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Abstract

Finite-element numerical modeling and analysis of electromagnetic waveguides and
resonators used in terahertz (THz) quantum cascade lasers (QCLs) is presented. Sim-
ulations and analysis of two types were performed: two-dimensional waveguides, and
two- and three-dimensional resonators. Both metal-metal and semi-insulating (SI)
surface-plasmon geometries were investigated. Waveguide simulations extend previ-
ous one-dimensional analyses to two dimensions; resonator simulations in two and
three dimensions are presented for the first time. The waveguide simulations quan-
titatively show when two-dimensional effects become non-negligible in their effect
on the figure-of-merit relative to previous one-dimensional analyses. The resonator
simulations quantitatively show the hybrid optical/microwave nature of THz facet
reflectivities, demonstrating that both the effective index method and the impedance
mismatch method are poor methods in calculating mirror reflectivities for metal-
metal waveguides in the THz region. The effective index method is shown to still be
valid for SI surface-plasmon waveguides. In addition, simulated radiation patterns
are presented for both waveguiding structures.

Thesis Supervisor: Qing Hu
Title: Professor

3



4



Acknowledgments

"For my part, I know nothing with any certainty... but the sight of the

stars makes me dream." ~ VvG

To say the very least, I feel extremely honored and privileged to have had the

opportunity to join the THz QCL project and experience the excitement that comes

with being apart of truly groundbreaking scientific research. I would like to thank

my advisor Qing Hu for making this tremendous opportunity possible and for setting

a remarkable example in finding joy in the search for understanding.

I would also like to thank my labmates: Ben Williams, Sushil Kumar, and Hans

Callebaut. With their hard-working and amiable nature, they have made the lab a

fun and enjoyable place to call work. I am especially grateful to Ben Williams for

all of the time and patience he has given me in answering all of my questions from

waveguides to kernels.

And what would life in Boston have been like without all of the wonderful friends

I have met since moving here just under two years ago. To the "phatfriends" group:

for keeping things sane with all the fun adventures experienced and yet to come.

Special thanks go out to: Tyrone Hill, Shawn Kuo, and Chris Rycroft, the kind of

roommates that make what I call home a place I look forward to going back to every-

day; Tony Lau, for while setting a remarkable example in the art of procrastination,

for also keeping things in perspective for me; Sarah Rodriguez, for spicin' things up

with her ever so modest personality; Vikas Anant, for fun times at Tang and lunch

breaks at the Whitehead; Kaity Ryan, fellow rower (once-upon-a-time), for making

things interesting for us all through her famous seminar series; Amil Patel, for all the

afternoon conversations and work breaks; Ming Tang, my solid-state physics buddy

and fellow dim sum craver; and of course the ever so vivacious Vivian Lei, for, aside

from being punctually late, is as loyal and fun as they come!

Finally, I want to thank my family. To my parents, for the love and support (and

patience) they have shown over the years; and to my sister, for her ever continuing

support and lasting friendship.

5



I would also like to acknowledge the financial support of the MIT Presidential

Fellowship and of the Department of Defense's National Defense Science and Engi-

neering Fellowship.

6



Contents

List of Figures

List of Tables

1 Introduction

1.1 Project Statement . . . . . . . . . . . .

1.2 Historical Development . . . . . . . . .

1.2.1 Plasmon-enhanced waveguides

1.2.2 Surface-plasmon waveguides .

1.2.3 Semi-insulating surface-plasmon

1.2.4 Metal-metal waveguide . . . . .

1.3 Motivation for Simulations . . . . . . .

1.4 FEMLAB - Simulation Method . . . .

1.5 Thesis Overview . . . . . . . . . . . . .

waveguide

2 Brief Overview of the Finite Element Method

2.1 Introduction . . . . . . . . . . . . . . . . . . . . .

2.2 Classical Methods for the Approximate Solution

Problem s . . . . . . . . . . . . . . . . . . . . . . .

2.2.1 The Rayleigh-Ritz method . . . . . . . . .

2.2.2 The Galerkin method . . . . . . . . . . . .

2.3 The Finite Element Method . . . . . . . . . . . .

2.3.1 Basic procedure . . . . . . . . . . . . . . .

7

of

. . . . . . . . . .

Boundary-Value

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

11

15

17

17

18

20

20

21

23

23

24

25

27

27

28

29

32

33

34



3 Terahertz Quantum Cascade Laser Resonator Theory

3.1 Introduction ..... ........................

3.2 Threshold Condition for Laser Oscillation . . . . . . .

3.3 Loss Mechanisms . . . . . . . . . . . . . . . . . . . . .

3.3.1 Free carrier absorption loss . . . . . . . . . . . .

3.3.2 Phonon absorption loss . . . . . . . . . . . . . .

3.3.3 Facet coupling loss . . . . . . . . . . . . . . . .

3.4 Radiation Pattern and Directivity . . . . . . . . . . . .

4 Waveguide Design and Analysis

4.1 Introduction ..................

4.2 Simulation Method . . . . . . . . . . . . . .

4.3 SI Surface-Plasmon Waveguide Design . . .

4.4 SI Surface-Plasmon Waveguide Results . . .

4.4.1 Plasma parameters . . . . . . . . . .

4.4.2 Waveguide width . . . . . . . . . . .

4.4.3 Substrate thickness . . . . . . . . . .

4.4.4 Side metal contact gap distance . . .

4.5 Metal-Metal Waveguide Design . . . . . . .

4.6 Metal-Metal Waveguide Results . . . . . . .

4.7 Discussions . . . . . . . . . . . . . . . . . .

5 Resonator Analysis

5.1 Introduction . . . . . . . . . . . . . . . . . .

5.2 Simulation Method . . . . . . . . . . . . . .

5.2.1 Reflectivity calculation . . . . . . . .

5.3 Semi-Insulating Surface-Plasmon Resonators

5.4 Metal-Metal Resonators . . . . . . . . . . .

5.4.1 Reflectivity . . . . . . . . . . . . . .

5.4.2 Directivity . . . . . . . . . . . . . . .

5.5 Discussions . . . . . . . . . . . . . . . . . .

8

37

. . . 37

. . . 38

. . . 39

. . . 40

. . . 41

. . . 44

. . . 45

47

. . . . . . . . . . . . . . 47

. . . . . . . . . . . . . . 47

. . . . . . . . . . . . . . 49

. . . . . . . . . . . . . . 51

. . . . . . . . . . . . . . 51

. . . . . . . . . . . . . . 52

. . . . . . . . . . . . . . 53

. . . . . . . . . . . . . . 61

. . . . . . . . . . . . . . 67

. . . . . . . . . . . . . . 68

. . . . . . . . . . . . . . 69

73

. . . . . . . . . . . . . . 73

. . . . . . . . . . . . . . 73

. . . . . . . . . . . . . . 74

. . . . . . . . . . . . . . 76

. . . . . . . . . . . . . . 77

. . . . . . . . . . . . . . 77

. . . . . . . . . . . . . . 81

. . . . . . . . . . . . . . 81



A FEMLAB: Partial Differential Equations 85

A.1 Coefficient Formulation ................................ 86

A.2 Electromagnetic PDE Formulation . . . . . . . . . . . . . . . . . . . 87

A.2.1 Three-dimensional electromagnetic waves application mode . . 87

A.2.2 Two-dimensional in-plane TM waves . . . . . . . . . . . . . . 91

A.2.3 Two-dimensional perpendicular hybrid-mode waves . . . . . . 92

B Surface Plasmons 93

B.1 Metal/Vacuum Surface Plasmon . . . . . . . . . . . . . . . . . . . . . 94

B.2 Au/GaAs Active Region Surface Plasmon . . . . . . . . . . . . . . . 94

B.3 GaAs Active Region/GaAs Plasma Layer Surface Plasmon . . . . . . 96

C Standing-Wave Ratio Fitting 99

C.1 SWR Fitting: Newton's Method and Least Squares . . . . . . . . . . 100

C.1.1 Newton's method . . . . . . . . . . . . . . . . . . . . . . . . . 100

C.1.2 Least squares method . . . . . . . . . . . . . . . . . . . . . . . 101

Bibliography 103

9



10



List of Figures

1-1 Evolution of QCL waveguides: generalized geometries and field profiles

of the conventional dielectric waveguide, the plasmon-enhanced waveg-

uide, the single-sided surface-plasmon waveguide and the double-sided

surface-plasmon waveguide. . . . . . . . . . . . . . . . . . . . . . . . 19

1-2 General geometry and field profile of a SI surface-plasmon waveguide. 22

1-3 General geometry and field profile of a metal-metal waveguide. . . . . 22

2-1 FEM example of the discretization and interpolation of a sample region. 35

3-1 Bulk free carrier absorption loss for lightly doped GaAs. . . . . . . . 42

3-2 Phonon coupling effects in GaAs for T = 5 and 300 K. . . . . . . . . 43

3-3 Geometry and transmission line model representations of the metal-

metal waveguide facet. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4-1 Schematic of the SI surface-plasmon waveguide's geometry. . . . . . . 50

4-2 SI surface-plasmon waveguide simulation results for varying plasma

parameters and waveguide widths at f = 7.0 THz. . . . . . . . . . . . 54

4-3 SI surface-plasmon waveguide simulation results for varying plasma

parameters and waveguide widths at f = 6.0 THz. . . . . . . . . . . . 55

4-4 SI surface-plasmon waveguide simulation results for varying plasma

parameters and waveguide widths at f = 5.0 THz. . . . . . . . . . . . 56

4-5 SI surface-plasmon waveguide simulation results for varying plasma

parameters and waveguide widths at f = 4.0 THz. . . . . . . . . . . . 57

11



4-6 SI surface-plasmon waveguide simulation results for varying plasma

parameters and waveguide widths at f = 3.5 THz. . . . . . . . . . . . 58

4-7 SI surface-plasmon waveguide simulation results for varying plasma

parameters and waveguide widths at f = 3.0 THz. . . . . . . . . . . . 59

4-8 SI surface-plasmon waveguide simulation results for varying plasma

parameters and waveguide widths at f = 2.5 THz. . . . . . . . . . . . 60

4-9 SI surface-plasmon waveguide simulation results for varying substrate

thicknesses at f = 4, 5, and 7 THz. . . . . . . . . . . . . . . . . . . . 62

4-10 SI surface-plasmon waveguide simulation results for varying substrate

thicknesses at f = 2.5, 3, and 3.5 THz. . . . . . . . . . . . . . . . . . 63

4-11 Field profiles of the fundamental eigenmode for varying substrate thick-

nesses at f = 4 THz. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4-12 SI surface-plasmon waveguide simulation results for varying side con-

tact to waveguide distances at f = 2.5, 3.5, and 5 THz. . . . . . . . . 65

4-13 Field profiles of the fundamental eigenmode for varying side contact

distances at f = 3.5 THz. . . . . . . . . . . . . . . . . . . . . . . . . . 66

4-14 Schematic of the metal-metal waveguide's geometry. . . . . . . . . . . 67

4-15 Metal-metal waveguide simulation results for varying waveguide widths

and active region thicknesses for f = 3-7 THz. . . . . . . . . . . . . . 70

4-16 Metal-metal waveguide simulation results for varying waveguide widths

and active region thicknesses for f = 1-2.5 THz. . . . . . . . . . . . . 71

5-1 Typical standing-wave profiles over one wavelength for three values of

the reflection coefficient: 0.3 and 0.5. . . . . . . . . . . . . . . . . . . 76

5-2 Normalized power radiation patterns for SI surface-plasmon waveg-

uides for the respective frequencies listed in Table 5.1. . . . . . . . . . 78

5-3 Field profile of the radiated transverse magnetic field for the SI surface-

plasmon waveguide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5-4 Two-dimensional metal-metal waveguide facet reflectivities vs. fre-

quency for varying waveguide thicknesses. . . . . . . . . . . . . . . . 79

12



5-5 Three-dimensional metal-metal waveguide facet reflectivities vs. waveg-

uide width for f = 3, 4, and 5 THz. . . . . . . . . . . . . . . . . . . . 80

5-6 Normalized two-dimensional power radiation patterns for metal-metal

w aveguides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5-7 Field profiles of the radiated transverse magnetic field for the metal-

m etal waveguide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A-i H. field profiles for odd and even eigenmodes for symmetric waveguides. 90

B-i Surface plasmon coordinates . . . . . . . . . . . . . . . . . . . . . . . 93

B-2 a1 (w), a2(w), and k- (w) values for the metal/vacuum surface plasmon

vs. frequency. x-axis values are in units of wp and y-axis values are in

units of w y/c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

B-3 Surface plasmon skin depths, 61 and 62, for GaAs doped at 2 x 101 5

cm- 3 and Au, respectively, and the attenuation constant are plotted.

The GaAs bulk plasma frequency is denoted by wpl and is 430 GHz;

the Au bulk plasma frequency is 2181 THz. . . . . . . . . . . . . . . 96

B-4 Surface plasmon skin depths, 61 and 62, for GaAs doped at 2 x 10 5

cm- 3 and for three sets of n+ GaAs doped at 1, 3, and 5 x 1018 cm- 3,

respectively, and the attenuation constant are plotted. The lightly

doped GaAs bulk plasma frequency is denoted by wp1 and is 430 GHz;

the bulk plasma frequencies of the n+ GaAs are 9.64, 16.7, and 21.5

THz for the 1, 3, and 5x10 18 cm- 3 layers, respectively. . . . . . . . . 97

C-I SW R fitting example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

13



14



List of Tables

3.1 Scattering times, densities, effective masses, and core permittivities

used in THz numerical simulations. . . . . . . . . . . . . . . . . . . . 42

3.2 Phonon loss values, aph, calculated from Ref. [35] for T = 5, 300 K at

selected frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 List of the SI surface-plasmon waveguide variables and their respective

ranges for simulations carried out. . . . . . . . . . . . . . . . . . . . . 49

4.2 List of the metal-metal waveguide variables and their respective ranges

for simulations carried out. . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 SI surface-plasmon facet reflectivities for 2-5 THz. . . . . . . . . . . . 77

15



16



Chapter 1

Introduction

1.1 Project Statement

This master's research project involves the numerical simulation and analysis of elec-

tromagnetic waveguides and resonators used in terahertz (THz) quantum cascade

lasers (QCLs). Recent research in THz QCLs has shown them to hold considerable

potential as a source of coherent THz radiation for bridging the so-called "Terahertz

Gap" [1, 2, 3]. The THz frequency range (1-10 THz, 30-300 pm), also known as

the far-infrared, has long been identified to have wide-ranging applications in spec-

troscopy, imaging, and remote sensing. However, due to a lack of compact, cheap,

and convenient continuous-wave (CW) THz sources, this frequency range has so far

been underdeveloped.

A key development in the extension of QCLs from the mid-infrared regime into

longer wavelengths entailed the novel design of confinement structures. This was due,

in main, to two parts:

1. Previous conventional dielectric waveguides failed to scale appropriately with

wavelength.

2. Free carrier loss increases as the laser frequency approaches the plasma fre-

quency.

The former is a confinement issue while the latter is a loss issue, both important
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aspects of waveguide design (refer to Chapter 3). To date, two types of waveguides,

both utilizing the surface-plasmon as the confinement mechanism, have enabled CW

laser operation: the semi-insulating (SI) surface-plasmon waveguide [4, 5] and the

metal-metal waveguide [6].

1.2 Historical Development

This section presents the evolution of surface-plasmon type waveguides from the con-

ventional optical waveguides from which QCLs have slowly been extended into longer

and longer wavelengths in the decade since they were realized.

QCLs are based on intersubband emission in a multiple quantum well (MQW)

structure. Intersubband emission in a superlattice was first observed at ~ 2.2 THz in

1988 [7], which is well inside the terahertz frequency range. However, QCLs were only

first realized in the mid-infrared range in 1994 [8], and were based on conventional

dielectric waveguides. One of the main reasons mid-infrared QCLs were developed

first, even though efforts proceeded simultaneously with far-infrared QCLs, was due

to both the substantial increase in free carrier absorption (Eq. 3.14: a oc A2 ) in

the waveguide and issues with radiation confinement at the longer far-infrared wave-

lengths. Waveguide design for the original mid-infrared QCLs, operating around 4

pm or 75 THz, was a simple extension of conventional dielectric slab waveguides from

optics [8] (see Fig. 1-1(a)). Typical dielectric waveguides provide mode confinement

and overlap with the active region by utilizing refractive index contrast between a

high index layer sandwiched between cladding layers of lower refractive index. The

magnitude of the confinement factor is determined by the ratio of refractive indices

and the thickness of the core layer. The key aspect of dielectric waveguides is that

propagation characteristics are preserved as the layer thicknesses scale linearly with

the effective wavelength of the radiation in those media. Therefore, the preservation of

the confinement and propagation characteristics of well-established optical waveguide

designs into the mid-infrared required thick layers for efficient confinement [9].

However, two factors arise at infrared wavelengths that make it difficult to main-
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Figure 1-1: Evolution of QCL waveguides: generalized geometries and field profiles
of a (a) conventional dielectric waveguide (A - 4 pm) (b) plasmon-enhanced waveg-
uide (A ~ 8 pm) (c) plasmon-enhanced waveguide (A ~ 12 tim) (d) single-sided
surface-plasmon waveguide (A - 12 jtm) (e) single-sided surface-plasmon waveguide
(A ~ 24 ktm) (f) double-sided surface-plasmon waveguide (A ~ 24 pm). (Vertical
dimensions are to scale; lateral dimensions are not to scale.)
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tain the figure of merit (see Eq. 3.8 in a later section) relative to optical wavelengths:

a prohibitive increase required of layer growth by molecular beam epitaxy (MBE),

and an increase in loss due to free carrier absorption, as mentioned above. Since the

present QCLs under study are electrically pumped, which require highly doped layers

for electrical contact, the latter becomes especially important: any leakage of the

radiation field into these highly doped layers adds to the waveguide loss. In addition,

at long enough wavelengths, the mode will leak further into the cladding layers and

can couple the mode with lossy surface-plasmons associated with the metal contacts.

1.2.1 Plasmon-enhanced waveguides

Plasmon-enhanced waveguides were developed to address this issue for long wave-

length mid-infrared lasers (A > 8 pm) [10, 11]. These waveguides, see Fig. 1-1(b-

c), incorporated a highly doped layer between the top metal contact layer and the

cladding layer; by doping the layer such that the plasma frequency approaches the

laser frequency, the refractive index drops due to anomalous dispersion, (see Eq. 3.13

in a latter section), thereby increasing confinement and suppressing the coupling be-

tween the fundamental mode of the waveguide and the high-loss plasmon mode. By

including this doped plasma layer between the metal contact and the cladding layer,

the required thickness of the cladding layer was thereby reduced to within realistic

growth capabilities of MBE.

1.2.2 Surface-plasmon waveguides

An additional waveguide was designed for A = 8 and 11.5 Mm such that the cladding

layer was done away with altogether, see Fig. 1-1(d-e), by depositing a metal contact

directly on the active region [9] (the mode still leaks into the substrate). In this

case, the interface mode is named a surface plasmon, because the optical response

of nearly free electrons is below the frequency of charge-density oscillations, mean-

ing the real part of the metal's dielectric constant is negative. The advantage that

this scheme provided was twofold: the required total layer thickness was drastically
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reduced (though the active region thickness still scaled on the order of the effective

wavelength) and the confinement factor became considerably higher. However, the

offset in increased loss due to surface plasmon waves at the metal-semiconductor

interface prevented this from being a practical design for mid-infrared QCLs with

A < 15 pm [12]. The surface-plasmon, due to its strong coupling capabilities, also

presents itself as a prime method for constructing a distributed feedback mechanism.

Tredicucci was able to extend the concept of distributed feedback (DFB) lasers to such

surface-plasmon lasers by utilizing a two-metal grating [12]. The single-sided surface-

plasmon waveguide has been used to make QCLs at A = 17 pm [12], A = 19 pm [13],

and A = 21.5 and 24 pm [14]. Ref. [14] also reported the first THz QCL to utilize a

double-sided surface-plasmon waveguide at A = 21.5 pim. In this case, a 750-nm-thick

heavily doped layer, see Fig. 1-1(f), was included between the active region and the

substrate. Though the confinement factor increased to F - 0.98, this was offset by

an increase in free carrier absorption from the heavily doped layer. Nevertheless, it

was concluded that the design was still a viable option for far-infrared QCLs on the

lower-energy side of the Reststrahlen band (A > 50 pm), where the lower frequencies

would be further from the plasma frequency of the doped layers, and thus a lower loss

would result. This design of a double-sided surface-plasmon was taken one step fur-

ther by making a double metal-semiconductor waveguide for QCLs with wavelengths

of 19, 21, and 24 pm [15]. Xu had earlier worked on metal-metal waveguide fabrica-

tion and modeling for THz QCLs [16]. This type of waveguide ultimately led to the

metal-metal waveguides used in THz QCLs today. However, the fabrication complex-

ity for this type of structure led to its later development after the SI surface-plasmon

waveguide had already been shown to make THz QCLs feasible.

1.2.3 Semi-insulating surface-plasmon waveguide

It was finally a breakthrough in the waveguide design that helped lead Kbhler et al. in

2001 to demonstrate the first terahertz QCL at 4.4 THz [1]. Their waveguide, shown

in Fig. 1-2, was based on the previously developed double-sided surface-plasmon, with

the exception that they used a semi-insulating substrate to reduce any modal overlap
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Figure 1-2: General geometry and field profile of a semi-insulating surface-plasmon
waveguide (A ~ 68 pm).

Figure 1-3: General geometry and field profile of a metal-metal waveguide (A ~
100 Am).

22



with doped regions; this prevented a prohibitive increase in free carrier absorption

from taking place at the far-infrared wavelengths in comparison with the mid-infrared

wavelengths. The structure, termed semi-insulating surface-plasmon, made possible

a mode composed of a surface plasmon bound to the upper metallic contact and

to the lower heavily doped layer. Surface-plasmons are discussed in more detail in

Appendix B. Electrical contact is made possible by side metal contacts on top of the

heavily doped layer.

1.2.4 Metal-metal waveguide

The next major breakthrough in waveguide design came when Williams et al. in 2003

demonstrated the first terahertz QCL at 3.0 THz using a metal-semiconductor-metal

waveguide for confinement [17], see Fig. 1-3. This waveguide design eliminated any

free carrier loss associated with the heavily doped plasma layers while providing high

confinement, F - 1, which becomes advantageous at even longer wavelengths. In

addition, the contribution by the surface plasmons to the waveguide loss decreases

with increasing wavelength as the frequency deviates further from the surface plasma

frequency. The predominant loss mechanism at these wavelengths, therefore, becomes

free carrier absorption with carriers in the active region itself.

1.3 Motivation for Simulations

Up to this point, previous design simulations were all performed in one dimension and

based on a slab waveguide technique [18]. However, it becomes unclear how much

of an effect certain two dimensional parameters have on the final figure of merit.

Specifically, the effects of the width of the waveguide, which can easily be made

less than the effective wavelength, and the effects of the metal contact gap distance

[19] need to be quantified and analyzed. The effects of varying substrate thicknesses

for SI surface-plasmon waveguides and waveguide core thicknesses for metal-metal

waveguides also need to be known.

In addition, previous design simulations calculated mirror loss using the effective-
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index method. For an GaAs/Air interface, this turns out to give a facet reflectivity of

R ~ 0.32. In this case, mirror loss, given by Eq. 3.9, a, = - In R/L, where L is the

cavity length, is solely a function of the cavity length [1, 20, 21]. This made sense from

the perspective that QC laser resonator design had evolved from optical resonator

design, where the reflection coefficient is simply the Fresnel reflection coefficient [22],

which is determined solely by the effective mode index. Though this still works fine

for mid-infrared QC lasers [8, 23], at longer wavelengths beyond the far-infrared and

in the microwave regime, waveguides are designed using transmission line theory. In

this regime, reflectivities are solved by using the impedance mismatch method. In

the present context, THz waveguides are hypothesized to be a hybrid of conventional

optical and microwave waveguides. Numerical computations were carried out for

this thesis to offer a numerical solution to the problem of determining THz facet

reflectivities. Resonator simulations for metal-metal waveguides in two and three

dimensions and for SI surface-plasmon waveguides in two dimensions are analyzed for

the first time.

1.4 FEMLAB - Simulation Method

The numerical modeling and simulations in this thesis were carried out for all two- and

three-dimensional problems in a commercial finite-element based partial differential

equation software package called FEMLAB, which is also capable of post-processing

interaction with MATLAB. One dimensional simulations were carried out in MAT-

LAB using the previously mentioned numerical program in Ref. [18]. FEMLAB pro-

vides a powerful environment in solving complicated differential equations. The main

attractions of FEMLAB were twofold: its inherent ability to model complex geome-

tries using the finite element method and the addition of an electromagnetics module

with numerous predefined modes of electromagnetism (electrostatics, quasi-statics,

and waves in ID, 2D, and 3D), described in Appendix A. Waveguide simulations are

solved in the perpendicular-plane eigenmode solver, while resonator simulations are

solved in the two-dimensional in-plane and three-dimensional full-wave linear station-

24



ary mode solvers.

1.5 Thesis Overview

This thesis presents numerical results in the design of terahertz quantum cascade

laser resonators. Chapter 2 provides a brief overview of the theory behind the numer-

ical method used by FEMLAB: the finite element method. Chapter 3 describes the

issues in the design of terahertz quantum cascade laser resonators and waveguides.

Chapter 4 presents results of waveguides simulations. Chapter 5 presents results of

resonator simulations.
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Chapter 2

Brief Overview of the Finite

Element Method

2.1 Introduction

The finite element method (FEM) was first proposed in the 1940s [24] and saw its

first application in aircraft design in the 1950s. Its first application to electromag-

netic problems was not realized until the late 1960s; however, today it is widely used

in a large variety of electromagnetic problems. Since its early days, the FEM has

evolved into a well-developed numerical technique [25, 26, 27, 28] for obtaining ap-

proximate solutions to boundary-value problems. As the name suggests, the basic

premise behind this technique is the discretization of the solution domain into a fi-

nite number of subdomains (elements), on which the solution is approximated by a

piecewise interpolation function.

In order to see the usefulness and effectiveness of the FEM it is instructive to

compare it with the finite difference method (FDM), which is the other most widely

used method for solving boundary-value problems. Both methods attempt to ap-

proximate the solution to a given boundary-value problem by first discretizing the

solution domain. While the FDM gives a point-wise approximation to the governing

equations, the FEM gives a piecewise approximation, thereby specifically assigning a

solution everywhere in the solution domain rather than just on a grid of points. In
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the actual approximation of the geometry in the problem, the FDM creates a grid of

arbitrarily spaced points, whereas the geometry in the FEM creates an arbitrary col-

lection of arbitrarily shaped elements (usually triangles), thereby making the method

much more well suited for geometries having greater complexity. In addition, difficul-

ties can be encountered with the FDM in cases where complex boundary conditions

are required; the FEM has greater flexibility in handling boundary conditions. Espe-

cially important is the attention that must be paid to the amount of computer power

needed to formulate and assemble the problem in addition to solving the problem.

In this respect, the FEM usually supersedes the FDM for problems in two or more

dimensions.

In this chapter, the fundamental principles and procedures underlying the FEM

are briefly presented. The treatment is standard and is based on that in Jin [26]. For

further details, please refer to the References [25, 27, 28].

2.2 Classical Methods for the Approximate Solu-

tion of Boundary-Value Problems

Linear boundary-value problems are generally defined by a governing differential equa-

tion in the operational form

Lu=f, (2.1)

on the domain Q, where L is a differential operator, f is a source or force function,

u is unknown, and where boundary conditions on the boundary &Q must also be

defined. Boundary conditions range from Dirichlet (u = uo) and Neumann (Vu = u')

conditions, where uO and u' are constants, to more complicated matched-boundary

and absorbing conditions.

For most real-world problems, the domain Q is complicated enough to prevent an

analytical solution to Eq. (2.1). Among the most widely used approximation methods

are the Rayleigh-Ritz and Galerkin methods described below, which form the basis

for the FEM.
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2.2.1 The Rayleigh-Ritz method

The Rayleigh-Ritz method, also known as the Ritz method, reformulates the original

differential equation boundary-value problem, Eq. (2.1), as a variational problem.

As a variational problem, the calculus of variations is used to find the minimum or

maximum of a given functional; this extremum corresponds to the solution to the

differential equation. An approximate solution to this variational problem can be

found by setting up a solution with respect to a number of variable parameters that

define the approximation; therefore, minimization of the functional with respect to

these variables gives the best approximation. This problem is the opposite of that

encountered in most applications using the calculus of variations, which is: given

some minimization principle, such as Hamilton's Principle in physics, what is the

governing differential equation. Here we are searching for the functional given the

differential equation.

This problem can be illustrated for the simplest case in which the operator L is

self-adjoint and positive definite, as defined below, and is referred to as the standard

variational principle. If we define an inner product by

(uv) Ju*v dQ, (2.2)

then an operator is self-adjoint if

(Lulv) = (ulav),

and positive definite if

= 0 U = 0.(Luu) ={> u

In such a case, the solution to Eq. (2.1) can be found by minimizing the functional

given by
I1 1

I(n) = -(LuJu) - -(ulf) - -(flu). (2.3)
2 2 2

Proof of this statement follows in two steps: first, it must be shown that the differ-
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ential equation (2.1) is a necessary consequence when I(u) is stationary (either at a

maximum or minimum), and two, that the stationary point is a minimum.

Taking the first variation of Eq. (2.3), we have

61 = I(u + 6u) - I(u) = 1 (L6ulu)
2

1
+ I (LuIJu)

2
1
2

Employing the self-adjoint property on the first term, we have

2I = (6u|ILu)
1

+ 2(Luj6u) -

11
= -(6u|Lu-f)+-(Lu-fou)

2 2

2(6u|Lu - f)*

= Re((uILlu-f)},

where the third step follows from the definition of the inner product.

imposing the stationary requirement 6I = 0 and using the fact that 6u is arbitrary,

we see that u must be the solution to Eq. (2.1). Taking the second variation of

Eq. (2.3) we have

6(61) = 61(u + 6u) - 61(u) = Re {(6u 1'6u)}.

By imposing the restriction that L is positive definite, the above shows that 6(61) > 0

for arbitrary 6u. This means that the stationary point is a minimum.

Once the functional given by Eq. (2.3) is determined, an approximate solution is

developed using a finite basis trial expansion

N

Ut = 0c#= - = -,(2.4)
j=1

where 5j are a finite set of expansion functions defined over Q and cj are the coeffi-
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cients to be determined. Eq. (2.3) becomes

I(Ut) =- (L#4)-- (ef)--(fI1)-5.
2 2 2

The next step is minimization of I(ut) with respect to the coefficients cj. This is

simple to carry out if the problem is real, and is what follows. In the case the problem

is complex, the final result still holds, however its derivation follows differently and

may be found in Appendix B of reference [26]. When the problem is real, the partial

derivatives are forced to zero and the following set of linear equations are constructed

I(Ut) = I(Zq5|) - (#If)
2ci 2 2

= (Lqil) + (Lqeq#j)) - - (#if) = 0

= (q$iLq$a) - 2- (q$lf) = 0,

for i = 1, 2, ... , N, and where the last step follows because L is self-adjoint and the

problem is real. This can be written as the matrix equation

Ax = b, (2.5)

where

Aij = (OjjLZ2#), bi = (#ilf),

and where x = c are the coefficients to be determined. By the self-adjoint property of

L it is also seen that A is a symmetric matrix (Aij = Aji). Therefore, the approximate

solution for Eq. (2.1) is obtained by solving for the finite basis coefficients in the above

matrix equation.

Limitations of the standard variational principle

Since the standard variational principle requires a self-adjoint operator L, it is limited

to cases involving lossless media and homogeneous boundary conditions. The latter

limitation may be removed by using a modified variational principle, which is beyond
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the scope of this overview [26], and can be employed in almost all electromagnetic

problems involving lossless media. In the case that the problem involves lossy media,

the associated operators are complex; the definition of the inner product, Eq. 2.2,

directly limits the standard variational principle to real operators. If a new inner

product is defined by

(uv) uv dQ, (2.6)

then this limitation is removed. The inner product defined by Eq. 2.2 is referred to

as the inner product in Hilbert space, whereas the one defined in Eq. 2.6 is referred

to as the symmetric product. Therefore, the question of whether an operator is self-

adjoint depends on the definition of the inner product. It can be shown that with

this new definition for the inner product, Eq. 2.3 remains valid and is referred to as

the generalized variational principle.

2.2.2 The Galerkin method

It is evident that the Rayleigh-Ritz method rests on if the differential equation oper-

ator L is capable of being formulated as self-adjoint. In the case it is not, Galerkin's

method is often used. Galerkin's method is a special case of the weighted residual

method. The method is based on weighting the residual of the differential equation.

If we have an approximate solution, ut, the residual is defined as following

r = Lut - f,

which is not equal to zero for the approximate solution ut. By forcing the weighted

residuals, defined below, to be zero on Q gives the best approximation:

Ri - I wir dQ = 0,

where the wi are a given set of weighting functions. Galerkin's method employs as

the weighting functions the same as those used for the expansion of the trial solution,
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Eq. (2.4): wi = 0j. The weighted residual integrals become

Ri = $Z>- - f dQ.

Analogous to Eq. (2.5), this results in a matrix system for the coefficients 6. If the

operator L is self-adjoint, the matrix system produced by Galerkin's method will

reduce to the same matrix system produced by the Rayleigh-Ritz method. It should

be added that a variety of other residual methods exist that employ different sets of

weighting functions.

2.3 The Finite Element Method

The Rayleigh-Ritz and Galerkin methods described above expand approximate solu-

tions to Eq. (2.1) using a finite basis set of functions defined over all of Q, Eq. (2.4).

For problems in more than one dimension, it is usually a nontrivial matter in defining

these basis functions. The FEM approaches this problem by dividing the domain Q

into many subdomains; by making the subdomains small enough such that the solu-

tion does not vary in any complicated way, a trial function can be constructed from a

linear combination of simple approximate solutions on each subdomain. Once these

functions have been defined, either the Rayleigh-Ritz method or Galerkin method

may be used to solve the problem. The former is known as the variational finite

element method and the latter as the Galerkin finite element method.

Thus, the finite element method is based on dividing the domain into subdomains

and constructing a trial solution composed of a linear combination of basis functions

defined over each respective subdomain. This differs from the classical Rayleigh-Ritz

and Galerkin methods in that they construct a trial solution composed of a linear

combination of basis functions defined over the whole domain.
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2.3.1 Basic procedure

While there exist numerous cases that each approach setting up the FEM differently,

all FEM problems follow the four basic steps: discretization, determination of appro-

priate interpolation functions, setting up the system of equations, and finally solving

these equations. FEMLAB uses a meshing algorithm to discretize the domain into

triangular subdomains in two dimensions, and tetrahedra in three dimensions. Fig. 2-

1(a) shows a sample triangular discretization. One major advantage of the FEM is

that it allows one to arbitrarily fine tune a mesh, such that there is more resolution

in areas of the geometry you feel there might be important variations in the solu-

tion. This factor was indispensable in the simulations presented in this thesis, as the

aspect ratios of various geometries would have made a uniform mesh impractical to

implement. Other options in the discretization step for the FEM, though not im-

plemented by FEMLAB, include rectangular discretization for two dimensions and

triangular prisms or cuboids for three dimensions. In selecting the interpolation func-

tions, FEMLAB has default cases optimized for each application mode. These include

first, second, and higher-order polynomials in some two-dimensional cases and linear

vector elements for two- and three-dimensional cases. Linear vector elements are nec-

essary in certain electromagnetic applications modes in order to make the boundary

conditions between subdomains self-consistent with Maxwell's equations. Fig. 2-1(b)

shows a linear interpolation function on one triangular element in which the function

is approximated as u(x, y) = a+ bx +cy, where a, b, and c are the variable parameters.

The final two steps of the FEM, formulating and solving the systems of equations,

are both handled by numerous sub-algorithms within the FEMLAB program and are

explained in more detail in Ref. [29].

Appendix A discusses in more depth how FEMLAB formulates the setup of partial

differential equations. Specifically, the differential equations and boundary conditions

for the various electromagnetic mode solvers used in this thesis are discussed.
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Figure 2-1: FEM example from Ref. [30]: (a) discretization of a region into triangular
finite elements, (b) linear variation of trial solution within a triangular finite element.

35



36



Chapter 3

Terahertz Quantum Cascade Laser

Resonator Theory

3.1 Introduction

The design of terahertz quantum cascade lasers can be fairly independently broken

up into the two fundamental components of the laser: design of the gain medium and

design of the resonator. The gain medium for THz QCLs consists of stacked layers

(on the order of 1000) of quantum wells designed such that lasing occurs on selected

intersubband transitions in the conduction band of a semiconductor heterostructure.

A variety of designs have successfully been implemented, including the chirped su-

perlattice design [1, 2], the resonant-phonon design [3], and the bound-to-continuum

design [5]. Aside from some minor dependent parameters, such as doping levels and

the average permittivity in the active region, the only important factor to take away

from any of the gain medium designs for the purpose of resonator design is the desired

lasing frequency.

This chapter deals with the resonator, which in turn can be broken up into two

main components: a waveguide and mirrors. The waveguide is necessary in order

to confine the radiation to the gain medium in order for the fields to be amplified.

The mirrors are necessary in order to provide optical feedback. In addition, the

waveguide and mirrors contribute losses given as a, (absorptive) and am (coupling),
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respectively. Waveguide losses are due to the intrinsic electromagnetic properties of

the materials used. Mirror losses are due to the finite mirror reflectivities, R, and

provide the output coupling mechanism for the laser.

3.2 Threshold Condition for Laser Oscillation

The necessary condition for a particular mode of a waveguide to lase is that the

wave reproduce itself after one round-trip. Let a particular mode traveling in the

z direction be represented by a spatial field profile h(x, y) and have a propagation

constant 13, which may be written as

# = o' + io". (3.1)

Assuming time dependence ~ e-iwt, the full field is H(x, y, z) = h(x, y)eifz. The

imaginary part of the propagation constant, 3", can be decomposed into gain and

lossy components

213" = aw - gmodal, (3.2)

where aw includes all absorptive losses contributed by the waveguide, and gmodai is

the power gain experienced by the mode. Simple approximate methods [22] give the

relationship between the modal gain and the active material gain, g, as

9modal = g, (3.3)

where F is called the confinement factor and is defined as the fraction of power guided

in the active region:

I ( Re{e x h*} dxdy
r inside(34

Jf Re{e x h*} dxdy2 J total

g is the material gain that only depends on the gain medium.

The round-trip condition can be written, assuming a cavity bounded by identical
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mirrors, as

ir 2ei 20,re 2 L = 1, (3.5)

where L is the length of the cavity, and r = Irleier is the reflection coefficient for one

facet. Equating the phases of Eq. 3.5 gives the Fabry-P6rot resonance condition:

/'L = m7r - 0, for any integer m. (3.6)

For most cases, qr is generally negligible and can be neglected. Equating the ampli-

tudes of Eq. 3.5, where the mirror reflectivity is R = JrJ2, gives

1 1
L 2L

From Eqs. 3.2, 3.3, and 3.7, the gain threshold condition can be written as

9th= (aw - In R) - aw+a (3-8)IF L r

Here, the mirror coupling loss is:

am = ln R. (3.9)
L

In Eq. 3.8, 9th represents the value that the small-signal gain coefficient of the gain

medium must reach in order for lasing to occur. This important parameter is usually

referred to as the figure-of-merit in the resonator design of lasers and plays a critical

role in the final performance of the laser; attention must be paid to the particular

variable parameters if one seeks the optimal performance.

3.3 Loss Mechanisms

The total loss that the modal gain must reach to achieve lasing comes from waveguide

and mirror contributions. The predominant waveguide loss mechanisms in the THz

regime comes from free carrier absorption and phonon absorption. Absorptive waveg-
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uide losses should obviously be kept at a minimum in order to keep the threshold gain

condition as low as possible. On the other hand, the contributions from the mirror

losses need not necessarily be made as small as possible, because they also function as

the output coupling mechanism for the laser. Mirror facet issues in the THz regime

will be discussed at the end of this Chapter.

3.3.1 Free carrier absorption loss

Free carrier effects are modeled within FEMLAB by including their contributions

to the complex permittivities. Classical Drude theory for conductivity presents the

simplest theory for modeling these effects and is described in Ref. [31]. The basic

approximation behind this theory assumes a classical gas of electrons with a mean

free time between collisions of r, known as the relaxation time and is obtainable

from empirical mobility data. In addition, the theory assumes no spatial variation

of the fields, which is a good approximation if the length over which the field varies

appreciably is greater than the electron mean free path.

Assuming a driving field E(t) = Re{E(w)e-iW}, the frequency-dependent conduc-

tivity, U(w), may be defined by the relation J(w) = c-(w)E(w). The Drude-Lorentz

model gives a frequency dependent conductivity

o-(w) = D (3.10)
m*(1 - iWT)(

where n 3D is the free carrier density, e is the carrier charge, and m* is the effective

carrier mass. Likewise, a frequency-dependent permittivity, E(w), may be defined by

the relation D(w) = c(w)E(w). The conductivity of a material may be included in

the permittivity by defining an effective complex dielectric constant given by

EDrude(W) = 6() - U(w) (3.11)

All other contributions to the dielectric constant, including phonon effects discussed

below, are given in terms of the core dielectric constant E(w), also written as Ecore. It
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is useful to define the plasma frequency

ri 3De 2(3.12)

corem

where core = Re{Ecore}. For w > wp the material behaves as a dielectric, while for

w < w, the material behaves as a plasma.

In our gain medium, wp/27r < 1 THz while w/27r > 1 THz. Thus, to the first

order of W r/w(1 - iWT), whose amplitude is smaller than unity, the refractive index

n becomes

n=Re Drude core 1 (3.13)
eo ' 0 2(1 + (wr)2)

and it can be seen that the refractive index for a dielectric is reduced by anomalous

dispersion as the frequency approaches the plasma frequency. To the first order of

w;T/w(1 - iwT), the bulk free carrier loss contribution is

er 927
6fc = core 2
Ea ( c (1+(wT) 2)

For Wr > 1, which is the case in our gain medium and frequency of interest where

T =0.5 ps and f > 1 THz, the free carrier loss is proportional to A2 /T. This is

the well-known w- 2 dependence of the free carrier absorption loss and is shown in

Fig. 3-1.

The scattering times used in the simulations presented in this thesis use those

in Table 3.1, which are generally accepted to be valid at temperatures of 77 K [32,

33, 34, 31]. Deviations relevant to the approximations made in the Drude model are

discussed in more depth in Ref. [20].

3.3.2 Phonon absorption loss

Optical phonon coupling provides a natural boundary between THz and mid-infrared

QCLs; in the vicinity of the Reststrahlen band (8-9 THz in GaAs), this coupling

causes dispersion and loss for the propagating mode. Moore et al. modeled the
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Table 3.1: Scattering times, densities, effective masses, and core permittivities used
in THz numerical simulations. Bulk plasma frequencies are also noted.

Material T (ps) n (cm-3) m* (me) I
(highly doped)
(lightly doped)

0.1
0.5

0.06

1-5x 1018
2x1015

5.9 x 1022

0.067
0.067

1

Ecore I wp/27r (THz)
12.96
12.96

1

9.64-21.5
0.430
2181

0

10 10
Frequency (THz)

n
t

= 2x105 1/cm3
= 0.5 ps

102

Figure 3-1: Bulk free carrier absorption loss for lightly doped GaAs. The doping is
2 x 1015 cm- 3 and the scattering time is 0.5 ps.
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Figure 3-2: Phonon coupling effects
the relative permittivity, (b) the loss.

Table 3.2: Phonon loss values, aph,
selected frequencies.
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in GaAs for T = 5 and 300 K: (a) real part of

calculated from Ref. [35] for T = 5, 300 K at

5 K (cm-') I aph at 300 K (cm-')
0.1271
0.3356
0.7643
1.7329
2.7050
4.4454
7.9713
16.728

0.3936
1.0414
2.3817
5.4385
8.5380
14.152
25.728
55.406

permittivity and loss of semi-insulating GaAs in the infrared by fitting experimental

data at 5 and 300 K to a two-oscillator model [35] (see Fig. 3-2). This two-oscillator

model includes an oscillator for the fundamental optical phonon absorption and an

oscillator for near-infrared and visible absorption processes (above 4000 cm-'). For

simulations presented in this thesis, the effects of phonon coupling are not included

in the core permittivities used for GaAs (see Table 3.1). Since the modal fields of the

waveguides considered are contained almost entirely within GaAs, phonon effects may

simply be included by adding the respective phonon loss (see Table 3.2 for selected

tabulated values) to the calculated waveguide loss: a1,, = afC(from simulations) +aph-
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3.3.3 Facet coupling loss

Facets for THz QCLs are created by cleaving the semiconductor along a particular

lattice plane; the resulting interface is a relatively perfect plane. From Eq. 3.9,

calculation of the facet loss is equivalent to the calculation of the reflection and

transmission coefficients of the laser mode at this interface.

Effective index method

In the regime of optics, the laser mode is considered, to a good approximation, to

be an infinite plane-wave and the reflection coefficient is simply given by the Fresnel

reflection coefficient, which is determined solely by the effective mode index:

neff - 1
TFresnel = n (3.15)

neff + 1

where neff = 0'/0o = c'/w is the effective mode index. Eq. 3.15 is the effective index

method, and has been used to calculate mirror reflectivities for mid-infrared QCLs [8]

and SI surface-plasmon THz QCLs [1, 3, 21]. For an GaAs/Air interface, R ~ 0.32.

Chapter 5 presents results that suggest this method does hold true in the calculation

of SI surface-plasmon reflectivities.

Impedance mismatch method

The infinite plane-wave approximation begins to break down once the size of the

guiding structure becomes on the order of the wavelength; this certainly holds true

for metal-metal waveguides, similar to micro-strip transmission lines, where aperture

sizes are much less than the free-space wavelength, d < A0. The impedance mismatch

method from transmission line theory [36] becomes suitable for a description in this

case. The basic idea behind this theory is that a particular input mode is represented

by an equivalent transmission line model. In this description, all of the infinite num-

ber of waveguide modes have an equivalent transmission line model, with equivalent

voltages and currents; though for non-TEM modes these quantities are not unique,

as long as they are defined consistently it is a valid model. The input mode travels
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down its transmission line and reaches an impedance composed of the other modes

of the waveguide and the input impedance to the open-ended aperture antenna (see

Fig. 3-3). Higher order modes and radiated free-space modes are created to satisfy

the interface boundary conditions.

The radiated free-space modes are not included explicitly as a transmission line

in this system, but are included in the input antenna impedance parameter: ZA =

RA + iXA, where RA is the antenna resistance and XA is the antenna reactance. The

resistive component consists of two parts: R, the radiation resistance of the antenna

representing the actual radiated power, and RL, the loss resistance of the antenna

representing ohmic losses. The reflection is then given by the impedance mismatch

S ZL-Z (3.16)
ZL+Z1'

where ZL is the load impedance as seen from transmission line 1. In practice, it is very

difficult to calculate the antenna impedance because it requires accurate knowledge of

the near field reactive fields [37]. This thesis resorts to a full-wave numerical analysis

presented in Chapter 5 for the metal-metal waveguide and clearly shows the hybrid

optical/microwave nature of the THz reflection problem.

3.4 Radiation Pattern and Directivity

The radiation pattern and directivity of edge-emitting lasers are necessary parameters

to have in the application of the laser. For example, it is important to have knowledge

of either the near-field or the far-field pattern (depending on the specific setup) in

calculating the efficiency of coupling the laser's power into a fiber. Radiation pat-

terns for traditional edge-emitting lasers, from the optical regime to the mid-infrared

regime, are usually based on classical scalar theories of diffraction, which assume that

the aperture size is much greater than the wavelength such that coupling effects at

the boundary of the aperture may be ignored. Such techniques assume knowledge of

the free-space fields in the immediate vicinity of the aperture and use techniques from
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(a)

Figure 3-3: (a) Geometry representation of the metal-metal waveguide facet. (b)
Transmission line model of the metal-metal waveguide facet; an input mode is sent
down line 1, which, due to the impedance mismatch at the end, excites higher-order
modes that travel back down the other transmission lines (though each mode has its
own transmission line, they all represent they same physical waveguide in (a)).

Fourier optics in determining these patterns. However, for sub-wavelength apertures,

the boundary effects of the aperture affect the radiated field patterns to the point

of rendering scalar diffraction theories as not even capable of producing qualitative

agreements [38]. Recent research in near-field microscopy [39, 40] and even up to

the microwave regime [41] suggest that surface plasmons have a considerable effect

on the transmission properties of sub-wavelength apertures. Numerical results of the

radiation patterns for both the SI surface-plasmon waveguide and the metal-metal

waveguide will be presented in Chapter 5.
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Chapter 4

Waveguide Design and Analysis

4.1 Introduction

In this chapter, the SI surface-plasmon and metal-metal waveguides are introduced

with their relevant variable parameters defined; both waveguides utilize the surface-

plasmon as the confinement mechanism, which is discussed in more detail in Ap-

pendix B. Numerical results of THz QCL waveguide simulations are presented for

each of these waveguiding structures. Critical values are identified for variable pa-

rameters, such as waveguide width, of both structures at which point deviations from

one-dimensional analysis become non-negligible. Optimum values for other variable

parameters, such as doping, are also identified which yield the best figure-of-merit,

9th. All two-dimensional simulations presented were carried out by the finite element

method using FEMLAB. All one-dimensional simulations presented were carried out

in MATLAB using a matrix formalism approach previously presented in Ref. [18].

4.2 Simulation Method

Waveguide simulations are fundamentally an eigenvalue problem and are solved in

FEMLAB's two-dimensional perpendicular hybrid-mode solver (see Appendix A).

Transverse electric (TE)- and transverse magnetic (TM)-mode solvers also exist in

FEMLAB; however, due to the inherent nature of the inhomogeneity of the waveg-
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uides in interest, the solutions will be a hybrid between TE and TM modes, and the

former mode solver must be used. The term "perpendicular" refers to the fact that

the eigenmode propagates perpendicular to the two-dimensional structure defined.

The Drude model, discussed in Section 3.3.1, is used to calculate the complex per-

mittivities that are entered into FEMLAB to define the material properties of the

relevant geometries. In the solution of the waveguide problem, FEMLAB returns the

eigenvalue -,' where 3 is the propagation constant of the eigenmode. From this,

the waveguide loss is obtained by

a, = -21m{/3}. (4.1)

In these simulations, gain is not included in the permittivity of the active region.

This is acceptable to the same degree that Eq. 3.3 defines the relationship between the

modal gain and the active region gain. To be more accurate, a gain should be included

in the active region of the structure such that an eigenvalue with no imaginary part

is obtained; thus, a, = 0 and the eigenmode would propagate without loss. The

true waveguide loss would then be a. = -Fg, where g is the gain used in the active

region. An iterative approach would need to be used in this case: the gain value

would be adjusted at each iteration such that the loss eventually converges to zero.

Such an approach is time consuming and only corrects the previous results to a small

enough degree to be deemed negligible for our purposes. The confinement factor,

F, is calculated by integrating the time-averaged Poynting vector over the respective

domains as defined by Eq. 3.4.

The symmetry of these waveguides yields even and odd eigenmodes, with the

fundamental eigenmode of interest being even. This inherent aspect of symmetric

waveguides was taken advantage of by applying appropriate boundary conditions to

the line of symmetry and simulating only one-half of the structure. Mesh structures

were then able to be made more refined with the memory saved. For the even fun-

damental eigenmode, a perfect magnetic conductor boundary condition, discussed in

Appendix A, was used at the line of symmetry.
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Table 4.1: List of the SI surface-plasmon waveguide variables and their respective
ranges for simulations carried out.

SI Surface-Plasmon Waveguide Variables
Pre-MBE Growth Variables
Plasma Thickness 300 - 1000 nm
Plasma Doping 1.0 - 5.Ox 1018 cm-3
Post-MBE Growth Variables
Waveguide Width 30 - 250 pm
Substrate Thickness 10 - 200 pm
Side Contact Gap Distance 5 - 75 pm
Geometry Dry vs. Wet

4.3 SI Surface-Plasmon Waveguide Design

As mentioned in Section 1.2, the SI surface-plasmon waveguide was the key devel-

opment in the demonstration of the first terahertz QCLs [1, 2, 3]. The geometry of

the SI surface-plasmon waveguide is shown in Fig. 4-1. The waveguide is based on a

double-sided surface-plasmon between the upper metallic contact and the lower heav-

ily doped plasma layer. Electrical contact is made possible by side metal contacts on

top of the heavily doped plasma layer. The substrate is semi-insulating to prevent

any extra loss due to modal overlap.

Due to the numerous variable parameters in the SI surface-plasmon, it is a non-

trivial matter in optimizing and characterizing the dependencies that each has on the

final figure-of-merit. The variables may be divided into pre- and post-MBE growth

variables as listed in Table 4.1. Pre-MBE growth variables are set before the MBE

growth of the structures; post-MBE growth variables are set after this step. Note

that the range of the substrate thickness has been extended beyond reasonable post-

MBE growth abilities only to analyze the results in a larger context. Other possible

variables include the active region thickness and the active region doping. To keep

the number of simulations to a reasonable number, these variables are set at 10 pm

and 2 x 1015 cm-3 respectively, for all simulations. The value of 2 x 1015 cm- 3 is

among the lowest carrier concentration of THz QCLs.
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Waveguide Width

Au 5.9 x 1022 cm- 3  0.4 gm

GaAs 5.0 x 1018 cm- 3  0.1 gm

Contact
Gap Distance

GaAs 2.0 x 1015 cm- 3  10 gm

Au _ ___Au

GaAs 1 - 5 x 1018 cm- 3  Plasma Thickness

GaAs semi-insulating Substrate Thickness

Au 5.9 x 1022 cm-3

Figure 4-1: Schematic of the SI surface-plasmon waveguide's geometry. The struc-
ture consists of a top metal contact, a thin heavily doped GaAs injector layer, the
active region, the GaAs plasma layer, the semi-insulating substrate, a bottom metal
layer, and two side metal contacts.
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4.4 SI Surface-Plasmon Waveguide Results

Simulations were carried out for the SI surface-plasmon waveguide over the variables

defined in Table 4.1 for the following set of frequencies: 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, and

7.0 THz. The waveguide's figure-of-merit is most sensitive to the pre-MBE growth

variables and are considered first for each frequency. Once an optimum plasma doping

level is determined, the waveguide width is then considered using this respective

plasma doping level. Substrate thickness and side metal contact gap distance are

considered next. All simulations, unless specifically noted, use a substrate thickness

of 200 /Lm. In addition, aside from the side metal contact gap distance simulations

themselves, all simulations neglect these side contacts by assuming their distances to

the waveguide are large enough such that any perturbative effects produced by them

are negligible. This made possible more memory allocation for mesh refinements in

other parts of the geometry.

For each set of simulations, the values for a,, F, and (a, + am)/F are tabulated,

where the latter is the threshold gain, 9th, the waveguide's final figure-of-merit. The

mirror loss, am, for all SI surface-plasmon waveguide simulations assumes a cavity

length of 3 mm and a mirror reflectivity of 0.3195 (from the effective index method

and neff = 3.6). This mirror reflectivity is an acceptable value to use as described in

Section 5.3. A 3 mm length bar is equivalent to a 1.5 mm length bar with one facet

coated with a high-reflection (HR) material.

4.4.1 Plasma parameters

Figs. 4-2(a)-4-8(a), for frequencies ranging from 2.5-7 THz, overlay previous one-

dimensional calculations of am, F, and (a, + am)/F with two-dimensional calculations

of selected waveguide widths for comparison. The plasma layer thickness closely

correlates to the confinement factor and overall loss. While a thicker plasma layer

yields a higher confinement factor up to a value of F - 0.5, it also increases the

modal overlap with itself and, in turn, increases the loss. A compromise must be

made between the two to find the optimum value. For frequencies above 3.0 THz,
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no compromise is needed as the thinnest plasma layer simulated, 300 nm, gives the

optimum values in the one-dimensional calculations. However, the effects of finite

waveguide widths, as discussed in the next section, predict that thicker plasma layers

yield a better figure-of-merit below certain waveguide widths. While the waveguide

loss decreases as the frequency decreases, due to the laser frequency moving further

away from the bulk plasma frequency of the plasma layer, the confinement factor also

decreases, because the active region thickness to wavelength ratio decreases. These

would tend to balance each other out in calculating the gain threshold condition

except for the inclusion of the mirror coupling loss, which is assumed not to change

with frequency for the SI surface-plasmon waveguide. Therefore, while ae decreases

with the frequency, am does not and for frequencies below 3.0 THz, thin plasma layers

yield higher gain threshold conditions than do thicker plasma layers. The optimum

plasma doping level is seen to decrease from the maximum value of 5.0 x 1018 cm-3

at 7 THz to 1.0 x 1018 cm- 3 at 2.5 THz.

Two generalized statements can be made in comparing one-dimensional and two-

dimensional plasma layer parameter effects on the final figure-of-merit. First, the

optimum doping level is seen to decrease with a narrower waveguide width from

a maximum optimum value given by one-dimensional analysis. For example, at a

frequency of 5 THz and a plasma layer thickness of 0.3 pm (see Fig. 4-4(a)), the

optimum doping level goes from 4.0 x 1018 cm- 3 in the one-dimensional (infinite

waveguide width) case to 1.5 x 1018 cm- 3 for a finite waveguide width of 60 Am.

Second, in cases where thin plasma layers are used for narrow waveguides, the optimal

plasma layer thickness is greater than that given by one-dimensional analysis in order

to compensate for the lower confinement factor. This is discussed in the next section

on waveguide width effects.

4.4.2 Waveguide width

Figs. 4-2(b)-4-8(b), for frequencies ranging from 2.5-7 THz, show the effects of waveg-

uide width using the optimal plasma doping levels determined from Figs. 4-2(a)-4-

8(a). For all frequencies, three cases of plasma thicknesses are displayed for compar-
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ison; critical waveguide widths can be inferred from these simulations in which the

finite width of the waveguide begins to have deviating effects from one-dimensional

calculations.

For purposes of designing narrow waveguides, it is clear that choosing a thin

plasma layer degrades the final figure-of-merit. Thicker plasma layers are able to

preserve the confinement of the mode more efficiently for small waveguide widths

and this compensates for their greater loss contributions. This statement becomes

more applicable with decreasing frequency as seen clearly for the case that f = 3.0

THz, shown in Fig. 4-7(b). One-dimensional analysis shows that a plasma layer

0.4 pum thick gives a lower gain threshold condition than a plasma layer 0.8 Am thick;

however, a 0.4 Mm plasma layer thickness is seen not capable of supporting a mode

with a waveguide width of 160 pm, while a 0.8 pm plasma layer thickness can still

support a mode down to a waveguide thickness of 75 pm.

For the sets of simulations at 3.5, 4.0, and 5.0 THz (Figs. 4-4(b)-4-6(b)), two sets

of simulations with different doping levels are overlaid for the final figure-of-merit to

illustrate that the optimum doping level decreases with decreasing waveguide width.

For example, at 4 THz, the optimum doping level given by one-dimensional analysis

is ~ 2.5 x 1018 cm-3. From Fig. 4-5(b), for a waveguide width of 50 ptm and a plasma

layer thickness of 0.7 pm, the figure-of-merit is approximately 30% less by using a

smaller doping level of 1.5 x 1018 cm-3.

While these simulations were carried out for dry-etched waveguides, in which

the side walls are vertical, they have also been shown in simulations to be valid for

wet-etched geometries, in which the side walls are angled depending on the specific

processing recipe. For wet-etched waveguides, an effective waveguide width has to be

determined and is close to the average of the top and bottom widths of the waveguide.

4.4.3 Substrate thickness

Aside from the waveguide perspective, thin substrates offer thermal advantages for

device operation. However, it is shown that in some cases of narrow waveguide

widths, thinning the substrate will increase the gain threshold condition. Figs. 4-
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1 1.5 2 2.5 3 3.5 4 4.5 5
Plasma Doping level (10 cm

(a)

0.7 pm
0.6 pm

0.7 pm
0.6 Ipm
0.5 Irn

F~~1

0.7

30
50 70 90 110
50 70 90 110

Waveguide Width (gm)

(b)

130 1

Figure 4-2: SI surface-plasmon waveguide simulation results at f = 7.0 THz: (a) ID
loss and confinement factors vs. plasma doping for plasma thicknesses of 0.3-0.7 Am;
overlaid are 2D results for a waveguide width of 50 pm at plasma thicknesses of 0.3
and 0.7 im. (b) 2D loss and confinement factors vs. waveguide width for plasma
thicknesses of 0.3-0.7 Am and a plasma doping of 5 x 10" cm- 3 ; 1D results are plotted
to show convergence.
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Figure 4-3: SI surface-plasmon waveguide simulation results at f = 6.0 THz: (a) 1D
loss and confinement factors vs. plasma doping for plasma thicknesses of 0.3-0.7 Am;
overlaid are 2D results for a waveguide width of 60 Am at plasma thicknesses of 0.3
and 0.7 [m. (b) 2D loss and confinement factors vs. waveguide width for plasma
thicknesses of 0.3-0.7 Am and a plasma doping of 4.5 x 1018 cm- 3; 1D results are
plotted to show convergence.
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Figure 4-4: SI surface-plasmon waveguide simulation results at f = 5.0 THz: (a) ID
loss and confinement factors vs. plasma doping for plasma thicknesses of 0.3-0.7 [m;

overlaid are 2D results for waveguide widths of 60 and 70 pm at plasma thicknesses of
0.3 and 0.7 pm. (b) 2D loss and confinement factors vs. waveguide width for plasma
thicknesses of 0.3-0.7 pm and a plasma dopings of 2.5 and 3.5 x 1018 cm- 3; 1D results
are plotted to show convergence. Solid lines in all three figures in (b) correspond to
a plasma doping level of 2.5 x 1018 cm-3.
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Figure 4-5: SI surface-plasmon waveguide simulation results at f = 4.0 T Hz: (a) iD
loss and confinement factors vs. plasma doping for plasma thicknesses of 0.3-0.7 pam;
overlaid are 2D results for waveguide widths of 80 and 100 im at plasma thicknesses
of 0.3 and 0.7 pam. (b) 2D loss and confinement factors vs. waveguide width for
plasma thicknesses of 0.3--0.7 jm and a plasma dopings of 1.5 and 2.5 x 1018 cm-3 .
1 D results are plotted to show convergence. Solid lines in all three figures in (b)
correspond to a plasma doping level of 1.5 x 1018 cm-3
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Figure 4-6: SI surface-plasmon waveguide simulation results at f = 3.5 THz: (a) ID
loss and confinement factors vs. plasma doping for plasma thicknesses of 0.3-0.8 Am;
overlaid are 2D results for waveguide widths of 100 and 125 pm at plasma thicknesses
of 0.4 and 0.8 pum. (b) 2D loss and confinement factors vs. waveguide width for
plasma thicknesses of 0.4-0.8 pm and a plasma dopings of 1.0 and 2.0 x 1018 cm-3

11D results are plotted to show convergence. Solid lines in all three figures in (b)
correspond to a plasma doping level of 1.0 x 1018 cm-3
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Figure 4-7: SI surface-plasmon waveguide simulation results at f = 3.0 THz: (a) ID
loss and confinement factors vs. plasma doping for plasma thicknesses of 0.4-0.8 pm;
overlaid are 2D results for waveguide widths of 125 and 150 pm at plasma thicknesses
of 0.4 and 0.8 pm. (b) 2D loss and confinement factors vs. waveguide width for
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are plotted to show convergence.
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plotted to show convergence.
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9 and 4-10 show the effect of varying the substrate thickness for varying frequencies

and waveguide widths. As the waveguide width decreases, the confinement of the

mode degrades and allows stronger coupling to the surface-plasmon on the bottom

metal contact. With thin substrates, this coupling with the bottom contact's surface

plasmon is increased (see Fig. 4-11). At some point for thin enough plasma layers

or narrow enough waveguide widths, there exists a range of substrate thickness in

which the gain threshold blows up and no eigenmode is found. This is counter to the

original notion that thin substrates will act more like a metal-metal waveguide and

therefore provide higher confinement. It is only below certain substrate thicknesses

in which this analogy with the metal-metal waveguide begins to converge. For these

intermediate substrate thicknesses in which the mode is slightly leaky (meaning the

mode is close to be being a substrate radiation mode [42]), the interaction of the

mode with the bottom surface-plasmon is sufficiently strong to lower the confinement

factor enough such that the overall figure-of-merit blows up. However, for cases of

low frequencies, as seen for the 2.5 THz case in Fig. 4-10(c), the mode is slightly leaky

and if it is possible with available processing capabilities, it can be advantageous to

thin the waveguide in order to minimize the leak.

4.4.4 Side metal contact gap distance

Fig. 4-12 shows the effects of the side metal contact-to-waveguide gap distance for

three frequencies. Gap distances below certain values show coupling effects (seen in

Fig. 4-13) with the surface-plasmons associated with the metal contacts. The widths

of the side metal contacts were set at 200 pm for these simulations. It is clear that for

gap distances below 20 pm the coupling effects greatly degrade the figure of merit.

This quantitatively verifies the justification for the increase in gap distance made by

Ajili in Ref. [19] to decrease modal overlap with the metal contacts.
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Figure 4-9: SI surface-plasmon waveguide simulation results of 1D and 2D loss and
confinement factors vs. substrate thickness. Waveguides with finite widths of various
values are labeled. Plasma thicknesses of 0.3 and 0.7 pm were used; plasma doping
levels were set at (a) 5 x 1018 cm-3 for f = 7 THz, (b) 3 x 1018 cm- 3 for f = 5 THz,
and (c) 2 x 1018 cm- 3 for f = 4 THz.
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Figure 4-10: SI surface-plasmon waveguide simulation results of 1D and 2D loss and
confinement factors vs. substrate thickness. Waveguides with finite widths of various
values are labeled. Plasma thicknesses of 0.4 and 0.8 pm were used; plasma doping
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Figure 4-11: (a)-(c) represent a series of two-dimensional field profiles of the fun-
damental eigenmode along with their one-dimensional profile as the thickness of the
substrate is varied. The frequency is 4 THz, the waveguide width is 150 /Lm, and the
plasma layer is 0.3 pm thick and doped at 2.Ox 1018 cm-3.
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Figure 4-12: SI surface-plasmon waveguide simulation results for 1D and 2D loss
and confinement factors vs. side contact gap distance: (a) f = 5.0 THz with a plasma
thickness of 0.3 pm doped at 3 x 1018 cm- 3, (b) f = 3.5 THz with a plasma thickness
of 0.4 pm doped at 1.5 x 1018 cm- 3, (c) f = 2.5 THz with a plasma thickness of 0.6
pm doped at 1 x 1018 cm- 3. Waveguide widths are noted in each case.
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Figure 4-13: (a)-(b) show two field profiles of the fundamental eigenmode with two
different side metal contact to waveguide distances. The frequency is 3.5 THz, the
waveguide width is 150 pm, the substrate thickness is 200 pm, and the plasma layer
is 0.5 pm thick doped at 1.5x 1018 cm-3.
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Table 4.2: List of the metal-metal waveguide variables and their respective ranges
for simulations carried out.

Metal-metal Waveguide Variables
Active Region Thickness 3 - 10 /im
Waveguide Width 30 - 150 pm

Waveguide Width

Au 5.9 x 1022 cm-3

GaAs 2.0 x 1015 cm-3

$0.4 gm

Waveguide Thickness

/

Au 5.9 x 1022 cm-3

Figure 4-14: Schematic of the metal-metal waveguide's geometry. The structure
consists of a top metal contact, the active region, and a bottom metal substrate.

4.5 Metal-Metal Waveguide Design

The geometry of the metal-metal waveguide is shown in Fig. 4-14. The waveguide, like

the SI surface-plasmon waveguide, is based on a double-sided surface-plasmon between

the top and bottom metallic contacts. The metal-metal waveguide has considerably

less variables to consider than does the SI surface-plasmon waveguide and are listed

in Table 4.2. The active region doping is another possible variable; however, it is set

at 2 x 10 5 cm-3.
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4.6 Metal-Metal Waveguide Results

Simulations were carried out for the metal-metal waveguide over the variables defined

in Table 4.2 for the following set of frequencies: 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, and 7.0

THz. Unlike the SI surface-plasmon waveguide, the metal-metal waveguide has no

pre-MBE growth variables to optimize, and considerably fewer processing variables

to analyze. Effects of the waveguide width and active region thicknesses on the final

figure-of-merit are presented.

Figs. 4-15 and 4-16 show the results of these simulations. For each set of simu-

lations, the values for oz, F, and (a,, + am)/F are tabulated, where the latter is the

gain threshold condition. The mirror loss, am, for each set of simulations depends

on the frequency and the thickness of the active region as described in Section 5.4

and uses two-dimensional values calculated in that section (see Fig. 5-4). The cav-

ity length is set to 3 mm. The mirror reflectivities for metal-metal waveguides are

greater than those for SI surface-plasmon waveguides; therefore, the mirror coupling

losses contribute less to the overall loss for metal-metal waveguides. In addition, since

the confinement factors for all metal-metal waveguides are close to unity, the final

figure-of-merit can be well approximated as simply the waveguide loss, aO.

The waveguide loss is seen to increase as the active region thickness decreases;

this increase in loss is due to an increase in modal coupling with the surface plasmons

associated with the metal contacts. For low frequencies, as the lasing frequency

approaches the bulk plasma frequency of the active region (0.43 THz), waveguide

losses in the metal-metal waveguide become predominately due to free carrier loss

associated with carriers in the active region itself. As seen by the decreasing sensitivity

to the active region thickness, losses associated with the surface plasmons at the metal

contacts become less important.

In comparison with the SI surface-plasmon, the metal-metal waveguide is seen to

have little dependence on the width of the waveguide. In addition, the metal-metal

waveguide not only is capable of maintaining low gain threshold conditions for waveg-

uide widths much less than the lasing free-space wavelength, but also outperforms the
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SI surface-plasmon waveguide for all waveguide widths, with little variation.

4.7 Discussions

Two-dimensional simulation results for SI surface-plasmon and metal-metal waveg-

uides in the THz regime have been presented. Two-dimensional analysis has been

compared to previous one-dimensional analysis and quantify when certain variable

waveguide parameters begin to have non-negligible effects in two dimensions. For the

SI surface-plasmon waveguide, the finite width of the waveguide has a considerable

effect on the final figure-of-merit, and optimum plasma parameters are seen to differ

from one-dimensional analysis. While some improvements may be possible in the

design of SI surface-plasmon waveguides, such as gradually doping the plasma layer

[43], it performs poorly in comparison with the metal-metal waveguide. The main

obstacle in obtaining low gain threshold conditions for the SI surface-plasmon waveg-

uide is its poor ability to confine the mode, yielding confinement values of I'= .1-.6,

especially at the lower frequencies. The metal-metal waveguide, on the other hand,

is seen to exhibit little dependence on the waveguide width, has confinement factors

close to unity, and yields lower loss factors across the frequency range investigated

(1-7 THz). However, while the metal-metal waveguide outperforms the SI surface-

plasmon waveguide in terms of waveguiding, it underperforms in terms of its ability

to couple power out. This issue is discussed in the next chapter.
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Figure 4-15: Metal-metal waveguide simulation results: 2D loss and confinement
factors vs. waveguide width for core thicknesses of 3, 5, and 10 pm for (a) f = 7.0
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Figure 4-16: Metal-metal waveguide simulation results: 2D loss and confinement
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Chapter 5

Resonator Analysis

5.1 Introduction

The resonator of a laser includes both the waveguide and mirrors. The SI surface-

plasmon and metal-metal waveguides were discussed in the previous chapter. This

chapter focuses on the mirror reflectivity and the radiation pattern of the laser. The

mirrors for both waveguides are simply constructed by cleaving the waveguides; the

resulting facets, due to the orientation of the crystalline lattice, are approximately

perfect planes.

5.2 Simulation Method

Two-dimensional facet simulations (where the width of the waveguide is inherently

infinite) were performed in FEMLAB's in-plane TM wave mode solver. The term "in-

plane" refers to the fact that the wave vectors are in the plane of the two-dimensional

structure defined. Three-dimensional facet simulations were performed in FEMLAB's

three-dimensional electromagnetic wave mode solver (see Appendix A). Matched

boundary conditions (BCs) were used to excite a particular input eigenmode of the

waveguide. Excitation of a mode is achieved by defining source terms on the boundary

and associating their phases with a given propagation constant; this is described in

more depth in Section A.2.1. The matched BC also acts as a perfectly absorbing
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BC for any eigenmode traveling in the opposite direction due to reflection from the

facet. For two-dimensional metal-metal resonator simulations, the input eigenmode

is analytically derivable as simply the parallel-plate waveguide eigenmodes. For the

three-dimensional metal-metal resonator simulations, the input eigenmode had to

be simultaneously solved in the two-dimensional perpendicular hybrid mode solver

for the corresponding structure and coupled into the three-dimensional solver as the

input. For the two-dimensional SI surface-plasmon resonator simulations, the input

eigenmode was solved for by using the one-dimensional slab-waveguide technique and

coupling the solved one-dimensional mode into FEMLAB from MATLAB.

To simplify the metal-metal resonator simulations, all materials were made lossless

and the metals were replaced with perfect electrical conductor BCs. This was unnec-

essary in two dimensions; however, for the three-dimensional metal-metal resonator

simulations, the memory requirements disallowed any extra mesh allotment to cover

the metal surfaces. For consistency, both two- and three-dimensional metal-metal

resonator simulations were therefore made lossless.

Due to the inherent nature of the SI surface-plasmon mode, it would be impossible

in the resonator simulations to make the materials lossless. Therefore, a gain had

to be included in the active region such that the input eigenmode did not decay

before reaching the facet. This gain value was determined from the one-dimensional

calculations such that the waveguide loss was made to be zero. Unfortunately, due

to the severe aspect ratio in the SI surface-plasmon waveguide structure and the

severe memory limitations in full-wave three-dimensional numerical processing, no

simulations were able to be performed in three dimensions for the SI surface-plasmon

waveguide.

5.2.1 Reflectivity calculation

A simple method to determine the reflection of the facet is to divide the reflected

power, P, by the input power, Pnput. However, in two-dimensional simulations,

for waveguides with more than one propagating mode the reflected power is usually

carried by more than one mode of the waveguide due to higher-order excitations at
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the facet; higher-order modes with an imaginary propagation constant are evanescent

and do not carry power. However, in three dimensions, evanescent modes, due to the

finite width of the waveguide, are leaky and do carry power away laterally. For our

gain threshold condition, Eq. 3.5, the relevant parameter is the reflection coefficient

into that particular mode and not including any reflections into higher order modes;

therefore this method of calculating the power reflection is not always adequate.

The standing-wave ratio (SWR) method is an accurate way of determining the

reflectivity of a specific input mode. In this method we assume a particular input

mode, hi(x, y)ei3
iz, traveling in the z direction. Higher-order modes are excited at

the facet to give a total field in the waveguide as

H(x, y, z) = hi(x, y)eifllz + E rihi(x, y)e-ioiz, (5.1)

where ri is the reflection coefficient for each respective mode. By exploiting the

inherent orthogonality of the eigenmodes, we can take the inner product of the full

field with the input mode we are interested in and find its absolute value to be

|(hi(x, y)IH(x, y, z))l = JJH(x, y, z)h*(x, y) dxdy = 1 + riei 2 1z, (5.2)

where normalization is irrelevant as will be seen. The SWR is defined by the ratio of

the maximum to minimum value of the standing-wave defined by Eq. 5.2

S1WR -(hi H)Imx - 1 + ril
|(hiiH)Imin 1 - Irl (.

The calculation of the facet reflectivity therefore only needs the maximum and mini-

mum values of the standing-wave defined in Eq. 5.2 to obtain a value of

R = = ( (5.4)
SWR + 1

A typical standing wave is shown in Fig. 5-1 over a length of one wavelength. By

defining appropriate lines of integration in two dimensions and planes of integration
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Figure 5-1: Typical standing-wave profiles over one wavelength for three values of
the reflection coefficient: 0.0, 0.3, and 0.5. The facet is at the right end.

in three dimensions along the waveguide, FEMLAB is capable of performing the

integrations as defined in Eq. 5.2. All reflectivity values presented in this chapter use

this method. Due to the memory limitations in the three-dimensional simulations,

the calculated values for the standing-wave needed to be fitted to the analytical form

in Eq. 5.2. Appendix C describes the fitting methods used.

5.3 Semi-Insulating Surface-Plasmon Resonators

As discussed in Section 3.3.3, previous analysis of SI surface-plasmon waveguides

utilized the effective index method in calculating the mirror coupling loss. For a

GaAs/Air interface, where nGaAs= 3.6, this gives a mirror reflectivity of R = 0.3195.

Selected frequencies were simulated for the SI surface-plasmon waveguide and the

results are shown in Table 5.1. The only waveguide parameter that changed for the

frequencies were the respective plasma doping levels. As seen, numerical results for

all frequencies tested are close enough to the 0.3195 to reaffirm the validity of the

effective index method in calculating mirror reflectivities for the SI surface-plasmon

waveguide.
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Table 5.1: SI surface-plasmon facet reflectivities for 2-5 THz. All of the structures
simulated have the following geometry: 0.4 pm top metal contact, 10 pm active region
(doped at 2x 1015 cm- 3 ), 0.5 pim plasma layer (doping listed), on a 100 jim substrate
with a bottom metal coating.

SI Surface-Plasmon Waveguide Facet Reflectivities
Frequency (THz) Reflectivity (%) Plasma Layer Doping (x 1018 cm- 3 )
2.0 28.95 1.0
2.5 32.48 1.0
3.0 32.14 1.0
4.0 31.08 2.0
5.0 30.39 3.0
6.0 30.02 4.5
7.0 29.66 5.0

Fig. 5-2 overlays radiation patterns for various frequencies of the SI surface-

plasmon waveguide and show no major coupling effects with the bottom substrate

surface-plasmon; the far-field pattern is similar to that predicted by Fourier optics.

5.4 Metal-Metal Resonators

The waveguide apertures for metal-metal structures are much less than the laser

free-space wavelength and previous approximations used for reflection and transmis-

sion calculations of shorter wavelength structures fail to hold. The failures mainly

come about because previous theories assumed incident and transmitted infinite-plane

waves. However, coupling contributions between the components of the fields at

the aperture's boundary become non-negligible for cases of subwavelength apertures.

Specifically, as will be seen, output coupling with the surface plasmons associated

with the metal aperture become important.

5.4.1 Reflectivity

Fig. 5-4 displays two-dimensional results of metal-metal facet reflectivities vs. fre-

quency for different values of the active region thickness. The transition between

microwave and optical waveguide design clearly falls in the THz regime (1-10 THz)
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Figure 5-2: Normalized power radiation patterns for SI surface-plasmon waveguides
for the respective frequencies listed in Table 5.1. The active region thickness is 10
/ptm thick, the plasma layer is 0.5 pm thick, and the substrate is 100 Am thick. The
varied parameters are listed in Table 5.1.

Figure 5-3: Field profile of the radiated transverse magnetic field for the SI surface-
plasmon waveguide for the 3 THz case shown in Fig. 5-2.
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Figure 5-4: Two-dimensional (waveguide width is infinite) metal-metal waveguide
facet reflectivities vs. frequency for five different waveguide thicknesses as labeled.

and a simple effective index method by itself would fail to account for these higher

facet reflectivities. The oscillatory behavior as the reflectivity converges to the optical

reflection value is interesting because it suggests an enhanced transmission of light in

comparison with plane-wave transmission. This enhanced transmission appears to be

due to surface-plasmon coupling effects on or near the metal aperture's boundary and

is similar to results in studies done on near-field scanning optical microscopy [39, 40].

Coupling of the output power with surface plasmons at or near the metal aperture

boundary can be seen in Figs. 5-6 and 5-7 and is discussed in the next section. Fig. 5-5

displays three-dimensional results of metal-metal facet reflectivities. The increase in

reflectivity as the waveguide width decreases can be explained by the decrease in the

area of the waveguide aperture; in the context of antenna theory, power radiated from

subwavelength apertures are usually linearly proportional to the area of the aperture

[37].
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5.4.2 Directivity

Fig. 5-6(a) overlays power directivity patterns for varying frequencies of a 10 pm thick

metal-metal waveguide; Fig. 5-6(b) overlays power directivity patterns for varying

thicknesses of the metal-metal waveguide at a frequency of 3 THz. Radiated field

profiles for four cases of frequency (2, 6, 10, and 20 THz) with an active region

thickness set at 10 pm are presented in Fig. 5-7. All were simulated in the two-

dimensional mode solver in which the width of the waveguide is inherently infinite.

The figures show that aperture boundary coupling to both the substrate surface

plasmon and the top metal surface-plasmon (above the waveguide) drastically affect

the directivity patterns. The former effectively radiates more power downward, while

the latter effectively radiates power up and behind (9 > 90') the waveguide with

respect to the facet. It is seen that only a fraction of the coupled output power

actually is radiated within a small enough angle to be collected by a cone.

5.5 Discussions

Two- and three-dimensional simulation results for SI surface-plasmon and metal-

metal resonators in the THz regime have been presented. The effective index method

is shown to stay valid in the THz regime for SI surface-plasmon resonators. Radiation

patterns for SI surface-plasmon waveguides are similar to that predicted by Fourier

optics. Metal-metal resonators, on the other hand, are seen to be a hybrid between

the microwave and optical regimes. Two degrading factors arise in this intermediate

regime: the facet reflectivity increases dramatically and the directivity of the output

power decreases. The former factor is a major issue in trying to couple power out of

the laser resonator. The later factor is a major issue in trying to couple the power

that actually couples out of the resonator into some collection device, such as a cone,

that efficiently directs the power toward a destination.

Current studies on second-order diffraction gratings as a DFB are being under-

taken to address both of these issues for the metal-metal waveguide. Preliminary

results are promising; they show that using the top metal contact as a grating not
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Figure 5-7: Field profiles of the radiated transverse magnetic field for the metal-
metal waveguide at frequencies of (a) 2, (b) 6, (c) 10, and (d) 20 THz, from Fig. 5-6(a).
The active region thickness for all cases is 10 ,m.

83



only efficiently couples power out, but also provides higher directivity and symmetry

of the radiation pattern, and may provide an effective tuning mechanism for the laser.
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Appendix A

FEMLAB: Partial Differential

Equations

FEMLAB is a powerful modeling tool based on the finite element method (FEM) for

solving complicated partial differential equations (PDEs). Included in the FEMLAB

package is an electromagnetics module with numerous pre-defined application modes

that encompass electrostatic fields, magnetostatic fields, quasi-static fields, and elec-

tromagnetic waves in two- and three-dimensions. Beyond the graphical user interface,

in which the user simply enters material and system parameters and presses the solve

button, it is beneficial to examine how FEMLAB operates on a more fundamental

level. Reasons for this might include the need to refine or modify specific parameters,

such as a boundary condition coefficient, for a special situation not included in the

pre-defined application mode, or, for post-processing purposes, a required knowledge

of the application mode definitions, in this case in the context of electromagnetics.

This appendix describes how FEMLAB formulates PDEs and the various types of

analysis used in solving these PDEs.

FEMLAB formulates PDEs in three different ways: coefficient form, general form,

and weak form. The latter, despite its name, is the most powerful and more general

of the three. The general form is most suited for nonlinear problems. The coefficient

form, which is what is used in the simulations discussed in this thesis, is most suited

for linear problems and is the focus of what follows.
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Once a PDE form is specified, various types of analysis are available and include:

eigenfrequency and modal analysis, stationary and time-dependent analysis, and lin-

ear and nonlinear analysis. All simulations carried out in this thesis are linear and

fall under either modal analysis, Chapter 4, or a stationary time-harmonic analysis,

Chapter 5.

The FEMLAB coefficient formulation of PDEs on a geometry in n dimensions

with one dependent variable is presented first as the simplest example and then the

particular cases used in this thesis follow. In all cases, Q represents the solution

domain and &Q represents its boundary, with n denoting the outward unit normal

vector on 9Q.

A.1 Coefficient Formulation

The simplest coefficient formulation assumes one dependent variable u in n dimen-

sions. A stationary PDE problem in FEMLAB is formulated as follows

V.(-cVu-au+-y)+/3.Vu+au=f in Q, (A.1)

n - (cVu+au -y)+qu=g - } on &Q, (A.2)

hu = r

where V = (&/&x1, ... , 8/&xn)T, {a, f, g, q, r, p} are scalars, {a, 3, -y} are n x 1

vectors, and c, h are n x n matrices. Eqs. (A.2) are the generalized Neumann and the

Dirichlet boundary conditions (BCs), respectively. This representation of the BCs

is unconventional because it imposes both Neumann and Dirichlet BCs at the same

time, also known as a mixed or Robin BC. The particular cases used for simulations

in this thesis are not affected by this discrepancy since the coefficients are specifically

chosen such that only one BC is imposed at a time. Refer to reference [29, pp.

3-25-41] for more detail.
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A.2 Electromagnetic PDE Formulation

The simulations presented in this thesis were carried out in three different applica-

tion modes within the electromagnetics module: the two-dimensional perpendicular

hybrid-mode waves application mode, the two-dimensional in-plane TM waves ap-

plication mode, and the three-dimensional electromagnetic waves application mode.

TE- and TM-mode solvers also exist in FEMLAB; however, due to the inherent na-

ture of the inhomogeneity of the waveguides in interest, the solutions will be a hybrid

between TE and TM modes, and the hybrid-mode solver must be used. The terms

"perpendicular" and "in-plane" refer to the orientation of the wave vectors with re-

spect to the two-dimensional plane in which the structure is define. The hybrid-mode

solver was used to solve for the two-dimensional eigenmodes of waveguides while

the two-dimensional in-plane TM and three-dimensional electromagnetic wave mode

solvers were used to solve for the facet reflectivities of the waveguide and its radiation

pattern. In each case, the governing PDEs are Maxwell's equations. The general

FEMLAB formulation for these modes is the solution of the three dependent vari-

ables denoted by u = (uX, uY, uZ)T. The stationary PDE problem for these modes in

FEMLAB is formulated as follows

V (-cVu) + au = 0 in Q, (A.3)

n (cVu) +qu= g on OR (A.4)

hu = 0

A.2.1 Three-dimensional electromagnetic waves application

mode

For the electromagnetic wave modes, FEMLAB treats time-harmonic waves with two

formulations. FEMLAB uses the EE convention and assumes time dependence ~ eiwt,

in which case Maxwell's equations in homogeneous and isotropic subdomains can be
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reduced to

V x (V x E) -w 2 pE = 0,

V x (V x H) -w 2MH = 0.

(A.5)

(A.6)

Either of these equations may be used to solve Maxwell's equations, and FEMLAB

assigns each as a different application mode. The simulations in this thesis dealt with

hybrid-eigenmodes predominately TM in nature and thus used the latter magnetic

field solver, Eq. (A.6). In this case, the coefficients for Eq. (A.3) are set to

a = -w POIrEO, and (A.7)

1
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0

0

0

0

0

0

0

0
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a rank-four tensor

0

0

0

0

0

1

0

0

-1

0

0

0

0

0

0

0

0

-1

0 1 0 0

-1 0 1 0

0 0 0 0

See reference [44]

(A.8)

for more interesting

cases of anisotropic media. With these coefficients, u = H.

Boundary conditions

Only those boundary conditions used in the simulations of this thesis are discussed

below; they are the perfect magnetic conductor (PMC) BC, the perfect electric con-

ductor (PEC) BC, the matched BC, and the low-reflecting BC. Refer to [44, pp.
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3-98-104] for a complete formulation of the electromagnetic waves application mode's

boundary conditions, including the coefficients used in Eqs. (A.4).

The PMC condition n x H = 0 sets the tangential component of the H field to zero.

In modal analysis, Chapter 4, when a geometry is symmetric and the solution for a

TM mode we are interested in is even, then the tangential magnetic field components

(Hy and Hz) of the eigenmode are zero on the line of symmetry. This is illustrated

in Fig. A-1. Therefore, the PMC condition can be used on the line of symmetry

such that only one side of the geometry need be computed. This saves considerable

memory that could otherwise be used to refine the mesh. If the solution is odd, see

Fig. A-1, then the tangential electric field components (Ey and E,) are zero on the

line of symmetry and the PEC condition can be used.

The PEC condition n x E = 0 sets the tangential component of the E field to

zero. This is used for the metal boundaries of the waveguide if we are interested in the

lossless case. This was also the preferred BC used in Ch. 4 at the outer boundaries;

the fields should be negligible at this distance from the confined region and should

not make a difference. The coefficients for Eq. (A.4) for the PMC and PEC cases are

given under the Dirichlet BC as

0 -nz ny
hpmc = nz 0 -n,, hPEC = 0, (A.9)

-ny nz 0

where n is outward unit normal vector.

Two absorbing boundary conditions are available to represent non-physical bound-

aries: the matched BC and the low-reflecting BC. The matched BC (for three dimen-

sions) is given by

n x (V x E) - i/(E - (n -E)n) = -2i3(Eo - (n - Eo)n) - 2if Fn x Ho, (A.10)

where EO and HO are optional input parameters and 3 is a given propagation constant.

The derivation of Eq. A.10 is beyond the scope of this section; however, it can readily
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Odd Eigenmode (Hr)

Lx

Line of Symmetry

Figure A-1: H, field profiles for odd and even eigenmodes for symmetric waveguides.

be verified' that in the case that no sources are present, Eq. A.10 becomes

n x (V x E) - i,3(E - (n -E)n) = 0,

and this condition is satisfied by a plane wave E = Ee-i"3nr traveling out through the

boundary. Inclusion of the source terms are described in Ref. [44, pp. 3-100-101]

The matched BC, Eq. A.10, is used to perfectly absorb an incident eigenmode

with propagation constant 3. In this thesis, the matched BC was used in facet

reflectivity calculations at the input to the waveguide; the fundamental eigenmode

of the waveguide was used as an input and any reflections of this eigenmode would

be perfectly absorbed. The matched BC also effectively absorbs higher order mode

waves depending on how close their propagation constants are to 3, which in most

cases are close enough to consider the higher order modes perfectly absorbed as well.

In the case the propagation constants differ, the error is mitigated by the fact that

the higher mode usually carries less power associated with the lower propagation

constant.

The low-reflecting BC is a special case of the matched BC by setting the propa-

gation constant to be that of free space: 3 = k = wVlpt. FEMLAB implements the

'Using the equality: n x (n x E) = (n -E)n - E.

90



low-reflecting BC as

n x H + E - (n -E)n = 2E - 2(n - Eo)n+2 n x Ho,

where, again, EO and HO are optional input parameters. In the case that no sources

are present, this becomes

-n x H = (n - E)n - E = n x (n x E).

The low-reflecting BC is perfectly absorbing for infinite plane waves, as verified by

inserting a free-space plane wave Ee- ionr into the above equation. In this thesis,

the low-reflecting BC was used at the outer boundaries in the facet reflectivity calcu-

lations. The distance was made to be a minimum number of wavelengths such that

the fields are radiating waves (in the Fraunhofer or radiating far-field region) and are

approximately absorbed as infinite plane waves.

The coefficients for the absorbing boundary conditions in two and three dimensions

are given in Ref. [44].

A.2.2 Two-dimensional in-plane TM waves

For the two-dimensional in-plane TM wave mode 2, the fields can be written as:

H(x, y, t) = iH,(x, y)ei(tz 3 ~4Y) (A.11)

E(x, y, t) = (kEx(x, y) + SEy(x, y)) e*i(t-OxX-Y), (A.12)

where it is explicit that the wave vector, 3 = k/3x + y,, is in the x-y plane. Eq. A.3

becomes

-V - (ErVHz) - k2Hz = 0. (A.13)

2For two-dimensional simulations, the axes are oriented such that the x-axis is horizontal on the
screen, the y-axis is vertical, and the z-axis is pointing out of the screen
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A.2.3 Two-dimensional perpendicular hybrid-mode waves

For the two-dimensional perpendicular hybrid-mode, the fields can be written as:

H(x, y, z, t) = H(x, y)ei(t-3z) (A.14)

E(x, y, z, t) = E(x, y)ei(Wt-3z). (A.15)

Eq. A.3 becomes

V x (6-'V x H) - k2rpH = 0. (A.16)
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Appendix B

Surface Plasmons

Conventional dielectric waveguides provide confinement by small refractive-index dif-

ferences between layers. This method is impractical for THz QCLs. However, Maxwell's

equations allow another mechanism for confinement between two layers provided that

the dielectric constants of the two materials have real parts of opposite sign. These

modes are known as surface plasmons and can propagate along the interface of the

two layers. The simplest two-layer surface plasmon is analytically described for three

cases in this appendix. The first is a simple metal/vacuum surface plasmon for com-

parison. The next two are the separate solutions for the Au/GaAs active region

surface plasmon and the GaAs plasma layer/GaAs active region surface plasmon.

Let us assume, quite arbitrarily for now, that the half-space (labeled 2) z < 0 has

a permittivity E2 = E2 (w), and that the half-space z > 0 (labeled 1) has a permittivity

Region 1

z e (l

Region 2

E 2Bat

Figure B-i: Surface plasmon coordinates.
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61 = E1(w) (see Fig. B-1). The surface plasmon is a solution to Maxwell's equations

of the form (see problem 1.5 in Ref. [31]):

E1(z > 0) 1 (ic1 + iik,) eikxre-aiz (B.1)

and

E 2 (z < 0) = (ka 2 - iikx)eikxx ea2Z (B.2)
a2 + kx

where kx, a,, and a 2 may be complex and are found to be:

2

ai(w) = w po , (B.3)

E2

a 2 (W) = -E - + 2 (B.4)

kz(w) = W /o +2. (B.5)

B.1 Metal/Vacuum Surface Plasmon

The simplest surface plasmon mode exists between a metal with E1 (w) = 6W(1 -w,/W2 )

and a vacuum with E2 (w) = co. The propagation constant of the surface plasmon

becomes:

W U)2 _ W 2
kx(w) = (B.6)

c \ w-2 - 2W2

The surface plasmon is seen to be propagating (having a real kx) for w > wp and

w < wp/v 2, where wp/V 2 defines the surface plasmon frequency. Parameters for the

metal/vacuum surface plasmon are plotted in Fig. B-2. The surface plasmon mode

is seen to be only confined to the surface for w < wp/V2.

B.2 Au/GaAs Active Region Surface Plasmon

The surface plasmon associated with the lightly doped GaAs active region and Au

(present in both the SI surface-plasmon and metal-metal waveguides) is presented
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Figure B-2: a1 (w), a2 (w), and k.,(w) values for the metal/vacuum surface plasmon
vs. frequency. x-axis values are in units of wp and y-axis values are in units of wp/c.
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Figure B-3: Surface plasmon skin depths, 61 and 62, for GaAs doped at 2 x 10"
cm- 3 and Au, respectively, and the attenuation constant are plotted. The GaAs bulk
plasma frequency is denoted by w, 1 and is 430 GHz; the Au bulk plasma frequency
is 2181 THz.

in Fig. B-3 using the Drude permittivity defined in Eq. 3.11 and the values in Ta-

ble 3.1. The metal skin depth, given by 1/Im{Ia }, is seen to increase with decreasing

frequency until the frequency reaches the bulk plasma frequency of the GaAs active

region, which is 430 GHz, well below the THz regime (1-lOTHz).

B.3 GaAs Active Region/GaAs Plasma Layer Sur-

face Plasmon

The surface plasmon associated with the lightly doped GaAs active region and the

n+ GaAs plasma layer (present in the SI surface-plasmon waveguide) is presented in

Fig. B-4 using the Drude permittivity defined in Eq. 3.11 and the values in Table 3.1.

The plasma skin depth is seen to be greater than those thicknesses used for the plasma

layer in this thesis.
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Figure B-4: Surface plasmon skin depths, 61 and 62, for GaAs doped at 2 x 10" cm-3

and for three sets of n+ GaAs doped at 1, 3, and 5x 1018 cm-3, respectively, and the
attenuation constant are plotted. The lightly doped GaAs bulk plasma frequency is
denoted by wp1 and is 430 GHz; the bulk plasma frequencies of the n+ GaAs are 9.64,
16.7, and 21.5 THz for the 1, 3, and 5x10 18 cm-3 layers, respectively.
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Appendix C

Standing-Wave Ratio Fitting

The SWR method is used in the calculation of facet reflectivities (see Chapter 5).

By defining appropriate lines or planes, depending on the number of dimensions, of

integration along the waveguide, FEMLAB is capable of performing the integrations

as defined in Eq. 5.2. However, due to memory limitations, only a finite number of

lines or planes may be defined and integrated. In three dimensions especially, memory

limitations are severe enough such that no more then ten planes are usually defined

along the waveguide, where the length is on the order of a wavelength. The accuracy

of the SWR method rests on knowing the maximum and minimum field values of the

standing-wave, Eq. 5.2. The maximum and minimum values obtained from the finite

set of integration planes may differ enough from the true maximum and minimum

values to skew the accuracy of the calculated reflectivity. However, due to the simple

form of the standing-wave, the finite number of calculated values can accurately be

fitted to the analytical form of the profile. From Eq. 5.2, the analytical form of the

standing-wave is

I(h(x, y)jH(x, y, z))I = 11 + re-iei 23 z = V1 + r2 + 2r cos (0 + 20z), (C.1)

where the phase of the reflection coefficient, 0, is explicitly written. Newton's method

along with the least squares method can be employed to fit the finite set of calculated

values to this equation; this scheme is presented in this appendix and returns an
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accurate value for the reflection coefficient.

C.1 SWR Fitting: Newton's Method and Least

Squares

Define a residual function as follows:

+ r 2 + 2r cos (0 + 23z) d 2

f(A,r,#) A2
1+ r2+ 2r cos (0+ 23z 2 )

1+r 2 + 2r cos (0 + 23zN) dN

where 3 is the known propagation constant, and di are the calculated values of Eq. C.1

at the zi locations. A, r, and q are the unknowns to be determined.

The Jacobian matrix, J, is defined by

where Or

2A(1+r 2 + 2r cos (0 + 2zi)),

SA 2 (2r + 2 cos (# + 20zi)) ,

- -2rA 2 sin (4 + 23zi) .

C.1.1 Newton's method

A Taylor series around (A', r', 0') gives

f(A, r, #) = f(A', r', q') + i + O(A 2 ), where A -=

Newton's method gives

= -f(A', r', #').

J~E

Of,
aA

f2
OA

aA

Of
Or

2f2
Or

af N
O~r

af2

Lo

100

(C.2)

A - A'

r - r'/



C.1.2 Least squares method

Eq. C.2 is an overdetermined system. The least squares method gives the best fit

solution

- ( J) l (A' r',)

The iterative method employed is then

Am+, Am

rm+1 = (m - (OmJmj Jmf(Ar,)

where the initial guess is

max +ddmi 1
Ao 2 1+r2

_o dmax - dmin

dmax + dmin

\0/ cos_ dl -1 - r 2

\0\ Aoj 2roJ

Fig. C-1 shows a typical example in which the finite number of lines (or planes) of

integration inaccurately calculate the reflectivity value, in this case by 18%. Fitting

the SWR by the above method reproduces more accurate minimum and maximum

SWR values as seen.
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Substrate
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- Fitted SWR
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R alc = 0.58 Rfit = 0.49

Facet

Figure C-1: SWR fitting example: (a) representative geometry of the waveguide;
dashed lines are the defined lines of integration. (b) Calculated values at each line
of integration are superimposed on the fitted SWR profile. It is seen that the cal-
culated values over- and under-estimate the minimum and maximum SWR values,
respectively. The calculated reflectivity value, Rac, differs by 18% from the fitted
value, Rfit.
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