings ideas in language down to a basic vocabulary of places, paths and events. His prim-
itives are THINGs, PLACEs, PATHs, PATHELEMENTs, EVENTs (such as GO, STAY,
CAUSE and LET) and STATEs (such as BE, ORIENT and EXTEND).

A number of studies provide experimental support for the assertion that abstract notions
ground out in spatial understanding, particularly the work of Boroditsky. [2] For this reason,
using a spatial semantics to represent the political concepts needed for the work of this
thesis seemed a good choice. The next section will present salient examples of the forty-two
Jackendoff frames I developed for representing sentences in the barnyard politics domain.
These frames are adequate for representing many basic political concepts and focus primarily
on ideas of possession, control and causation.

3.1 Representing Political Ideas with Jackendoff Frames

3.1.1 State and Causation

The first basic class of sentences that we need are those that represent state information,
in the form of sentences such as "The bull is black" and "The bull is an animal." In the
former case, we are characterizing the bull itself, and it is "at" the place "black" in some
kind of characterization space. In the latter case, we are classifying the bull as an animal.
These relations are both fairly simple. This representation was developed with the help
of Patrick Winston as a part of the Bridge project. Below is a diagram of the Jackendoff
frame for the sentence "The bull is black."

Sentence: ''The bull is black.''

I characterization

35

I Thing animal bull

I I Thing color black

I Thing verb is

The next important class of sentences deals with ideas of causation. These causal

structures are basic to representing sentences as Jackendoff frames, as many other ideas can
be thought of as types of causation. This frame is central to the work of Jackendoff, and
this particular conception of it was developed by Patrick Winston as a part of the Bridge
project. Below is the Jackendoff frame diagram for the sentence "Billy kicked the ball to
the tree." This sentence represents the case where Billy has caused the ball to go along a
path to the tree by kicking it.

Sentence: ''Billy kicked the ball to the tree.'

I cause

I I
I I Thing agent Billy

I |go

I Thing ball

I to

I Thing tree

I Thing verb kick

3.1.2 Possession and Control

With these two structures as a foundation, we can now attempt to represent sentences
dealing with more abstract notions. Some of the most important ideas in political situations
are those of possession and control. If an agent (not limited to a human being) possesses
an object, then that object is at their location. Structurally, this involves a STATE rather
than an EVENT, using a BE primitive. An example of possession is the sentence "Billy
owns the ring." The following is a diagram of the form of this structure as a Jackendoff
frame.

Sentence: ''Billy owns the ring.''

I be

36

|

I
| I

Thing ring

| I at
I I I
I I I Thing agent Billy

I Thing verb own

Control is expressed in exactly the same way, except now the object or agent that is
being controlled is at the controller in some sort of control space. One can think of this as the
thing being controlled being somehow within the "sphere of influence" of the controlling
agent. An example of control is "The US controls the capitol city." The following is a
diagram of this structure.

Sentence: ''The US controls the capitol city.''

I be

T "

I I Thing ''capitol city''

I at

I Thing agent Billy

I Thing verb control

Possession and control also have causative forms, where, for example, an agent can
receive an object or give an object. In these situations, the structures change to reflect the
movement of said object along a trajectory toward the agent receiving it, either in concrete
space (with possession) or abstract space (with control). The following is a diagram of the
sentence "Billy caused Suzy to control Jim."

Sentence: ''Billy caused Suzy to control Jim.''

I cause

I I

I Thing agent Billy

I be

37

I I Thing agent Jim

I | I at

I I I I
I I I I Thing agent Suzy
I I I

I I Thing verb control

I Thing verb cause

3.1.3 Desire

The idea of desire is expressed similarly to the cause-possession relationship. If an agent
wants an object, then he wants that object to move along a trajectory from its current
location to his current location. This can be expressed by the same structure as the agent
receiving the object, except that the verb is WANTS rather than RECEIVES. It is interest-
ing that wanting something and actually receiving it are structurally similar, but given our
use of these concepts in language and our conception of how they work in physical space,
this is not an unexpected result. The following is a frame diagram of the sentence "Billy
wants the ball."

Sentence: 'Billy wants the ball.'

cause

I Thing agent Billy

go

Thing ball

to

Thing agent Billy

Thing verb want

3.1.4 Encouragement and Discouragement

The ideas of encouragement and discouragement are crucial to concepts in decision analysis.
Take, for example, the sentence "Billy encourages Jim." Implicit in this sentence is an
action, so it can be expressed as "Billy encourages Bobby (to) (action)." The relation

38

l

for discourage can be expressed similarly. Given this way of looking at the sentence, the
structures for encouragement and discouragement are clearly causal relations, where one
agent causes another to either perform an action or not perform an action. The actual level
of causation (whether they supported the action, or actually made the actor follow through
and complete the action, for example) depends on the specific verb used in the sentence.

3.1.5 Transitions of State

Transitions of state are also important in expressing a variety of situations. This encom-
passes ideas like creation, destruction, and transformation. Structurally, these can be inter-
preted via causation. Take, for example, the sentence "Billy made a castle." In this case,
Billy caused a sand castle to appear in some unspecified location. Destruction can be viewed
similarly. Take, as an example, "Billy destroyed the castle." Here, Billy caused the castle
to go from a state of existence (or cohesiveness) to a state of non-existence (or rubble). The
specifics of the representation are open to some interpretation and should generally depend
on previous observed examples of a similar type. The following is a diagram of the structure
for "Billy destroyed the castle."

Sentence: ''Billy destroyed the castle.''

I cause

I I
I I Thing agent Billy

I I go

I I I
I I I Thing castle

I I
I I I to

I I I I Thing nothing

I Thing verb destroy

Transformation issues are handled slightly differently. Take the sentence "Iraq became
a democracy from a dictatorship." This can be represented as Iraq moving from a dic-
tatorship to a democracy in an abstract political space. It is thus a simple GO type of
relation. If a cause for this change was expressed in the sentence, we could easily change
the representation to deal with this and make it a causative GO, as in the cases handled
for creation and destruction. The following is a diagram of the structure for "Iraq became
a democracy from a dictatorship."

Sentence: ''Iraq became a democracy from a dictatorship.''

I go
I I

I I Thing Iraq

39

I I from

I I
I I I Thing dictatorship

I to

I I IThing democracy

3.1.6 Coercion and Permittance

The structures for sentences that deal with ideas of coercion and permittance are closely
related to those structures that deal with issues of control. Take, as an example, the sentence
"Ruby forced Lucas to run." This is represented as a causative GO, where the agent Ruby
caused the agent Lucas to perform the action of running. If we take the sentence "Ruby
coerced Lucas to run" it would be represented similarly. Both sentences have an implicit
part that may or may not be represented depending on the circumstance, which deals with
exactly how the coercion took place: "Ruby forced Lucas to run (by) (action)." This is a
more complex causative situation, where a completed action or series of actions leads to an
agent performing another action. The representation for this, however, is still similar to the
other forms of causative GO that we have seen so far. The following is a diagram of the
structure for the sentence "Sue forced Jim to dance," which illustrates this.

Sentence: '"Sue forced Jim to dance.''

I cause

I I
I I Thing agent Sue

I |go

I I I Thing agent Jim
I I
I I I to

I I I I
I I I I Thing verb dance
I I I
I I

I Thing verb force

Appendix B presents all 42 of the structures devised to represent the political dynamics
of the barnyard politics world. Armed with these structures, we are now able to parse the
sentences in our previous examples into a spatial representation to enable the creation of
analogies between Scenarios.

40

3.2 An Implementation of Jackendoff Frames Using the Bridge
System

My implementation of the ADRL relies on an implementation of Jackendoff frames in the
Bridge system, developed under the supervision of Professor Patrick Winston by researchers
in the MIT Artificial Intelligence laboratory. Bridge implements a limited form the Jack-
endoff frames I developed via the BridgeSpeak parser. This parser provided a convenient
way to convert sentences into frame objects that were readily used for computations within
Scenarios. Appendix C presents a detailed overview of the features of Bridge used by my
implementation. This information is crucial to understanding the implementation of the
matcher presented in Chapter 4.

41

42

Chapter 4

A Matcher for Facilitating
Analogies Between Scenarios

In order to develop a matcher based on my ADRL representation, I needed a good way
of structuring scenarios before the matching process. I developed an intermediate graph
representation for Scenarios that brings together the internals of Jackendoff frames and
the relations between Elements. This representation was motivated by two engineering
goals. First, I wanted to simplify the matcher by removing some of the recursive aspects
of Jackendoff frames and bringing them out into a flat graph representation. Second, I
wanted to have a uniform representation for matching that incorporated relations within
Jackendoff frames and relations between Elements as equally important links in a graph
structure. In the subsequent sections I will present my graph representation as well as the
graph conversion algorithm. I will then present the implementation details of the matcher.

4.1 Converting Jackendoff Frames to Flat-Graph Structures

The first step in creating a graph structures from our scenario representation is converting
each Jackendoff frame into what can be called a "flat-graph". A flat-graph is a specialized
graph representation of a Jackendoff frame. By linking flat-graphs together, we can make
fully formed graphs of our scenarios in order to use them with the matcher. Each element
within a flat-graph is a Thing and each edge has a label that is also a Thing (usually a
Relation). The elements within a flat-graph are references to the actual objects used in the
Jackendoff frame from which it was generated.

One of the difficulties in this domain is the problem of recursion. Since we would like to
flatten the recursive structures of a Jackendoff frame, we need a way to bring them out and
delineate them. As such, I have devised a special way to represent the constituent parts of
a frame in a flat-graph. Figure 4-1 shows what the structure for the sentence "Billy ran to
the ball" looks like as a flat-graph.

There are several things to notice here. First of all, notice the "START" and "END"
nodes. These exist to demarcate the start and end of one particular sentence (one trajectory
space). All edges that have no special significance are labeled with "connected", and we
can see this from the connection between the "START" node and the "ladderStart" node.
Since each sentence can have several phrases, we demarcate these with the "ladderStart"
and "ladderEnd" nodes. Subsequent phrases are connected from the previous "ladderEnd"
to the next "ladderStart". Notice figure 4-2, of the flat-graph for the sentence "Billy ran to

43

START

connected ladderStart

connected Thing Billy

ran
Thing path

connected ladderEnd

connected END

Figure 4-1: The flat-graph for "Billy ran to the ball."

44

the tree because Billy ate the pie." Here, we can see two ladders, connected by a "caused"
relation. Note also that the ladders are in the opposite order from that presented in the
sentence, since the sentence presents the phrases in the wrong temporal order. This is the
same order generated by the BridgeSpeak parser when it generates the Jackendoff frames for
this sentence. When there is no causal link between sentences (such as in the phrase "Billy
walked and then Billy ran") the ladder nodes are connected by a "connected" relation.

Note also the nondescript "path" element in both graphs. This represents a compound
Thing object containing the specific information for the path involved in the given sentence.
Therefore, the "path" in the first graph would be a path object representing "to the tree."

4.2 Combining Flat-Graphs into Full Scenario Graphs

Now that we have a graph representation for the individual structures, how do we create
larger graphs to encompass our scenarios? We can look at this as the problem of combining
many flat-graphs into one larger graph structure. We must also take into account the
interrelations between sentences (and thus flat-graphs) that the ADRL enables users to
describe.

One crucial problem with combining the graphs is the shared memory architecture used
by the BridgeSpeak parser. The shared memory means that subsequent parses containing
the same words will return references to the same objects. This is a problem for the graph
conversion process because the flat-graphs will then contain references to the same object,
even though we mean to have distinct objects. When we try to combine these graphs in a
simple manner (by adding the nodes and edges of each graph to a common graph) we will
be faced with the problem of being unable to determine the exact structures used to create
the graph. In other words, the process will not be reversible. We would like the conversion
to be reversible since we would hope to recover a full scenario from a graph once we have
finished matching.

Given this problem, I devised a solution that calls for the cloning of nodes that are point-
ing to the same object. These clones, in turn, are connected by an edge marked "SAME"
so that they are identifiable as coming from the same object. This modification allows each
structure to be reversed back into a Jackendoff frame. It also allows for fairly quick retrieval
of all "SAME" nodes, so that the structure of identical nodes can be compared between
graphs relatively easily. This will prove important to the matching process. Figure 4-3
shows two flat-graphs with connected "SAME" nodes.

Another issue with combining the graphs is identifying the flat-graphs for later retrieval.
We can do this easily by tagging each sentence in a scenario with a unique identification
number and adding this number onto the start and end nodes of the graph. Using the
keywords "START" and "END", along with the unique ID, each flat-graph can be retrieved
from either its start or end node. In addition to this, we also mark the START and END
nodes with a tag that identifies the type of element this flat-graph represents, either State,
Action, Goal or Element.

Once the structures are combined, links must be made between the flat-graphs to show
how they are related. Figure 4-4 shows the different types of relations between flat-graphs
and how flat-graphs connect to each other.

Flat-graphs are connected from the END of one to the START of another, as we can see.
The possible relations are "CONNECTED", "CAUSES", "CAUSEDBY", "WEAKENS"
and "STRENGTHENS". These relations come directly from the scenario representation we

45

START

connected ladderStart

connected Thing Billy

ate Thing pie

connected ladderEnd

caused

ladderStart connected

ran

Thing path

Thing Billy

connected ladderEnd

END

Figure 4-2: The flat-graph for "Billy ran to the tree because Billy ate the pie."

46

.- START

IU
% SAAM

EE-D

Figure 4-3: The flat-graphs for "Billy ate the pie" and "Billy ran to the pole" connected by
a "SAME" relation.

END-ID: 1

CONNECTED CAUSES WEA NS CA EDBY STRENGTHENS

START-ID:2 START-ID:3 START-ID-4START-ID:5 START-ID:6

Figure 4-4: How flat-graphs connect to each other and the possible relations between them.

47

discussed earlier, save for "CONNECTED". "CONNECTED" is a special relation connect-
ing two structures that have been entered in sequence. Since the explicit order of sentences
in a story is often important, the "CONNECTED" relation allows us to specify this in the
graph. It also allows for a traversal of the entire graph starting from the very first START
node, meaning that every flat-graph can somehow be reached from every other flat-graph.

The final step in the conversion process is to create a "GRAPH-START" node and
connect this to the START node of the first flat-graph of the scenario (which in turn
corresponds to the first Jackendoff frame and thus the first sentence entered by the user).
Similarly we make a "GRAPH-END" node and connect this to the END node of the last
flat-graph of the scenario.

Now that we have this conversion process, we can take the scenario structure for our
basic example from Chapter 2 and convert it to a fully formed graph. The graph for this
scenario is rather large (74 nodes and 195 edges) so figure 4-5 shows only the first two
sentences after the conversion process.

4.3 Performance Analysis of the Graph Conversion Algo-
rithm

The graph conversion process runs in o(n) time, where n is the number of objects in the
structure being converted. This is easy to see, because as the algorithm iterates through
the structure, it adds one node or edge to the graph. Depending on the number of SAME
nodes and inter-structure relations, extra work will have to be done, but each of these
factors is asymptotically less than the number of objects in all of the structures combined.
To be more specific, if we say that the number of SAME nodes is m and the number of
outside relations is r, then the total performance characteristic of the conversion algorithm
is o(n + m + r), where m and r are asymptotically less than n. From this, we can also note
that the number of nodes and edges in the graph is also o(n).

4.4 Thing Matchers

Given that Thing objects and their various subclasses are the substrate of our representa-
tion, we need a robust set of matchers for Things before we can build a scenario matcher.
This means matchers that handle simple Things, Derivatives, Relations and Sequences. We
would also like matchers that discern exact matches as well as soft matches. What is a
soft match? Things are typed by the threads they contain. We definite a soft match as
a match where the two Things share something common in the thread hierarchies of their
prime threads. Note also that all matches should return an object. An exact match returns
a copy of the Things matched while a soft match returns a Thing representing the "least"
in common among the two Things being matched. Take the following example.

Thing -> Animal -> Agent -> BillyBob
Thing -> Animal -> Kanga

If we were to match the Thing "BillyBob" with the Thing "Kanga," an exact matcher
should return no match. A soft matcher, however, should return the a Thing object repre-
senting the highest common class on the prime thread. In this case, that would be "Animal."
Why do we need a soft matcher? Soft matches allow for very fast one-shot generalizations

48

START\

COMSAM\

'Ise

Figure 4-5: The flat-graph for the first two sentences of our basic example scenario: "Billy
bought the toy" and "Billy owns the toy."

49

and also reveal the salient similarities between objects. Although soft matches are keyed
on the prime threads, once a match has been found on the prime thread, the soft matching
process also propagates to the other threads in the bundle. Take the following example.

Bundle for Thing BillyBob:
Prime: Thing -> Animal -> Agent -> BillyBob

Color: pink

Description: tall

Bundle for Thing Kanga:

Prime: Thing -> Animal -> Kanga

Color: brown

Description: tall

The prime threads would match as before, giving us the knowledge that the common
class is Animal. The color threads, however, don't match at all. In this case, we drop this
thread entirely from the match, since it has proved to be irrelevant. Therefore, the common
thing returned would be the following:

Bundle for matched Thing Animal:
Prime: Thing -> Animal

Description: tall

The different classes of Thing are handled in similar ways. For soft matches on Deriva-
tive, the subjects are soft matched in addition to the threads attached to the actual Deriva-
tive. For Relations, both the subject and object are soft matched. In Sequences, the soft
matcher attempts to soft match each element of the Sequence in order, truncating the match
Sequence at the last place that a soft match was possible.

Although the soft matchers are a powerful tool, they are too blunt. Since most things
share a common base category on their threads (usually Thing), many matches return
positive, but trivial, results. Because of this I also created several matchers that perform a
mixture of soft and exact matching behaviors. For example, I created a Relation matcher
that matches the actual Relation exactly, but performs soft matches on the subject and
object. This matcher in particular proved to be very useful in the scenario matching process.

4.5 The Alignment Issue and Matching Flat-Graphs

Looking at our scenario structure, one assumption that seems reasonable is that the sen-
tences are aligned, to some extent, by the order in which they are presented. It is quite
possible, however, that the user would enter sentences in a haphazard way or in a way that
would thwart match attempts if the assumption of alignment was made. Therefore, another
way to deal with the issue must be found.

The most logical approach is to begin by dealing with the two scenarios we are trying to
match differently. Let us call the scenario we are trying to match against the "precedent"
and the scenario we are matching it to the "situation." We can define the precedent as the
minimal set of sentences we need to match in order to declare success. By this I mean that
every Element in the precedent must be matched in order to declare a full positive match.
If there is ever a case where we believe the situation should match and it doesn't because
of this assumption, we can merely treat the situation as the precedent and visa versa.

50

Given this assumption, we can now take the approach of trying to find matches for

each Element in the precedent individually; we can take each flat-graph in the precedent

and try to find all flat-graphs in the situation that could possibly match it. In order to

accomplish this, we can utilize the Thing matchers that we developed to match up each

node in the precedent flat-graph to a node in the situation flat-graph (taking into account

START, ladderStart, ladderEnd and END nodes).
The matching process works as follows. The set of START nodes in the precedent is

identified, and for each of these start nodes a list is created. This list holds all of the

nodes and edges between START and END for this flat-graph, in order. Thus, if we had

(node)Billy connects to (node)tree with (edge)run, the list would contain (Billy), (run) and

(tree) in that order. The list also contains ladderStart and ladderEnd nodes as they appear,
since a structure can have arbitrarily many phrases. A similar process takes place with the

flat-graphs of the precedent.
With these lists, matching now becomes a process of comparing the elements in the lists

and determining if they match. This comparison is facilitated by the Thing matchers. If
simple Thing objects are encountered, they are "soft" matched. If edges that are Relations
are encountered, however, they are exact matched by type and soft matched by subject

and object. Why is this? All of the edges in the graph turn out to be Relations, since the
graph conversion process turns Relations into edges (in most cases, unless a Relation is the

target of another overarching Relation that is already an edge). In the Bridge system, the

Relations generated by the BridgeSpeak parser have very sparse hierarchical information.
Verbs such as run, walk, talk, push, kill and attack all share the common base type of
"event". Therefore, if soft matched, most Relations would end up matching, creating many

trivial matches. If a mismatch occurs at any point in the list matching process, the process

ends and attempts to find a match for the precedent list with another list in the situation
that has not yet been explored. Note also that the set of lists the matcher looks at is not
the entire set of lists in the situation. The matcher will only examine flat-graphs in the

situation that meet two criteria. First, they must not have been selected as a best match

for another structure in the precedent. Second, they must represent a scenario element that

is of the same class as the one the matcher is attempting to find a match for. Thus, States
cannot match Goals or Actions and so on.

One final issue with matching the lists is dealing with differences in length. In keeping
with the principle that the precedent represents the minimal set of items that needs to be
matched, a list in the situation could match even if it is not exactly the same length as the
precedent list. Take the following example.

Precedent: ladderStart -> Billy -> ran -> tree -> ladderEnd
Situation: ladderStart -> Billy -> ran -> tree -> ladderEnd -> caused ->

ladderStart -> Bobby -> flew -> path (to the pole) -> ladderEnd

In this example, the lists would match, although the common match returned would
only be the following.

Match: ladderStart -> Billy -> ran -> tree -> ladderEnd

Clearly, in this matching process, it is quite likely that many different lists will end up
matching. Therefore, it is crucial that we have an effective algorithm for choosing the best
match among this set of matches.

51

4.6 Finding the Best Match

Once we have a set of possible matches, we can select the best match. How do we define

the best match? We must set some criteria for this evaluation before it can be made. There

are three main principles that we would like a "best" match to embody.

" Matches should be as specific as possible, that is, have elements as close in type to

those of the precedent and situation as possible.

" Matches should be as close in length to the length of the precedent flat-graph structure

as possible.

" The "SAME" structure of the match should be as close to that of the precedent as

possible.

As an illustration, consider the following example, condensed for clarity.

Precedent List:
Billy -> ran -> pole

Other lists with ''Billy'' in the precedent:

Billy -> ate -> pie

Joe -> hit -> Billy

Situation Lists:

Joel -> ran -> tree

Joel -> ate -> food
John -> ran -> pole

John -> hit -> Joel

Possible matches:
Joel -> ran -> tree

John -> ran -> pole

In this case, which match should we select? The target "pole" is clearly more specific a

match than "tree" so on the surface, one might wish to select (John -- ran -- pole). When

we look, however, at the "SAME" structures (implied here by the nodes having the same

name) we see that, in fact, (Joel - ran -+ tree) is a much better match, because the Joel

SAME nodes in the situation are involved in structures that are similar to those that the

Billy SAME nodes are involved with in the precedent.

How are we to weigh these three criteria of length, specificity and structural alignment?

I chose to make aligned structures the key measure. Next in importance is length and finally

specificity. The algorithm works as follows. For every possible match, the SAME structures

are compared in a shallow manner. That is, the number of SAME nodes is discovered and

the number of relations that these SAME nodes have in common with the SAME nodes of

the precedent item are also recorded. By default, the first match becomes the best match,
and these values are stored. The length is also stored, as well as a numerical measure of

similarity between the elements of the lists, where each hierarchy difference increments a

"difference count" by one. These number are calculated for each possible match in the

52

situation, and weighted by importance through logic (the SAME value will decide unless

they are equal, in which case the length decides unless they are equal in which case the

similarity measure decides).

After iterating through this algorithm, a best match is selected and returned. This

best match represents the best possible soft match between the current flat-graph of the

precedent and a flat-graph in the situation. Once the match is returned, it is added to a

return graph which contains the actual match between the two graphs. Also, the Elements

in the situation and precedent that have been matched are marked with "MATCHED" on

their description threads, so that they will not be matched again. The overall algorithm

continues until either all flat-graphs of the precedent are matched, or one Element is found

such that there are no possible matches for that Element. In the latter case, the algorithm

will return a null value. In the former, it will return the common match graph between the

two scenarios.

4.7 Performance Analysis of the Matcher

We will show that the matcher has good performance characteristics given its scope. Let

us consider n, the number of nodes in the precedent graph and m, the number of nodes in

the situation graph. Initially, we examine each node in the precedent o(1) times in order

to build the lists for each flat-graph. This gives us an initial o(n) computations. Next, we

build the same lists for the situation, which gives us o(m) units of computation.

With the lists built, we must now find all possible matches for the lists in the precedent.

What this means in terms of the number of lists, in the worst case, is that every list in the

precedent will get compared to every list in the situation. Thus, in terms of the number

of nodes in both graphs, we can say that the total amount of computation involved in

finding all possible matches for each list in the precedent is o(nm). There are constant

factors involved for specific cases, but in the worst case, this will be the performance of the

algorithm.

Finally, we must find the best match. In the worst case, each of the lists in the precedent

will match all of the lists in the situation. Therefore, we must examine all lists in the

situation for each list in the precedent once again. In terms of nodes, this once again gives

us o(nm) computations performed. We must also build the return graph in the worst case.

This involves another o(n) computations, since the size of the return graph is at worst the

size of the precedent graph.

In total we have o(n) + o(m) + o(nm) + o(nm) + o(n) computations, which reduces to

2(o(nm) + o(n)) + o(m). Considering that o(nm) is the asymptotically largest term in this

expression, we can say that the matcher runs in o(nm), which is polynomial in the number

of nodes in the two graphs.

4.8 A Simple Application Using the Matcher

In order to demonstrate the ADRL representation and the capabilities of the matcher, I

have built a simple graphical application using Java Swing. The application allows a user

to enter a precedent scenario and a situation scenario and then match them up. Scenarios

can also be saved to files and loaded from previously saved files. Figure 4-6 is a screen shot

of this application.

53

Figure 4-6: The blank matcher application. Precedents are entered and displayed on the
left and Situations are entered and displayed on the right.

54

Users are able to enter sentences representing a decision scenario into each of the two
windows. They can select the type of Element for the sentence, as well as assigning the
sentence an identification number. Finally, they are able to enter a list of numbers that
represent the inter-structure links in the scenario, in each of the columns "Causes", "Caused-
By", "Weakens" and "Strengthens". This is a rather simple but effective way of allowing
a user to explicitly specify these relationships. Note also that these categories are identical
to those in the limited implementation of the decision rationale language.

In the top windows, the application displays the graphs corresponding to each scenario
and the graph of the match, if any. One note to make here is that the graph output is
text rather than graphical. This omission is due to testing constraints, since the graphs are
rather large and could not be displayed in any meaningful way without making them difficult
to use as a debugging tool. The graph implementation is based on the Java HashMap class
and so could very easily be plugged into a graphical output environment if such a change
is required.

4.9 A Tabular Mechanism for Relating Components of a De-
cision Rationale

One significant aspect of the application created to test the matcher is the user interface,
as can be seen in figure 4-6. With this interface, users are able to enter the components of
a rationale in a fast and non-graphical way, using entries in a table with columns for each
of the possible relations between the sentences. The entries are comma delimited lists of
identification numbers, where each number refers to a sentence in the rationale (presumably
a row in the current table).

Why is this input mechanism interesting? Although many users would prefer a visual
method of scenario input, analysts in the social sciences are often presented with a great
amount of textual and not visual information. It seems more natural, in some cases, to be
able to specify a decision rationale as a series of sentences connected by relations where the
visual layout of the scenario itself is unimportant. The interface I have created allows a user
to merely enter the sentences of a story, in any particular sequence, and relate them quickly
via their assigned numerical ID. This input method has the further advantage of being
very flexible for large stories, since the ID number allows users to keep track of individual
components of a rationale very easily. I believe that a fast textual decomposition such
as this will prove to be more efficient for many analysts than the graphical environment
presented in Lee's work.

The interface is not, however, perfect. In particular, each type of relation requires a
column in the table. Given that the full specification for the ADRL has twenty relations, a
full implementation of the ADRL would require an input table of twenty columns. There is
no obvious solution to this problem, although the degree to which this would hamper the
usability of the interface is unclear and would depend on the tolerances of the user. These
are issues that should be considered by those who wish to implement the ADRL and create
an interface method for it. This input method also does not handle relations that do not
fit the "source to target" modality very well (such as the gating relation). One solution is
to use multiple delimiters in the table data. For example, if a relation required multiple
arguments in its subject or object, one could wrap the arguments in braces and delimit
those with commas. Although such fixes obscure the power of the interface, they are a part
of the design trade-offs that implementers of the language should consider.

55

56

Chapter 5

Future Work

This work represents only a small step toward the larger goal of not only understanding
human decision-making, but also of creating intelligent software to help humans in making
decisions. I believe there are many ways this work can be improved upon and extended,
given some effort.

5.1 Possible Applications of the Matcher and Current Im-
plementation

The table 5.1 lists the different ways that the matcher and currently implemented ADRL
representation can be used. Specifically, the table lists the kind of questions a computational
system should be able to answer given two scenarios and after going through the matching
process.

This list is far from comprehensive, but gives a flavor of the possible applications of
the matcher. The currently implemented set of functions represents the capability of the
matcher to discern the structural differences between scenarios. All of this information is
obtained as a by-product of simply going through the matching process. For example, I
have implemented a series of functions which takes two matching scenarios and reports the
inter-structure links that they have in common. This is a simple matter of determining if
the links in one structure exist in the other after they have been matched and aligned.

The other questions on the table represent more complicated applications of the matcher.
They are extended applications that would use the matcher, but would also require infras-
tructure to store and manage a database of previous scenarios. Such a knowledge base is the
key to building applications like a blunder stopper, which would have to rely on previous
experience in order to determine if a possible blunder is being presented to the system by
the user. For example, take the question "What is the best action to take in the current
scenario based on past experience?" In order to answer this, we would need a structured
knowledge base of previous scenarios and their outcomes. Using the matcher, we could find
the set of scenarios which partially or completely matches the current scenario and present
the user with the possible outcomes based on the most probable matches. Note also, how-
ever, that the matcher is arguably the most complicated part of this chain. Now that I have
shown a matcher is possible using this representation, more complex applications based on
it are much easier to conceptualize.

57

Possible Questions Answerable by a Decision Rationale Analogy System

*What are the elements of a specific type in each scenario? (ex. Who are
the agents?)
*What are the possibly matching structures?
*What are the causal relationships?
*What are the missing inter-structure links?
*What are the common inter-structure links?
*What are the common subjects and objects?
*What are the missing structures, if any?
*What are the (states, actions, goals) in this situation?
Given this element, what could it lead to?
What are the causes of this situation?
What are the conditions in this situation supporting this (state, action,
goal)?
What are the conditions in this situation hindering this (state, action, goal)?
What are the different scenarios that could match this scenario?
What is the best action to take in the current scenario based on past expe-
rience?
What actions in situations similar to this scenario have led to blunders?

Table 5.1: The types of questions answerable by systems able to make analogies between
decision rationales. * indicates that my system currently implements functions that can
provide these answers.

58

5.2 Dealing with Inter-Structure Relations: A Learning Op-
portunity

One aspect of the scenario graphs that is not taken into account during the matching process
is the presence of inter-structure edges. As we have seen, these edges specify the explicit
relations between elements of the scenario. The presence (or lack thereof) of these edges
presents a unique opportunity for applications that make use of the matcher.

In the original conception of the matcher, the edges between flat-graphs were crucial to
discovering a match. It is quite plausible, however, that many situations would arise where
a precedent or situation was missing one or more of these links where they should occur.
The cues for learning about these links are contained in the possible structural matches
that may occur.

Specifically, the edges can be used to "teach" the system about the interrelations between
certain types of structures. Adding causal links to a matching scenario and then matching
it against a stored precedent can allow that precedent to incorporate the new links as a way
of "learning" about causation. Currently, the matcher identifies missing links and notifies
the user, but functions exist to incorporate missing links into a matched graph. This sort
of fast learning relies in large part on the system trusting a "teacher" to give it correct
information, but even so, it does represent the first steps toward a program that can learn
about the scenarios with which it is working.

In the current version, the matcher implements a series of functions that discovers
discrepancies between the inter-structure relations of the precedent and the situation. These
functions are used to reconcile the discrepancies and return the common graph with a set of
inter-structure relations that represents the common set between the two scenarios. These
functions can, in future work, be used to implement the learning procedure I have described
here.

5.3 Improvements and Other Future Work

With regard to improvements that can be made to this work, there are several noteworthy
areas to consider. At this point the system is not able to handle very many English sentences.
The current parsing mechanism can only deal with a very limited vocabulary of words and
sentence structures. In order for an application of this type to be usable by an intelligence
analyst, it must be able to understand a wide range of expressions. Although we have taken
the first steps toward that in this work, more needs to be done. Still focusing on the average
user, many usability improvements could be made to the user interface. Currently it is not
what I would call "pretty" nor is it easy to use and understand. Streamlining the interface
and the scenario construction process are desirable goals for future work in this area.

Another important area for further work is the matcher. One significant improvement
would be a good way to reconcile the use of general templates with the use of specific sce-
narios in the matching process. Because the system must go through all known scenarios
to find a match, and because this database could grow to be quite large, the whole process
could be rather inefficient without some clever solutions involving generalized match tem-
plates. A fast and robust solution to this problem would make the matcher infinitely more
usable. Another area of improvement would be in the matching process itself. Although I
consider the matcher a good first step, the similarity mechanism is far from perfect. I en-
vision a more bi-directional matcher that attempts to align the matches in both directions.

59

Although this can be simulated currently by running the matcher sequentially in opposite
directions, a more structured and biologically motivated mechanism for this is desirable.

The ADRL representation is a powerful one, and could be used in applications for in-
formation analysis. Currently the system does not deal with uncertain information, nor
does it implement my entire language of decision rationale. Dealing with uncertainty is a
crucial issue, because most information that analysts deal with is not known to be entirely
factual. The ability to mark information with degrees of belief and have this factor into
the matching and blunder-stopping mechanisms should prove to be very rewarding. Imple-
menting my full language of decision rationale would make a new system more complex, but
would also allow users a better and more correct vocabulary for describing their scenarios.
I also believe that future systems should take this work out of the "barnyard" and begin
to focus on real world political and military situations. Only by dealing with larger and
more realistic examples will we be able to understand the decision-making process enough
to create an effective tool.

60

Chapter 6

Contributions

I have made several contributions with this work.

" I have presented a refinement of the decision rationale problem. My refinement focuses
on the question of how we can describe decision rationales such that computer systems
will be able to make analogies between decision scenarios.

* I have introduced a new language of decision rationale, based on the works of Jintae
Lee and Robert Abelson called the Augmented Decision Rationale Language. This
language refines Lee's work, using Abelson as an inspiration, in the following ways.

- ADRL narrows Lee's set of primitives to five basic types based on those intro-
duced by Abelson: Scenarios, Elements, States, Actions and Goals.

- ADRL expands upon the relation vocabulary of the DRL to encompass more
diverse relations, especially focusing on kinds of causation, such as enablement
and gating, that are explored in Abelson's work.

- ADRL augments DRL by including a semantic representation of the textual
content of the decision rationale.

" I have developed a series of semantic structures, based primarily on the work of Jack-
endoff, for the representation of forty-two sentences typical of political situations that
one would encounter in a "barnyard" political domain. These represent considerable
coverage of concepts relevant to political thought.

" I have presented an implementation of a subset of the representation and developed a
matcher for scenarios in this representation. This matcher stands as an existence proof
that the ADRL representation can be implemented and that there are no obvious
practical or theoretical barriers to making use of the representation in real-world
systems.

It is my hope that this work becomes a stepping stone for future explorations in com-
bining artificial intelligence and political science, for there are many open problems in this
inter-disciplinary domain. I believe that both disciplines can learn from one another and
usher in a new age of intelligent applications for automated decision and information anal-
ysis.

61

62

Appendix A

A Reference for the Augmented
Decision Rationale Language
(ADRL)

Primitives:

Element: The common base class of all primitives in the language, save

Scenarios. Elements hold a semantic representation of the sentence they

were created with.

Scenario: A group of Element objects and the relations between them.

Goal: Something that the decision-maker wants to accomplish, a desire.

Examples:

My country wants to acquire 5000 barrels of oil.

I want to stop John from leaving the company.

Actor-Goal: The goal of another actor in the scenario. The

decision-maker can model these and they can be matched up not only with

other Actor-Goals but also with the Goals of the decision-maker.

Examples:

The United States wants to stop terrorism.

Iraq wants to conquer the Middle East.

State: The current state is represented by a set of facts establishing

the current conditions in the given world. Each fact is a state of the

world. This is in contrast to the desired state, which is a set of Goals

(and Results if the decision has already been made).
Examples:

Iraq is a nation.

There are 50,000 Iraqi troops around Baghdad.

Claim: A claim is a piece of information with a prescribed veracity used

63

in making a judgment. Claims are not known to be completely true, else
they would be considered States. Claims are a subclass of State.

Examples:

Iraq has weapons of mass destruction. (assumption or uncertain

information)
Saddam Hussein is dead. (assumption based on taken actions)

Action: Some step that can be taken in order to make some tangible

change to the state of the current ''world"'.

Examples:

Attack Iraq.

Assassinate Osama Bin Laden.

Dissolve the United Nations.

Actor-Action: Some step than can be taken by another agent to make some
tangible change to the state of the ''world'".

Examples:

Saddam can attack our tanks.

The Iraqi military can surrender.

Result: The result of an action in a decision process. Results can be
present both if the decision has already been completed and the result
is known, or if the decision-maker is presuming a result in order to

construct a larger Scenario.

Example:

Given a goal of stopping terrorism and an action of attacking Iraq, an
unintended result would be alienating the United Nations.

Unknown: A piece of information that the decision-maker does not know,
but is implicitly important to the current decision. Unknowns exist for
marking purposes, but play no role in any computations.
Example:

The number of troops currently in the Iraqi army.
The weapons of mass destruction that Saddam Hussein possesses.

Relations:

Causal Relations:

Causes: A given Element can have a causal relationship with any other element.
Caused-By: A given Element can be caused by any other element.

Example:

Rumsfeld going to Iraq (State 1) caused the Iraqi people to riot (State 2).

Enables: A given Element can enable another Element to occur.

64

Enabled-By: A given Element can be enabled by another Element.

Example:
John opening the door (Action 1) allows Billy to walk through the door

(Action 2).

Gates: A given Element can allow another Element to lead to a third

Element.

Gated-By: A set of two Elements with a sequential relationship can be

allowed to occur because of a third Element.

Example:

The driver waiting outside the bank (State 1) gates the event that the robbers

leave the bank (Action 1) and make a quick getaway (State 2).

Relations between State objects:

Strengthens: A given State can strengthen another State. The strengthens

relation can also hinge on the truth of the supporting State, if that

State is a Claim.

Example:

If Iraq as a nuclear weapon (State 1) then Iraq has weapons of mass

destruction (State 2).

Weakens: A given State can weaken another State. This relation again

hinges the truth of the weakening State, if that State is a Claim.

Example:

If Iraq is a poor country with no weapons (State 1), then it does not
have weapons of mass destruction (negated State 2).

Invalidates: A given Claim can completely invalidate another
Claim. Again, this can also hinge on the truth of the invalidating

Claim.

Example:

Iraq has no weapons (Claim 1) therefore Iraq does not have weapons of
mass destruction (invalid Claim 2).

Validates: A given Claim can completely validate another Claim. If both
are considered to be true, they can be recast as States. Again, this can
also hinge on the truth of the invalidating Claim.
Example:

Iraq has Sarin Gas (Claim 1) therefore Iraq has weapons of mass destruction
(valid Claim 2).

Presupposes: A State can assume another State as a part of its

expression.

Example:

65

Iraq is a terrorist nation (State 1) only if Iraq has weapons of
mass destruction (Claim 1).

Sub-State-of: This makes the relation among states and sub-states (those
goals that are subordinately related to the higher goal) explicit.

Example:

Iraq having weapons of mass destruction (Sub-State 1) is evidence that Iraq
supports terrorism (State 2).

Relations between Actions and other Objects:

Hinders: An action can make another action or a goal more difficult to
achieve.

Example:

Irradiating Iraq (Action 1) would make it difficult to invade Iraq with
few casualties (Goal 1).

Aids: An action can aid another action or a goal, rather than causing it
to be accomplished outright.

Example:

Providing money to rebels (Action 1) in Iraq would help an effort to
invade Iraq (Action 2).

Providing money to the Iraqi poor (Action 1) would partially help to
destabilize Saddam's regime (Goal 1).

Prevents: An action can prevent another action, or a goal from being
accomplished. By prevent I mean outright stop the action or goal, as
opposed to hinder.

Example:

An attack on Iraq (Action 1) would prevent Iraq from using weapons of
mass destruction (Actor-goal 1).

Accomplishes: An action can cause a goal to be accomplished/completed or
can cause another action to be completed.
Example:

Attacking Iraq (Action 1) would cause the US to find weapons of mass
destruction (Goal 1).

Attacking Iraq (Action 1) would cause the US to move troops into
Iraq (Action 2).

Relations between Goals and other objects:

Sub-Goal-of: This makes the relation among goals and sub-goals (those
goals that are subordinately related to the higher goal) explicit.
Example:

Destroying Iraq (Goal 1) is a part of winning the war on terrorism

66

(Goal 2).

Temporal Relations:

Parallel-to: Elements can be constrained to take place in parallel.
Example:

The US must attack Iraq (Goal 1) while at the same time appeasing the
United Nations (Goal 2).

Before: Elements can be constrained such that one Element takes place
before another.

Example:

The US must move troops to the Middle East (State 1) before it attacks
Iraq (Action 1).

After: Elements can be constrained such that one Element takes place
after another.

Example:

Iraq must be rebuilt (Goal 1) after the war against Saddam Hussein is
won (Goal 2).

67

68

Appendix B

Jackendoff Structures for Political
Concepts

1. Sentence: ''Billy has the ring.''

I be

i r
I I
I I Thing ring

I at

I Thing agent Billy
I I

I Thing verb has

2. Sentence: ''Billy does not have the ring."

I be

I I

I I Thing ring

I |Inot

I at

I Thing agent Billy

I I

69

I Thing verb has

3. Sentence: ''Billy wants the ring.''

I cause

I I
I I
I I Thing agent B

I I go
I I I

I I I Thing ri
I I
I I I to

I I I
I I I I Thi

i v

I Thing verb wants

illy

ng

ng agent Billy

4. Sentence: ''Billy has nothing.''

I not
I I be
I I
I I I
I I I
I I I Thing anything
I I
I I
I I I at
I I I I
I I I I Thing agent Billy

I I

5. Sentence: ''Billy kept the ring.'

I cause

70

I Thing agent

I stay
I I

I I I Thing r
I I
I I | at

I I I I
I I I I Th

I v

I Thing verb keep

Billy

ing

ing agent Billy

6. Sentence: ''Billy received the ring.'

I cause

I I
I I
I I Thing agent Unk

I I go
I I
I I I
I I I Thing ring
I I
I I I to

I I I I
I I I I Thing

I I

I Thing verb receive

nown

agent Billy

7. Sentence: ''Billy lost the ring.'

I cause

I I
I I
I I Thing agent Unknown

71

I I go

I Thing ring

I from

I Thing agent Billy
I I

I Thing verb lose

8. Sentence: ''Billy obtained the ring.'

I cause

I I

I I Thing agent Bi

I I go
I I
I I I

I Thing rin
I I
I I I to
I I I I
I I I I Thin

I I

I Thing verb obtain

lly

g

g agent Billy

9. Sentence: ''Billy accepted the ring.'

I cause

I I
I I
I I Thing agent Unknown

I I go
I I

I Thing ring

72

I I I to

I I I I Thing agent Billy
I I

I Thing verb

OR (needs a LET primitive)

Thing agent Billy

go

I let

I I
I I

I I

I I
I I

I I
I I
I I

10. Sentence: ''Billy relinquished the ring.'

Same as ''Billy lost the ring.''

OR

I let

I I
I I
I I Thing agent Billy

I I go
I I

I I I Thing ring
I t
I I I to

73

I Thing ring

I to
T a

I Thing agent Billy

I I I I
I I I I Thing agent Billy
I S

11. Sentence: ''Billy bought the ring for 100 dollars.'

I cause

I I Thing agent

I I go
I I

I I I Thing

I I
I I I from

I I I I
I I I I T
I I
I I I to

I I I I

I I

I I go
I I I
I I I Thing
I I
I I I from

I I I

I I I to

I I

I Thing verb buy

Billy

ring

hing agent Unknown

hing agent Billy

dollars 100

Thing agent Billy

Thing agent Unknown

12. Sentence: ''Billy does not want the ring.'

I cause

I I
I I
I I Thing agent Billy

74

I go

I Thing ring

I from
T a

I I Thing agent Billy

I I

I Thing verb wants

13. Sentence: ''Billy controls the playground.'

I be

I Thing playground

I at
I I I
I I I Thing agent Billy
I I

I Thing verb control

14. Sentence: ''Billy wants to control Diana.'

I cause

T a
I I
I I Thing agent Billy

I I go
I I I
I I I
I I I Thing agent Diana
I I
I I I to

I I
I I

I
I Thing agent Billy (controlspace)

75

I I I

I Thing verb wants

15. Sentence: ''Billy wants Diana to come to him.'

I cause

I I
I I
I I Thing agent Billy

I I go
I I I
I I I
I I I Thing agent Diana
I I
I I I to

I I I I
I I I I Thing agent Billy (realspace)

I I

I Thing verb wants

16. Sentence: ''Wait for Bob to get the book.'

I stay

I I

I I Thing

I I at
I I I
SI I p

I I until

I I I g
I I I

I I I

I I I
I I I

agent

lace

0

I Thing Agent Bob

I to
I I Thing book

76

I I

17. Sentence: ''Do not get the book.'

I not

I go
I I I
I I I Thing agent Unknown
I I
I I I to
I I I I
I I I I Thing book
I I
I I

I Thing verb do

18. Sentence: ''Bob tried to get the book.'

I go

I I
I I Thing agent Bob

I to

I I I Thing book
I I

I Thing verb try

19. Sentence: ''Bob walks with Gina.'

I go

I I
I I Thing agent Bob

I I with

I I I

I I I Thing agent Gina

77

I I to
I I

I I |Thing place

I Thing verb walk

20. Sentence: ''Billy supports Bobby <to> <action>.'

I cause

I I
I I Thing agent Billy

I I <action>
I I

I I I Thing agent Bobby
I I
I I I

I I I Thing Unknown
I I

I Thing verb support

21. Sentence: ''Billy hinders Bobby <from> <action>.'

I cause

I Thing agent Billy

I I not
I I
I I I <action>
I I I
I I I I
I I I I Thing agent Bobby
I I I
I I I I
I I I I

78

I I I I Thing Unknown

I I
I I Thing verb do

I Thing verb hinder

22. Sentence: ''The top of the hill is difficult to control from the bottom

of the hill.''

Also: ''It is difficult for <agent> to control <top> from <bottom>.'

I be

I I go
I I I be
I I I I
I I I I Thing agent

I I I l at

I I I I |bottom
I I I I I I Thing hill
I I
I I I to
I I I I top

I I I I I Thing hill

I I

I I at

I I I Thing characterization difficult
I I

23. Sentence: ''Billy let Jim attack Bob.'

I let

I I
I I Thing agent Billy

I I go

I I I Thing agent Jim

79

I I I to

I I I I Thing agent Bob

I I

24. Sentence: 'Billy removed the knife from the box.'

I cause

I I
I Thing agent Bi

I I go
I I

I I I Thing age
I I
I I I to
I I I I
I I I I Thin

I I go
I I I
I I I Thing kni
I I

I from
I I I I Thi

I I
I I I to
I I I I Thi
I I

I Thing verb remove

lly

nt Billy

g box

fe

ng box

ng agent Billy

25. Sentence: ''Billy built a castle in the sand.'

I cause

I I
I I Thing agent Billy

I I go
I I I

80

I I I Thing castle
I t
I I I to
I |I | I in

I I I I I sand

I I Thing verb create

I Thing verb build

26. Sentence: ''Joe destroyed the castle.''

I cause

T a

I Thing agent Joe

I I go
I I I
I I I Thing castle

I I I to
I I
I |I I Thing nothing

I Thing verb destroy

27. Sentence: ''Billy needs the book by Tuesday."

I cause

I I go

I I I Thing book

I I I to

I I
I I I Thing agent Billy

I I at
I I by

I I I I Thing day Tuesday
I I

81

I Thing verb need

28. Sentence: ''Iraq conquered Kuwait.''

I go

I I
I I Thing Kuwait

I I to

I I I Thing Iraq

29. Sentence: ''Iraq became a democracy from a dictatorship.'

I go

I Thing Iraq

I I from
I I I
I I I Thing dictatorship

I I to
I I I
I I I Thing democracy

30. Sentence: ''Conditions in Iraq range from bad to worse.'

I go

I I be

I I I
I I I Thing conditions
I I
I I I at
I I I I Iraq

I I from

I I I Thing bad

82

I I to

I I I Thing worse

31. Sentence: ''The book will be destroyed on Monday <by> <agent>.'

I cause

I I Thing agent

I go

I I I Thing book

I I I to

I I I I Thing no
I I
I I I at-by
I I I
I I I
I I I I Thing da

I I

I Thing verb destroy

thing

y Monday

32. Sentence: ''The bombs are in Iraq.'

I be

I I
I I Thing bombs

I I in

I I Thing Iraq
I I

33. Sentence: ''The bombs are under the table in Iraq."

I be

83

I Thing bombs

Thing table

I under

I be

| I

I I
I Thing Iraq

34. Sentence: ''The missiles are aimed at Iraq."

I cause

I I
I I Thing agent

I I stay

I I I Thing missles
I a

I I at
I I
I I I iraq

i I

I Thing verb aim

35. Sentence: ''The missiles are fired at Iraq."

I cause

I I
I I Thing agent

I | go

I I I Thing missles
f r

I I I from

84

at

I I I I iraq

i v f
I I

I Thing verb fire

36. Sentence: ''Sue forced Jim to sing.))

I cause

I I
I I Thing agent Sue

I I go

I I I Thing agent Jim

I I
I I I to

I I I i
I I I I sing

I I

I Thing verb force

37. Sentence: ''Sue kept Jim from singing."

I cause

I I
I I Thing agent Sue

I I stay
I I I
I I I Thing agent Jim
I I
I I lat not

I I I I
I I I I I sing
I I k
I I

I Thing verb keep

85

38. Sentence: ''Sue allowed Jim to sing.''

I let

I Thing agent Sue

I go
I I
| I Thing agent Jim

I to

I I I sing

I I

I Thing verb allow

39. Sentence: ''Sue released Jim from singing.'

I let

Thing agent Sue

go

I Thing agent Jim

I from
I I I I
I I I I sing

i v

I Thing verb release

40. Sentence: ''Sue exempted Joe from singing.'

I let

I Thing agent Sue

I I stay

86

I Thing agent Jim

I I lat inot
I I I I

I I I I | sing

i v

I Thing verb exempt

41. Sentence: ''The bull is black.''

I characterization

I I
I I Thing animal bull

I I
I I Thing color black

I Thing verb is

42. Sentence: 'Billy kicked the ball to the tree.'

cause

I Thing agent Billy

I go
I I
I I Thing ball

I I to
I I
I I I Thing tree

Thing verb kick

87

88

Appendix C

An Overview of Relevant Aspects
of the Bridge System

The Bridge System implements its own version of Jackendoff structures, furthermore called
simplified Jackendoff frames. Each object in a sentence is represented as a Thing frame,
and these Thing frames are used to build objects that resemble Jackendoff's conception of
LCS.

C.1 The Thing Framework

Every object in the Bridge system is a Thing. A Thing encompasses many ideas, but is
a specific implementation of Minsky's frames concept. [8] Thing objects have various slots
that can be filled to identify them as any number of elements basic to the functioning of
the system, such as simple objects and Jackendoff frames.

In its basic form, a Thing is merely a set of boolean values and a bundle of threads,
inspired by Greenblatt and Vaina's thread idea. [12] A thread in the Bridge system is a
linked list of types. There is no built-in constraint on the use of a thread, nor is there any
mechanism to ensure that hierarchical information flows from most specific to least specific
as in Greenblatt and Vaina's work. In general, however, this is how they are used. It is
up to the programmer to ensure such constraints if they are necessary. Threads are held
in bundles, which are ordered lists that contain only threads. Each bundle has a "primed"
thread that is meant to represent the most salient information about the object to which
this bundle is attached. For example, if we had a Boy object, and two threads (BOY -
PERSON -- CHILD) and (BOY -- HUMAN -+ ANIMAL) we could imagine that the first
thread would be primed, since the information on that thread seems the most relevant to
the concept of Boy. Note, however, that threads are generally not used in this manner.
Rather, threads are most often used to store specific properties. For example, in the Boy
bundle, there could be a "color" thread, a "size" thread and a "sex" thread, all of which
would hold the relevant information about the Boy. This allows for relatively easy indexing
into a thread bundle in order to discover object properties. The primed Thread in these
instances is usually the one that describes the object in the most general terms, which in this
example would be (OBJECT -+ LIVING OBJECT -+ BOY). This is clearly a somewhat
loose implementation of the very specific idea in Greenblatt and Vaina's work, but the
flexibility in this representation allows for broader and more flexible applications.

There are several types of Things in addition to those that represent simple objects.

89

These types are Derivatives, Relations and Sequences. Derivatives represent an object
derived from another object via a preposition. To this end, a Derivative has a special slot
for a subject and the actual derivative function itself. An example of a Derivative comes
from the sentence fragment "to the table". The Derivative here would be "to" and the
subject would be "table". A Relation represents a relationship between two Things (which
could potentially be any subclass of Thing). A Relation is a kind of Derivative, and thus
has slots for a subject and the actual relation itself. Relations also have a slot for the object
of the relation. An example of a Relation comes from the sentence "The boy ran to the
table." In this example, the subject is a Thing representing "boy", the relation is the verb
"ran" and the object is the derivative "to the table". The final type of Thing is a Sequence.
A Sequence is formalism for a sequence of Things that are related in some way by their
ordering. As such, a Sequence is merely an ordered list of Thing objects.

C.2 Jackendoff Frames in the Bridge System

Things are also the basis for a loose implementation of Jackendoff's LCS representation.
The form of Jackendoff structure used in the Bridge project is somewhat simplified from the
specifications outlined by Jackendoff in his work. Within the system, Jackendoff frames are
a part of a "trajectory space" representation of the world. A trajectory space encompasses
one whole sentence or phrase and shows how that phrase fits into the idea that almost
everything in the world can be described in terms of places and paths. As such, the main
primitives of the different things in a trajectory space representation of a sentence are states,
events, places, objects and paths.

Each of the trajectory space primitives is created from the main Thing classes. Each
new sentence invokes the creation of a new Jackendoff frame. Each frame is a Sequence that
holds one or more "trajectory ladders". A trajectory ladder represents one entirely parsable
phrase, and is also a Sequence. An example of a sentence with multiple phrases is "The
bird flew to the top of the tree and then the bird flew to the rock." The use of "and then"
demarcates a new phrase and thus a new trajectory ladder. The elements in the Sequence
for a trajectory ladder depend on the structure of the sentence. Parts of the phrase that
deal with verbs are held in Relations. For example, in the previous case, the first trajectory
ladder would hold the Relation "bird" (subject) "flew" (relation verb) "to the top of the
tree" (object). Any phrases representing a path are contained within a Sequence object, to
differentiate them from other primitives. Depending on the phrase structure, the primitives
can be recursively nested to give the most accurate representation of the phrase.

C.3 The BridgeSpeak Parser

The specifics of creating Jackendoff frames are handled within the BridgeSpeak parser.
BridgeSpeak takes a sentence in English and creates a Sequence object representing a Jack-
endoff trajectorySpace structure. The parser reads in a known vocabulary of verbs and
nouns separated into certain categories and parses based on this knowledge. Depending on
the words used in a certain phrase, the parser will create different structures to represent
the meaning of a sentence. The following figure shows a user interface for the BridgeSpeak
parser and displays a graphic of a typical sentence parse.

The parser handles many different kinds of phrases. Simple phrases involving a move-
ment along a path, such as "Billy went to the tree" are represented as GO structures, where

90

buffer trajectoryLadder
trajectorySpacu go

trajectoryLadd biy

j12t, thing tangibitthing igent arwnA petisr man btltV

IA

Pa RIm wnath to

thi 11g tectarytd rla pth

F ing tiraje lridagp e ahi rs and ta
h ing udfeer thing ac ar trajectoryLadder

BI II went to the tree.

me amna amene=4840ame eanyneern* sateda Uvwv-8127 Aptw* iteawanebew*an w-8140 nd
toV4327 dsalvptw4d Ow ipeed 4W bWV-127 dKsAPQ**r'; twmeeww e wfl MW toyd 4il62 PPear*d

Figure C-1: A typical BridgeSpeak parse and the corresponding Jackendoff frame. Red

bars (such as go) are Relations, blue bars (such as to and at) are Derivatives, gray bars

(such as billy and tree) are Things and black bars (such as trajectoryLadder and path) are
Sequences. Notice the recursive structures of the representation. Notice also the additional

information displayed about each object. This information is an output of the content on

the prime thread for each object as well as the information on the description thread.

91

1,1II1V throw the rock to the pole.

tn1*ft* swwm twm 34b 4-1 0uxl k4337 euym1d4X I #SP" &y ofXXrt3 37 ppnr(4, ts GW *w b*en* M 414) W.0
roO437 'a end Vrwk,8337 a oarn www * bnen *3 A9 mvd r~l pn

Figure C-2: A BridgeSpeak parse of a causal relation.

an object moves along a path toward another object. These are constructed in specific ways
by the parser. What the parser also does is associate a thread bundle with each constituent
part of the structure. The primed threads of these bundles indicate the type of Sequence,
Derivative, Relation or Thing that the object represents. For example, a GO relation would
have a type of "go" on its primed thread. This typing information is retrieved from a lexicon
loaded into the parser at runtime.

The parser is able to generate specific structures based on the type of verb it encounters
in a sentence. One salient example of this is verb phrases that denote causation. Consider
the phrase "Billy threw the rock to the pole." In this case, "threw" is a CAUSE-GO verb,
which makes "the rock" GO on a PATH to "the pole". Knowing that "throw" is a CAUSE-
GO verb allows the parser to construct a special representation for this situation. Note
also that both GO and CAUSE-GO situations are EVENTS, as in Jackendoff's original
framework.

One final and important note should be made about the memory system of the parser.
BridgeSpeak keeps all of the objects it creates in a common "Thing memory." This memory

92

is used to store and change objects from previous parses. For example, if we were to ask
BridgeSpeak to parse the sentence "Bob flew to the tree," the parser would create Thing
objects for Bob and the tree (as well as the other parts of the Jackendoff frame). If we
subsequently had BridgeSpeak parse "Bob ran to the tree and walked to the pole", the
"Bob" and "tree" objects that BridgeSpeak returned would be the same as the previous
objects, since they were stored in the Thing memory and retrieved for the new parse. The
only way to generate new objects is to either introduce a completely new word or use the
prefix "a" when describing something. For example, if my second sentence was instead "A
Bob ran to a tree," the objects returned would be new instances of "Bob" and "tree". The
workings of this memory structure prove to be very important in creating actual applications
relying on the parser, as we saw in the discussion of the graph conversion process and the
matcher.

93

94

Appendix D

Foundations

The basic foundations for analyzing decision rationale problems are found in the work of
Jintae Lee. In his 1992 paper A Comparative Analysis of Design Rationale Representations,
Lee presents a framework for evaluating representations of the rationale involved in the
process of designing some artifact, whether it be software or a piece of machinery. [7] Lee
wishes to understand the mental processes behind human decision-making by studying the
rationale behind design decisions.

A design rationale encapsulates the reasons, methodology, specifications and alternatives
behind the decision to select a certain design for an artifact. Lee's work evaluates repre-
sentations for design rationale based on five different models that isolate critical issues in
different levels of granularity, each being more specific than the next. The first model with
which a representation can be evaluated works in the argument space, which encompasses
all arguments relevant to the design of an artifact. Next is an alternative space, where all
alternatives to the current design are made clear and relations among them are specified.
An evaluation space is found underlying the alternative space. The evaluation space holds
evaluation measures used to evaluate arguments and the relations among these measures.
Further beneath the evaluation space is the criteria space, which, in addition to including
all of the previous spaces, also makes explicit the criteria used in making an evaluation
and the relationships among these criteria. The final model deals with design rationales in
terms of an issue space, where individual issues are the main functional units. Each issue
contains the alternatives, evaluations and criteria for the evaluations used in discussing the
issue. In this model the argument space also includes meta-arguments about the issues and
their relations.

The five models that Lee presents are evaluated based on their ability to facilitate
the answering of questions. For example, the model based on a simple argument space
can answer a question such as "What can we learn from past design cases?" It cannot,
however, handle comparisons among arguments nor can it encompass the reasons behind the
selection of certain choices in the design process. Lee concludes that his most specific model,
that which deals directly with issues while covering the related alternatives, evaluations
and evaluation criteria for each issue, is the most powerful in this sense. The rest of his
paper goes on to evaluate several design rational representations based on this assertion.
Lee concludes that his representation, the Decision Rationale Language (DRL) is the best
suited for the design rationale problem, although much of this is self-fulfilling since his
representation was designed to perform well given his own evaluation criteria.

Lee's other major work, A Decision Rationale Management System: Capturing, Reusing

95

and Managing the Reasons for Decisions, is the original inspiration for this thesis. [6] In
this work his overall vision, that of understanding the decision-making process, has not
changed. His intermediate goal, however, is not to create a program to demonstrate this
understanding, but rather to use an understanding of decision rationale in the creation of a
collaboration tool for decision-making tasks. For this reason, much of the machinery in his
DRL representation is concerned with capturing opinions and the reasons for these opinions.
The representation is designed specifically to cater to multiple viewpoints, allowing many
users to submit input with regard to a decision before it is made. Many of the primitives
of the language, such as VIEWPOINT (used to represent a personal view on an argument)
and QUESTION (used to raise a question for another user to answer) reflect this bias.
The manifestation of the representation is an application called SIBYL with which multiple
users can enter and view the various parts of a decision rationale asynchronously.

Of all the prior work on decision modeling, Lee's work is a major influence on my own
for several reasons. His is the primary (to this date) computational approach to decision
rationales. His primitives are more or less applicable to any situation and serve to capture
much of the relevant information in a decision rationale. Lee also created software to
demonstrate the feasibility of his representation, which indicates that at the very least it
presents a traceable implementation. Lee is also one of the first researchers to articulate
the problem of decision rationale from a computational perspective, and thus presents an
excellent starting point for future research.

There are many problems fitting Lee's work into the context of the decision rationale
problems covered in this thesis. Lee's work was primarily focused on collaboration and did
not address the ability to systematically analyze and learn from past decisions. Lee rather
believed that storing the decision rationale in a structured way would facilitate analysis
by human hands in the future. Although this is certainly true, I believe it is possible to
find structural similarities between current and past decisions in order to identify possible
points of failure. In this regard, Lee's representation is also missing some key information.
Originally, I believed that there was possibly some structural similarity that would become
apparent by fitting two similar decisions into Lee's framework. This does not hold true,
however, since any one decision has a nearly infinite number of representations in Lee's
framework due to the representational focus on collaboration rather than specific decision
analysis. Therefore, this led me to the conclusion that structural similarities among deci-
sions must occur on a level of granularity below that of the basic decision structures, down
to the actual sentences and data used to construct the decision. The so-called "words in
the boxes" are not important in Lee's conception of decision-rationale. These words, how-
ever, are key to any meaningful analysis of a specific decision for the purposes of automatic
verification and comparison. In many ways, this is why Lee's work is so easy for human
users to exploit, since Lee is counting on humans to do the work of comparison and analysis
rather than machines.

Lee's work alone, however, was not enough to fully elucidate exactly which components
of the text associated with a decision are important. A major inspiration in this regard is the
work of Abelson on political reasoning systems, most clearly explained in The Structure of
Belief Systems. [1] Abelson's broader vision is to understand human reasoning by creating
computer software that can reason about the world. In this particular work, Abelson
focuses on creating a system that can reason about political ideology (such as the ideology
of a "Cold Warrior") and demonstrate this reasoning by answering questions about political
situations. This sort of goal was especially important when his paper was written because of
the Cold War and the desire of many political analysts for new tools to understand complex

96

geopolitical situations.
In order to achieve his vision, Abelson created an "Ideology Machine" able to deal

with 500 nouns and noun phrases and 100 verbs and verb phrases. The vocabulary of this
software is generally tailored for political ideologies (such as neutral and liberal) and actions
taken in political contexts (such as subversion, physical attack and material support). The
application focused on the task of answering six questions: ("Is E credible?"), ("If and when
E, what will happen?"), ("If and when E, what should A do?"), ("When E, what should A
have done?"), ("How come E? What caused E or what is E meant to accomplish?") and

("Please comment on E.").
At the time of writing, Abelson had not created an application that could accomplish

his given task. His is overly vague on the details of what he was actually able to accomplish,
but he goes into great detail on a model for future work in the area. This model is based
on Schank's Conceptual Dependency representation, a structured approach at a concep-
tual semantics for automated reasoning systems. The basic units of Abelson's model are
"elements". Elements are things such as actors and basic actions. When certain elements
are brought together using the Conceptual Dependency model, they form "atoms". There
are three kinds of atoms in Abelson's system: Action, Purpose and State. Atoms can be
linked together to form "molecules", which signify an action taken by an actor to achieve
a purpose. Further above this are "plans", chains of atoms of length three or more in net-
work configurations that signify a complex series of actions and purposes leading to a final
outcome. "Themes" are molecules or plans connected together to represent the interaction
between two different actors. Finally, a "script" is a sequence of themes between two actors,
representing the evolution in their relationship over time given certain circumstances.

Much of Abelson's representation is too rigid and mechanistic to be truly useful in a
wide variety of circumstances. He does, however, contribute three crucial ideas with his
work.

" The critical distinction he makes between actions, states and goals. These distinctions
are important because they represent what I consider to be the fundamental compo-
nents of any decision: the current state of the world, the goals of the decision and the
actions possible to accomplish the goals. A goal can be seen as a possible future state
of the world that the decision is aimed at reaching.

" His exploration of causation. Abelson outlines many different kinds of causation, such
as explicit causation and what he calls "gating", where one series of elements can
allow an action or set of actions to occur. He gives a thorough enumeration of these
types in terms his basic representation, which although not generally applicable, does
ground out his work.

" The idea of using a basic conceptual semantics to underpin his representation. This
acknowledges the need for some basic level of understanding in order to perform
more complex reasoning on larger structures. I do not, however, agree with the actual
conceptual semantics used. Although they are useful, they do not reflect any plausible
level of understanding for human intelligence and instead rely on somewhat arbitrary
distinctions for primitives such as "PROPEL" (for propelling an object), "PTRANS"
(for a physical transfer) and "MTRANS" (for a mental transfer).

The work of Jackendoff addresses the inadequacies of the conceptual semantics used by
Abelson. His vision is to understand human language and its role in human cognition. In

97

his Semantics and Cognition, Jackendoff outlines his Lexical Conceptual Semantics (LCS)
model for linguistic understanding. [5] A key component of this model is a semantics of
spatial expressions, which represents common spatial relationships in language. Jackendoff's
representation sees the world in terms of events and states. Involved in these events and
states are places and paths. Both sets of distinctions are important. The difference between
events and states is similar to the distinction between actions and states noted in Abelson's
work, and thus allows Jackendoff's representation to fit well into a similar framework. The
distinction between places and paths points out a fundamental aspect of human cognition,
that much of what we understand in both the realms of space and abstract thought can be
described in terms of objects moving along trajectories.

Jackendoff provides explicit evidence that his representation is useful in situations be-
yond those of simple spatial relations. This is evident with spatial expressions such as "I
threw the ball into the hoop." Jackendoff also stresses that many abstract notions can
be described in this spatial framework. For example, "Jane gave Billy the ball" evokes a
notion of a ball moving along a path from Jane to Billy. Jackendoff's representation makes
explicit the notion that the human understanding of abstract notions grounds out in the
understanding of spatial relationships. Furthermore, the primitives of this representation

(such as EVENT, STATE, PLACE, PATH and THING) are sufficiently basic as to "feel
right", and are certainly more plausible than those of Schank and Abelson's representation.

Both Abelson and Jackendoff fail to adequately describe the objects in their representa-
tions. This leaves room for another representation to handle objects, their properties and
their classifications. An interesting approach to this problem is the thread memory model
of Greenblatt and Vaina, as presented in The Use of Thread Memory in Amnesia Apha-
sia and Concept Learning. [12] Greenblatt and Vaina seek to understand human memory
by building a semantic memory system. In their model, a thread is a loop-free chain of
concepts, representing a notion from most-specific type to least-specific type. Threads are
keyed on their most-specific type.

The representation of memory using threads is interesting, in that it has a notion of
hierarchy, but does not branch. Rather, multiple threads are used to show that a certain
concept belongs in different hierarchy chains. For example, note the following two chains:

GIRL -> PERSON -> FEMALE -> GIRL
GIRL -> CHILD -> GIRL

Both chains describe a girl, but each chain is represented independently. This level
of redundancy is built in to account for the possibility of multiple points of view in the
memory system. A local change to a concept will not have a global effect in this model.
The thread memory model describes an object using a group of threads. Object properties
are contained on threads marked by the property name. For example, to find the color
of a box, one would look at the thread (BOX COLOR-OF) -* BROWN. These groups of
threads allow for a robust and detailed description of an object via its various properties
and its classification. Note also that the model does not have any stereotypes. A stereotype
can be described as a "typical member" of a certain group. For example, when you think
of a bird, the image of a bird that comes to mind immediately can be thought of as the
stereotype of a bird that you have stored in your memory. The lack of stereotypes makes
the representation less fragile (since the stereotypes are not there and thus cannot be lost)
and also able to handle deviations from the norm by the addition of more threads rather
than the creation of an entirely new object as an exception to the stereotype.

98

A key idea of this thesis is that abstract ideas find their representational grounding
in spatial understanding. Although this has long been a suspicion of many researchers,
only recently has work in cognitive science provided evidence for this assertion. The most
compelling of this evidence comes from the work of Boroditsky. She seeks to understand
human intelligence by performing experiments to demonstrate the role of language and
spatial understanding on cognition. In her paper Metaphoric structuring: understanding
time through spatial metaphors [2], Boroditsky demonstrates that the human understanding
of time grounds out in an understanding of space. Her work is based on the work of Lakoff,
who believes that all abstract notions are understood through metaphors with a small set
of experiential knowledge, spatial knowledge being foremost in this set.

Boroditsky focuses her efforts on providing evidence for the Metaphorical Structuring
View of abstract reasoning. The general model states that all abstract notions ground out
in schemas associated with experiential concepts. The metaphor itself provides structure
to an abstract domain by analogy to one that is well understood. There are two versions
of this model. The "weak" version states that our initial understanding of an abstract
notion always returns to more concrete experiential knowledge, unless the abstract notion
is well-known and often used. In that case, specific relations in the abstract domain are
"compiled" for easy use later on, and thus the reliance on the base representation is no longer
necessary. In contrast, the "strong" view asserts that abstract relations always return to
their experientially grounded roots.

Boroditsky attempts to support the "weak" hypothesis by attacking time as a realm
that relies heavily on spatial understanding. Linguistic phrases such as "move the meeting
forward" and "push the time back" directly demonstrate her assertion basic assertion in
terms of spatial grounding. She provides rigorous examinations in the form of psychological
experiments conducted on college students with the purpose of determining whether spatial
schemas are at all related to time, whether spatial schemas can be used to understand
time, and whether these schemas are always necessary to understand time. She conducted
three experiments; one involved a paper questionnaire in which spatial situations were used
as primers for temporal questions, one involved a series of paper questionnaires in which
temporal and spatial primes were intermixed to determine if spatial understanding is always
used in thinking about time, and the final experiment involved a rather lengthy series of
questions and timing analyses to determine if the effect of time priming space was noticeable
versus space priming time and time priming time. The results of these three experiments
indicate that spatial understanding is in fact crucial to our understanding of time, but that
without priming, we tend to think about time in its own terms; that is, there is some sort
of compiled representation for time being used so that the spatial grounding is not always
necessary.

The body of this evidence indicates that the "weak" Metaphorical Structuring View is
a further step towards a model of the human understanding of abstract notions. This work
is a crucial inspiration for the work in this thesis. It provides evidence that the approach
taken here, that of grounding out an understanding of crucial abstract political ideas in
spatial understanding, is biologically correct.

One of the key problems examined in this work is the general problem of matching.
Matching is perhaps the most crucial problem in building a computational model of decision
understanding, since there needs to be a structured way to match current situations with
past experience. The matching model presented in this work is philosophically influenced
by the works of Ullman [11] and Gentner [4]. The main contribution of Ullman is his
streams and counter-streams model. Streams and counter-streams is an approach to object

99

recognition which uses a bi-directional search. A target image comes in from the sensory
inputs, while possible matches are explored from memory until a match is found connecting
the target image to an object in memory. The model is highly flexible and accounts for such
things as visual hallucinations (when matches are improperly primed and a false match is
passed on as correct to the visual recognition apparatus). Although the model is specific to
vision, the idea of using bidirectional search via a set of manipulations and transformations
on a source and a target is compelling, and was the primary inspiration for the bidirectional
matcher used in this work.

Gentner's work (written in conjunction with Markman) focuses on the use of structure
maps in making analogies. Specifically, their work shows that analogy and similarity rely on
matching that works by aligning the structures between a source and a target. The align-
ment must obey four principles: the alignment must show parallel connectivity (matching
relations must have matching arguments), it must show one-to-one correspondence (any
one element in one representation in the source must match with only one representation
in the target), it must show relational focus (the relations but not the objects need to be in
common) and it must demonstrate systematicity (the tendency to match based on higher-
order connections among relations). Guided by these principles, Gentner and Markman
produced the Structure Mapping Engine, an advanced matcher that takes two textual situ-
ations and completes a structural analogy between them. The structural analogy is created
based on a series of transformations working in one direction to form a connected structure
encompassing both situations.

An original goal of this work was to analyze specific military blunders in order to find
exploitable regularities in these failures. Cohen and Gooch have done an excellent job of
analyzing the causes of military failures in Military Misfortunes: The Anatomy of Failure
in War. [3] Through a thorough analysis of several conspicuous military failures, Cohen
and Gooch come to the conclusion that many of the failures in military movements and
decision-making are due to structural issues. Specifically, the organizational structures of
the military and its decision-making apparatus in each of the cases they examined failed
in some way, causing imperfect information and flawed decision-making processes. For
example, in the Egyptian attack on Israel in 1973, the Israeli military failed to anticipate
and react to the invasion. The failure in this case was twofold: the Israeli military was
grounded in thinking that gave them an imperfect model of Egyptian goals, and the Israeli
military organizational structure was such that early information about the attack failed
to reach authorities capable of acting on it. This study points out the issues with trying to
stop blunders in complex military situations, particularly that with imperfect models and
information, stopping blunders is often not possible. Furthermore, many blunders cannot
be traced to one point of failure, and thus a singular decision-making application would have
a very hard time preventing highly complex decision-making errors. It is these observations
that caused the focus of this work to shift from complex political and military decisions to
more simple cases in the barnyard, so as to take the first steps toward eventual applications
for real world and real time use.

100

Bibliography

[1] Robert P. Abelson. The Structure of Belief Systems, chapter 7, pages 287-339. Free-
man, San Francisco, California, 1973.

[2] Lera Boroditsky. Metamorphic structuring: Understanding time through spatial
metaphors. Cognition, 75(1):1-28, 2000.

[3] Eliot A. Cohen and John Gooch. Military Misfortunes: The Anatomy of Failure in
War. Vintage Books, New York, New York, 1991.

[4] Dedre Gentner and Arthur B. Markman. Structure mapping in analogy and similarity.
American Psychologist, 52(1):45-56, 1997.

[5] Ray Jackendoff. Semantics and Cognition, volume 8 of Current Studies in Linguistics
Series. MIT Press, Cambridge, Massachusetts, 1983.

[6] Jintae Lee. A decision rationale management system: Capturing, reusing and managing
the reasons for decisions, 1992.

[7] Jintae Lee and Kum-Yew Lai. Comparative analysis of design rationale representations.

[8] Marvin Minsky. A framework for representing knowledge. AI Memo 206, MIT Artificial
Intelligence Laboratory, 1974.

[9] Srini Narayanan. Moving right along: A computational model of metaphoric reason-
ing about events. In Proceedings of the National Conference on Artificial Intelligence
(AAAI '99), pages 121-128, Orlando, Florida, 1999. AAAI Press.

[10] Alan Turing. Computing machinery and intelligence. Mind, (59):433-460, 1950.

[11] Shimon Ullman. Sequence Seeking and Counter Streams: A Model for Information
Flow in the Visual Cortex, chapter 10, pages 317-358. MIT Press, Cambridge, Mas-
sachusetts, 1996.

[12] Lucia M. Vaina and Richard D. Greenblatt. The use of thread memory in amnesic
aphasia and concept learning. AI Working Paper 195, MIT Artificial Intelligence Lab-
oratory, 1979.

[13] Patrick Winston. Bridge project memo. Artificial intelligence laboratory memorandum,
MIT Artificial Intelligence Laboratory, 2003.

101

