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Abstract
The deployment of robots at the World Trade Center (WTC) site after September 11,
2001, highlighted the potential for robots to aid in search and rescue missions that pose
great threats and challenges to humans. However, robots that are tele-operated and
tethered for power and communication are restricted in terms of their operational area.
Thus, rescue robots must be equipped with onboard autonomy that enables them to select
feasible plans on their own, within their physical and computational limitations. There are
three main characteristics that a rescue robot's onboard system must posses. First, the
system must be able to generate plans for mobile systems, that is, plans with activities
and paths. Second, in order to operate as efficiently as possible, particularly in emergency
situations, the system must be globally optimal. Third, the system must be able to
generate plans quickly.

This thesis introduces a novel autonomous control system that interleaves methods for
spatial and activity planning, by merging model-based programming with roadmap-based
path planning. The primary contributions are threefold. The first contribution is a model
that represents possible mission strategies with activities that have cost and are
constrained to a location. The second is an optimal pre-planner that reasons through the
possible mission strategies in order to quickly find the optimal feasible strategy. The third
contribution is a unified, global activity and path planning system. The system unifies the
optimal pre-planner with a randomized roadmap-based path planner, in order to find the
optimal feasible strategy to achieve a mission. The impact of these contributions is
highlighted in the context of an urban search and rescue (USAR) mission.
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Chapter 1

Introduction

Today's emergencies, such as search and rescues, natural disasters, and fires, continue to

pose great challenges and threats to rescuers and emergency personnel. The deployment

of robots at the World Trade Center site after September 11, 2001, highlighted the

potential for robots to aid in rescue missions. Robots can be constructed to operate in

conditions that are hazardous and inaccessible to humans. Since the September 1 1 th

event, the Federal Emergency Management Agency (FEMA) and the robotics community

have embarked on a joint effort to identify scenarios for which robots can be used to aid

rescuers in certain emergency situations [24]. The focus of this thesis is to equip robots,

used in emergency missions, with greater autonomy.

To quickly determine the set of activities that can be accomplished, a robot must

employ automated reasoning and decision-making techniques in order to select valid

strategies. Strategies are mission plans that encode high-level goals. They are comprised

of one or more sets of activities that a robot or team of robots can execute in order to

achieve the mission.

Many autonomous systems use automated reasoning to select a mission strategy

or plan. Traditionally, activity and path planning exist in a decoupled form, as a two-

step, feed forward process. A plan of activities is generated with only crude knowledge

of movement. Then path planning is performed for a particular plan, without considering

other options that could achieve the same objective. Although that two-stage process may

find that no solution exists for a particular plan, without a backtrack mechanism, such a

system would be incomplete. That is, other valid plans would not be explored if the

activity planner is unable to backtrack to another option. One solution is to allow the

activity planner to backtrack to the next plan, until it finds a feasible strategy. The

difficulty, however, is that without a notion of cost, this decoupled approach could
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produce a plan that is highly sub-optimal. Thus, we propose a unified system that uses

activity and path costs along with a backtracking mechanism in order to generate optimal

mission strategies.

This thesis introduces a novel autonomous system that interleaves methods for

automated reasoning with spatial reasoning, by merging model-based programming with

roadmap-based path planning. The primary contributions are threefold. The first

contribution is a model that represents possible mission strategies with activities that have

cost and are constrained to a location. The second is an optimal pre-planner that reasons

through the possible mission strategies in order to quickly find the optimal feasible

strategy. The third contribution is a unified activity and global path planning system. The

system unifies the optimal pre-planner with a randomized roadmap-based path planner in

order to find the optimal feasible strategy to achieve a mission. The impact of these

contributions is highlighted in the context of an urban search and rescue (USAR) mission.

1.2 Application

Everyday emergency personnel are required to render aid in search and rescues, natural

disasters, crime scenes, and many other dangerous situations. Frequently, these situations

are hazardous, fatiguing, and oftentimes life-threatening for all those involved, with the

most important factor being time. Generally, rescuers need to retrieve live victims within

48 hours to increase their chances of survival [32].

Robots have demonstrated their efficacy when placed in real, unpredictable, and

high-risk conditions. Small robot rovers aided the rescue efforts at the World Trade

Center (WTC) in New York City [32]. The small robots searched for survivors,

investigating ditches where neither dogs nor humans could reach. The robots were

controlled by joystick and were equipped with cameras, heat sensors (thermal cameras),

microphones, and two-way radios for communication between victims and emergency

personnel. The robots found several bodies and a set of human remains [26]. In addition,

the FBI considered using an autonomous helicopter to map the terrain of the region in

Pennsylvania where one of the planes went down on September 11, 2001 [31].
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Many of the robots used in the rescue efforts at the WTC were tele-operated and

tethered for power and communication. Operators were restricted by the field of view of

the cameras, which created problems with localization [5]. These issues emphasize the

need for "automatic capabilities intrinsic to the robot" [5] that would relieve tele-

operators from having to control the robots and search for victims at the same time. In

addition, it is unreasonable to rely on personnel training rescue to operate (fly or drive)

robots. Therefore, rescue robots must be equipped with onboard autonomy that enables

them to select feasible plans within their physical and computational limitations.

Autonomous vehicles (AVs) offer a number of benefits. They can communicate

with each other and with rescue personnel, and can navigate regions that are inaccessible

to humans, significantly improving the search and rescue process. Furthermore, AVs can

apply vision, microphone, and other sensing technologies to explore hazardous areas,

including wreckage, burning buildings, and toxic waste sites. Robots can be constructed

to survive fire, thick smoke and dust, water, and sharp piercing materials [5].

1.2.1 Urban Search and Rescue Scenario

In order to prevent harm to humans, our goal is to devise technologies that allow

heterogeneous teams of robots to coordinate and cooperate in urban search and rescue

missions. Currently, during the initial phase of an urban search and rescue, a control

center is setup and a preliminary reconnaissance is performed by the first-responders-

emergency personnel who initially arrive on the scene [24]. We envision this as an ideal

opportunity to deploy robots into unknown and potentially hazardous areas that are

unsafe for the first responders. The robots would search for victims, detect chemicals, and

sense and collect data [24]. In the spirit of RoboCup Rescue, a number of credible USAR

scenarios have been proposed [24][32]. To ground the importance of planning for rescue

robots, an example scenario is described below (Figure 1). The USAR scenario highlights

the importance of activity planning and AV path planning.
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Figure 1: Example scenario where robots can be used to aid rescuers.

Urban Search and Rescue Scenario

It's 4pm, and sirens are roaring through the city as fire engines race to the scene of a

burning office complex. The first few hours are critical to the survival of victims, and

pose the greatest threat to rescue workers. After extinguishing the fire in one area of the

complex, firefighters survey the potential dangers of entering the building. At this time,

robots are summoned to explore the scene and begin searching for victims. An agile

autonomous helicopter, called ANWI, is sent to aid the mission. ANWI is carrying a

team of small robots that will aid in the USAR mission. The team of small robots is

divided by their sensing capabilities. One team, the chembots, is used to detect chemicals

and monitor the environment. The other team, the helpbots, is used to bring first aid

packages and a means for communication to the victims.

The location of the fire is provided as input to the helicopter, which then generate

a plan to get to the scene. ANWI has an a priori map of the city that it uses to plan paths

to the office complex. Once it arrives on the scene, it waits for instruction from the

control center.

After communicating with the control center, ANWI uses its onboard camera and

map of the complex to identify structural anomalies. Equipped with a range of sensors,

ANWi enters the building through a broken-out window. It flies to a drop-off location

where it lands and releases a team of small robots. The robots explore a room, probing
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and sensing for hazardous substances. ANWI then navigates to a location in the building

where the control center identified as having trapped victims. Once ANWI navigates to

the location, it carefully lowers helpbots with two-way radios and minimal first-aid

supplies on the floor, enabling communication between victims and rescue workers.

Then ANWI goes back to the chembots and loads them into the helicopter's transport

carrier. Finally, ANWI exits the building and flies to a charging station where all the

robots are recharged and their data is uploaded to the control center.

Figure 2: Example of the activities in the Search-Building mission

Figure 2 illustrates some of the major activities involved in the mission. We refer

to the above mission as the Search-Building mission. The Search-Building mission is

composed of a series of strategies, in this case three strategies. The first strategy, called

Enter-Building, requires the AV to enter the building and deploy the robot teams, while

gathering data. The second strategy, called Exit Building, requires ANW1 to deploy the

helpbots and recover the chembot team, and then exit the building. The third strategy,

called AtHome, requires ANWI to upload data while recharging. The Search-Building
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mission and the three strategies that comprise the mission serve as examples throughout

this thesis. In the following section, we highlight the key characteristics of each strategy.

1.2.2 USAR Characteristics

There are two key characteristics of the Search-Building mission. First, a number of the

activities in the mission require the autonomous vehicle, ANW1, to be in a particular

location in the office complex, in order to execute an activity. For example, when ANWI

navigates and explores the building, it captures images and stores specific data gathered

from its sensors. While capturing images might require the ANWI to be in a specific

region of the building, collecting data from its sensors can be done in any region of the

building. Second, the set of activities chosen to accomplish the mission must make

efficient use of AV resources such as, energy, fuel, and time. For example, during the

Exit-Building strategy, it is more efficient for ANWi to deploy the helpbots and then

recover the chembots. In this case, ANWI saves energy, but avoids carrying both teams

of robots at the same time.

In order to encode the high-level goals that comprise a mission, such as USAR,

the activities must be specified in a language that the AV understands. A class of

languages called execution languages enables a mission designer to write complex

procedures for a robot or team of robots to execute. Such languages are RAPs [10], ESL

[12], and TDL [34]. In addition, the language must be able to describe the progression of

the mission. That is, using a model of the AV, the mission should describe the steps

which the AV should execute.

In order to select a feasible strategy, an activity planner can be used. The planner

must be able to reason through the space of possibly feasible strategies in order to select

the best strategy. A strategy is composed of activities and paths, therefore, the planner

must not only plan activities, but generate paths as well. For an AV with complicated

kinematics and dynamics, such as a helicopter, randomized roadmap path planning

techniques have been applied [21][22] [11]. These path planners construct a roadmap in

the state space and connect roadmap nodes to each, in order to find a collision-free path.

This is depicted in Figure 3.
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Figure 3: Example of a randomized roadmap based path planner exploring the robot's state space and the
world in order to find a collision free path.

1.3 Problem

There are a number of issues that this thesis must address in order to develop algorithms

for selecting an AV's plan of action, from a large space of strategies. Alternative mission

strategies are encoded in an execution language. This language must be able to support

activities with duration, activity costs, and location constraints for those activities that

require the AV to be in a specific spatial region. The language must also be able to

encode choice between functionally redundant methods in order to express alternative

strategies. Given a description of a mission objective and strategies an execution

language, fast planning techniques need to be developed to generate the most effective

mission plan. The planning system must be able to perform both the spatial reasoning and

reasoning about discrete actions. Spatial reasoning is required for those activities that are

constrained to a specific region. Reasoning about action is required in order to determine

the set of feasible activities.

The first objective of this thesis is to develop an optimal planner that selects the

best strategy given a mission description. The second objective is to develop a unified

optimal activity and path planning system that selects the best strategy for a mission that

contains activities with location constraints. These algorithms are developed for single

vehicle missions. However, these algorithms can be generalized to multiple AV missions

(see Chapter 7).
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1.3.1 Technical Approach

Mission
Straegie -- Optimal Strategy

Selection

..... . .Optimal
Robot -+Feasible
Model StrategyGlobal Path

Planning

World Mode

Figure 4: Overall unified activity and path planning system.

We approach the problem of finding the optimal mission strategy by merging

model-based programming with roadmap-based path planning (Figure 4). Model-based

programming enables the mission designer to encode a set of mission objectives,

alternate strategies for achieving the objectives, and encodes models of the vehicles that

perform the mission. Our first contribution is a language for planning optimal, mobile

vehicle missions. This language is an extended subset of the Reactive Model-based

Programming Language (RMPL) [38]. The extended RMPL subset includes activity

costs and location constraints (ACLC). An example of an RMPL program is shown in

Figure 5.

1. (sequence
2. ;;Choose type of vision sensing
3. (choose
4. ( (sequence ;;choice]
5. ( ANW1.Monocular-Vision(20) [10,20]
6. ( ANW1.Set-Compression(10, {low)) [5,10)
7. ) (HallwayA) [35,50])

8. (sequence ;;choice 2
9. ( ANW1.Stereo-Vision(40, HallwayB) [10,20]
10. ( ANW1.Set-Compression(20, (high}) [8,13)
11.)

12. ) ;;end choose
13. ) ;;end sequence

Figure 5: Fragment of the Enter-Building program developed with the ACLC subset of RMPL.

Mission strategies encoded in RMPL are called control programs. Next, we

describe a mission environment model, which has two components: 1) a physical
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description of the AV involved in the mission and 2) a model of the world in which it will

navigate (Figure 4).

Monocular-Vision() Set-Compression(low)

JJI [35, 501
Lo(RegioonA)

S 10,20 [8,13

L.4Rego-nw) Set-Compression(high)
Stereo-Visiono

Figure 6: TPN representation of the program in Figure 5. There are two strategies for the AV to execute.
The AV can either execute the Stereo-Vision activity and the Set-Compression activity, or the Monocular-
Vision and the Set-Compression activity.

Given an RMPL control program, our planner maps the program to a compact

graphical representation, called a Temporal Plan Network (TPN). The TPN encoding

enables the planner to perform fast, online planning. The TPN model was first introduced

in [40][39], and is extended here to support reasoning for missions with locations and

activity costs. An example of the equivalent TPN representation of the control program in

Figure 5 is shown in Figure 6.

For missions that require the vehicle to move from region to region, we extend the

search space of our planner to the combined TPN and path planning space. The path

planner uses the mission environment model in order to search for collision-free paths

through which an AV can safely move from region to region. This is illustrated in path

planning space shown below the TPN in Figure 7. We define this combined TPN and

roadmap model as the Roadmap TPN (RMPTPN).

Monocular-Vision() Set-Compression(low)

IJ [35, 50)
Loc(Re onnA)

120 (8,13

40 20
Loc(RegionW) Set-Compression(high)

Stereo-Vision()

Figure 7: Unified activity and path planning space. The RMPTPN model is used to reason on the combined
search spaces.
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The best plan for vehicle activity and movement is then generated by a unified,

globally optimal, activity and path planning system (UAPP). This system operates on the

RMTPN model in order to select the best set of actions and to satisfy location constraints

by planning collision-free paths in the space where the vehicle will carry out the mission.

1.4 Thesis Layout

This thesis is organized as follows. Chapter 2 provides background on three areas:

execution languages and model-based programming, temporal reasoning, and randomized

roadmap based path planning. Chapter 3 presents a subset of RMPL (the reactive model-

based programming language) [38] that is extended to specify activity costs and location

constraints (ACLC), this is referred to in this thesis as the ACLC subset of RMPL.

Chapter 5 introduces a novel optimal pre-planner that operates on a TPN model in order

to select the least cost strategy, according to the TPN activity costs. Chapter 6 combines

this optimal pre-planner with roadmap based path planner, producing a unified, globally

optimal, activity and path planning system (UAPP). Finally, Chapter 7 concludes this

thesis with an empirical validation of our research and makes suggestions for future

work.
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Chapter 2

Background

The unified optimal activity and path planning system combines the following three areas

of related work. The three areas are 1) model-based programming [37], 2) temporal

planning [25], and 3) randomized kinodynamic path planning [23]. The first two have

been combined to effectively encode coordinated air vehicle missions [39][33]. The third

has been used to plan collision-free paths for robots with kinematic and dynamic (called

"kinodynamic") constraints [22][23]. Drawing on these three areas, we develop

algorithms that combine model-based programming and temporal reasoning with

randomized roadmap path planning. This thesis builds on these three areas of research in

order to create the unified optimal activity and path planning system.

2.1 Model-based Programming

A model-based program is a specification of the evolution of a system using a set of

constructs for describing concurrent behavior. The constructs describes synchronous and

constraint-based execution of the system. In this thesis, we focus on a mobile,

autonomous vehicle (AV) system. The model-based program describes the high-level

goals that the AV should execute during a mission.

To enable encoding of missions for autonomous and embedded systems, an

execution language, called the Reactive Model-based Programming Language (RMPL),

was introduced [37]. Its features include straightforward programming constructs that can

be combined to describe the desired evolution of embedded and reactive system states.

Additionally, RMPL has successfully been used to encode strategies for coordinated

teams of autonomous vehicles [38]. Further, the language allows mission designers to

express redundant methods for achieving a goal, by providing a set of constructs
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necessary to describe flexible missions. The programs are compiled into a compact

graphical representation to which automated reasoning techniques are applied in order to

quickly select feasible threads of execution (sequences of activities that achieve the

mission objectives).

2.2 Kirk Temporal Planner

This thesis uses the Kirk temporal planning framework in order to define a partial order

on the activities encoded in a mission. The optimal pre-planner developed in this thesis

extends Kirk by replacing the feasible search strategy with an optimal search strategy.

A temporal planner, called Kirk, was introduced in [39] and enables pre-planning

of temporally flexible activities. Kirk uses RMPL constructs that express contingencies

(nondeterministic choice) and temporal constraints. To perform temporal reasoning, Kirk

operates on a temporal plan network (TPN) encoding of an RMPL control program.

Temporal Plan Networks express concurrent activities, decisions between

activities, temporal constraints. An activity has both a start node and end node in the plan

network that represents the duration of the activity. Nodes in a TPN represent an instance

in time and are referred to as events. The arcs in a TPN contain temporal and symbolic

constraints. The temporal constraints are given as an interval defining the lower bound L

(the minimum duration of an activity) and upper bound U, denoted as [L, U], for the

duration of an activity. These are expressed in the Simple Temporal Network

representation summarized in Chapter 4. The symbolic constraints in a TPN are given in

the form of Ask(C) and Tell(C), where C is a condition. An Ask(C) requires that a

condition C be true, while a Tell(C) asserts the condition C. Symbolic constraints are

specified on an arc in a TPN, and hold for the duration of that arc.

During planning, Kirk attempts to resolve temporal and symbolic constraints,

while making decisions as needed. If no valid plan is found, Kirk backtracks and makes a

new set of decisions that ignore the previously invalid portions of the plan space. The

search process is repeated until a complete and consistent plan is found, or all candidate

plans have been examined and no valid solution exists [39]. If Kirk finds a complete and
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consistent plan then the plan is sent to a plan runner, which performs interleaved

scheduling and execution, while adapting to execution uncertainties.

2.3 Path Planning

The unified activity and path planning system described in this thesis, requires a roadmap

based path planner in order to find paths for an AV that is required to navigate from

location to location. In this section, we review the general approached to finding a

collision-free path for robots.

2.3.1 Overview

The general path-planning problem asks how a mobile robot can safely move from

location A to location B, while avoiding obstacles. This solution can be found by

asserting the start location and the goal location, and by employing a path planner that

generates an obstacle-free trajectory from start to goal. Two key features of path

planning algorithms are completeness and optimality. A path planner is complete if it

finds a collision- free path when one exists; otherwise, it returns no solution. A path

planner is optimal if it returns the shortest, or best, path from start to goal state [28].

There are several deterministic and non-deterministic (randomized) approaches to the

path-planning problem, including mixed integer linear programming [2], convex cells

[21], approximate cell decomposition [21], potential field methods [21], the freeway

method [21], and roadmap methods [35][21].

Computing a collision free path for robots with complex dynamics has proven to

be computationally hard. A path planner must explore a large state space that represents

each dimensions of the robot. Complete path planners take an indefinite amount of time

(depending on the problem size) in order to compute a collision-free trajectory and are

usually used to solve small problems, that is, problems involving robots with only a few

degrees of freedom. To avoid computationally time intensive path planning, a number of

efficient randomized techniques have been explored. For example, the probabilistic

roadmap path planner randomly generates nodes in the world in which the robot

navigates (Figure 8). The nodes are in the obstacle-free space of the world. Completeness
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for randomized path planners is referred to as probabilistic completeness; that is, if a

solution exists, then it will find a path with high-probability [13].

0 0

C
0

0 0

Figure 8: Example of randomly generated roadmap nodes used to find collision free paths in a space.

Rapidly-exploring Random Trees (RRTs) were introduced as a data structure that

can quickly explore the state space of robots with kinematic and dynamic constraints-

termed kinodynamic constraints. For example, a helicopter has inertia, and thus, this must

be accounted for when planning a path for it. An RRT-based planner attempts to grow

tree in the search space, from the initial state to the goal state (Figure 9). In our USAR

mission we use a small helicopter, and thus, adopt an RRT-based path planner in order to

satisfy location constraints in a model-based program.

Initial state

Figure 9: Example of an RRT exploring the state space.
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2.3.2 Kinodynamic Path Planning

Kinodynamic path planning is an emerging area of research that explores path planning

for complex robots with kinematic and dynamic constraints. Most often mobile robot

motion is constrained by its velocity and acceleration [13][22]. Kinodynamic planning

refers to the class of problems in which the motion of a robot must satisfy nonholonomic

and/or dynamic constraints [22]. Nonholonomic systems are systems with fewer

controllable degrees of freedom than total degrees of freedom.

A recent effort to solve a large class of kinodynamic problems, called Rapidly-

exploring Random Trees (RRTs), has shown significant success with path planning for

robots with a large number of degrees-of-freedom and complicated system dynamics

[22][23].

To accurately encode the constraints of a robot, its equations of motion must be

given. Equations of motion are a system of equations that govern the robot's motion.

They are generally of the form s = f(s, u), where s is a state of the robot, S is its

derivative with respect to time, and u e U (the set of all possible control inputs) is the

control input(s) applied to the robot [22].

For non-complex robots, the path-planning problem can be solved using the

robot's configuration space- all possible position and orientation pairs that describe the

robot is reference to a fixed coordinate system [13]. Robots generally have physical

limitations on their motion; thus, solving the path-planning problem in the configuration

space does not suffice. Trajectories (collision-free paths) generated in the configuration

space do not account for dynamic constraints on the robot's movement [22]. In the

following section, we summarize the kinodynamic state space formulation given in [22].

State Space Formulation

The state space, denoted as X, is the search space for which kinodynamic path planners

attempt to find a collision-free trajectory for a robot. Expressing the entire state, s, of a

robot, in general, dramatically increases the dimensionality of the entire search space.

Hence, most path planners approximate X by restricting the dimensionality. Systems

described in the state space encode a state, s e X, as the robot's position (or
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configuration) and the derivatives of the position (i.e., velocity). Thus, the configuration

space is a subset of the state space.

The state space consists of the obstacle regions, Xobst, and free space regions,

Xfree. Xobst is the subset of X corresponding to states that would result in a collision

between the robot and an obstacle. Xfree represents the remaining set of states that result

in no collision- i. e., the space where the solution trajectory must solely reside. A more

detailed development of the state space formulation and equations of motion can be

found in [22].

To incrementally construct a path, RRT-based kinodynamic planners integrate

over the equations of motion and generate a path in the state space [22]. Given the

current time I and the robot's current state s, by applying the selected control(s) u over

the time interval [t, t+6], then the state of the robot at time t+8 will be

Equation 1:

s(t+6)=s(t)+ f f(s(t)u)dt

A solution is precisely defined in [22] as a time-parameterized (between [0,

Tfina]), continuous, collision-free trajectory from an initial state, siit e X, to a goal state

(or goal region) Sgoal e X that satisfies the robot's physical constraints. An input function

for which each instant of time in [0, Tfinal] is mapped to its corresponding control(s), u:

[0, Tfinal] -+ U, which results in a collision-free trajectory from start to goal. The

trajectory at time t e Tfinal and state s, s(t) is determined by integrating:

Equation 2:

s(t) = ff(su)

2.3.2 Rapidly-exploring Random Trees (RRTs)

RRT-based planners are randomized incomplete planners that scale well for kinodynamic

problems with high degrees-of-freedom and complicated system dynamics [10]. A key

feature of RRTs is that they uniformly explore the robot's state space and, therefore, are

heavily biased towards unexplored regions in the state space. RRTs incrementally
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construct a roadmap (directed tree) in the robot's state space by applying control inputs to

existing roadmap nodes. In this case, a connected roadmap is considered a RRT. A

solution consists of a collision-free trajectory expressed as a finite sequence of robot

states and corresponding control inputs [22] that drive the robot from state to state.

Constructing an RRT An RRT is best represented as a directed tree data structure. A

tree, a directed graph with no cycles, is built in the robot's state space. All nodes in the

tree have zero or more outgoing arcs (edges), each corresponding to another node called a

child node. A child node can, in turn, have several children. All nodes, other than the

root, have exactly one incoming arc deriving from its parent. The root of the tree has no

parent.

RRTs have been adapted as kinodynamic path planners by storing specific

information in RRT nodes and arcs. Data stored in an RRT node consists of a state and a

list of children. Data stored in an RRT edge are the control inputs associated with that

arc (form the transition between head node and tail node). The RRT is grown in the

robot's state space. Nodes are added to the tree by integrating the equations of motion

over a specified time interval, starting from some pre-existing node in the tree.

The general RRT construction is described as follows. A point is randomly

generated in space and the nearest node (nearest neighbor) in the existing RRT to the

random point is selected. Then, from the nearest node, the tree extends one step, by some

pre-specified distance, towards the random point and adds a new arc and new node (a

child node of the nearest node) at the end of the arc. This process is repeated by

generating another random point in space and continuing with the steps described above

until the maximum number of nodes is reached [22][23]. Figure 10 is an example of an

RRT grown in free space with a path from start to goal.
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Goal: s

Nodes: States
Edges: Control Inputs

control inputs
U

Start:sstart

Figure 10: Example of an RRT growing from the start state to the goal state.

When extending the nearest neighbor node towards the random point, a collision test

must be performed. If the edge from the nearest node to the new node collides with an

obstacle then the edge is not added to the RRT. A number of efficient algorithms for

incremental collision detection can be applied [22].

The algorithm terminates when the maximum number of iterations is reached or a

solution is found. A valid solution is determined by testing the distance between the

newly added node and the goal. The test is performed after each iteration and if snew and

sgoal are sufficiently close enough then the path is returned. A solution trajectory is

established by working backwards from sgoal to sstart and recording the states and their

corresponding controls.

Path planners that account for kinematic and dynamic constraints are important

for agile autonomous vehicles used in urban search and rescues. Roadmap-based path

planners naturally lend themselves to the compact graph-based planning model used in

our planning system. The system employs a roadmap-based kinodynamic path planner to

find collision-free trajectories and satisfy location constraints.
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We draw on the areas of model-based programming, temporal planning, and

roadmap based path planning in order to develop a globally optimal activity and path

planning system.
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Chapter 3

Model-based Programming for

Autonomous Vehicles

We use the model-based programming approach to describe strategies that an

autonomous vehicle (AV) must execute in order to achieve its mission. A strategy is a set

of actions that the robots execute in order to achieve the mission goals. Adopting the

model-based programming approach requires three key pieces of information. The first is

a description of the possible strategies that make-up a mission. The second is a physical

description of the AV involved in the mission. And the third is a model of the physical

world in which the strategies are executed. These three pieces of information are

specified within one of the two components that comprise a model-based program: a

control program and an environment model [37]. In particular, mission strategies are

specified in a control program, while the vehicle and world models are specified in an

environment model.

A control program uses the constructs from the Reactive Model-based

Programming Language (RMPL) [37] to encode strategies that contain activities, activity

costs, location constraints, and simple temporal constraints. In general, activity costs are a

function of the AV's resources and the environmental constraints, such as fuel or energy.

An environment model contains a description of the world, where the mission will be

carried out and a physical description of the AV operating within the world. The control

program and environment model, together, are input to the unified activity and path

planning system.

This chapter describes the encoding of a control program and environment model,

used in unified optimal activity and path planning. We present a derivative of RMPL for
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coding mission strategies, which contains activity costs and location constraints (ACLC).

This derivative of RMPL is referred to as the ACLC subset of RMPL. Moreover, we

define an encoding for an environment model that is used for planning collision free

paths.

3.1 Control Program and Environment Example

An example scenario, where both activity planning and path planning are critical, is

detecting a chemical leak. Strategies for this scenario are specified in the Enter-Building

control program shown in Figure 11. In this scenario, a small autonomous helicopter,

ANWI, is sent into a building, where it lowers its chemical robot team, chembots. The

chembots then use their sensing technologies in order to detect the source of the chemical

leak. The world where ANWI will be navigating is shown in Figure 12. The gray areas

represent obstacles that the robot must avoid. The two release points, ReleasepointA and

ReleasepointB, are shown with black circles. The figure depicts a 2-D top-down floor

layout, which is sufficient if ANWI flies on a 2-D plane at a constant height. Otherwise,

a 3-D representation of the floor plan must be provided.

Enter-Building Control Program

In the Enter-Building control program, the behavior of the autonomous helicopter,

ANW1, is described using ACLC primitives. The mission goals are as follows. The first

goal is to start ANWi's vision system. This is achieved by using either the monocular

vision (Lines 5-8, Figure 11) or the stereo vision system (Lines 9-12). The next goal is for

ANWI to navigate from HallwayB to LaboratoryOne, while taking pictures (Lines 15-

22). Once ANWI arrives at the laboratory, it flies to a release point where the small,

chemical-detecting robot team is lowered (Lines 24-27).

Standard RMPL constructs, such as sequence, parallel, choose, and

temporal bounds, are used in creating the Enter-Building control program. The standard

RMPL constructs are augmented by specifying cost and location constraints for each

activity. For example, the Lower-Chembots activity on Line 25 has a cost of 65 units and

is constrained to the region defined by ReleasepointA. Also, a location constraint can be
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specified without an activity, as seen on Line 17. If a cost or location is not specified,

then their default value is assumed. The default cost is 0 units and the default location is

ANYWHERE, which refers to any region in the space. The addition of activity costs and

locations to RMPL activities greatly enhances the expressivity of RMPL with respect to

describing complex mission goals for mobile systems.

Enter-Building RMPL control program
1. (Enter-Building
2. (sequence
3. ;;Choose type of vision sensing
4. (choose

5. ( (sequence ;;choice 1
6. ( ANW1.Monocular-Vision(20) [10, 20]
7. ( ANW1.Set-Compression(10, flow}) [5, 10] )
8. ) (0, HallwayA) [35, 50])

9. (sequence ;;choice 2
10. ( ANW1.Stereo-Vision(40, HallwayB) [10, 20] )
11. ( ANW1.Set-Compression(20, [high)) [8, 13]
12.

13. ) ;;end choose
14. ;;Navigate from Hallway B to the Laboratory and take pictures
15. (parallel
16. (sequence
17. ( ANW1(HallwayB) [0, 0]
18. ( ANW1.noOp() [5,+INF])
19. ( ANW1(LaboratoryOne) [0, 0]
20.
21. ( ANW1.Take-Pictures(50) [5, 50]

22. ) ;;end parallel
23. At the Laboratory lower the Chembots
24. (choose
25. ( ANW1.Lower-Chembots(65, ReleasepointA) [15, 25]
26. ( ANW1.Lower-Chembots(50, ReleasepointB) [10, 30]

27. ) ;;end choose
28. ) ;;end sequence
29. ) ;;end Enter-Building

Figure 11: The Enter-Building control program. Temporal constraints are show in brackets "[]", and
activity costs and location constraints are specified with the activities using "( )". If temporal constraints,
activity costs, or location constraints are not specified, then their default value is assumed. The default for a

temporal constraint is [ 0 , +INF ]. The default value for an activity cost is 0, and the default for a location
constraint is ANYWHERE.

Enter-Building World

A top-down 2-D view of the world where ANWI will be navigating is shown in Figure

12. The occluded regions are shown in gray rectangles, labeled 01-010, and the frame of

references is shown in the lower left corner of the figure. A top-down view of ANWI is

shown at the top of the figure. The sphere with radius r, surrounding ANW1, represents
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an estimate of ANWI's dimensions. ANWI can enter the building through either

Window 1 or Window2 in order to carry out its mission.

ANWI

Window1 Window2

ReleasepointA

- 06 LaboratoryTwo

LaboratoryOne Oi
ReleasepointB

16O 2

(0', 0', 20')' 100'

Figure 12: The world in which ANWI will navigate in order to execute a strategy from the Enter-Building
control program. The occluded regions are shown in gray. ANW1's dimensions are estimated by a sphere
of radius r.

The world is encoded as an environment model, which is then transformed into its

configuration space (or state space) Error! Reference source not found.. The path

planner operates on the transformed model in order to find collision-free paths from

location to location. In the following sections, we define the specifications for control

programs and environment models.

3.2 Supported RMPL Specification

Control programs are written in RMPL and describe the high-level goals that AVs must

achieve. A strategy is an execution of the RMPL program that achieves all the mission

goals. More than one strategy can be specified by the choose combinator and

functionally redundant methods. The ACLC subset of RMPL provides an efficient way to

encode strategies in which the success of the mission critically depends on the costs of

executing activities and navigation to multiple locations. Figure 13 shows the grammar

for the ACLC subset of RMPL.
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Expr -+ Expr (<location>) [ub, lb] I Activity Target (<location>) [ub, lb]

sequence (Expr+) I choose (Expr+) | parallel (Expr+)

Activity -+ Target. activityname (<cost>, <location>, {parameters}) [ub, lb]

Target -4 robotname

Figure 13: The grammar for the ACLC subset of RMPL.

In the ACLC grammar, location is an element of the domain of locations that

an AV might visit. The symbol "Expr+" refers to one or more expressions. The

specification of activity costs and location constraints are highlighted in Figure 13 with

bold type. Angle brackets "<>" signify that activity costs and location constraints are

optional. The parameters associated with an activity is a list (which can be empty) of

arguments to the activity. Temporal constraints are in the form [lb, ub], where lb and

ub are the lower and upper time bounds, which restrict the duration of a constraint,

activity, or a combination of the two.

3.1.1 Description of Primitives

This section provides a detailed description of the ACLC primitives presented in the

grammar. Activities and location constraints are referred to as commands. Commands

can be recursively combined with the sequence, parallel, and choose

combinators, in order to express complex mission strategies.

Primitive Commands

* Target. activityname (cost, location, {parameters} ) [lb, ub]

This expression depicts a primitive activity (or command) that the Target

"knows" how to execute. It is labeled with an activity name, along with the

corresponding cost, location constraint, and one or more parameters, specified in

the parameters. The minimum and maximum time allowed to execute the

activity is specified by temporal constraints [lb, ub]. The estimated cost of

executing the activity and the activity's location constraint can be specified, but

are not required. In general, we assume the default cost is 0, and the default

location is ANYWHERE. An example of a primitive activity is (ANW1. Set-
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Compression(10,{low}) [5, 10]). Its cost is 10 units and has a

parameter low. The command requires the target vehicle, ANW 1, to execute the

Set-Compression activity ANYWHERE for at least 5 time units, but no more than

10 time units.

Target (location) [lb, ub]: A location constraint asserts the region where

Target must reside, for a duration of at least lb time units and at most ub time

units. For example, ANW1 (Laboratory) [25, 100] asserts that ANWI is at

the laboratory for at least 25 time units and at most 100 time units. The process of

satisfying location constraints is detailed in Chapter 6.

Primitive Combinators

" sequence (ci, c 2 ,..., cn) : The sequence combinator is used to create RMPL

expressions in which primitive commands or expressions denoting compositions

of commands c1 , c2, ... , C., should be performed in order. Lines 5-8 in Figure 11

are an example of a sequence of commands that are to be executed in the order in

which they are presented. That is, ANWI executes the Monocular-Vision

activity before it executes the Se t -Compres s ion activity.

" parallel (ci, c 2 1 ..., cn): The parallel combinator is used to encode

concurrent threads of execution, where c1, c 2, ... , c,, are expressions that are

executed in parallel. For example, the parallel expression on Lines 15-22 in

Figure 11, requires ANW I to execute the sequence of commands on Lines 16-20,

while taking pictures (Line 21). The execution of parallel threads is complete

when all commands on all the threads composed within a parallel expression have

been executed.

" choose (c, c 2,..., cn) The choose combinator is used to model decision

theoretic choice between different threads of execution. Only one thread in a

choose expression is selected for execution. The optimal pre-planner selects the

thread whose combined activity costs are a minimum. A choose expression is
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shown in Figure 11 on Lines 4-13. In this expression, ANWI executes either the

Monocular-Vision and the Set-Compression activities in sequence, or

the Stereo-Vision and Set-compression activities in sequence. The

optimal pre-planner performs an informed search in order to decide which thread

in a choose expression to execute (see Chapter 5).

3.1.2 Temporal Constraints

To encode strategies in a control program with flexible time bounds, temporal constraints

are used. Lower and upper bound times are specified for a command or a composition of

commands using the form [ lb, ub]. lb is a positive number, representing the minimum

time an AV must take to execute a command, and ub is a positive, number representing

the maximum time allowed for executing the command. Note that ub must be greater

than or equal to lb. If no temporal constraint is given, then the time bound is assumed to

be [0 , +INF ], this places no restriction on the duration of a command or composition

of commands. For example, the expression defined by the sequence on Lines 9-12 of the

Enter-Building control program does not contain a temporal constraint; thus, the activities

within the sequence are constrained only by their respective temporal bounds. It is also

possible, however, to constrain the duration of commands by adding time bounds on the

combinator that surrounds the commands. For example, the sequence of commands on

Lines 5-8 are further constrained by a [35, 50 ] temporal bound. The technique used to

test for temporal consistency is detailed in Chapter 4.

3.1.3 Location Constraints

In general, a location constraint is used to constrain the execution of an activity to a

specific region. The statement Target. Activity (region) is interpreted as that

Target must be in region throughout the entire execution, from start to end of

Activity, and no where else. For example, ANW1.Stereo-Vision(40,

HallwayB) states that for the duration of the Stereo-Vision activity ANW1 must

remain in HallwayB. Like temporal bounds, location constraints can be used to constrain

a set of activities to a specific region. This is achieved by constraining activities within an

expression to a location. For example, the activities in the sequence on Lines 5-8 are
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constrained to HallwayA. Additionally, to require an autonomous vehicle (AV) to be in

the region, the target AV and region can be asserted in a control program. For example,

ANW1 (HallwayB) [ lb, ub] requires the ANWI to be in HallwayB for a minimum of

lb time units and a maximum of ub time units. We refer to these commands as location

assertions. Location assertions can specify waypoints for the AV to follow. For example,

the sequence on Lines 16-20 requires ANW1 to be in HallwayB for an instant of time

then execute a no-op (no operation), and, finally, visit LaboratoryOne for an instant of

time. When location assertions are combined with a parallel combinator, as seen on Lines

15-22, the mission designer can explicitly express a set of waypoints for an AV to

navigate to, and the activities that the AV must execute while navigating to the

waypoints. The expression on Lines 15-22, for example, requires ANWI to fly from

HallwayB to LaboratoryOne, while concurrently executing the Take-Pictures

activity.

A location constraint is entailed when the path-planner in the unified activity and

path planning system finds a collision free path from the AV's current location, to the

goal location specified in the control program. This process is explained in Chapter 6.

Note that location constraints are similar to achievement constraints in [14], except that

an achievement constraint specifies the intended internal state of an embedded system,

rather than the location of an AV.

3.1.4 Activity Costs

Estimated activity costs, such as power or fuel, are determined by the mission designer.

An activity and its cost are specified together in an RMPL control program. The activity

costs are used in the optimal pre-planning process to guide the search towards the optimal

strategy.

On the whole, RMPL primitives can be combined recursively in order to describe

complex behaviors for autonomous vehicles. Costs provide the information needed to

perform deterministic, decision theoretic execution. Location constraints specify where

activities are to be performed, while abstracting away the specification of how to get
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there. To execute ACLC RMPL programs, the pre-planner performs optimal unified

activity and path planning.

3.2 Environment Model

The environment model contains the information about the world where the autonomous

vehicle will be navigating. It includes terrain information, a physical description of the

AV(s), and the domain of the locations where an AV can visit. Descriptions of the terrain

and the AV(s) are used to create the state space used by the path planner.

3.2.1 Environment Model Specifications

The environment model is defined by a tuple (M, R, 1) where:

* M is a pair (World Dimensions, Obstacles) encoding a map of the world where

the robots will be navigating. The map is defined by its world dimensions,

denoted dim(M) and is comprised of length, width, height, and starting height,

which specify the 2-D plane or 3-D space in which the robots will travel. The

map also includes the obstacles or occluded regions 0 {01, 02,..., O} that the

robots must avoid. The obstacles are described as polygons.

* R is a the physical description of the robot in the mission. This includes the

dimensions of the robot and its minimum and maximum translational and

rotational velocities. Also, the initial position (state) of each robot is given. For

the purpose of this research, we encode R as a tuple (radius, initial-state, [min-v,

max-v], [min9, max0]). R can be extended to incorporate additional information

about the robot's dynamics for more complex problems.

* T is a symbol table, mapping locations in the domain of locations to their actual

coordinates or regions in M.

Enter-Building Environment Model

In the Enter-Building world, the AV explores a 2-D plane with dimensions 80' x 100', at

a starting height of 20' (Figure 12). This is encoded as dim(M) = (80, 100, 0, 20'). The
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obstacles in the world are encoded as rectangles, which are specified by their minimum x

and y coordinates, length, and width, (minx, miny, 1, w). There is a total of 12 obstacles in

the Enter-Building world. The encoding for LaboratoryOne, which contains five

obstacles, is Olabi ={05, 06, ... ,09}, where, for example, 05=(0', 55', 50', 1') states the

obstacle 5 starts at coordinates (0, 55) with a length of 50 feet and a width of one foot.

Thus, M= ((80, 100, 0, 20'), {O1 ,02, ... ,012}).

The Enter-Building example contains only one robot, ANW1. The dimensions of

ANWI are defined by a sphere with radius r, which encompasses the small helicopter. In

this example, the radius is one foot. For simplicity, we represent the AV as a moving

sphere with a heading. Its start state is hovering at a constant height (x,y,O,x,y) = (75, 80,

1350, 0, 0). ANW1 is described by the following tuple, R = (1', (75, 80, 1350, 0, 0), [0,

2-fte ], [00, 3600]). [31] gives a precise state formulation, including dynamics for a

small, agile autonomous, helicopter.

ANWI 'rq'

Windowi Window2

HaIlwayA

ReleasepointA H w

06 LaboratoryTwo

5 Laboratory O1
Release ointB One Ojo

(0'.0, 2 100I

Figure 14: Regions specified by the locations in the symbol table T.

Finally, the domain of locations where ANWI can visit is specified as the set of

regions {HallwayA, HallwayB, ReleasepointA, ReleasepointB, LaboratoryOne} and are

depicted with circles in Figure 14. The symbol table T, for the Enter-Building example,
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maps each location to a coordinate, or a coordinate-radius pair that defines a region, and

is given in Figure 15.

Name Coordinates (x, y)

HallwayA (3, 60) radius 5'

HallwayB (53,40) radius 5'

ReleasepointA (20, 25)

ReleasepointB (20, 50)

LaboratorvOne (15, 20) radius 15'

Figure 15: Symbol table for the Enter-Building control program.

3.3 Pre-planning and Execution System Overview

The control program and environment model, together, are used as input to the unified

activity and path planning system, described in this thesis (Figure 16). The system is

composed of an optimal pre-planner and a roadmap-based path-planner. The control

program is mapped to a graph data structure, called a Temporal Plan Network (TPN),

described in Chapter 4. The optimal pre-planner uses informed search techniques in order

to search the TPN for safe threads of execution. The environment model is used with the

roadmap-based path planner, which attempts to find a collision-free path to achieve the

location constraints.

The output of the optimal pre-planner is the best strategy (plan) that does not

violate any of its temporal or location constraints. The plan is then input to a plan runner.

The plan runner is an executive that exploits the temporal flexibility in the TPN plan [25].

The plan runner consists of an offline pre-processing stage, which compiles the temporal

constraints into a for that can be dispatched quickly, followed by an online scheduling

phase that dynamically builds the schedule for the plan while activities are being

executed [25].
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Program Model
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Optimal Strategy Global Path
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Paths

Plan Runner
(Executive)

Robot Commands

Figure 16: Overview of the unified activity and path planning system.
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Chapter 4

Temporal Plan Networks

A model-based control program describes a mission strategy with high-level goals that

autonomous vehicles must achieve during their mission. For many missions, movement

between locations is an essential component of the planning process. In addition,

minimizing the combined cost of these activities is key. To support these missions, we

developed the activity cost and location constraint (ACLC) subset of RMPL in Chapter 3.

To enable fast mission pre-planning, strategies written in a RMPL control program are

compactly encoded in a graph-based data structure called a Temporal Plan Network

(TPN) [39][40]. Planning is then performed by applying efficient graph algorithms to

TPNs.

This chapter introduces the TPN model and presents an extension to the model

that includes activity costs and location constraints. A mapping from the ACLC

primitives to a TPN model is also discussed. We conclude this chapter with a description

of a TPN generated plan.

4.1 Overview of Temporal Plan Networks

A temporal plan network is a compact graphical encoding of a RMPL control program.

TPNs represent activities, activity costs, location and temporal constraints from the

corresponding RMPL control program. The construction of a temporal plan network is

based on the RMPL combinators used to express mission strategies. The RMPL

combinators define the composition of sub-networks within a TPN, and the activities and

constraints define the arcs and vertices of the network. Figure 17 depicts the TPN

representation of the Enter-Building control program shown in Figure 11.

As seen in Figure 17, a temporal plan network is composed of vertices and arcs,

each of which refers to a specific element in the corresponding control program. Vertices

denote time points that correspond to specific events, such as the start or end of an

47



activity. The arcs in a TPN represent activities, activity costs, location constraints, and

temporal bounds on activities. For example, the arc D-+F states that the activity

Stereo-Vision ( )has a cost of 40 units, must take a minimum of 10 time units and

must not exceed 20 time units. In addition, the location constraint loc (HallwayB),

which is attached to arc D-+F, requires ANWI to be in HallwayB throughout the

duration of the activity. Vertices in a TPN represent temporal events. The start and end

of an activity are each signified by a vertex. For example, event D marks the start of the

Stereo-vision () activity and event F marks the end of that activity. The arcs

correspond to the temporal distance between events [39][40]. An arc with temporal

bound [0, 0 ] indicates that the event at the head of the arc is executed immediately after

the event at the tail of the arc. An arc with a [0 , + INF ] time bound indicates that the

event at the tail of the arc may start at any time after the event at the tail of the arc. In

addition, the direction of a TPN arc defines the order in which events on a thread are

executed. In a TPN, a path from the start event to the end event of the high-level activity

denotes a thread of execution. For example, any path from S to E in the Enter-Building

TPN corresponds to a thread of execution.

Enter-Building [0,]

Monocular-Vision() Set-Compression(low) LOl(1wayB) Loc(Laborayne) Lower-Chembotso

[0, - [35, 50]

Locinitial-position) Loc(HallwayA)

[0, -

10,20 [8,13 [,

400 UW V
L Haliav ) Set-Compression(high) Take-Pictures() Lower-Chembotso

Figure 17: Example Temporal Plan Network for the Enter Building control program. In the figure, the
name of the autonomous vehicle ANWI involved in the mission is omitted and the activity names are
abbreviated for clarity. In Figure 17, arcs without an explicitly labeled temporal constraint are assumed to
have [0, 0] bounds and arcs without explicit location constraints are assumed to not be constrained by
location.

TPNs encode choice between possible threads of execution using a special type of

event, called a decision point. These are depicted in Figure 17 with double circles; these

are the events C and W. The event C is a decision point that marks the start of a decision

sub-network that ends at event M. Associated with each decision point is a decision sub-
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network. The sub-network begins at the decision point and ends at an event where the

threads of the choices re-converge. For example, for the decision sub-network starting at

C and ending at M, the two possible threads of execution are C->I--+J-+K--L-+M and

C-+D---+F->G--->H--+M. Only one thread from each decision sub-network in a TPN is

included in a plan.

TPNs encode concurrent threads of execution with sub-networks composed of the

parallel threads. For example, the event N in Figure 17 denotes the start of two

concurrent threads of execution. The end of the parallel sub-network occurs at the event

where the two threads converge. For example, the event V (Figure 15) denotes the end of

the parallel threads that start at N.

Location constraints in a TPN are specified using the "Loc" function and are

parameterized with the name of the region where the autonomous vehicle must reside.

Recall that the symbol table T in the environment model translates a region of the input

map. Location constraints are resolved by the unified activity and path planning system,

which operates on both the environment model and the control program, in order to

satisfy the constraint. This process is described in further detail in Chapter 6.

4.2 RMPL to TPN Mapping

In this section we provide the mapping from the ACLC subset of RMPL to TPN sub-

networks. This mapping shows how any control program with the ACLC subset can be

encoded as a temporal plan network. The optimal pre-planner then searches for safe

threads of execution in a control program by searching its corresponding temporal plan

network representation.
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Interval:

[LB, UB]

Interval + Location:

(region)[LB, UB]

Interval + Activity:

A[LB, UB]

[LB, UB]

[LB, UB]
Loc(region)

A[LB, UB]

Interval + Activity + Location:

A(region)[LB, UB] A[LB UB]
Loc(region)

Interval + Activity + Cost:

A(cost)[LB, UB] A[LB, UB]

Interval + Activity + Cost + Location:
(: >A[LB, UB]

A(cost, region)[LB, UB] AB Ucost
Loc(region)

Figure 18: Mapping from ACLC primitives to TPN sub-networks.

Recall that the RMPL notion for cost, location, and temporal bounds is given in

the form (cost, location) [lower time bound, upper time bound]. Both Figure 18 and

Figure 19 depict the information stored in a TPN sub-network. In general, events mark

the start and end of an activity or the start and end of a TPN sub-network created by an

RMPL combinator.
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Sequential Composition: A[lbA, UbA] B[lbB, ubB]

(sequence (A[cA, lOCA, IbA ubA]) Loc(locA) [0,0] Loc locB)
(B[cB, lOCB, lbB, UbB))

A~llbA,ubA]-
CA O[0,0 L'c l C )4)

Parallel Composition:

(parallel (A[CA, IOCA, IbA ubA])

(B[cB, locB, lB, ubB]) ) B[lbB, ubB]
[0,0] CB

Loc(locB)

A[lbA, ubA]
Choice: [L CA 0,0]

[0,0]-o LClo)
(choose (A[CA, IOCA, ibA UbA]) Loc(ocA)

(B[cB, lOCB, lbB, ubB) 0
[00]" B[lbB, ubB] [0,0]

Loc(locB)

Figure 19: Mapping from ACLC combinators to TPN sub-networks.

Given the mapping of RMPL primitives and combinators to TPN sub-networks,

any control program can be modeled as a temporal plan network. As a result, efficient

network algorithms can be applied to TPNs in order to find the best executable strategy in

a control program. In the remainder of this chapter, we define feasible and optimal plans,

denoting feasible and optimal executions of an ACLC RMPL program, respectively.

4.3 TPN Plan Formulation

Recall that RMPL control programs specify possible strategies that will accomplish a

mission. A TPN represents these possible strategies as disjunctive plans, that is, plans

containing choices. Each possible plan in a TPN is distinguished by the set of chosen

decisions in each decision sub-network. For example, the network of Figure 17 has two

decision points, each with two potential choices, and hence represents four possible

plans. The first possible plan contains the decisions C-+l and W->X, the second contains
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the decisions C-*I and W--Z, the third contains C--D and W->X, and the fourth

possible plan contains the decisions C->D and W-+Z.

More formally, a plan is a complete, consistent execution of an RMPL control

program. A TPN plan is represented as concurrent threads originating at the start of the

TPN, S, and finishing at the end of the TPN, E. Each thread represents a string of

activities, temporal constraints, and location constraints. A plan is complete if three

properties hold. First, the TPN plan must be composed of a set of threads that originate at

the start S and end at E. Second, if the plan contains a decision-point, denoting a decision

sub-network in the corresponding TPN, then only one thread from the start to the end of

that decision network is selected. Third, all threads extending from all non-decision

points in the plan must be selected. A plan is consistent if it is both temporally and

location consistent. To be location consistent, all location constraints in the plan must be

satisfied. That is, there exists a collision-free path to each region specified in each of the

location constraints. We refer to a plan that is complete and consistent as afeasible plan.

A feasible plan for the Enter-Building program is shown in bold in Figure 20 below. In

the example, the plan begins at S and ends at E. The out-arcs of each non-decision event

in the plan are selected and only one thread from each decision sub-network is included

in the plan. In addition, the temporal constraints of the plan highlighted in Figure 20 is

temporally consistent, as defined in the next section, and there exists a collision free path

for all locations. Therefore the plan is feasible. Finally, the plan in Figure 20 is optimal,

that is, it is comprised of the least-cost complete and consistent set of threads.

Enter-Building Ao-1

LocHaIlwayB) Loc(LaborakoryOne) Lowe h tsf

..J- .......... R .T --. %

Loc(initial-post ot)

0,.]

10, 20 . 8, 1 . \ *9

........... U0 00 V03

Loc4HallwayB) Set-Compression(high) Take-Pictures() Lower-Chembots(
Stereo-Vision(

Figure 20: Example of an optimal, complete and consistent plan for the Enter-Building activity. The dotted
arrows from location to location enforce the order in which each location is visited by ANW.
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A solution to a temporal plan network is a feasible plan. The optimal pre-planner

applies a best-first search strategy to the TPN, while resolving temporal and location

constraints in order to find the optimal feasible plan,

4.4 Temporal Consistency in TPNs

To declare a plan consistent and feasible, it must be temporally consistent. We conclude

this chapter by defining temporal consistency, and by reviewing algorithms for checking

temporal consistency. The temporal constraints of a plan, generated by a TPN, form a

Simple Temporal Network (STN). Thus, the techniques that verify the temporal

consistency of an STN can be applied to TPN plans [39]. An STN is similar to a TPN in

that it contains a network of arcs between events. It differs in that each arc of an STN

specifies only a time bound (no cost or activity) and decision points are disallowed. One

way to test for temporal consistency of an STN is by converting it into an equivalent

representation, called a distance graph. If the distance graph of an STN contains no

negative weight cycles, then the corresponding STN, and thus the TPN plan, is

temporally consistent [9]. An STN is converted to a distance graph by maintaining its

events and by creating two arcs between connected pairs of events x and y. Given an STN

arc x-+y, labeled [lb, ub] the distance graph arc x->y with label ub specifies the upper

bound time of the STN arc. The distance graph arc y-+x with label -lb specifies the lower

bound time from the STN arc x->y. In general a distance arc x->y with label I specifies

the constraint y-x 1. For the lower bound arc, its corresponding constraint x-y -lb is

equivalent to y-x > lb Figure 21 illustrates an STN and its corresponding distance graph.
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a [5, 10] 0,0 [20, 20] d

STN [31, 50]

50

Distance 10 0 20
Graph a b c d

-5 0 -2

-31
Figure 21: Example of STN and its corresponding distance graph.

In the above example, the sequence of events a, b, c, and d are constrained by the

temporal bound [31, 50 ] on STN arc a-+d this specifies that the entire sequence of

events must be completed at a minimum of 31 times units and a maximum of 50 time

units. If this constraint is ignored, then the sequence of events are temporally consistent.

However, with the a->d constraint included, the STN it is not temporally consistent. This

inconsistency is identified by the negative weight cycle a-b-+c->d-->a in the distance

graph. Intuitively, events a, b, c, and d can be executed within a minimum time of

5+0+20 = 25 time units, which is the sum of the lower bounds on each event. The events

must be executed within 10 + 0 + 20 = 30 time units (the sum of the upper bounds).

However, the additional constraint, a-*d, over the entire sequence requires the events to

take at least 31 time units to execute. This contradicts the maximum amount of time to

execute the sequence (30 time units); therefore, the above example illustrates a temporal

inconsistency in the STN and any plan that includes that STN as a sub-network is invalid.

As stated above, to detect temporal inconsistencies in a plan or partial plan, an

algorithm that detects negative weight cycles in a distance graph is used. Some of the

more common algorithms for testing negative weight cycles in a graph are the Floyd-

Warshall all-pairs shortest path, the Bellman-Ford single-source shortest path, and the

FIFO-Label-Correcting (where FIFO stands for first-in-first-out) algorithms [8].
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Figure 22: Distance graph from a sequence of STN constraints.

The Kirk temporal planner framed the problem of finding a negative weight cycle

in a distance graph as a single-source shortest path (SSSP) problem. To detect a negative

weight cycle in a distance graph, the FIFO-Label-Correcting algorithm was applied

[1][18]. However, framing the problem of finding a negative weight cycle in a distance

graph as a SSSP problem causes the FIFO-Label-Correcting algorithm to fail on

particular distance graphs. The distance graph in which the algorithm will not detect a

negative weight cycle is a distance graph with a positive infinity on an arc in a sequence.

In this case, the positive infinity value would propagate to an inconsistent sub-network

and cause that inconsistent sub-network to be declared temporally consistent. For

example, the STN in Figure 22 has a negative cycle between c and d. By computing the

shortest path from the source a to nodes b, c, and d, the + INF shortest path from arc a-->b

is included in the shortest path cost of a-+c and a-+d. Then, when attempting to reduce

the shortest path from a to c, through the path a->b--+c-+d-+c, the -30 distance on are d-

-+c is substracted from the current estimate of the shortest path from a to c. Since the

current estimate of the shortest path from a to c is +INF, then -30 is subtracted from

+INF, which results in +INF. By propagating the +INF cost forward, the negative cycle

from c-*d-+c is not detected. This issue is also illustrated in Figure 23.

+INF

a b (contains a negative z
0 weight cycle)

Figure 23: A sequence that starts with a +INF arc and contains a sub-network that is temporally
inconsistent. The +INF arc gets propagated forward when applying the single-source shortest path
algorithm and the shortest path between nodes in the graph all become +INF, and thus, a temporally
inconsistent plan is mistakenly declared temporally consistent.
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We make clear the distinction between a single-source shortest path problem and

the algorithms used to solve it, as mentioned above. To address the issue of propagating

+INF cost, we reformulate the problem of finding a negative weight cycle in a distance

graph, as a single-destination shortest path (SDSP) problem [8]. The SDSP problem is to

find the shortest path to a given destination node s in a graph from all other nodes in that

graph.

The key to solving an SDSP problem is to reverse all the arcs in the input graph.

Given this formulation a SSSP algorithm that detects negative weight cycles in a graph

can be applied. Thus, we still use the FIFO-Label-Correcting algorithm, but on the SDSP

formulation, where the source node, for example a, is specified as the destination node.

Intuitively, by reversing the arcs in the distance graph, the arcs with +INF are

essentially ignored. These arcs are headed in the opposite direction of the destination

node, and have a positive weight. Thus, they cannot be a part of the shortest path from a

node to the destination. For example, in Figure 24 we want to detect the negative weight

cycle b->c-+b in the original distance graph. As stated, the shortest path from the source

node a to nodes b and c is +INF, even though there exists a negative weight cycle. At the

bottom of the figure, the arcs in the original distance graph have been reversed. If a

single-source shortest path algorithm, like the FIFO-Label-Correcting algorithm, were

applied to the graph at the bottom of Figure 24, then the arc with the +INF does not affect

the shortest path from a to b, which is -5. Thus, the negative cycle b->c--->b is detected,

because the algorithm will repeatedly reduce the cost of node b, until it is examined more

times than the number of nodes in the input graph (Line 11-12, Figure 25). At this point,

since the cost of b is negative, it can be shown that a cycle must exist.

The FIFO-Label-Correcting algorithm is shown in Figure 25. The Push function

adds a node to the end of the queue and the Pop function returns the node at the top of the

queue. Note that Line 13 examines the incoming arcs (j, i), which is equivalent to

examining a distance graph with its arcs reversed. In the original FIFO algorithm all the

outgoing arcs (ij) are examined [39][40]. The algorithm has an O(nm) run time, where n

is the number of nodes in a graph and m is the number of edges in the graph. For a more

careful discussion of the FIFO-Label-Correcting algorithm see [1].
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Original distance +INF0
graph

source -5 -25

Reversed arcs +1NF 0
distance graph

destination -5 -25

Figure 24: By framing the problem as a single-destination shortest path problem all negative weight cycles
in a distance graph can be found.

function SDSP-FIFO (Graph G, Node destination) returns true if negative weight cycle or
false if no negative weight cycle.

1. initialize FIFO-queue Q <- 0
2. for each nie Nodes( G) do
3. d(n)<-+INF
4. examined_count(ni)+- 0
5. end
6. d( destination ) *- 0
7. Push( Q, destination)
8. while Q # 0 do
9. i +- Pop( Q ) I/Removes the node at the top (or head) of the Q
10. examined count( i) <- examined count( i) + 1
11. if examined count( i )> INodes( G )I then
12. return true /negative cycle detected, repeatedly revisiting a node
13. for each arc (j, i) e G do /Arcs are reversed by examining the incoming arcsj to i
14. if d(j) > d( i ) + weight(j, i ) then
15. d(j) <- d( i )+ weight(j, i)
16. ifj 0 Q then
17. Push( Q, j ) /Addsj to the end (or tail) of the Q
18. end
19. end
20. return false

Figure 25: FIFO-Label-Correcting pseudo code used to detect a negative weight cycle in a TPN [1].

In summary, this Chapter presented the mapping from the ACLC derivative of

RMPL to TPN sub-networks. We defined a complete and consistent execution of a TPN

and presented the algorithm to test for temporal consistency of a TPN plan.
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Chapter 5

Optimal Pre-planning of Activities

To find the best strategy for accomplishing mission objectives, we use the notion of

optimal pre-planning. Optimal pre-planning is the process of taking a set of possible

strategies, encoded in a TPN model of a control program, and searching for the optimal

feasible plan. As a part of the optimal pre-planning process, we adopt A* search to find

the best strategy. The optimal pre-planner is a forward heuristic search planner that uses a

TPN heuristic to efficiently guide the search towards the best solution. A challenge in

heuristic search planners is that the admissible heuristics, such as the max heuristic of

HSP, tend to be extremely weak, and uninformative. The TPN heuristic is novel in its use

of dynamic programming to provide an estimate that is more accurate and informative

than max. The algorithm that guides the search is called TPNA*. TPNA* is also novel for

its compact encoding of plan space. This chapter presents the terminology and develops

the procedures that define the optimal pre-planning process.

To illustrate the optimal pre-planning process, we first present an example

problem, and then apply the TPNA* search to that problem. The example is called

AtHome. The RMPL control program for the AtHome example is given in Figure 26.

Figure 27 illustrates the equivalent TPN representation. For the purpose of focusing on

optimal pre-planning, the AtHome example does not contain location constraints. We

address the combined problem of optimal pre-planning with location constraints in

Chapter 6.

The objective of the AtHome program is twofold. The first objective is to refuel

the autonomous vehicle, ANWI. This objective is achieved by Lines 3-11 of the control

program, depicted in Figure 26. The second objective is to send sensor data to the control

center. This can be achieved through two methods: either by uploading raw sensor data,

or by fusing sensor data onboard and then uploading the fused data. The first method is
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specified by the control program in Lines 14-20, and the second method is specified in

Lines 21-24.

AtHome RMPL Control Program
1. (AtCowe [15, 100]
2. (parallel

3. ;;Refuel autonomous vehicle ANWI
4. (sequence
5. ( ANW1.Connect-To-Charger(80) [5, 20]
6. (choose
7. ( ANW1.Refuel-CellA(20) [0, 15] )
8. ( ANW1.Refuel-CellB(70) [0, 15] )
9. ( ANW1.Refuel-CellC(30) [0, 15] )
10.

11. ) :;end sequence
12. ;;Send sensor data to control center by one of two ways
13. (choose
14. ( (sequence
15. ( ANW1.Upload-Raw-Data(25) [10, 30]
16. (choose
17. ( ANW1.Purge-DataSetl(10) [10, 15] )
18. ( ANW1.Purge-DataSet2(20) [25, 35] )
19.

20. ) [0, 20]) ;;end sequence
21. (sequence
22. ( ANW1.Sensor-Fusion(20) [1, 5]
23. ( ANW1.Upload-Fused-Data(10) [1, 5]
24.

25. ) ;;end choose
26. ) ;;endparallel
27. ) ;;endAtHome activity

Figure 26: Control program for the AtHome strategy. In this example there are no location constraints, thus
the default value for all activities is ANYWHERE, as explained in Chapter 3.

The control program for the AtHome program maps to an equivalent TPN, shown

in Figure 27. The arcs of the TPN are labeled with activity names, costs, and temporal

constraints, specified by the AtHome control program. For example, the arc between

nodes J and K represents the Connect-To-Charger activity. Stored on this arc are

the estimated cost of 80 units and time bounds of [5, 20 ], which is specified in the

control program (Line 5). In this example, arcs without an explicitly labeled cost are

assumed to have a default cost of 5 units. The AtHome TPN contains no location

constraints, thus, they are not included on the TPN arcs. The AtHome TPN is referenced

throughout this chapter.
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Figure 27: Corresponding TPN representation of the AtHome program in Figure 26. Decision points are

marked with double circles. Arcs without an explicit time bound have a [0 , 0 ] time bound. Arcs without

an explicit cost are assumed to have a default cost of 5 units. There are no location constraints in this

example, thus, they are not included on the arcs.

An RMPL control program, like AtHome, is composed of one or more possible

strategies for a robot to execute during a mission. In order to find a feasible plan, the

original temporal planner within Kirk uses a modified network search that tests for

temporal consistency, selects activities, and defines causal links between events [40][39].

Recall that a feasible plan is both complete and consistent. A plan is complete if it refers

to a selected sub-network of the TPN such that 1) the sub-network originates at S and

ends at E, 2) the sub-network contains only one thread extending from each decision

point in the sub-network, and 3) the sub-network includes all threads extending from each

non-decision point. For a complete plan to be consistent, and thus feasible, it must also

adhere to its temporal constraints. That is, the simple temporal constraints of the sub-

network must be satisfiable. While the original Kirk temporal planner searches a TPN for

a feasible plan, it does not address pre-planning problems for which the cost of executing

activities is critical to the success of the mission.

The optimal pre-planning process presented here extends Kirk by adopting a best-

first search strategy, in particular A*, in order to find the optimal feasible plan. That is,

from the set of all complete and consistent plans in a TPN, TPNA* search returns the

feasible plan with the minimum cost.

The primary contribution of this chapter is threefold. The first is the formulation

of an optimal pre-planning problem as a state space search problem. The second is a
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compact encoding of a TPN state and a mapping from a search state to its corresponding

TPN sub-networks. The third contribution is a procedure that extracts a heuristic from a

TPN a priori, which is used to efficiently guide the search. We conclude this chapter with

a discussion of the TPNA* search and its properties.

5.1 Review of A* Search

An optimal pre-planning problem can be framed as an optimization problem for which an

informed search technique can be applied. We adopt the widely used A* search algorithm

[26]. A* is a deterministic search that combines greedy-search with uniform-cost search,

in order to find the optimal path from an initial state to a goal state of a search problem.

The minimum-cost path is found by selecting search nodes according to an evaluation

function. The evaluation functionfestimates the cost of a search node n, by summing two

values, g(n) and h(n). The first value, g(n), is the actual path cost from the start node,

which represents the initial state, to node n. The second value, h(n), is a heuristic value

that serves as an under-estimate of the cost from node n to the goal. The best solution is

found by repeatedly selecting the path with the best fin). The general A* search

procedure is shown in [28].

One important element of A* is the dynamic programming principle. When A*

finds a better path to an intermediate node n, it prunes the expansion of all other sub-

optimal paths that reach n, thereby storing only the best-cost path to node n [26].

However, in the case of TPNA* search, the algorithm is systematic, that is, it visits

search states at most once. Thus, in TPNA*, there is only one path to a node n, and the

dynamic programming principle is not necessary.
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procedure A*-Search ( Problem p) returns minimum cost solution if and only if one exists.

1. initial state s +- Initial-State(p)
2. node n +- Make-Root-Node( s)

3. ./(n)+<-g( n) +h(n)
4. Insert( n, Open )
5. while Open * 0 do
6. nboe, +- Remove-Best( Open)
7. if Goal-Test( nbe,, p ) then
8. return solution nbes
9. else if nbe,, 1 Closed then
10. new-child-nodes +- Expand( nl)

II. for each ni ( new-child-nodes do
12. if state( ni ) 0 Closed then
13. Insert( ni, Open)
14. Insert( nbst, Closed)
15. end
16. return no solution

Figure 28: The general A* search algorithm. The input is a problem that represents all possible states. A*
search finds the shortest path from the initial state to the problem's goal state (checked by the Goal-Test
function). Two sets, Open and Closed, are maintained. The Open set is a priority queue, which stores all
nodes according to their evaluation function, f(n). Nodes in Open are available for expansion. The Closed
set contains all nodes that have been expanded.

A* search is both optimal and complete as long as h(n) is an admissible heuristic,

that is, h(n) never overestimates the cost from a node n to the goal. The algorithm is

complete for all problems in which each node has a finite branching factor. Proofs of

optimality and completeness can be found in [26]. For a more careful introduction to A*

search, see [26].

A * Search Example

To develop the TPNA* search algorithm, we first consider how searching for the optimal

plan relates to searching for the shortest path in a graph. In a shortest path problem, every

vertex in a graph is analogous to a decision point in a TPN. An example of a weighted

graph is shown in Figure 29. Each vertex is a decision point and each arc is assigned a

cost (also called a weight) if the start vertex is A and the goal vertex is G, then there are

four possible paths from A to G: A-+B-->D---+G, A-+C-+D---+G, A--C-+F---+G, and

A-->C-+E->G. The shortest path is the one with the least cost. In this case, the shortest
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path is A--->C-->D---+G which has a cost of 8 units. We demonstrate how A* search

explores this graph to find the shortest path.

h(A) = 5\ C h(B) = 2
5 h(C) = 5

F h(D) = 3

B G h(F)=2
h(E)=3
h(G) = 0

Figure 29: Example of a weighted graph (on the left) and the corresponding heuristic cost for each vertex to
the goal G (on the right). The graph can be considered a state space search problem, where each vertex
represents a state and each arc represents a specific action that takes the problem from one state to the next.
The initial state is A and the goal state is G. Each vertex in the graph is analogous to a decision point in a
TPN.

A* search can be applied to find the shortest path, the path with the least weight,

from A to G in the graph in Figure 29. The heuristic cost, h(v), for each vertex v is shown

to the right of the graph in Figure 29. To expand vertices in best-first order, A* maintains

a priority queue, called Open. Open is initialized with the start vertex A. During each

iteration, the vertex with the least estimated cost, J(v), is removed from Open and

expanded, adding each of its target vertices to Open. Once a vertex is expanded, it is then

inserted in a set containing all expanded nodes, called Closed. For example, when vertex

A is expanded, targets B and C, with estimated costsJ(B) = 4 + 2 = 6 and (C) 2 + 5 =

7, are inserted into Open, and A is inserted into Closed. Then B is expanded, adding its

target D,J(D) = 8, to Open. This process continues until the goal G is reached. Figure 30

illustrates the priority queue for each iteration of the search.

Notice, that in this problem the dynamic programming principle applies. There

are vertices in the graph, namely D and G, which can be reached via two or more paths.

For example, there are two paths to D, A->B--+D and A->C-+D, where A->C->D is the

least-cost path. First D is reached via the suboptimal path through B, giving D an

estimated cost of 8 units (iteration 3). Then D is reached via its optimal path, A-+C-+D,

and D is inserted again, but with a cost of 6 units (iteration 4). Then D with a cost of 6 is

expanded, and G is inserted into Open. Next, D with cost of 8 units is removed from

Open. Since vertex D already exists in the set Closed, this D with a cost of 8 units it is not

expanded. [28] details the steps required to solve search problems with multiple paths to

the same vertex.
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Iteration Open: (vertex, ](vertex)) Closed
1. (A, 5)
2. (A B, 6) (A C, 7) (A, 5)
3. (A C, 7) (A B D, 8) (A, 5) (B, 6)
4. (A C D, 6) (A B D, 8) (A C F, 9) (A, 5) (B, 6) (C, 7)

(A C E, 10)
5. (A B D, 8) (A C D G, 8) (A C F, 9) (A, 5) (B, 6) (C, 7)

(A C E, 10) (D, 6)
DeClosed, go to next iteration

6. (A C D G, 8) (A C F, 9) (A C E, 10) (A, 5) (B, 6) (C, 7)
G is removed from Open, Goal-Test satisfied, (D, 6)
shortest path found

Figure 30: Example of applying A* search to find the shortest path from vertex A to G in the graph in
Figure 29. The priority queue Open contains partial paths with their estimated cost. The vertex expanded
during each iteration is underlined. The goal is shown in bold (iteration 6).

5.2 Optimal Pre-Planning Overview

The input to the optimal pre-planning system is a temporal plan network. Recall that a

TPN, by definition, represents the space of all complete executions of an RMPL program.

There may be any number of complete executions represented by a TPN, depending on

the number of choices at each decision point in the network. In the AtHome TPN, for

example, the decision points B, L, and V create two parallel sets of three threads each,

resulting in nine possible executions of the AtHome program.

The optimal pre-planner outputs the optimal complete and consistent execution

with the least-cost, if and only if one exists. The optimal solution to the AtHome program

is highlighted in bold in Figure 31. Although the plan with choices B--+C and L-*P has

the least-cost, the activities within that plan create a temporal inconsistency with the

overall AtHome program's [15, 100 ] time bound. Consequently, the optimal feasible

solution is the next best plan, which contains choices B->D, V->W, and L-+-P. This plan

is both complete and consistent.
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Figure 31: The bold portion of the TPN denotes the optimal plan for the AtHome program. We use a
default arc cost of 5 units (not including arc S-+E).

Our approach to solving an optimal pre-planning problem is an instance of A*

search. In this section we define the search space in terms of TPNs, where each search

state denotes a partial execution of the TPN. Then we formulate an optimal pre-planning

problem as a state space search problem, and describe the search tree used to represent

the search space.

5.2.1 TPNA* Search Space

The search space of an optimal pre-planning problem consists of the prefixes of all

complete executions of a TPN. We refer to these prefixes as partial executions. More

specifically, a partial execution is a set of contiguous concurrent threads that originate at

the TPN start S and have not been fully expanded to the end event E. Each thread of a

partial execution is comprised of activities, and temporal constraints. TPN events are

implied by activity arcs. The events at the end of each thread that do not have an out-arc

are terminal events. For example, Figure 32 illustrates a partial execution extracted from

the AtHome TPN. The terminal events are E, L, and B. We refer to the set of terminal

events as the fringe. A choice in a partial execution is an out-arc from a decision point to

one of its target events. The partial execution in Figure 32 has two choices: B-+D and

L-+P.
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Fringe

0 Choices

Figure 32: Example of a partial execution from the AtHome program TPN. The terminal events are E, P,

and W and make-up the fringe of this partial execution. The choices are B-+D, V-W, and L-*P.

A partial execution is compactly encoded by its terminal events and choices. We

define a formal mapping from a partial execution to its encoding as a pair (fringe,

choices), where fringe is a set containing the terminal events in the partial execution, and

choices is a set containing each choice in the partial execution. The encoding for the

partial execution shown in Figure 32 is ({E, P, W}, {B-+D, L-P, V-+W}).

A state in the search space is a partial execution and is defined by the set of

choices in that partial execution. For example, Figure 33 illustrates two partial executions

that map to the same state. The two partial executions are encoded as a) ({E, P, D},

{B-*D, L-+P }) and b) ({E, P, V}, {B-+D, L-+P }). Both partial executions map to the

same set of choices; thus, denote the same state. The optimal pre-planner, however,

explores the search space in such a way that no search state is explored more than once.

This is described by the expansion procedure in Section 5.3.

Choices in (a) and (b) are equivalent

(a) ({E, P, D}, (B-+D, L-+P)) (b) ({E, P, V}, {B-+D, L-+P))

Figure 33: Two partial executions, (a) and (b), with equivalent choices {B-+D, L-*P}. Thus (a) and (b)

map to the same state.

5.2.2 Search Tree

TPNA* explores the search space by expanding a search tree. A search tree is comprised

of a set of nodes and branches, where each node denotes a search state. In general, the
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root of the tree denotes the problems initial state. For TPN pre-planning, the root of the

tree denotes the partial execution comprised of the set of all threads that originate at S,

and either end at the first decision point reached or the end event E, whichever is reached

first. Figure 34 shows the encoding of the root node si and its corresponding partial

execution, extracted from the TPN of Figure 15.

S

parent: Null
TPNfringe: E L B

Root search node

'AQ-

Figure 34: Root search node for the AtHome program (on the left) and it equivalent partial execution (on

the right). The TPNfringe contains events E, L, and B. L and B in si (shown in bold) are decision points

that can be expanded further and E is the event signifying the end of that particular thread.

In general, each node and branch in the search tree contains a specific label, as

shown in the complete search tree for the AtHome program in Figure 35. A node n,

denoting a search state, is labeled with the following pair (parent, TPNfringe) where:

" parent(n): a reference to n's parent node in the search tree. This is shown in the

search tree as a branch from the parent to the child n.

* TPNfringe(n): a set of terminal TPN events in the corresponding partial execution.

For example, in Figure 32, parent(s3)= si, and TPNfringe(s3) ={V, E}. Correspondingly,

a branch is labeled with a set {(d1 , ei), (d2, e2), ... , (dn, en)}, where each pair in the set is

a choice denoted by (decision-point, event). For example, branch (si, S2) is labeled with

the choices (B, D) and (L, P). These are the choices included in the partial execution

denoted by S2. The union of the labels along the unique path from a tree node n to the

root node, and the events in TPNfringe(n) comprise an encoding of a partial execution.

Figure 36 illustrates the partial execution corresponding to each node on the path from si

to sio.
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Si

{B, L, E}

{{B,D), (LP)} {{B,D), (L,Q)} {(B,D), (L,M)} {{B,C), (L,P)} {(B,C), (LQ)}I {BC), (L,M))

S2 S3 14 S5 S6 S7
V, E} {,E} {_,E} I(E {E} {E

{{v W) {(, Y} {V, W)} I{V, Y)} {{V, W)} R(V, Y)}

S8 S9  SI S11 12 SJ
{E) (E} {E) (E) (E} (E}

Figure 35: The complete search tree for the AtHome program. Each search node is labeled with a state
name si and its corresponding TPN fringe events. The branches are labeled by choices. The choices for a
node's state are the union of the branch choices along the path from the root to that node. The tree contains
nine leaf nodes (s5-s1), each referring to the nine complete (not necessarily consistent) plans in the
AtHome search space. The underlined TPN events are decision points that are expanded, in order to
generate a node's children. Each set of TPN fringe events that contain E marks the end of another thread of
execution from S to E. Node s8 denotes the optimal execution.

To describe the mapping from a search tree node, si to its partial execution, we

define the Node-To-Partial-Plan procedure in Figure 37. There are two main steps that

comprise the procedure. The first step, Lines 1-7, is to create a set, Q(sj), containing all

choices on each branch along the path from si to root. The second step, Lines 8-33, is to

construct a partial-plan with events and arcs. This is done by beginning at the TPN start

event S and tracing the threads that extend from S, using depth-first search until all

threads end at an event in TPNfringe(si). While tracing each thread, if a decision point is

encountered, then the thread corresponding to the choice in Q(si) is added to the partial-

plan (see Lines 20-24). For example, the search node s9 (Figure 35) can be mapped to its

corresponding state in the search space, creating Q while walking upwards in the search

tree along the path from s9 to si. This results in Q(s9 ) = {branch(s9, S2) U branch(s2, s1)}

= {(B, D), (L, P), (V, Y)}. Next, Q(s9 ) is mapped to a partial plan by starting at the start

event S of the AtHome TPN, and tracing the threads that extend from S. Whenever a

decision point is reached, the corresponding choice in Q(s9 ) is taken. For example, when

the decision point L is reached on thread S->A---J->K->L the decision pair (L, P) directs

the trace to continue the thread along P.

69



AtHome [15, 100]

ANW I.Connect-To-Charger()
[5, 20]

A

Si ((B, L, E},{}{B,L,E} N

jO, 201

AtHome [15, 100]

ANWL.Connect-To-Charger)
[5, 20] ANWI Refuel -CellB()

{(B, D), (L, Q)} 80 70

A

S3  A s W
{V, E) ANWI.Upload-Raw-Data(nt center)

10, 30
25 AN

A\ MPur E~e '- 2

[0, 20 ({V, E}, (L-+Q)

{(V, WA} AtHome [15, 100]

ANWI.Connect-To-Chakre()
[5,] ANWI.Refuel-CeB

80 70

{E} A

ANWI.Purge-Data-SetlO
ANWI.Upload-Raw-Data(cntlcenter)

10,30
25V

({ E), {L-+Q, V->W)

Figure 36: The search states corresponding to each search tree node along the path from the root s, to sn.
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procedure Node-To-Partial-Plan( Search Tree tree, Search Tree Node s, TPN tpn )
returns a set of arcs denoting a partial plan.

1. I/Step One: extract choices on path from n to root

2. search tree node temp <- s
3. f(s) <- 0
4. while parent( temp ) root( tree) do
5. Q( s) +- Q( s ) u choice-set (branch( temp, parent( temp)))
6. temp ,- parent( temp)
7. endwhile
8. /Step Two: run a depth-first search on tpn following the choices until each event in

TPNfringe(n) is reached
9. e +- start-event( tpn )
10. last-in-first-out stack stack <- 0
11. Push(stack, e )
12. initialize visited( event) of each TPN event to false
13. create partial plan partial-plan

14. events(partial-plan ) <- 0
15. arcs( partial-plan ) <- 0
16. while stack # 0 do
17. e <- Pop( stack)
18. if visited( e ) false then
19. visited( e ) <- true
20. if decision-point( e ) true then
21. choice <- get-choice( Q(s ), e )//returns a decision-pt, arc, and target

22. arcs( partial-plan ) +- arcs( partial-plan ) u {get-arc( choice )}
23. events(partial-plan ) +- events( partial-plan ) u {get-target( choice )}
24. Push( stack, target)
25. else
26. for each t c target( e ) and visited( t) false do
27. arcs( partial-plan) <- arcs( partial-plan ) u { arc( tpn, e, t)
28. events(partial-plan ) <- events( partial-plan ) u { event( tpn, t )}
29. if ti o TPNfringe( e) then
30. Push( stack, t)
31. endfor
32. endwhile
33. return partial-plan

Figure 37: Algorithm to map a search tree node to its corresponding partial execution.

Detecting When Threads Re-converge

Notice that in Figure 36, TPN events E, U, N, and VI are events where threads converge.

For example, nodes s3 and s1o denote partial executions with threads that converge at VI:

thread D-+V1 and W-*X-+V1, respectively. Node S3 refers to a partial execution that

includes the thread Vi-+N-+U-+E. Thus, when sio is generated, it is only necessary to

include the thread W--+X--+VI and not continue the thread from Vi to E.
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To detect when threads converge, a set of selected TPN events are maintained for

each search tree node. The set contains the events that are currently included in the partial

execution. For example the selected TPN events for node s, are {S, E, A, J, K, L, B} and

the selected events for S3 are {Q, R, Ll, U, VI, N}. The union of these two sets is a set

containing all the events in the partial execution denoted by s3. The selected events of a

search tree node contain all new events selected between the parent and the node. We

create a table that maps each search tree node to its selected TPN events set (for example

see Figure 38).

Node Selected Events

si {S, E, A, J, K, L, B}

S3  {Q, R, LI, U, Vl, N}.

sio {W, X}

Figure 38: An example of a table mapping the nodes along the path from s, to slo to their corresponding
selected TPN events. Each event included in a partial execution is added only once.

Figure 39 presents the function Threads-Converge, which returns true if it detects

convergent threads, otherwise it returns false. Given search tree node s, the function

proceeds upwards in the search tree along a path from a node s to the root. As it reaches

each ancestor it tests if an event e is in a selected TPN events set of that ancestor.

Threads-Converge is used in the node expansion procedure for two purposes: 1) to avoid

extending threads that have already been extended, and 2) to detect when a cycle has

been formed in the partial execution, prompting a test for temporal consistency (see

Section 5.4).
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function Threads-Converge?( Search Tree Node s, TPN event e, Table selected-events )
returns true if the TPN event e is included in the selected events

set of an ancestor of Node n, otherwise false is returned.
1. search tree node temp <- s
2. while parent( temp ) # NULL do
3. if e e selected-events[ temp ] then
4. return true
5. temp <- parent( temp)
6. endwhile
7. returnfalse

Figure 39: Function that detects when an event is already included in a partial execution. It looks at the
selected events in the ancestors of a search tree node. If the event in question is included in one of these
sets, it is an indication that threads have converged, thus, forming a cycle in the partial execution.

Node Expansion and Goal Test

The TPN fringe events of a search tree node that are decision points are used to generate

new child nodes. Recall that a decision point represents a choice between a set of threads

in the decision sub-network. The set of all possible choices for the decision-points in the

fringe of the search tree node is constructed by computing the cross-product of the sets of

choices of each decision point in the fringe of the node. For example, the root node si has

two TPN fringe events, B and L, which are decision points. B has two choices, either C

or D; and L has three choices, M, Q, or P. There are six possible sets of choices that

result from performing the cross product operation, {C, D} x {M, Q, P}, between the two

decision points. The six combinations of choices, given as sets of ordered pairs, are:

1. {(B, D), (L, P)} 4. {(B, D), (L, P)}
2. {(B, D), (L, Q)} 5. {(B, D), (L, Q)}
3. { (B, D), (L, M)} 6. { (B, D), (L, M)}I

During search tree expansion, a child node is created for each of the combinations

that result from applying the cross-product to decision points in the fringe of a node. This

is illustrated in Figure 35, where nodes S2-S7 are children of s]. Note that the labels on

each branch from si to its children correspond directly to each combination of choices.

Expansion only adds child nodes to the search tree that denote temporally consistent

executions. This process is detailed in Section 5.4.
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The expansion process terminates if a search tree node is removed from the

queue, Open, that satisfies the Goal-Test, or if no consistent solution exists. Goal-Test

tests if the partial execution denoted by a node is complete. That is, each thread in the

partial execution originates at the TPN start event, S, and ends at the TPN end event, E.

A partial execution that is temporally consistent and satisfies the Goal-Test is

referred to as afeasible execution. The feasible execution that minimizes the evaluation

functionJ(s) is referred to as an optimal execution, and is the solution to the optimal pre-

planning problem. If no feasible execution is generated then the expansion process

terminates, returning no solution. The goal of optimal pre-planning is to find the optimal

execution.

In summary, we frame the optimal pre-planning problem as a state space search

problem. Given the encoding of a state as a partial execution, a search tree is constructed

with the root denoting the problem's initial state. A child node is generated by expanding

a node in the tree. At any point, a node in the search tree can be mapped to its

corresponding partial execution by the Node-To-State procedure (Figure 37). The

remainder of this chapter develops the expand procedure and TPNA* search.

5.3 Expansion

The process of generating new search tree nodes was first introduced in Section 5.2. We

elaborate on this process by developing the Expand procedure, shown in Figure 45. The

Expand procedure performs search tree node expansion in two phases. The first phase,

given a search tree node s, is to extend the threads from each event in TPNfringe(s), until,

along each thread, either a decision point is reached or the end event, E, is reached. While

extending threads, if two or more threads re-converge, then a test for temporal

consistency is performed (see Section 5.3.1 Figure 48). The first phase is accomplished

by performing a modified version of a depth-first search (DFS), called Extend-Non-

Decision-Events, which is invoked on Line 3 of the Expand procedure (Figure 47). This

procedure is illustrated in Figure 44. In the figure, Extend-Non-Decision-Events is

applied to the root search tree node. Each thread, originating at S is extended until either
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the end event E is reached or a decision point in each thread is reached. In this example,

the end event E is reached first, and then S extends its threads to the decision points L

and B. The second phase creates new child nodes, where each node represents a unique

combination of choices between decision points. The second phase, outlined on Lines 11-

13 of Expand, is accomplished by executing the Branch procedure, given in Figure 50.

r@ S E S- ® S

J J K

A A A

5 E

A K A i KL
AA

Figure 44: Example of Phase One, Extend-Non-Decision-Events, applied to the initial root tree node.

procedure Expand( Search Tree Node s) returns set ofsearch tree nodes.

1. set of choices from decision points on the fringe of sfringe-choices +- 0
2. boolean consistent <- false
3. set of TPN decision pointsfringe +- 0
4. [consistent,fringe] +- Extend-Non-Decision-Events( s )//Phase One: Extract Decision Points
5. if consistent = false then
6. return 0
7. else iffringe 0 then
8. complete( s ) +- true
9. return { s } I/insert the updated s into Open
10. else
11. initialize set new-child-nodes - 0
12. new-child-nodes <- Branch ( s, fringe )H/Phase Two: Expand decision choices
13. return new-child-nodes

Figure 45: Pseudo-code for expanding a node in the search tree.

The Expand procedure returns a set of new search tree nodes. The set is empty if

the parent search tree node is determined to be temporally inconsistent in Phase One

(Lines 4-5). For example, when s6 in Figure 35 is expanded a cycle is formed. This
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occurs when the thread from B converges at E. At this point, test for temporal

consistency is done. The time bounds [1, 5] on the thread extended from B are less

than the minimum time bounds of the AtHome program, The node s6 is temporally

inconsistent and Modified returns false and the empty set. If Extend-Non-Decision-

Events extends all of the fringe events of s to the TPN end event E, without encountering

any decision points, then s is marked completed and is the only element in the set

returned by the Expand procedure, Lines 6-8. Otherwise, the set of search tree nodes will

consist of child nodes generated by s, Lines 9-12.

5.3.1 Phase One: Extend-Non-Decision-Events

The objective of Phase One is to extend each thread of a search node up to its next

decision point. Each event along a thread that is not a decision point represent a unique

choice; hence, TPNA* can make these choices immediately rather than inserting these

events into the queue, Open, for a delayed decision. The extension of threads is the

responsibility of Extend-Non-Decision-Events. We precede the discussion of Extend-

Non-Decision-Events with a brief summary of depth-first search.

In general, depth-first search operates on a problem specified as a graph with a

start vertex, the initial state of the problem, and goal vertex, the goal state of the problem.

Depth-first search grows a tree that, when complete, represents all unique paths from the

start to the goal. During DFS, vertices at the deepest level in the tree are expanded first.

This is done by maintaining a stack, where vertices are expanded in last-in-first-out order.

Figure 46 illustrates the DFS tree created by applying DFS to the graph in Figure 29 (the

heuristics and the weights are ignored).
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Figure 46: Progression of depth-first search applied to the graph in Figure 29. The start vertex is A and the
goal vertex is G. The final tree shows the four possible paths from A to G.

The pseudo-code for Extend-Non-Decision-Events is shown in Figure 47. The

argument to Extend-Non-Decision-Events is a search tree node s. A flag, indicating

whether or not s is consistent, and a set of TPN events are returned. Each event in

TPNfringe(s) is extended in depth-first order. While extending event ej on a thread, one

of three cases applies.

Case I (Lines 9-12): ej is an event where two or more threads, in a partial execution,

denoted by its search tree node s, re-converge.

Case I is detected by the Convergent-Threads function, described previously in Section

5.2. This case is significant for two reasons. First, it indicates that a cycle has been

formed in the corresponding partial execution, as shown in Figure 48. Thus, a test for

temporal consistency must be performed. In general, events that are not re-convergent

must be consistent as long as their temporal constraint [1b, ub] has the property lb

ub. To verify temporal consistency in a partial execution, the SDSP-FIFO algorithm,

presented in Chapter 4, is executed on the temporal constraints of the partial execution

encoded as a distance graph. For example, node ss corresponds to choices B->C and

L-+P (Figure 35). When S5 is generated by si, its fringe initially contains C and P. When

S5 is expanded, C is extended to the end event E. E is already included in the selected

node set of an ancestor node of S5, namely si. An ancestor of a search tree node n is any

search tree node on the path from the root to n. Thus, when E is reached by expanding S5,
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a cycle has been formed in the current partial execution, denoted by s5. This signals a test

for temporal consistency [38]. If the partial execution violates its simple temporal

constraints, as in s5, then Extend-Non-Decision-Events is terminated and the node being

expanded is pruned from the search tree. Otherwise, the procedure continues.

procedure Extend-Non-Decision-Events ( Search Tree Node s )
returns true and the set of decision points reached by extending the

threads from the TPNfringe.
of s, otherwise false is returned.

1 . initialize stack <- 0
2. initialize updated-fringe <- 0 /contains decision-points reached by expanding threads in s
3. for each event ej c TPNfringe( s ) do
4. threadcosts <- 0
5. Push ( e, stack)
6. visited( ej, true )
7. while stack * 0 do
8. event <-Pop( stack)
9. /Case One: If ei induces a cycle then check temporal consistency
10. if Threads-Converge( event) then
11. if Not( Temporally-Consistent( distance-graph( s) ) ) then
12. return false
13. 7/Case Two: If ei is a decision point then stop extending this thread
14. else if decision-point( event )= true then
15. updated-fringe <- updated-fringe u event
16. /Case Three: Continue DFS, if target of ei is visited then check temp consistency
17. else
18. for each t e target( event) do
19. if visited( ti ) = false then
20. threadcosts <- threadcosts + cost( event, t)
21. visited( t,, true )
22. selected-nodes( s ) <- selected-nodes( s ) u { tj }
23. Push( stack, t)
24. else
25. if Not( Temporally-Consistent( distance-graph( s) )) then
26. return false, 0
27. endfor
28. endwhile
29. selected-nodes(s ) <-- selected-nodes(s ) u { ej }
30. endfor
31. TPNfringe( s) <- updated-fringe
32. g( s ) <- g( s )+ threadcosts
33. return true, updated-fringe

Figure 47: Pseudo-code for the Phase One Extend-Non-Decision-Events procedure.

The second reason Case 1 is significant is to avoid redundant extension of threads.

Consider the search node s1, for example. When sI is expanded, the thread starting at V
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converges at VI with thread B-+D-+VI. TPN event VI was extended during the

expansion of an ancestor node of s 1, S3. It would be redundant to extend VI again, since

it was already included in the partial execution by an ancestor of si1.

Search tree node sj:
selected-nodes(sl) = {S, E, A, J, K, L, B}

AtHome [15, 100]

ANWI.Connect-To-Charger()

A 30

AtHome [15, 100]

ANWI.Connect-To-Charger()

A ~XA .

ANWlI ensor-Fusion() ANWI .Upload-Fused-Data(cnt center)

Figure 48: A cycle is formed at when search tree node s5 is expanded. The cycle, between the partial
execution of sl and s5, is shown in thick bold. Temporal consistency is checked on the current partial
execution, and it fails. Thus, expansion of s5 is terminated and the node is pruned from the search tree.

Case 2 (Lines 13-1 5): ei is a decision point signaling a choice between possible threads.

Extend-Non-Decision-Events stops extending the current thread when a decision point is

reached and updates the fringe with the decision-point. For example, the expansion of the

root node si extends three threads, two of which end at decision points B and L.
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Case 3 (Lines 16-27): This case is applied when neither Case 1 nor Case 2 applies.

In Case 3, ej is extended to each of its targets that have not been visited, as in the general

depth-first search. If a target has been visited, then a cycle has formed in the

corresponding partial execution. The cycle was formed during the expansion of the

current node s and not between s and an ancestor node. For example, when the search tree

node s5 is first generated by its parent, it contains two decision points in its fringe, P and

C (Figure 48). If C is extended first, then it extends to E along the thread

C-->F-+G-+H-N->U-+E, marking each event as visited. Then P is extended and the

event U, which was marked visited, is reached (Figure 49). At this point a cycle has been

formed during the expansion of a search tree node, S5, and a test for temporal consistency

is performed (Lines 25-26).

AtHome [15, 100]
ANWI.Refuel-CeliA

ANWI.Connect-To-Charger()

. [5, ]

A >.

.k ''N

C F
ANWI.Senor-Fusiono ANWI.Upload-Fused-Data(cntl-center)

Figure 49: Extend-Non-Decision-Events applied to s5 and the event U is reached by the threads from B and
L.

A partial execution is complete if, when Extend-Non-Decision-Events is applied,

all threads extending from a fringe event reach the end event E, without causing a

temporal inconsistency. If this is the case, then there are no decision points in the fringe,

and the partial execution is considered a feasible execution. This is detected in the

Expand procedure (Figure 43, Lines 6-8).
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5.3.2 Branch

The second phase of TPNA* search, introduced in Section 5.2, creates new child nodes

from s. This is performed by the Branch procedure, Figure 50. The procedure begins by

creating sets of choices for each decision-point in the TPN fringe of s (Lines 1-8). A set

contains the target events of a decision point. For example, after Extend-Non-Decision-

Events is applied to the root node si, the fringe of si contains two decision points, B and

L. Thus, the sets created from B and L are {P, Q, M} and {C, D} respectively. Next, to

create all possible combinations of choices, the cross product is performed on the sets,

Line 9. For each combination, a new search node, with parent s, is created, Lines 11-20.

Finally, the Branch procedure returns the set of child nodes generated by their parent

search tree node, s.

procedure Branch ( Search Tree Node s, Set of Decision points dec ) returns set of child nodes.

1. initialize sets of possible combinations combinations <- 0
2. for each decision-point di e dec do
3. choices <- { {tj} {tj e target( di)}
4. endfor
5. combinations +- Set-Cross-Product( choices)
6. initialize set of search tree nodes children <- 0
7. for each set cset, e combinations do
8. current-cost <- 0
9. search tree node child +- Make-Search-Node( cseti )//initializes TPNfringe( child) w/ events in cseti
10. for each target t e child do I/get the cost on arc from decision-point of target to target
11. current-cost -- current-cost + cost( decision-point( tj ), ty)
12. endfor
13. Set-Parent-Node( child, s)
14. children <- children u { child }
15. endfor
16. return children

Figure 50: Pseudo-code for the Branch procedure, which creates new child search nodes.

5.4 Computing the Estimated Cost of a Search Node

To define the optimal pre-planner as a forward heuristic search, we develop an evaluation

function for search tree nodes in order to guide TPNA* search. The current description of

TPNA* search excludes the activity costs, and thus, finds a feasible execution. To find
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the optimal feasible execution, we introduce two measures of cost. The first, is the path

cost g(s) for a search tree node s. The second is an admissible heuristic cost, h(s), for a

each search tree node s. The sum g(s) and h(s), as in A* search, is the estimated cost of a

solution through s, and thus, is used as our evaluation function.

5.4.1 Computing the Path Cost g(s)

The path cost g, of a search tree node is the sum of the costs of each arc in the partial plan

of the search state. When a search tree node s is first created, it is initialized with the cost

of its parent, g(parent(s)), (see Section 5.4.2). When s is expanded by Extend-Non-

Decision-Events, the costs along the arcs of each thread being extended are summed

(Figure 47, Line 20) and added to its initial cost. For example, the actual path cost of the

partial execution denoted by node s8 is the sum of each distinct arc, from the start event

S, along each thread ending at E. For example, assume that the default arc cost for the

AtHome TPN (Figure 51) is 5 units (not including the arc from S to E). Then g(s8) = g(s2)

+ c(V, W) + c(W, X) + c(X, VI) = 190 + 5 + 10 + 5 = 210 units, where c(x, y) is the cost

on the arc from TPN event x to TPN event y. If TPNA* only uses g as its cost function

then the search operates as a uniform cost search. That is, no heuristic is used to guide the

search.

80 5 L

5

5 - t 2 5 5 5 1 0 5 555

Figure 51: The partial execution denoted by search node s8. The network contains a default arc cost of 5
units for all arcs without activity costs. The path cost for g(s8)= 21 0 units.

5.4.2 Extracting the TPN Heuristic Cost

A uniform cost search will find the shortest path to all states in an optimal pre-planning

problem. To efficiently focus TPNA* search towards the optimal execution, we develop

an admissible heuristic for a search tree node. The heuristic cost of a search tree node is

formed by computing a heuristic h(e) for all events e in the set of TPN events. Then,
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given h(e) for all events in the fringe of search tree node s, take the max h(e) over all

events in TPNfringe(s). We refer to this search tree node heuristic as DP-max.

Summary of the Heuristic used in the Heuristic Search Planner (HSP)

To develop a heuristic cost for search tree nodes, we first review to related work on

heuristic search planners. Heuristic planners, such as FF [14] and HSP (Heuristic Search

Planner) [1], compute heuristics based on the encoding of the problem. HSP considers

two ways to compute the estimated cost of achieving a goal of a given planning problem:

additive costs and max costs [1]. The additive heuristic cost of an event e is

h(e) = Ic(e,t) + h(t)] . The additive heuristic cost works well if the problem ensures that
tEtargets(e)

sub-goals are independent [1]. For example, consider the parallel sub-network in Figure

52. Each thread extending from M contains independent sub-goals that re-join at the end,

or goal state, N. To compute an admissible heuristic cost for a planning problem with

independent sub-goal, the additive heuristic can be applied. The cost of executing M is at

least the sum of the costs of executing the commands on its parallel threads.

h(M)= h(a) + h(k) + h(i) + c(M, a) + c(M, k) + c(M, i)

h(a)

c(M, a ab

M h(c)
k d

C(M, i) h(i)

ndependent
sub-goals

Figure 52: Example of additive heuristic cost for a parallel sub-network, where each thread contains its own

independent sub-goals. The heuristic cost for event the event S can be expressed as the sum of the heuristic

costs of its targets; h(a), h(k), and h(i), plus the costs from S to each of its targets; c(M, a), c(M, k), and
c(M, i).

If the additive heuristic function is used to compute the heuristic cost of event J in

the parallel sub-network in Figure 53, then h(J) is inadmissible. The inadmissible

heuristic for J is caused by including the cost from the dependent sub-goal I in each

heuristic h(a), h(d), and h(p). We refer to this issue as double counting.

To address the issue of double counting, [1] suggests a max heuristic. The max

heuristic for an event e is h(e) = max [c(e,t) + h(t)]. For example, max heuristic for S
Ietargets(e)
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in Figure 53, below, is h(J) max[cost(J, a) + h(a), cost(J, d) + h(d), cost(J, p) + h(p) ]. In

this case, the heuristic cost of S is admissible. However, the max heuristic often severely

underestimates, and thus, is not very informative. For example, if h(a) = 1000, h(d) =

999, and h(p) 900, then h(J) = 1000. This estimate is significantly low, since all threads

from S must be executed.

a b Dependent
sub-goal

J d h

Figure 53: The additive heuristic applied to J results in an admissible heuristic for J. The heuristics for a, d,

and p, each include the cost from their dependent sub-goal I->K. The max heuristic does result in an

admissible heuristic for J, however, it is not informative.

To compute the heuristic cost of a set of TPN events, we exploit the structure of

the TPN and apply the dynamic programming principle. As a result, we can get an

improved heuristic cost of TPN events with dependent sub-goals.

Heuristic Cost for TPN Events Using the Dynamic Programming Principle

To develop a heuristic for TPNs, we note that a TPN is composed of explicitly defined

sub-networks. That is, the mapping of each RMPL combinator; sequence, parallel,

and choose, to a TPN sub-network, explicitly defines sub-goals, with a start event and

end event, in the TPN. For example, in the AtHome TPN (Figure 27) the event B is the

start event of a decision sub-network, ending at the sub-goal N, and the event A is the

start event of a parallel sub-network, ending at the sub-goal U. Given a TPN with explicit

sub-goals, we can define an exact heuristic on the relaxed TPN. A relaxed TPN is one in

which temporal constraints are not considered. With a relaxed TPN, the optimal pre-

planning problem is reduced to a shortest path problem in the problem state space, where

the shortest path corresponds to a complete minimum cost execution through the TPN

while ignoring time bounds. We compute the heuristic cost h(e) for every TPN event e.

We accomplish this by proceeding backwards from the end event E, applying the

dynamic programming principle in order to compute the shortest path from each
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preceding event e to E, until the start S is reached. The algorithm Compute-TPN-

Heuristic is given in Figure 57.

Definition The heuristic cost of an event ej, h(ei), in a TPN is defined by one of two

equations:

1. The heuristic cost of a TPN event ei that is a decision point, as seen in Figure 54, is

defined as follows:

h(e)= min [c(e,, t)+h(t)] (Equation 3)
tEtargefs(e )

ti

Figure 54: Example of a generalized decision sub-network.

An example of applying Equation 3 to a decision sub-network for the AtHome

TPN is as follows. The AtHome TPN contains three decision sub-networks. The first one

starts at B and ends at N, the second starts at L and ends at LI, and the third starts at V

and ends at VI. Given a default arc cost of 5 units, the heuristic cost of decision point L,

for example, is h(L) = min( c(L, P) + h(P), c(L, Q) + h(Q), c(L, M) + h(M)) min(40,

90, 50) 40.

2. The heuristic cost of an event ej that is a non-decision point is defined as follows:

h(e1)= E[c(ej,t)+h(t)] -[(Itargets(e,)I-1)xh(parallel-end(e,))] (Equation 4)
tEtargets(e )

where targets(ei) are the events that are at the tail of each out-arc of ej, Itargets(e) I is the

number of targets, and parallel-end(ei) is the corresponding event where the threads re-

converge (Figure 55).
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QD Parallel-end
e-

Figure 55: Example of a generalized parallel sub-network. The heuristic cost of a parallel start event e, is
the sum of each thread within the parallel sub-network, plus the heuristic cost of the parallel end.

Equation 4 can be applied to parallel sub-networks and simple command arcs in a

TPN. Recall that a parallel sub-network is a point in the TPN where threads fork and re-

converge. For example, the AtHome TPN contains three parallel sub-nets. The first one

starts at event S and ends at event E, the second one starts at A and ends at U, and the

third parallel sub-net starts at D and ends at VI. The heuristic cost of event D, for

example, is h(D) = c(D, VI) + c(D, I) + h(Vl) + h(I) - [ h(Vl) ] = 5 + 25 +15 + 40 - 15

70, where the arcs that are not labeled with a cost have a default of 5 units.

start end

Figure 56: A simple command arc.

A simple command arc is defined by a start event that contains only one out-arc

connected to its end event (Figure 56). Its heuristic h(ei) is defined as follows:

h(e,) = c(e1 , t) + h(t) (Equation 4a)

For example, the event Y, in the AtHome TPN, has a heuristic cost of h(Y) = c(Y,

Z) + h(Z) = 20 + 20 = 40. The heuristic cost of a simple command is a degenerate form of

Equation 4. The first term of Equation 4 occurs only once for the one target of ej. The last

term on the right-hand-side of Equation 4 is 0, because the number of targets is one.

The heuristic cost of all events in a TPN can be computed a priori using the

dynamic programming (DP) principle. The TPN heuristic is admissible, but approximate,

because it computes the cost of a relaxed TPN that ignores all its temporal constraints.

The procedure for computing the heuristic cost for all events in a TPN is shown in Figure

57.
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procedure Compute-TPN-Heuristic ( TPN tpn, Start S, End E) returns heuristic costfor
all TPN events.

I . initialize list stack <- 0
2. initialize event current-event +- E
3. h( current-event) *- 0
4. visited( current-event, true)
5. estimated( current-event) <- true
6. Push ( current-event, stack)
7. while stack t 0 do
8. current-event <- Pop( stack)
9. if all targets( current-event ) are estimated then
10. /Case 1
11. if decision-point( current-event true then
12. h( current-event) <- min [ c(event,t) + h(t)]

te targets(event)

13. //Case 2: Non-decision point subnetwork
14. else
1 5. if I out-arcs( current-event) I> I then //Case2a: Parallel sub-network
16. p-end <- parallel-end( current-event )
17. for each t, e targets( current-event ) do
18. temp-cost +- cost( current-event, ti ) + h( t,)
19. endfor
20. h( current-event ) <- temp-cost - [( \ targets( current-event) I- 1) x h( p-end)]
21. /Case 2a. simple command
22. else
23. h( event ) +- cost( current-event, target) + h( target)

24. for each p, e predecessor( current-event ) do
25. if visited(p ) = false then
26. visited(pi, true )
27. Push( stack,pi)
28. endfor
29. estimated( current-event ) +- true
30. else
31. Push-Back ( stack, current-event)
32. endwhile
33. return true

Figure 57: Pseudo-code to compute the heuristic cost for events in a TPN. The predecessors p, of an event
e, is the set of events at the head of each incoming-arc frompi -+e.

The problem of finding the heuristic cost from the end event E from each TPN

event is similar to the single destination shortest path problem, described in Chapter 4. In

this case, the algorithm to solve the single-destination shortest path problem is applied to

an entire TPN and additional book-keeping is required in order to avoid double counting

of costs in the TPN. The algorithm in Figure 57 uses depth-first search and the dynamic

programming principle in order to walk backward through the TPN, from the end E to the

start S. During each iteration, if the heuristic for all targets of current-event have been
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estimated, then h(current-event) is computed. Figure 58 shows the heuristic costs for the

events in the AtHome TPN (Figure 59).

h(E) = 0 h(K) =45 h(D) = 70

h(U) = 5 h(J) = 125 h(H) = 15

h(L1) = 10 h(N) = 10 h(G) = 25

h(T) = 15 h(V1) = 15 h(F) =30

h(P) = 35 h(X) = 20 h(C) = 50

h(R) = 15 h(W) = 30 h(B) = 55

h(Q) =85 h(Z) =20 h(A)=185

h(O) = 15 h(Y) =40 h(S) = 190

h(M) = 45 h(V) = 35

h(L) =40 h(I) =40

Figure 58: The heuristics for the event in the AtHome TPN using the default cost of 5 units.

The cost computed above specifies the cost to go, starting at any event in a single

TPN thread. Our remaining step is to use this cost to compute the cost to go of a search

tree node.

S E

5 5
5P T0

80 70 1
5 .55

A o

5

C 20F G 1200

Figure 59: TPN for the AtHome strategy with all its arc costs.

DP-Max: A Heuristic Cost for Search Tree Nodes

Note that a search tree node may contain one or more decision points in its TPNfringe.

The heuristic cost of the search tree node is the sum of the heuristic costs of each of the

decision points di in its fringe. However, this still can result in some double counting. By
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definition of a TPN, all threads re-converge either at sub-goals, or at the end event E.

Thus, the heuristic cost for each decision point in the fringe may include the cost of a

shared sub-goal. Figure 60 depicts a partial execution with decision points di and d in its

fringe. If h(di) and h(d) are summed, then h(pi), their shared sub-goal, would be counted

twice.

h(di) e E'
wei e2

did
e e e i

63 e

Figure 60: Example of the fringe of a search state with decision points di and dj. Thread from the choices of
either decision point will re-converge at p1.

To avoid this remaining element of double counting, we can apply the max

heuristic in order to select the cost of the decision point with the highest cost, of those in

the fringe of a search node. We refer to the function used to compute the heuristic cost of

a search node as DP-Max.

Our essential contribution is that the DP-Max estimate is much closer than that of

the HSP Max heuristic. All computation of the partial execution denoted by a search tree

node s, starting from the max decision point is exact. This is a result of the heuristic, h,

computed for all TPN events by dynamic programming.

In summary, the Compute-TPN-Heuristic procedure computes the heuristic cost

for each TPN event computed prior to the execution of TPNA* search. As a result, to

compute the estimated cost of search tree node, a constant table-lookup operation, is

executed to find the heuristic value for each event during optimal pre-planning.

5.5 TPNA* Search and Properties

This section discusses the overall TPNA* search algorithm and its properties. The search

is systematic, and therefore, each state, denoted by a partial execution, is visited at most

once. We argue that our formulation of the search space is complete, that is, TPNA* is
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guaranteed to find the optimal solution if, and only if, a temporally consistent, complete

execution exists.

5.5.1 The Algorithm

The pseudo-code for the TPNA* search algorithm is shown in Figure 61. The algorithm

begins by creating a root node sroot based on the start event of the input TPN (Lines 3).

The estimated cost of sroot, is computed and sroot is inserted into the priority queue, Open

(Lines 4-5). When the main loop, shown on Lines 6-18, is executed, the search tree nodes

with the minimum cost,J(n), are removed from Open and expanded in best-first order. As

each node, sbest, is removed from Open, the Goal-Test is performed to test if the partial

execution is complete. If the Goal-Test is satisfied, then the optimal solution has been

reached. Otherwise, the expand procedure is invoked (Line 11). If there are no nodes

generated by applying the Expand procedure to a search tree node s, then there exists no

consistent solution that extends s. Thus, s is pruned from the search tree, Line 18.

procedure TPNA* ( TPN tpn, Start Event S, End Event E ) returns an optimal solution that is
complete and consistent if and only if one exists.

1. Compute-Heuristic( tpn)
2. Open -- 0
3. create root node s,o, <-- Make-Root( s,,,)t S)
4. ft( soo, ) <- g( sOOt ) + h( s,,, )
5. Insert( srot, Open,f soot ) )
6. while Opent 0 do
7. s5 ,t <- Remove-Best( Open)
8. if Goal-Test( se,t, tpn, E ) then
9. return Extract-Solution( ses, )
10. else
11. set of search tree nodes tree-nodes +- Expand( sbs,)
12. if tree-nodes # 0 then
13. for each schild e new-nodes do
14. Insert( schild, Open,f( schild) )
15. endfor
16. else
17. Prune( sh,,)
18. endwhile
19. return no solution
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The Prune procedure removes a search tree node s that violates its temporal

constraints. If, after removing s, the parent of s has no children, then the parent also is

pruned from the tree. This process continues walking up the tree towards the root until

the search tree node with at least one sibling is pruned. In the worst case, the Prune

procedure will require walking up the search tree from the deepest leaf in the tree to the

root.

procedure Prune ( Search Tree Node s, Search Tree search-tree)
1. search tree node temp <- s

2. while (temp) # NULL do
3. if root( temp )= true then
4. Delete( search-tree, temp)
5. return
6. else
7. parent <- parent( temp)
8. Remove-Child(parent, temp)
9. Delete( search-tree, temp )
10. if parent has no children then
11. temp <- parent
12. else
13. temp <- NULL
14. endwhile

Figure 63: Pseudo-code to prune a search tree node from the search tree.

AtHome Example

The TPNA* search process for the AtHome strategy is illustrated in Figure 64. Each node

is denoted by (s : iteration# :J(s) : g(s) : h(s)), where iteration# represents the iteration at

which the node was expanded. The search tree nodes that are not included in the search

tree were pruned from the search space. Notice that the size of the tree is much smaller

than the complete search tree in Figure 35. For example, the choice B->C results in a

temporal inconsistency. Thus, when si attempts to generate child nodes S5, s6, and S7, the

search detects the temporal inconsistency and S5, S6, and S7 are never added to the search

tree. Additionally, by using the admissible heuristic for a search tree node, it is possible

for some states to not be explored. In this example, the heuristic guided the search

directly to the optimal execution denoted by S8. However, if s8 were inconsistent, TPNA*

91



search would prune s8 and then expand the next best search tree node in Open. In the

worst case, the only consistent execution is the feasible execution with the highest cost.

(s, : 1: 150 : 100 : 50)
{Bo L, E}

{{BD) LP) {{,D, LQ)} {(BD),(,)

(s2 : 2 : 200: 190 : 35)(s3 : -: 275: 240: 35) (s4 :-: 235: 200: 35)
{yE} , EE}

{v, W)) I

(s8 : 3 : 230: 230: 0)
{E}

Figure 64: Search process for TPNA* applied to the AtHome control program. Each search tree node is
denoted by (s : iteration# :J(s) : g(s) : h(s)). The heuristic cost of s, is max( h(B), h(L) ) = 50.

The TPNA* search algorithm is complete, consistent, and systematic. The search

can be improved by using better techniques for using inconsistencies (e.g. conflicts) to

explore the search space [41]. For example, all partial executions that contain choices

B->C or V-+Y result in a temporal inconsistency. Once this is first detected, then using

conflict-directed search technique, the portion of the search space can be pruned that

contains partial executions with either of those choices.
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5.6 Summary

TPN

Compute Heuristic

Create Root Node ' Open Child nodes
C(priority fqUeUe)

FRemove Best Branch

Prune r

Test? Consistent? Complete?

No

Eand Extend-Non-
Decision-Events

Output solu~tion

Figure 65: Flow chart for the optimal pre-planning process.

This chapter described the optimal pre-planning process. The main algorithm driving the

process is a variant of A* applied to temporal plan networks, TPNA* search. We defined

a function to compute the admissible heuristic value for events in a TPN in Section 5.2.

Then we formulated the search space and search tree with nodes and branches in Section

5.3. Finally we presented the expansion procedure for generating nodes in the search tree.

A flow chart of the optimal-pre planning process is shown in Figure 65.
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Chapter 6

Optimal Activity Planning and

Path Planning

In Chapter 5, we developed an optimal pre-planner that adopted an A* search strategy to

find the least-cost complete and consistent execution of a TPN. The optimal pre-planning

problem was formulated as a TPN search problem with activities, costs, and temporal

constraints. In this chapter, we extend optimal pre-planning problems to satisfy location

constraints on activities. To address this class of problems, we extend the optimal pre-

planner, to include spatial reasoning, via a roadmap-based path planner.

Movement of an AV or ground vehicle is often constrained by the vehicle

dynamics (e.g. turning radius). To address this, we exploit a particular effective

kinodynamic path planner, called Rapidly-exploring Random Trees (RRTs). An RRT is a

roadmap that explores the state space by randomly growing towards the destination. This

chapter introduces a globally optimal, unified activity planning and path planning

algorithm, called UAPP (Unified Activity and Path Planning). UAPP interleaves activity

and path planning by searching a hybrid graph, called a Roadmap TPN (RMTPN) that

connects TPNs and RRTs. Search over a RMTPN allows UAPP to find the globally

optimal complete and consistent plan composed of activities and paths. We focus on

mission strategies developed for a single autonomous vehicle (AV) that navigates from

region to region in order to execute activities.
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6.1 Motivation

Chapters 3 and 5 described two of the three strategies, Enter-Building and AtHome,

which comprise the Search-Building mission described in Chapter 1. In this chapter, we

focus on the third strategy, called Exit-Building. The Exit-Building strategy requires the

autonomous vehicle (AV), ANW1, to deploy its team of tiny helpbots, which are

equipped with two-way radios and minimal first-aid supplies. These are deployed in a

specific location, an office complex, where potential victims may be trapped. ANWI first

deploys its helpbos, and then recovers the chemical detecting robots, chembots, and

quickly scans their data for any extreme hazard. Finally, ANWI exits the office building

and communicates with the mission control center. The control program for the Exit-

Building strategy is shown in Figure 66, and its equivalent TPN representation is shown

in Figure 67.
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Exit-Building RMPL Control Program
1. (DxIt-Bullding [0,150]
2. (sequence

3. ;;Lower helpbots
4. (choose
5. ((sequence
6. ( ANW1.Open-Rear-Hatch(20)
7. ( ANW1.Lower-Helpbots(30 chembots.location) [5, 20]
8. ) (LaboratoryTwo)
9. (sequence
10. ( ANW1.Open-Rear-Hatch(20)
11. ( ANW1.Lower-Helpbots(45 HallwayC)
12.

13. ) ;;end choose
14. ;;Retrieve chembots and take pictures
15. (parallel
16. ( ANW1.Explore(50 LaboratoryTwo) [0, 10]
17. ((parallel
18. (sequence
19. ( ANW1.Retrieve-Chembots(40 chembots.location) [15, 20]
20. ( ANW1.Scan-Chembot-Data(20) [10, 20]
21.
22. ( ANW1.Take-Pictures(10 hallwayB) [10, 30]
23. ) [5, 50]

24. ) ;;endparallel
25. ;;ANWJ leaves building
26. (choose
27. ( ANW1.Contact-Control-Center(50 OutsideA)
28. ((sequence
29. ( ANW1.(HallwayA) [20, 30)
30. ( ANW1.Contact-Control-Center(20 OutsideA) [25, 40]
31. ) [20, 403 )
32. ( ANW1.Contact-Control-Center(70 OutsideB)

33. ) ;;end choose
34. ) ;;endsequence
35. ) ;;end Exit-Building

Figure 66: Control program for the Exit-Building strategy.

The Exit-Building program contains a number of activities that are constrained to

a specific location. For example, the activity Contact-Control -Center has the

location constraint OutsideA. This means that ANW1 must remain in the region

OutsideA throughout the entire duration of the Contact-Control -Center activity.

The vehicle dynamics are important when executing a mission strategy. A

vehicle, such as a helicopter, has a high dimension state space. Thus, to quickly explore a

vehicles state space and find a collision-free path through the world an RRT-based path

planner is used.
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Exit-Building [0, 150]

Retrieve-Chenbotso Scan-Chembot-Data() Contact-Cntl-Ctr()

Lower-Helpbotso 1,D1,2
Open-Rear-Hatchh Loco .sh.ocatio) 4 ocaion) 20

, 0 3 Take-Pictureso N' J' Loc(outsideB)

Loc(WaoratoryTwo) [5, 50 Conta tI-Ctr(

% 0,_ [0,Lc~ Explore() 'i 20, 30 25, 4

20 45 U so v
Open-Rear-HatchO Lower-Helpbotso 10a onoryTwo) Loc(hallwayA) Loc(outs eA)

Contact-Cntl-Ctr()

Figure 67: TPN representation of the Exit-Building strategy.

The main contributions of this chapter are threefold. The first is the description of

an extended TPN model, called a Roadmap TPN (RMTPN), which grows RRTs from its

events in order to satisfy location constraints. The second is a reformulation of the search

space as a unified representation that consists of partial executions comprised of

activities, temporal constraints, and RRT paths. The third is an extension to the TPNA*

algorithm, developed in Chapter 5, that resolves location constraints by dynamically

updating partial executions with paths.

6.2 Overview

UAPP searches an RMTPN model to find the optimal, complete and consistent execution.

We describe the RMTPN model in terms of RRTs, but it can be generalized to any

roadmap-based path planning model, such as the probabilistic road-map (PRM) planner

[3] and the moving obstacles path planner [21]. We specify a number of assumptions in

order to simplify the combined activity and path planning framework, and then provide

suggestions for extending the UAPP algorithm.

6.2.1 Assumptions

We make the following three assumptions. The first is a control program for the mission

may specify multiple threads of activities, such as communicating and taking pictures;

however we impose the assumption that only one thread of activities constrains the

location of the vehicle. This means that, given a set of parallel threads, all threads but one
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have the location constraint "ANYWHERE". The second assumption we make is that all

regions specified in the domain of locations are disjoint, except "ANYWHRE". The third

assumption is if an activity requires the AV to be in region B, for example, and the AV is

currently in region A, then if a path from region A to region B is found, we assume that,

the robot arrives in region B by the beginning of the activity, and remains in region B for

the duration of the activity. This might require a helicopter to hover, a rover to stop in

one place, or an airplane to fly in a holding pattern.

RRTs are probabilistically complete and incrementally explore their space for a

given number of iterations (see Chapter 2). UAPP fails to satisfy a location constraint if

no collision-free path is found within a specified number of RRT iterations.

6.2.2 RMTPN Model

The Roadmap TPN (RMTPN) model is an extension to a temporal plan network that

grows RRTs in order to satisfy location constraints. Recall that a location constraint is

attached to a TPN arc and is used to either require an activity or set of activities to be

performed in a specific spatial region, or to assert a waypoint that the AV (Autonomous

Vehicle) must navigate to. The RMTPN model supports dynamic path updates by

growing RRTs in order to achieve location constraints (Figure 68).

Video-Surveillance(

[10,1 15,20] h

Collect-Datao \ oc(RegionP)

a 5, 10a

Loc(RegionX)

Figure 68: High-level example of a RMTPN growing an RRT from RegionX to RegionP.

6.2.3 UAPP Overview

By unifying activity planning with path planning, activities that are not

constrained to a specific region may be executed in parallel, while the AV is navigating.

This is a result of dynamically updating the RMPTPN when a location constraint is

satisfied. For example, in Figure 69, Activity2 is not constrained to a specific region,

but must be executed after Activityl and before Activity3. In this case, it is

99

M



possible to navigate from RegionA to RegionW while performing Activity2 in

parallel. Likewise, Activity5 can occur in parallel to Activity3, since it poses no

additional location constraint.

Path-Strategy

Activityl() Activity2() Activity3() [15,30515,25 5,10] [5,15] p 2 0,3

Loc(RegionA) Loc(RegionW)

Activity5()

1 [20,30

Activity4() 
5, 20]

i J
I LoA(RegionZ)

f [, Activity4()5,[0]

Ac(RegonM) Activity4()

Figure 69: Example RMTPN representation of a control program that has a total ordering on its activities.
We refer to this strategy as Path-Strategy

Recall that the motivation for the RMTPN is the introduction of location

constraints on all TPN activities. If a location constraint is not explicitly specified, then

the default ANYWHERE is assumed. Each location constraint is satisfied by finding a

path for the AV that satisfies the constraint within the time bounds on the activity. This

process is detailed in Section 6.4.

6.3 UAPP Search Space Formulation

This section develops the unified TPN and path planning space that UAPP explores. The

search space has two layers. The first is a layer contains the activities in the initial TPN,

while the second layer denotes where path planning will be done (Figure 70). These two

layers are inherent to a RMTPN model.
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TPN Space

Roadmap Path .

Planning Space.-

Figure 70: Unified search space - Illustrates the two spaces in which the unified planner searches. The
circles points in the TPN represent regions where the AV will navigate to.

The input to the UAPP algorithm is a TPN representation of a control program

and an environment model. The TPN is treated as an RMTPN, allowing it to grow RRTs

and dynamically update its representation with paths. The path planner operates on the

configuration space (or state space) model of the world. The output of UAPP is the

optimal execution, moving through the TPN and path planning layers. The optimal

execution must not violate any of its temporal constraints, and all of its location

constraints must be satisfied. UAPP generalizes the TPNA* by adding in a procedure to

satisfy location constraints.

6.3.1 Partial Execution

Recall, from Chapter 5, that the search space of an optimal pre-planning problem consists

of the prefixes of all complete executions in a TPN. Likewise the RMTPN search space

consists of the prefixes of all complete executions in an RMTPN. These prefixes are,

again, referred to as partial executions. There are two elements of a RMTPN partial

execution. First, the RMTPN execution contains a set of contiguous threads that originate

at the start event S and have not been fully expanded to the end event E. Second, an

RMTPN partial execution contains a single additional thread, which is a path. A feasible

path connects all locations in the partial execution, within the temporal constraints,

specified in the partial execution's corresponding STN. An example of a partial execution

of the Path-Strategy (Figure 69) is given in Figure 71.
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Activityl() Activity2() Activity3o 0
15, 25 [5,10] [5,15} [20,30 15,30

ae r El
L b(RegionA) .. d4cRegionW)

. .Activity5()
%[20, 30 LO(R )

p Region
Region A

RegionZ RegionW

Figure 71: Example of a RMTPN partial execution with a path from RegionA to RegionW to RegionM.

A RMTPN partial execution is compactly encoded by its terminal events, choices,

and path connecting regions. The formal mapping of a RMTPN partial execution to its

encoding is defined by the tuple fringe, choices, RRT-path) where:

* fringe: is a set containing terminal events in the partial execution (as described in

Chapter 5).

* choices: is a set containing each choice in the partial execution (as described in

Chapter 5).

* RRT-path: is a path between activity regions that does not violate the temporal

constraints. The RRT-path can be traced from the current RRT node back to the

initial AV state by following the parent RRT nodes on the path.

The encoding for the partial execution shown in Figure 71 is ({E, m}, {g-+m}, RRT-

path(rrt-node(RegionM)) ).

A complete execution of an RMTPN is a complete execution through the TPN

layer, which satisfies all of the location constraints of the execution, and a continuous

roadmap path, through the path planning layer, to each region specified by a sequence of

location constraints.

6.3.2 Search Tree

Recall that a search tree is constructed by TPNA* search (Chapter 5). A search

tree for an optimal pre-planning problem specified by a RMTPN is comprised, once
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again, of nodes and branches. An example search tree for the Path-Strategy is shown in

Figure 72. Initially, the root of the search tree denotes a partial execution encoded as (S,

{}, initial-AV-location). A search tree node n, is encoded by the tuple (parent(n),

TPNfringe(n), location(n)), where parent(n) and TPNfringe(n) are defined the same as in

Chapter 5. For a given search tree node n, location(n) is the current RRT node in the path

planning layer. For example, location(s3) in Figure 72 is rrt-node(RegionZ). Finally,

branches in the search tree denote a specific set of choices in the search space, as

described in Chapter 5.

The RRT path containing all regions of a partial execution denoted by a search

tree node n can be obtained by following the path from location(n) backwards to the

initial state of the AV.

(s1, rrt-node(RegionW))
{L, E}

{(g, m)} , )

(s2, rrt-node(RegionM)) (s3, rrt-node(RegionZ))
{E) {E}

Figure 72: Search tree Path-Strategy in Figure 69.

Node Expansion and Goal Test

As described in Chapter 5, the TPN fringe events of a search tree node are decision points

in the TPN layer, and an RRT node in the path planning layer. The decision points of a

search tree node are used to generate new child nodes. For example, TPNfringe(si) is

comprised of the two events g and E. Event g is a decision point, and thus, for each

choice from g, a new child node is generated. In this case, there are two choices g->m

and g--+h, which are denoted as search tree nodes S2 and S3 in Figure 72.

When a search tree node n is expanded to its first location constraint, location(n),

the search tree node looks-up location(parent(n)) and plans a path from the RRT node

returned by that procedure to the location(n). For example, when the search tree node S2,

is expanded a location constraint, Loc(RegionM) is satisfied and the location(s2) is

updated to rrt-node(RegionM). This is illustrated in Figure 73 and Figure 74. The
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additional TPN events and arcs are inserted when location constraints are satisfied (see

Section 6.4).

(sI, s2= (si, {m}, (RegionW))
rrt-node(RegionW)

{L, E}) Activityl() Activity2() Activity3l

0 15,25 (5, 10] [5,15) q (Regio g
LoARegionA) 15,30

[0, -1 0,-
{(g, m)}

Apply-Controls(u, t) [0 - App trols(u, t) 0,
ob, ub]00

(s2, {E}) I At(RegionA) At(RegionW)

RegionM
RegionA

RegonZ RegionW

Figure 73: Example of an RMTPN partial execution for the search tree node s2 (Figure 72) before satisfying

location constraint Loc(RegionM) during expansion. The corresponding search tree is shown on the left,
and the partial execution is shown on the top right.

S2= (s 1, {m}, (RegionW, RegionM))

(s1, rrt-ode(Region )5, 25 Activity () Activity2() Activity3
<j r-oeR goV1,5[5,10] [5, 15] Regio

{, E}) (0,] a d e f 9
Loc(RegionA) 15,30 0 -
[0, -1 [0, -1

~(g, m) Apply-Controls(u, t) 0, -] AppI troVs(u, t) 0, Apply-Controls(u,i) [0, ]

A (RegionA) At(RegionW) At(RegionM)

(s2, rrt-node(RegionM), Rgon
{E}) RegionA

RgionZ RegionW

Figure 74: Example of partial execution for the search tree node S2 (Figure 72) after satisfying location

constraint Loc(RegionM) during expansion.

The UAPP node expansion procedure is detailed in Section 6.4. The procedure

extends the expansion procedure described in Chapter 5 by growing RRTs in attempt to

satisfy location constraints of a search tree node n. If the location constraint is satisfied,

then the RRT node denoting the goal location, rrt-goal, is recorded with the search tree

node, and location(n) rrt-goal.

The UAPP expansion procedure terminates if a search tree node s is removed

from the priority queue, Open, which satisfies the Goal-Test. The Goal-Test verifies that
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the RMTPN partial execution denoted by s is complete. That is, the corresponding TPN

partial execution is consistent and complete, and s contains a collision-free path through

the path planning space, which connect all regions in the partial execution denoted by s.

We refer to the definitions outlined in Chapter 5 for feasible execution, and

optimal execution to describe a feasible and optimal RMTPN execution. A feasible

RMTPN execution is a partial execution through the TPN and path planning space that is

consistent and complete and satisfies the Goal-Test. An optimal RMTPN execution is

feasible execution that minimizes the evaluation function f If no feasible execution

exists, then either one of two cases has occurred. The first is that there exists no complete

consistent execution in the corresponding TPN. The second is that, within the given

number of iterations to grow an RRT, a location constraint was not satisfied, and thus the

algorithm terminated.

6.4 Expansion and Satisfying Location Constraints

Recall from Chapter 5 that the TPNA* Expand procedure is comprised of two phases.

The first phase, Phase One (Figure 47), is to extend threads from each event in the

TPNfringe(s) of a search tree node s, until, along each thread, either a decision point is

reached or the end event, E, is reached. If, while extending threads, two or more threads

re-converge, then temporal consistency is tested. The second phase, Phase Two, involves

generating new child search tree nodes, and is accomplished by the Branch procedure

(Figure 50).

The UAPP expansion procedure extends the TPNA* expansion procedure by

adding one more step to Phase One. This step grows the RRTs from the location(n), of a

search tree node n, in an attempt to satisfy location constraints. If location(n) is empty

then the RRT grows from the location(parent(n)). The procedure to satisfy location

constraints is called Satisfy-Location-Constraint and is given in Figure 75. More

specifically, as a thread of search tree node s is extended, if an activity with a location

constraint is extended, then the Satisfy-Location-Constraint procedure is invoked. The

procedure grows an RRT for a specified number of iterations from the location(s) to the

region specified in the location constraint, referred to as the goal region (Lines 4). This is
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illustrated in Figure 76, where the thread is extended to Activity3, which has the

location constraint Loc(RegionW).

procedure Satisfy-Location-Constraint ( Search Tree Node s, Path Planner rrt_pp
Location Constraint loccon )

returns true if location constraint is satisfied, otherwise false.
1. initialize RRT node start
2. start <- location(s )
3. create RRT node goal +- Make-RRT-Node( get-region( loccon))
4. set roadmap-path <- Grow-RRT( start, goal)
5. if pathfound( roadmap-path ) then
6. initialize end-at-assertion +- end-event( most-recent-At-assertion( s))
7. create navigation navactivity
8. set-command( navactivity, Apply-Controls)
9. set-parameters( navactivity, control-inputs( roadmap-path))
10. [lb, ub] <- get-time-bounds( roadmap-path )
11. set-temporal-constaints( navactivity, [lb, ub])
12. insert-arc( end-at-assertion, navactivity, [0, 0])
13. create At-Assertion at-region
14. set-temporal-constraint( at-region, [0,+INF])
15. insert-arc( end-event( navactivity ), start-event( at-region ), [0, 0])
16. insert-arc( start-event( at-region ), start-event( loccon ), [0,+INF])
17. insert-arc( end-event( loccon ), end-event( at-region ), [0,+INF])
18. if Not( Temporally-Consistent( distance-graph( s) ) then
19. return false
20. else
21. location(s) <- ( rrt-goal( roadmap-path))
22. return true
23. else
24. return false

Figure 75: Procedure to attempt to satisfy location constraints, during Phase One.

Activityl() Activity2() Activity3o
15,25 [5, 101 [5, 151

[o, -] a e q
Loc(RegionA)

[o,..j [0,..]

PApply-Controls(u, t) [0, **1 A

At(RegionA)

RegonM
RegionA

Figure 76: Attempting to satisfy the location constraint Loc(RegionM) by growing an RRT from the current
region, RegionW.
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Inserting TPN Arcs for Temporal Consistency

Planning a path from region to region adds more time to the RMTPN partial execution.

Thus, when a path is found, we insert a set of arcs and a navigation activity in the

corresponding TPN, with specific time bounds. Primarily, we want to test if the time

needed to navigate along the path does not induce a temporal inconsistency.

A location constraint is satisfied if, and only if, the path planner returns a

collision-free path from the AV's current position to the specified location within a

specified number of iterations. In this case, a navigation activity, that abstracts the RRT

path, is added to the partial execution (Lines 7-11). We use an "At" assertion which

means the AV is At the location for the duration of the activity. For example, in Figure

77 the Apply-Controls2, shown on arc p5->p6, is inserted from the previous At

assertion, At(RegionA). The temporal bound on the Apply-Controls2 activity is the

minimum and maximum time it takes to get from RegionA to RegionW.

In addition to the navigation activity, an At assertion is added that holds over the

duration of the location constraint (Lines 13-17). This is a result of inserting two

temporal constraints. The first constraint is on the arc from the start event of the At

assertion to the start event of the location constraint. This arc is given a temporal bound

of [0, +INF]. The second, is an arc from the end of the location constraint to the end of

the At assertion, also with a [0,+INF] temporal bound. The addition of these arcs is

illustrated in Figure 77 with arcs p7->q and arc r-+p8. Once the navigation activity and

the At assertion are inserted into the partial execution; threads in the partial execution

converge. Thus, a test for temporal consistency is performed (Lines 18). The test verifies

whether or not the path can be followed by the AV within the temporal constraints of the

partial execution. The minimum and maximum time bounds of the path are computed

based on the AV's minimum and maximum velocities.
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[0, -] [0, -1 10, -1 1 0, e.1

Apply-Controlsl(u) [0, ApplIC trols2(u) 0, -
fib, ub]

At(rrt- tte(RegionA)) Art-node(RegionW))

Region
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RegionZ RegionW

Figure 77: After the location constraint Loc(RegionW) is satisfied.

There are two cases in which the Satisfy-Location-Constraint procedure returns

failure. The first case occurs when a collision-free path to the goal region is not found

within the given number of RRT iterations. The second case occurs when a collision-free

path is found, but the amount of time to navigate does not fit within the temporal bounds

of the partial execution. In this case, the RRT continues exploring until the maximum

number of iterations is reached. If the maximum number of iterations is reached and no

path is found, or if the temporal bounds of the path cause a temporal inconsistency, then

the RMTPN partial execution is inconsistent (Figure 77, Line 19 and Line 24).

If the Extend-Non-Decision-Events procedure succeeds, then the Branch

procedure is invoked. Recall that the Branch procedure, as described in Chapter 5, is

responsible for generating new child nodes from a parent p. Child nodes are generated for

each possible set of choices between decision points in the fringe ofp.

Converting an RMTPN Path to a Sequence ofActivities

As stated, an RMPTN grows RRTs in order to achieve location constraints. A path

generated by an RRT path planner can be converted into a sequence of activities, as

shown in Figure 78. This is done by creating an activity, Apply-Controls, which is

parameterized by the requisite control inputs to get from state to state in the RRT path.

Once a complete execution is found, the navigation activities inserted during the Satisfy-

Location-Constraint procedure can be removed and replaced with a sequence of Apply-

controls commands for each RRT node pair.
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RRT Path
Si

... s ...

Activity:
Apply-Controls (control inputs u )[lb, ub]

Apply-Controls( {u})

Figure 78: Example of mapping from a path sequence with nodes and edges to a sequence of activities.
Each activity refers to the action of navigating to a location by applying the control inputs u for the duration
of the activity.

An example of a complete RMTPN execution with the control actions is shown in

Figure 79.

ctivity5

Activity10 Activity2() Activity3l

a 15,25 5 10] 5,15] ' Regio
[0,~~~~~ %.

LoctRegionA) ,.- 15,30 Activity4()

FiguregoA 90xmleo1-oplt MP1eeuin

10, -1 0, -] P
RegionM

0, -1 0, ao[O, -]

At(RegionA) At(RegionW) At(RegionM)

RegionM
RegionA ply-ControLs(u, t) '%%

RegionZ RegionW

Figure 79: Example of a complete RMTPN execution.

6.5 Discussion

In summary, we developed a solution to satisfy location constraints for control programs

based on the assumptions presented in Section 6.2.1. We use the RMTPN model and

apply the UAPP algorithm in order to satisfy location constraints in a given partial
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execution. Given this solution, we are able to unify activity planning and path planning

by searching over their combined layers, in order to find the globally optimal plan. The

UAPP algorithm can use the cost of the RRT paths, found while expanding a search tree

node, with the cost of the activities of the search tree node in order to get a global cost.

Moreover, given a roadmap based path planner with an optimal admissible heuristic, such

as a visibility graph, the UAPP algorithm can use the heuristic in order to partially

expand paths of a search tree node to get a better estimated cost of a solution through that

node.

The process of satisfying location constraints can be generalized to control

programs with multiple threads by employing the standard threat resolution techniques as

described in [39][28]. These techniques are used to place an ordering on two intervals

that assert two different locations. We describe this further in Chapter 7.

110



Chapter 7

Performance and Discussion

This chapter describes the implementation and experimental results of the optimal pre-

planner and the unified optimal activity and path planning system (UAPP). We

demonstrate both capabilities on a suite of randomly RMPL control program. Then give a

discussion of the results and suggestions for future work. Finally, we conclude with a

summary of the thesis contributions.

7.1 Implementation

Both the optimal pre-planner and unified activity and path planning (UAPP) system were

implemented in C++ on a Windows based system using the gcc compiler. A random

RMPL generator, created to empirically validate the system, was also implemented in

C++.

7.2 Empirical Validation

We first analyze the performance of the optimal pre-planner on a set of random RMPL

control programs. We use a random RMPL generator to create classes of problems that

are parameterized by the number of decision points, the number of choices per decision

point, the number of parallel sub-networks, and the solution depth. We discuss the

performance of optimal pre-planning using the uniform cost and DP-Max heuristic to

guide the search. Finally we conclude with preliminary results of the UAPP applied to 10

RMPL control programs with increasing number of location constraints.
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7.2.1 Analysis of TPNA* Search with Feasible, Uniform-cost, and DP-Max

We begin our analysis of the optimal pre-planner with a general comparison of the three

search strategies: feasible, uniform-cost, and DP-Max on a large state space. Recall that

the feasible search strategy introduced in [39], implements a modified network search in

order to find a feasible execution through the TPN. When the search reaches a decision

point, it immediately makes an arbitrary choice, and proceeds forward through the TPN,

until either a temporal inconsistency is detected, or a feasible solution is reached. If the

feasible search detects a temporal inconsistency, it backtracks to its last decision point

and selects a different choice.

5

c

# of branches

depth ddepth I depth 2 (solution depth)

Figure 80: Example of type of problem instance analyzed.

We compare the trade-off of finding a feasible solution versus finding an optimal

solution in a large state space. The of problems used to compare the two search strategies

involved a sequence of choices, with varying depth, as shown in Figure 80. The number

of branches per decision point was set to 2, and the solution depth ranged from 1-10. We

allotted each search algorithm the same maximum amount of time to solve all 10

problems. Note that random problems of this type will not illustrate the effectiveness of

the DP-Max heuristic. This is due to the fact that there is only one activity per thread in a

decision sub-network. As a result the uniform cost and DP-max heuristic will perform

comparable to each other.

Table 1: General analysis of the three search strategies.
Search strategy Avg. Time to solve

Feasible 47,869 Jts
Uniform-cost 54,972 ps
DP-Max 51,930 ts
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In this experiment, the feasible search only slightly out-performed the uniform

cost and DP-Max searches, as was expected. Table 1 shows the average computational

time for each search strategy to solve 10 problems. The graphs in Figure 81 and Figure

82 illustrate the computational time to solve optimal pre-planning problems with a

sequence of decision sub-networks. The graph implies that the search strategies are

comparable in the amount of time to compute either a feasible solution or an optimal

solution for problems with less than 6 decision points in a sequence. The feasible search

strategy found a solution to the problem with a depth of 6 fairly quickly. We hypothesis

that the feasible search "got lucky" with the set of arbitrary choices it made.

X 10 Graph of feasible, uniform-cost, and DP-max searches.
4.5

0 feasibleSO
4 cpmaXSQ

3.5-

2.5-

E2 -

1.5 1
1 4

0.5

1 2 3 4 5 6 7 8 9 10
Number of sequences of decision-points (solution deplh)

Figure 81: Plot of the computation time of the feasible, unified-cost, and DP-max
RMPL control programs with a sequence of choices and a solution depth from 1-10.

search strategies on
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Graph of feasible, uniform-cost, and DP-max searches. (semilog)
10 * unfiSO
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Figure 82: Semi-log plot of the graph in Figure 81.

We used this preliminary data to develop the experiments described in Section

7.2.2 and Section 7.2.3. Note that, to conclude which search strategy performs the best in

practice, 10 random problem instances is insufficient. More analysis can be performed

using a bank of random examples per solution depth, and by analyzing the average

performance of each search strategy overall.

7.2.2 Analysis of TPNA* Search on Class A Problems

This section presents a performance analysis of the optimal pre-planner on problems

without location constraints. We compare the results of optimal pre-planning with the

DP-Max heuristic to pre-planning with a uniform-cost search, that is, optimal pre-

planning with only activity costs. For the types of problems in this class, we expect the

search with DP-Max to perform comparably to the search with uniform-cost search. In

Section 7.2.3 we show a class of problems for with the DP-Max heuristic outperforms the

uniform-cost search.

To analyze the performance of the optimal pre-planner on a large state space, a set

of 100 problems, encoded as RMPL control programs, was generated. The problems were

composed of a sequence of choose expressions with a varied number of choices and

solution depths, as shown in Figure 80. To simulate a temporal inconsistency in a TPN,

threads within each choose were randomly selected to be made either temporally
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consistent or inconsistent. This is done by setting the temporal bounds of a thread(s) to be

inconsistent. That is, the lower bound time is greater than the upper bound time.

We designed two trials, where each trial referred to the number of choices per

decision point, which corresponds to the branching factor of each problem. A trial

consisted of problems with b = 2, or 3 where b is the number of branches. We set the

branching factor range based on the results in Section7.2.1. A problem instance was

randomly created based on the following parameters:

* Depth of solution ranged from 2 to 6 decision sub-networks within a problem.

" The cost was randomly generated ranging from 10 to 100.

" The maximum number of temporally inconsistent branches within a decision sub-

network ranged from I to b-1.

The results are shown in Table 1 and Table 2.

In each trial, we analyze the maximum number of search tree nodes in the priority

queue, Open, for each problem instance. We also show the average number of enqueue

operations per data set, where an enqueue operation is the process of inserting a search

tree node into Open. Finally, the average time to solve the problem instances for each

trial is given.

Table 2 highlights the performance of TPNA* applying a feasible, uniform-cost,

and DP-Max search strategy on the randomly generated class of problems. We provide

the range of values for the maximum number of search tree nodes in Open problem

instance, and the range of enqueue operations per problem instance.

Table 2: Analysis of uniform-cost and DP-Max
search on 100 problem instances with a branching
factor of 2.

Unijbrm DP-Max
Avg. Time to solve I,070.3 pLs 1,090.7 9ts
Avg. of the Maximum 17.1 17. 1
Number of Nodes in Open
Avg. Number of Enqueue 44.4 44.4
Operations
Minimum(of the Maximum 4 4
Number of Nodes in Open)
Maximum(of the Maximum 49 49
Number of Nodes in Open)
Minimum(Number of 8 8
Engueue Operations)
Maximum(Number of 1 28 1 28
EnqUeue Operations
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As expected, the DP-Max heuristic proved to be uninformative when solving this

class of problems. Note that this class of problems, which is composed of a sequence of

choose expressions, demonstrates the worst case for temporal consistency checking.

That is, a partial execution consisted of solely one thread. Consequently, an inconsistent

partial execution was not detected until the thread re-converged at the TPN end event E.

Table 3: Analysis of uniform-cost and DP-Max on
100 problem instances with a branching factor of 3.

Uniform DP-Max
Avg. Time to solve 12,500 gs 12,741 pts
Avg. of the Maximum 120 120
Number of Nodes in Open
Avg. Number of Enqueue 265 265
Operations
Minimum(of the Maximum 9 9
Number of Nodes in Open)
Maximum(of the Maximum 530 530
Number of Nodes in Open)
Minimum(Number of 14 14
Enqueue Operations)
Maximum(Number of 1,105 1,105
Enqueue Operations

In general, any of the two optimal search strategies would benefit greatly by

extracting conflicts (inconsistent choices) from the search space. This can be done with a

Conflict-directed search [41] [33]. We are currently characterizing the class of problems

for which the DP-Max heuristic outperforms the uniform-cost search.

7.2.3 Analysis of UAPP

We present preliminary data of the UAPP algorithm. We focus on the time to compute a

combined activity and path plan for 10 RMPL control programs with an increasing

number of locations.

Table 4: Analysis of UAPP on ACLC RMPL control
programs.

Time to Number of Number of Number of Number of

Solve(ps) locations Sequence Choose parallel

831 3 1 1 0
370 4 2 1 0
7,300 4 3 1 0
610 7 3 2 0
5,337 8 3 2 1
270 9 3 2 2
3,465 12 3 3 2
9,463 13 4 3 2
14,971 14 5 3 2
7,470 15 5 3 3
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To gain an insight on the amount of time to compute a combined activity and path

solution in a simple world, we created an environment with dimensions 100'x100' and no

obstacles. The robot dimensions were estimated with a sphere of radius 1'. The UAPP

algorithm is dominated by the time to grow RRTs. This is to be expected since the search

space of the optimal pre-planning problem has increased. A number of more analyses

need to be performed in order to completely characterize the UAPP algorithm. For

example, a comparative analysis of UAPP using various RRT parameters and UAPP

using other roadmap based path planners would provide greater insight into the

computational and memory costs of unifying activity planning and path planning.

7.3 Future Work

This section gives suggestions for future work. We focus on three main areas: 1)

improving heuristic costs of search tree nodes, 2) solving location constraints on multiple

threads within a control program, and 3) employing an optimal memory-bounded search

strategy to improve space efficiency.

7.3.1 Improving Heuristic Costs for Search Tree Nodes

An issue for computing an accurate admissible cost is that search tree nodes may contain

more than one TPN event in their fringe. Threads corresponding to each event may re-

converge at a sub-goal before the end event E. In this case the sum of the heuristic costs

of the TPN events in the fringe, computed by the dynamic programming principle, will

double count the cost of their common sub-goal. Without combined knowledge of where

the threads containing these TPN events converge, the heuristic cost of a search tree node

can become inadmissible, while a max heuristic is less informative. This can be

addressed, by performing a depth first search from each of the TPN fringe events, in

order to obtain the point where the threads converge. This only requires at most an O(E)

forward search, where E is the number of edges, each time the heuristic cost of a search

tree node is computed.
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7.3.2 Extending UAPP to Multi-Threaded Control Programs

In a single AV strategy, in order to plan paths from region to region, the UAPP must

determine the order in which the regions are visited. If two location constraints are

asserted over two intervals of time that overlap, then the two constraints pose a threat to

each other, and are called conflicts. For example, threads in a parallel sub-network are

executed concurrently. If, however, two threads of a parallel sub-network have activities

that are to be executed in different regions, then these activities cannot be executed at the

same time. For example, consider the parallel sub-network for the Exit-Building program

(Figure 83). The parallel sub-network contains location constraints on each of its threads.

Thread M-+N-->O-*P--+R-+N'-+M' has the location constraint Loc(chembots.location).

Thread M-+N->S--T-+N'-+M' has the location constraint Loc(HallwayB). Finally, the

thread M-+U->V-->M' has the location constraint Loc(LaboratoryTwo). The UAPP

algorithm must be able to determine the order in which each of regions specified by the

location constraints, are visited.

Retrieve-Chembotso Scan-Chembot-Data(

Take-Pictureso N'

s [03] T
Lmc(HallwayB) [5, 5

Explore()

Uxc so" VOLoc(LaboratnryTwo)

Figure 83: Snapshot of the parallel sub-network in the Exit-Building TPN (Figure 67). The location
constraints within a parallel sub-network must have an order that specifies the order in which regions are
visited.

To determine the order in which each region is visited and guarantee that two

activities constrained to different locations are not asserted over the same time interval,

we apply the standard threat resolution techniques described in [28][39]. The UAPP

algorithm approaches threat resolution into two steps: 1) Conflict detection and 2)

Resolution. Conflict detection requires determining the feasible time ranges over which

the activities in the partial execution can be executed, and then test each interval to

determine whether or not, more than one location constraint is asserted over an interval.

If a conflict has been detected, then UAPP attempts to resolve the conflict by imposing an

ordering forcing one conflict before the other.
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Intervals of activities on one thread of a parallel sub-network may overlap with

intervals of activities on another thread within the same sub-network. Location

constraints within a parallel sub-network may also overlap, and thus, considered

incompatible. This would require the AV to be in two regions at the same time, which is

not possible. We refer to this incompatibility as a conflict. A conflict, as described in

[39], occurs if two constraints within the same interval assert the negation of each other.

For example, given a condition C, if C and Not(C) are asserted over the same interval

then they conflict. A condition C, is analogous to a location constraint. For example, if

two location constraints are asserted over the same time interval, then the two constraints

conflict.

To detect location constraints that conflict within a given partial execution, we

first determine when two intervals overlap. To detect when two intervals overlap we

computing the feasible time ranges for each event in the partial execution, as described in

[39]. A feasible time range of an event is given by the upper bound and the lower bound

times for the event to occur. To compute the feasible time range of events in partial

execution, we use the distance graph encoding of the partial execution. The upper bound

time range for each event is given by the shortest path distance from the start event S to

each event [39]. The lower bound time range for each event is given by the negative

shortest path distance of an event to the start event S.

Once the feasible time ranges for each event in the partial execution have been

computed, then overlapping intervals with location constraint conflicts can be detected. If

a conflict is detected, then we use the threat resolution technique described in [39]. This

technique involves applying the standard promotion/demotion technique [28] by inserting

a TPN arc with a non-zero lower bound from the end of one conflict to the start of

another. Inserting this arc imposes an ordering on which region, specified in the

conflicting location constraints, will be visited first. Inserting this arc may result in a

temporal inconsistency. Thus, if both promotion and demotion result in a temporal

inconsistency, then the conflict is unrecoverable, and the partial execution is invalid.

Otherwise, if imposing an ordering on conflicts succeeds then we can grow an RRT to in

attempt to resolve the location constraints, as described in the previous section.
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7.3.3 Improving Space Efficiency

Best-first search, operates similar to breadth-first search, in that space consumption

grows exponentially in the depth of the search. A memory-bounded optimal plan search

can compensate for the tendency of A*-based algorithms to use excessive space. Thus, a

search strategy such as TPNA* search may not be suitable for certain AVs. This is of

particular importance for mobile robots, given their limited computing resources. Initial

versions of this type of search strategy were presented in [7] and [29]. These memory-

bounded searches are guaranteed to find the optimal plan that can be stored within their

allocated memory. They do this by partially expanding search nodes and pruning high-

cost nodes from the explicit memory, while backing up heuristic estimates along partial

paths in the search tree. The most recent version of these algorithms, Zhou and Hansen's

SMAG*-propagate and SMAG*-reopen [43] improve speed by accounting for heuristic

inconsistencies that occur during the search. A memory-bounded search strategy can

adapt the SMAG* optimal search algorithm and apply it to find the optimal execution in

an RMTPN within a specified amount of memory.

7.4 Summary

There are three main research contributions presented in this thesis. The first is a

language, the ACLC (activity cost and location constraint) subset of RMPL, used to

specify mission strategies for autonomous vehicles. The mission strategies are specified

in a control program. The language supports activities with costs and location constraints.

Location constraints are specified alongside an activity. They constrain an autonomous

vehicle (AV) to a specific spatial region throughout the duration of the activity. To

resolve location constraints, an environment model is described. The environment model

contains a description of the autonomous vehicle used in the mission and the world in

which it will navigate. In addition to location constraints, the ACLC subset of RMPL

allows the mission designer to specify the estimated cost of executing an activity. Given

the ACLC specification for mission strategies, a control program is mapped in to a

compact graphical representation, called a temporal plan network (TPN). TPNs were
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introduced in [40][39], but are extended in this thesis to encode activity costs and

location constraints.

The second contribution is an optimal pre-planner (Chapter 5). The optimal pre-

planner operates on a given TPN encoding of a mission strategy. We define partial

execution of the TPN as search states in the search space. The primary algorithm driving

the optimal pre-planner is TPNA* search. TPNA* constructs a search tree in order to

explore the search space for an optimal feasible execution. In addition, we provided an

optimal heuristic for TPN events, called DP-Max, which can be used to efficiently guide

TPNA* search.

The third contribution is the unified optimal activity and path planning (UAPP)

system. This system supports optimal pre-planning of activities and location constraints.

UAPP operates on a road-map TPN (RMTPN) and explores the combined TPN search

space and path planning space. Location constraints are resolved by determining a

temporally feasible ordering on the locations within a partial execution. Then an RRT

based path planner grows a tree in attempt to entail each constraint (Chapter 6).

In conclusion, unifying model-based mobile programming with roadmap-based

path planning can provide enhanced autonomy for robots. Robots equipped with robust

automated reasoning capabilities and sensing technology can be used to aid emergency

personnel in rescue missions, potentially saving more lives.
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