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Abstract

Modern cryptographic protocols are based on the premise that only authorized par-
ticipants can obtain secret keys and access to information systems. However, various
kinds of tampering methods have been devised to extract secret keys from widely
fielded conditional access systems such as smartcards and ATMs. As a solution,
Arbiter-based Physical Unclonable Functions (PUFs) are proposed. This technique
exploits statistical delay variation of wires and transistors across integrated circuits
(ICs) in the manufacturing processes to build a secret key unique to each IC. We
fabricated Arbiter-based PUFs in custom silicon and investigated the identification
capability, reliability, and security of this scheme. Experimental results and theoreti-
cal studies show that a sufficient amount of variation exists across ICs. This variation
enables each IC to be identified securely and reliably over a practical range of environ-
mental variations such as temperature and power supply voltage. Thus, arbiter-based
PUFs are well-suited to build key-cards and membership cards that must be resistant
to cloning attacks.
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Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Secure Storage of Secret Keys

For many emerging applications that need exceptional security in identifying and

authenticating users, such as intellectual property protection, Pay-TVs, and ATMs,

system security is based on the protection of secret keys. Malicious users can imper-

sonate authorized users when the secret key is uncovered. Thus, private information

storage devices, such as smartcards, provide active logical controls for the protection

of secret information against logical and physical tampering attacks.

However, recently developed physical tampering methods such as micro-probing,

laser cutting, glitch attacks, and power analysis have made it possible to extract dig-

italized secret information and compromise widely fielded conditional access systems.

For example, an adversary can remove a smartcard package and reconstruct the lay-

out of the circuit using chemical and optical methods. He can even read out the

information stored in non-volatile memories such as EEPROMs and NVRAMs [13].

Researchers have invented various protection mechanisms to prevent invasive phys-

ical attacks. For example, we can introduce additional metalization layers that form

a sensor mesh above the actual circuit [13]. The sensor mesh technique has been used

in some commercial smartcard CPUs, such as the ST16SF48A and in some battery-

buffered SRAM security processors, such as the DS5002FPM and DS1954. Using

a sensor mesh, any interruption and short-circuit can be monitored while power is

17



available, and a laser cutter or selective etching access to bus lines can be prevented.

Though a tamper-sensing environment can cause difficulty for the adversary, the sen-

sor mesh cannot prevent the extraction of hard-wired information in a circuit when

the power is off. However, it can erase keys stored in non-volatile memory as soon as

tampering is detected.

Instead of using vulnerable hard-wired secret keys, we can exploit alternative

circuit parameters that are resistant to physical attacks on the premise that the

parameters can be converted into digital secret keys. Electrical properties such as

signal propagation delays, threshold voltages, and power consumption form good

candidates thank to their intrinsic randomness. In this thesis, we show how to build

secure storage of secret keys based on propagation delays in ICs.

1.2 Random Functions as Secret Key Storage

Recently, the randomness of functions has attracted much attention for its crypto-

graphic uses. The notion of pseudo-random functions based on computational com-

plexity is presented in [11]. The idea of using random functions as secure storage of

secret keys is discussed in [10]. Though pseudo-random functions are cryptographi-

cally strong against logical attacks, physical implementations of random functions are

still vulnerable to duplication of the secret keys by sophisticated reverse engineering.

Therefore, instead of computational complexity, using randomness in physical

materials can give a viable solution. As an example, the concept of Physical One-

Way Functions (POWFs) has been introduced in [18]. In this work, Pappu et. al.

show that the mesoscopic physics of coherent transport through a disordered medium

can be used to allocate and authenticate unique identifiers by physically reducing the

medium's micro-structure to a fixed-length string of binary digits. This POWF can

be used to build a random function that keeps a logical strength of a pseudo-random

function [11]. These physical random functions are strong against physical attacks

because an adversary is not in control of heterogeneous materials that hold secret

information.
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1.3 Exploiting Process Variation in Silicon Manu-

facturing

Silicon can be a good candidate of a base material to build physical random functions.

Gassend et. al. have introduced silicon physical random functions (also called Phys-

ical Unclonable Functions or PUFs for short) [8]. A PUF is based on the intrinsic

random process variation in the manufacturing of ICs. While ICs can be reliably mass-

manufactured to have identical digital functionalities, each IC can also be uniquely

characterized due to inherent manufacturing variation. Since the responses of the

PUF are designed to be sensitive to delay variation, process variation of transistors

and wires delays across ICs makes the response pattern of each PUF unique. Thus,

we can identify and authenticate each IC reliably by observing the PUF responses.

Since process variation is largely beyond the manufacturers' control, it is im-

possible for an adversary to make identical copies of a PUF. Moreover, since the

manufacturing variation is small compared to other measurable circuit parameters,

characterizing PUFs by probing internal propagation delays is an arduous task.

In this work, we propose a novel architecture, an arbiter-based PUF. By utilizing

a differential structure, this approach makes the PUFs more reliable against envi-

ronmentally induced noise. We thoroughly investigate the identification capability,

reliability and security of this approach in this thesis. We develop a theoretical model

of delay variation to estimate the feasibility of this approach in the mass-production of

ICs. PUF test-chips were fabricated using a TSMC 0.18 ,/m process. Using the test-

chips, we estimate the model parameters and verify the correctness of the theoretical

model. We also study the reliability of an arbiter-based PUF approach. Lastly, we

propose alternative architectures to improve the security of the arbiter-based PUFs.

1.4 Organization

This thesis is structured as follows. Chapter 2 defines physical random functions,

describes manufacture resistance of PUFs, and gives a general overview of PUF sys-
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tems.

Chapter 3 introduces the notion of delay-based authentication and a detailed

circuit implementation of arbiter-based PUFs. Furthermore, we show experimental

results for silicon PUFs implemented in custom silicon, and analyze the important

characteristics of PUFs such as inter-chip variation, measurement noise and environ-

mental noise. We also measure the performance and an aging effect in arbiter-based

PUFs.

Chapter 4 details the statistical model of an arbiter-based PUF circuit. We provide

an appropriate delay model of a PUF circuit and estimate model parameters. Based

on the model, we examine theoretical identification capability of arbiter-based PUFs.

We calculate the required number of measurements to identify billions of PUFs with

negligible probability of error. Moreover, we propose a parameter estimation method

to verify the accuracy of the model based on experimental results.

Chapter 5 studies the vulnerability of arbiter-based PUFs against possible attack

models. We provide a representation of arbiter responses as a linear function of

challenges and delay segments. Based on the linear model, we investigate a machine

learning algorithm, a Support Vector Machine (SVM), which can be trained by a small

amount of challenge-response pairs to predict responses of given random challenges.

We conclude that a software model building approach is critical to the security of

arbiter-based PUFs.

Chapter 6 suggests alternative types of arbiter-based PUFs for which it is more

difficult to build a software model by adding non-linearity in delay paths. From

our experiments, we evaluate each PUF's identification capabilities and estimate the

amount of non-linearity of the delay model using the method in Chapter 4. The

increased amount of non-linearity creates difficulty in model building for the new

arbiters.

Finally, Chapter 7 concludes the thesis and presents ideas for future work such as

reconfigurable PUFs and a PUF-based random number generator. We also present a

reliable secret sharing method using PUFs.

20



Chapter 2

Physical Random Functions for

Secret Key Storage

Pseudo Random Functions (PRFs) have attracted attention in modern cryptogra-

phy. Because of their intriguing properties such as indexing, poly-time evaluation,

and pseudo-randomness, PRFs have been used in various cryptographic applications

[10], in particular, user identification and authentication. Though PRFs are crypto-

graphically strong, sophisticated physical attacks can still break the PRF circuit to

extract sensitive data.

In this chapter, we define a Physical Unclonable Function (PUF), which is con-

structed based on the randomness of physical materials to prevent physical attacks

while keeping the cryptographic strength of the PRFs. As applications, we present a

secure key-card system and Unclonable membership card system that are based on

the existence of PUFs.

2.1 Definition of Physical Random Functions

2.1.1 Definition of One Way Functions

Modern cryptography is based on the gap between efficient encryption for legitimate

users and the computational infeasibility of decryption. Thus, a cryptographic al-
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gorithm requires available primitives with special kinds of computational hardness

properties. A one-way function is a basic primitive in the modern cryptographic sys-

tem. Informally, a function is one-way if it is easy to compute but hard to invert. By

"easy", we mean that the function can be computed using a probabilistic polynomial

time (PPT) algorithm, and by "hard" that there is no PPT algorithm to invert it

with greater than "negligible" probability.

Here is the formal definition of one-way functions.

Definition 2.1.1. A function f: 0, 1* - ({0, 1)* is called strongly one-way if the

following two conditions hold.

* Easy to compute: There exists a deterministic polynomial time algorithm A

such that on input x, A outputs f(x) (that is, A(x) = f(x)).

* Hard to invert: For every probabilistic polynomial time algorithm A', every

polynomial P, and all sufficiently large n

Pr(A'(f(y)) E f-l(f(y))) < '

The second condition means that the probability that algorithm A' will find an

inverse of y under f is negligible. The strong one-way functions above require that

any efficient inverting algorithm has negligible success probability. Weak one-way

functions require only that all efficient algorithms fail with some non-negligible prob-

ability.

If the size of the output, i.e., f(x), is always fixed, regardless of the size of the

input x, then the function f(x) is called a one-way hash function. This definition of

one-way hash function will be used as a template when we define physical random

functions in the next section.

2.1.2 Definition of Physical Random Functions

We can construct a poly-random collection of functions that cannot be distinguished

from pure random functions based on the existence of one-way functions [11]. Instead
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of using computational complexity, we can exploit the physical randomness in nature,

such as heterogeneous optical medium, electrical noise, and process variation in silicon

manufacturing, to construct random functions.

Here, we provide a general definition of physical random functions based on the

definition of one-way functions [8]. The term challenge refers to the input to the

functions and response refers to the output.

Definition 2.1.2. A Physical Random Function is the function embodied by a phys-

ical device, and maps challenges to responses A physical random function satisfies

the following properties:

* Easy to evaluate: The physical device can easily evaluate the function in a short

period.

* Hard to predict: From a polynomial number of plausible physical measurements

(in particular, determination of chosen challenge-response pairs (CRPs)), an ad-

versary who no longer has the device and can only use a polynomial amount of

resources (time, matter, etc.) can extract only a negligible amount of informa-

tion about the response to a randomly chosen challenge.

By the term "easy", we mean that the function can be computed in polynomial

time. The term "plausible" is relative to the current state of the art in measurement

techniques and is likely to change as methods improve.

The definition of the physical random function is similar to that of one-way func-

tions. However, unlike a one-way function, it does not need to be hard to invert. For

a physical random function, guessing the response from a given challenge without

using the device must be hard.

2.2 Secret Key Storage

2.2.1 Manufacturer Resistant PUFs

Here we define Manufacturer Resistant PUFs.

23



Definition 2.2.1. A type of PUF is said to be Manufacturer Resistant if it is tech-

nically infeasible to produce two identical copies given only a polynomial amount of

resources (time, money, silicon, etc.) [8].

In this thesis, we use the physical parameter variation in manufacturing process

such as propagation delays in ICs to implement manufacturer resistant PUFs. Since

the process variation is beyond the control of manufacturers, the PUF circuit is hard

to duplicate.

2.2.2 Applications

PUFs can be used in many kinds of applications that need exceptional security in

storing secret keys. Here, we present a key-card and membership card applications.

These applications are based on PUFs to prevent a cloning attack by an adversary.

PUF Key-Cards

PUFs can be used to realize authenticated identification, in which only someone who

physically possesses a PUF can access to protected resources. Since the PUF cannot

be duplicated even by its manufacturer, the privilege of possessing the PUF cannot

be abused with thousands of illegal copies. Figure 2-1 shows a general model of an

authenticated identification process with a PUF key-card [2].

In this model, a principal with a PUF key-card presents it to a terminal at a

locked door. The terminal can connect via a private, authentic channel to a remote,

trusted server. The server has an established list of CRPs of the PUF. When the

principal presents the card to the terminal, the terminal contacts the server using

the secure channel, and the server replies with the challenge of a randomly chosen

CRP in its list. The terminal inputs the challenge to the PUF, which determines

a response. The response is sent to the terminal and forwarded to the server via

the secure channel. The server checks that the response matches its expectation,

and sends an acknowledgment to the terminal. The terminal then unlocks the door,

allowing the user to access the protected resource. The server should only use each

24



LOCK

CRP profile of PUF A
challenge response

232C 9871 A123

CRP profile of PUF B
challenge

232C 9871

response

981A

4-

... KAv-Carr
challenge · " 

12FA 8276 PUF A

response MI
652B

Authenticated channel

Figure 2-1: The general model of identification system based on a PUF key-card

challenge once to prevent replay attacks. Thus, the user is required to securely renew

the list of CRPs on the server periodically.

PUF-based Membership Cards

As an application of a pseudo random function, the "identifying friend or foe" problem

has been suggested in [10]. This problem assumes an exclusive society that wants to

give membership cards to all society members. These cards enable all society members

to identify and authenticate each other. A president can exploit a pseudo-random

function f, for this use. For example, when Alice meets Bob, Alice gives a random

input z to Bob, and Bob calculates f,(z) and gives it back to Alice. Then Alice

computes f (z) and compares it with the Bob's result to authenticate Bob. In this

scheme, if an adversary steals f, and duplicates it using sophisticated physical attacks,

the privileges of the society can be abused by a number of illegal copies.

Figure 2-2 shows a PUF-based membership card model as a solution against the

duplication attack. A PUF membership card consists of a PUF and n - 1 small CRP

profiles of other users where n is the number of total users. The number of CRPs in

each profile is sufficiently large to identify each PUF without an error.

The identification and authentication processes are similar. When Alice meets

Bob, Alice asks Bob who he is, and Bob answers with his name. Then, Alice authen-
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User B

Figure 2-2: The model of PUF-based membership cards.

ticates Bob by evaluating Bob's PUF and comparing the generated CRPs with Bob's

CRPs in her memory.

When the membership card is stolen by an adversary, he can read and duplicate

CRP profiles of other users in the stolen card. However, he cannot make illegal copies

of the card to impersonate the original user since he cannot duplicate the PUF in

the card. Thus, only one non-member, who has the original card, is allowed to enjoy

privileges of the society.

Though PUF-based membership cards can prevent the illegal duplication by an

adversary, some problems must be considered. For example, if an adversary possesses

multiple cards U1 and U2, then he can extract the CRP profile of U1 from the database

of U2. Then, he can use this profile as a model to impersonate U1. Moreover, the model

can easily be duplicated since it is in a digital form. To prevent this attack, the CRP

profiles of U1 in other users' cards must be disjoint from each other. Additionally, all

cards must be updated when adding a new user to the society. The overhead of the

user addition confines an application of this scheme to an exclusive society where the

addition of a new user occurs relatively infrequently. We can employ remote updating

mechanisms as long as they are not expensive and do not cause security problems.

26
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Chapter 3

Arbiter-Based PUF

To build a PUF in silicon, we must use circuit parameters that are beyond manu-

facturers' control. There are three requirements for a circuit parameter to be used

as a primitive of PUFs: sufficient measurable variation across ICs, reliability against

environmental variations, and difficulty in model building. The propagation delays of

transistors and wires in ICs can satisfy these requirements. In this chapter, we inves-

tigate the characteristics of propagation delays as a PUF primitive. We propose an

arbiter-based PUF scheme as an implementation of the delay variation measurement.

We study the feasibility of this arbiter-based PUF scheme using experimental results.

Section 3.1 considers how to exploit inevitable process variation across dies, wafers,

and lots, which changes propagation delays in the wires and transistors of ICs. In

particular, we account for the advantages of a relative delay measurement method.

In Section 3.2, we introduce an arbiter-based PUF and give its detailed structure.

Section 3.3 provides experimental results and discusses the feasibility of this scheme.

3.1 Delay-Based Authentication

3.1.1 Statistical Delay Variation

Process variation in the manufacturing of ICs must be considered to determine the

performance and reliability of circuits. When a circuit is replicated across dies or
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Figure 3-1: The direct delay measurement using a ring oscillator circuit

across wafers, process variation causes appreciable differences in the physical param-

eters of materials such as thickness, length, width and doping concentration. These

variations result in the fluctuation of circuit parameters such as transistor channel

length and threshold voltage, which determine propagation delays in ICs.

Across a die, device delays vary due to mask variations; this delay variation is

called the system component of delay variation. There are also random variations in

dies across a wafer and from wafer to wafer due to, for instance, process temperature

and pressure variations during manufacturing steps. The magnitude of delay variation

due to this random component can be over 5% for metal wires and is even higher

for gates (cf. Chapter 12 of [5]). Delay variations of the same wire or device in

different dies have been modeled using Gaussian distributions and other probabilistic

distributions [3].

3.1.2 Measurement of Delays

Direct Delay Measurement

Propagation delays in ICs can be measured precisely using a ring oscillator [1]. In

Figure 3-1, an oscillation period is proportional to the delay in a combinational circuit.

Therefore, we can measure the delay by counting the number of rising edges of f for

a fixed amount of time. The precision of delay measurement depends on the length

of measuring time.

However, environmental variations such as temperature and supply voltage can
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Figure 3-2: The relative delay measurement using a comparator circuit

cause critical reliability issues [20]. To improve the reliability of delay measurements

under environmental variations, a compensated delay measurement has been studied

in [2]. In the compensated delay measurement, instead of using an absolute delay

value, we measure delays of two combinational circuits and take the ratio between

two delay values as a response. Using this compensated delay measurement, we

can keep the environmental variation sufficiently below inter-chip variation to allow

reliable identification. However, to achieve a high accuracy in measuring delays using

the ring oscillator, we need a significant amount of time to accumulate the oscillating

ticks. This slow measurement can be the bottleneck in system performance.

Relative Delay Measurement

Relative measurement can result in fast and robust delay measurement. Figure 3-2

shows the concept of relative delay measurement. In this scheme, we do not mea-

sure an actual delay directly but extract information from the comparison of two

delays. Even if environmental variation changes the absolute values of two delays,

the difference between the two delays is likely to be preserved; the output of relative

measurement is resistant to environmental variation. Furthermore, a measurement

takes only one cycle since we do not need to accumulate oscillating ticks to measure

the actual delays. Of course, in relative delay measurement, the amount of informa-

tion per measurement is reduced because we can gain only one bit of information by

one comparison. We can increase the amount of the information by replicating the

same circuit up to the desired number of bits, although the size of the circuit will

grow proportionally.
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3.1.3 Generating Challenge-Response Pairs

Assuming no environmental noise, a PUF is a deterministic function whose responses

are sensitive to delay variation in an IC. To identify individual ICs, we generate

challenge-response pairs (CRPs) for each PUF, where the challenge can be a digital (or

possibly analog) input stimulus, and the response depends on the transient behavior

of the IC. A precisely measured delay and the delay ratio of two or more delays have

been used as a PUF response in [8]. In this work, we use the digital output of a

comparator called an arbiter as the PUF response.

We build a network of logic devices. The configuration of this network is deter-

mined by the challenge vector c = (c 1, c2,...,Cm). There are two symmetric delay

paths that go through the network, and a comparator generates a one-bit response

by comparing two delays. Since the response is decided deterministically by a given

challenge, there are 2m possible CRPs for a PUF, where m is the length of a challenge

vector.

Since the PUF is designed to be highly sensitive to the process variation of delays

in ICs, the responses of the same challenge across ICs can be different from each

other. We define the inter-chip variation r between two different PUFs as

T = Prob(Ri(c) :7 Rj(c)),

where Ri(c) is the response of the ith IC on a random challenge c, and i -4 j. By

generating a sufficient number of CRPs, we can identify each IC with a negligible

probability of error.

3.2 Arbiter-Based PUF

In this section, we describe an arbiter-based PUF, which utilizes relative delay mea-

surement to generate CRPs.
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3.2.1 General Description

In general, an arbiter-based PUF is composed of delay paths and an arbiter at the

end of the delay paths. Figure 3-3 depicts the structure of an arbiter-based PUF.

In this scheme, we excite two delay paths simultaneously and make the transitions

race against each other. Then the arbiter at the end of the delay paths determines

which rising edge arrives first and sets its output to 0 or 1 depending on a winner.

This circuit takes an n-bit challenge (bi) as an input to configure the delay paths and

generates a one-bit response as an output.

Switch component

01

Arbiter-based PUF circuit

be -> 

Switch component operation Arbiter operation

Figure 3-3: The structure of an arbiter-based PUF (basic arbiter scheme).

There are m switches and each of them can change the configuration of delay

paths. Thus, the number of possible configurations of delay paths is 2m. At the end

of the circuit, the delay difference between top and bottom paths is determined by

the configuration of delay paths, and we denote the difference by A(c). The arbiter

outputs 0 if A(c) is greater than or equal to zero. Otherwise, it outputs 1.

Process variation changes A(c) across ICs. When the amount of variation is

greater than I((c)l, the response of an arbiter can be changed. Therefore, the chal-

lenges whose IA(c)l's are less than maximum process variation can give inter-chip

variation in PUF responses. For the challenges whose IA(c)l is greater than the max-
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imum process variation, responses are biased to 0 or 1 and do not change across ICs.

In order to maximize the inter-chip variation, the delay paths must be placed and

routed as symmetrically as possible so as to minimize IA(c)l.

3.2.2 Switch Blocks and Delay Paths

Figure 3-4 details the switch component of delay paths. This switch connects its two

input ports (io and ii) to the output ports (oo and ol) with different configurations

depending on the control bit (bi); for bi=O the paths go straight through, while for

bi=1 they are crossed. It is simply implemented with a pair of 2-to-1 multiplexers

and buffers.

Figure 3-4: Implementation of a switch component.

In our test-chips, we symmetrically place and route the cells and cover the entire

chip effectively using the wires in a delay circuit. This layout technique makes it

extremely difficult for an adversary to probe internal nodes to read out a logic value

without breaking the PUF, i.e., without changing the delays of wires or transistors.

If racing paths are symmetric in the layout regardless of the challenge bits and

an arbiter is not biased to either path, a a response is equally likely to be 0 or 1.

The response is determined only by the delay variation in the manufacturing of ICs.

Consequently, we wish to make delay paths as symmetric as possible to give a PUF

sufficient inter-chip variation.
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3.2.3 Arbiter

For an arbiter, we use a simple transparent data latch with an inverted gate. Figure 3-

5 shows the latch primitive (LD_1) of Xilinx FPGAs used as an arbiter and the signal

transition diagram of the latch. In addition, Table 3.1 shows the detailed transitions

of the LD_1. If the rising edge of a data input D comes earlier than a rising edge of

a gate input G, an output Q samples 1. Otherwise, Q becomes 0.

AT > t,,p

:S- i Q
~~~~ __ I

I·~~ 0
_ 11 E~ e o

X3741 -

(a) A Simple Transpar- (b) Signal Transitions
ent Data Latch with In-
verted Gate

Figure 3-5: A simple transparent data latch primitive and its signal transitions

Inputs Outputs
G D Q
O O 0
0 1 1
1 X No Change
t D d

Table 3.1: The transition table of a transparent data latch with an inverted gate

In custom implementation of an arbiter, we note that since an output is preset

to 0, and input signals must satisfy the setup time of a latch to switch the output

to 1, this arbiter favors the path to output 0. More precisely, when the rising edge
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of D comes earlier than that of G, an ideal arbiter output must be 1. However, if

the time difference between two signals is less than the setup time of the latch, an

output remains at 0 instead of being switched to 1. This property introduces a skew

factor to a delay model of arbiter-based PUFs. We discuss the influence of this skew

factor to inter-chip variation in Chapter 4. As a result of this skew, only 10% of total

responses are Is on average. This imbalance of PUF responses significantly reduces

the identification capability of PUFs.

We can compensate for the skews by fixing several challenge bits to effectively

lengthen the delay path connected to a gate input. Figure 3-6 shows how the com-

pensation works. Since Prob(b = 0) = Prob(b = 1) = 1, an effective skew in front

of the nth stage is s 2, where s > 0 is the skew of arbiter. When Al > A/2, we

fix b at 0, and otherwise, we fix it to 1. After fixing the nth bit, the effective skew

becomes s - Max(Al, A2), which is smaller than the original effective skew. In order

to determine whether A > \ 2 or not, a PUF is tested by 200 CRPs when b = 0,

and b = 1. If the number of Is when b = 0 is greater than when b = 1, b must be

fixed to 0. Otherwise, we fix bn to 1. Recursively, we fix the next most significant bit

until Prob(R(c) = 1) approaches 2. From experiments, we need to fix 12 of challenge

bits to achieve roughly 50% O's and 's in responses. After this compensation, the

size of a challenge vector space is reduced from 264 to 252.

b,, = 0 b,,n = 1

q S

Al= q-p A2= r-s

Figure 3-6: Compensating for the arbiter skew by fixing the most significant bits of
a challenge vector.
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3.3 Analysis and Characterization of Arbiter-Based

PUF

In this section, we present the primary characteristics of arbiter-based PUFs such as

inter-chip variation, measurement noise, and environmental variations, which decide

the viability of this scheme.

Inter-chip variation is the measure of a distance between CRPs from two different

PUFs. To identify each PUF from the billions of others, there must be a considerable

amount of inter-chip variation between PUFs. In Section 3.3.1, we show experimental

results of inter-chip variation between different PUFs.

Since a PUF uses an analog delay characteristic of an IC, PUF responses can be

sensitive to environmental changes such as temperature and power supply voltage

variation. Section 3.3.2 examines the causes of unreliability, such as measurement

noise, environmental variation, and an aging effect. We show the experimental results

of measurement noise and environmental variation over a practical range. In addition,

we examine an aging effect that can potentially degrade identification capability after

prolonged use.

3.3.1 Inter-chip Variation

Information-Bearing Challenges

Let information-bearing challenges be the challenges whose responses in a number of

different PUFs are not equal. We need a considerable number of information-bearing

challenges to identify each PUF. To examine the existence of information-bearing

challenges, we have measured responses for 10,000 challenges using 37 test-chips. For

each challenge, we have calculated the probability of a response being 1 as follows.

p = Pr(R(c) = 1) = ,
37,
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Pr[Response = 1]

Figure 3-7: The density function of the random variable p = Prob(R(c) = 1)

where k is the number of PUFs that output 1. Figure 3-7 shows the density function

of the random variable p for 10,000 challenges. When p = 0 or p = 1, the challenge

does not generate any information since all PUF responses are equal. Except for the

cases when p = 0 or 1, more than 80% of the total challenges are information-bearing

challenges.

We assume that process variation and the distribution of (c), the delay difference

between the top and bottom paths, are Gaussian (cf. Chapter 4). Let ap and a be

the standard deviations of process variation and \(c), respectively. This probabilistic

model can be simulated using MATLAB. In Figure 3-7, we have evaluated the model

parameter ap = " by fitting the simulation results into the experimental results.ap

The evaluated p is around 1.5. It is significantly smaller than up ~ 25 from the

FPGA experiments in [2]. This difference comes from the asymmetry of delay paths

in FPGAs, which increase oru significantly.
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Definition and evaluation of inter-chip variation

Definition 3.3.1. Here, we define the inter-chip variation between two different PUFs

as below. For two different PUF responses Ri(c) and Rj(c) to a challenge c, let

D 1 Ri(c) Rj(c)

0 Ri (c) = Rj(c)

For a random challenge set C, we define the inter-chip variation Yi,j between PUF i

and j as

Yi,j = i C Di,j(c).
cEC

For convenience, we denote the inter-chip variation by (100. Yi,j)%.

We have evaluated yiij's from 190 arbiter-based PUF pairs using a random chal-

lenge set C, where CI = 100, 000. In order to improve the reliability, the majority of

11 repeated measurements has been used as a response. Figure 3-8 shows the density

function of 190 evaluated inter-chip variations. Our test-chips have 23% inter-chip

variation on average, and the minimum inter-chip variation is 17%.

Assuming that all measurements of Di,j(c) are independent of each other, the

distribution of i,j can be approximated to Gaussian when C I is large. Generally

speaking, the shape of Figure 3-8 follows our Gaussian assumption. We present the

detailed model of inter-chip variation in Chapter 4.

Inter-chip variation across wafers

Since manufacturing variation consists of die-to-die, wafer-to-wafer, and lot-to-lot

variations, inter-chip variation can possibly be dependent on die and wafer locations.

To guarantee that there is sufficient inter-chip variation between the PUFs from the

same wafer, we must examine the inter-chip variation within a single wafer and across

wafers.

In this experiment, we use two sets of PUFs. One set corresponds to the PUFs

manufactured from wafer 5 in our TSMC run, and the other is from wafer 6. We
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Figure 3-8: The density of the inter-chip variation Yij for a number of PUF pairs.

evaluate the average, minimum, and maximum inter-chip variation within wafer 5 or

6, and across the two wafers. Figure 3-9 shows the experimental results of inter-chip

variation. The inter-chip variation across wafers is similar to the inter-chip variation

from a single wafer. We conclude that there is a sufficient amount of inter-chip

variation within a single wafer to identify each PUF from the wafer.

3.3.2 Reliability

Since a PUF is supposed to be a deterministic function, the response of the PUF

must be consistent in repeated measurements. Unfortunately, environmental varia-

tions, instabilities in the circuit, and aging may cause unreliability in measured PUF

responses. To quantify the effect of these variations, we define the noise () as the

probability that a newly measured response is different from the corresponding refer-

ence response.
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Figure 3-9: The inter-chip variation of the PUFs from a single wafer and across wafers.

Measurement noise

A PUF response may change due to variations within a circuit even without envi-

ronmental variation, which is called measurement noise (/Um). For some challenges, a

setup time violation for an arbiter may lead to an unreliable response. Furthermore,

junction temperatures or internal voltages may slightly fluctuate as the circuit oper-

ates This fluctuation can change the delay characteristics of PUFs. In the reference

environment, we have estimated ]um ~ 0.7%.

Environmental variations

Temperature or power supply voltage variations can significantly change circuit de-

lays and lead to unreliable responses. Since we exploit relative delay measurement,

arbiter-based PUFs are robust to such environmental variations. Figure 3-10 shows

the amount of environmental variation introduced by temperature (t) and voltage

variations (). The reference responses are measured at 27 C and 1.8V power

supply voltage. In this experiment, 10,000 challenges are used to estimate environ-
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Figure 3-10: The variation of PUF responses subjected to temperature and supply
voltage changes.

mental variations. Even if the temperature increases more than 40 degrees to 70 °C,

/t - 4.82%. Also, with ± 2% power supply voltage variation, ,u, - 3.74%. Both t

and /, are well below the inter-chip variation of 23%.

3.3.3 Performance

For a given 64-bit challenge, it takes 50 ns for an input rising edge to transmit

across the 64-stage parameterized delay circuit and evaluate an output at the arbiter.

Therefore, if we want to generate 450 CRPs to distinguish billions of arbiter-based

PUFs (cf. Section 4.4), it takes about 22.5 /us. This is sufficiently fast for most

applications since a PUF is evaluated only infrequently to obtain a secret. We can

also boost the performance by replicating multiple delay paths and arbiters to evaluate

the responses in parallel.

3.3.4 Aging

Electro-migration and hot-carrier effects cause the long-term degradation of the reli-

ability of wires and transistors in an IC [4]. Since the behavior of a PUF relies on its
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Figure 3-11: The aging effect on an arbiter-based PUF for 25 days.

transient response, we assume that the aging could seriously affect the security and

reliability of a PUF. If the change due to aging is significant, we may not be able to

recognize a PUF after the PUF has undergone long-term usage.

While we believe that the effect of aging is not a major problem compared to en-

vironmental variation, we have run a long-term aging experiment. Figure 3-11 shows

the results of an aging test for one month. In the beginning of the test, we gener-

ated 100,000 CRPs as reference CRPs. During the test, we calculate the distance

from new CRPs to the reference CRPs. The figure shows variation in the distance.

Since the distance has not been notably increased over the 0.7% measurement noise,

we conclude that there is no significant aging effect for a one-month test in a nor-

mal operating environment. In future work, the test must be performed in extreme

environments such as high temperature and significant fluctuation of supply voltage.
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Chapter 4

Modeling an Arbiter-Based PUF

In this chapter, we introduce the delay model of an arbiter-based PUF. We have

already verified the feasibility of arbiter-based PUFs using 37 test-chips in Chapter 3.

To prove that each PUF can be identified from billions of replicates, we introduce the

probabilistic delay variation model. We estimate the parameters of the model using

experimental results. Using the estimated parameters, we prove the identification

capability of arbiter-based PUFs.

We propose a general parameter estimation method. When a model parameter z

cannot be directly estimated but can be represented as a function of other estimable

parameters, we can calculate the estimate from the estimates of other parameters.

Using the general method, we can calculate the accuracy interval of the estimate i and

the error probability of the accuracy interval from the estimates of other parameters

and their accuracy intervals.

We can verify the correctness of the delay model from an accuracy interval analysis.

If experimental results do not follow the model, then we introduce a non-linear factor

into the model and measure an amount of non-linearity in the experimental results.

This measured non-linearity can be exploited as the metric of modeling complexity

to examine the difficulty of model building in Chapter 6.

Section 4.1 presents a delay model of arbiter-based PUFs. Based on the model,

Section 4.2 gives expressions of primary model parameters. These expressions are

used to estimate the parameters as well as accuracy intervals of the parameters from
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experimental results. Section 4.3 shows the experimental results of parameter esti-

mation and verifies the correctness of our model with the presented theory. Section

4.4 proves the identification capability of arbiter-based PUFs based on inter-chip

variation and maximum environmental variation from experimental results.

4.1 Delay Model

For deep sub-micron technologies, a combination of device physics, die location de-

pendence, optical proximity effect, micro-loading in etching, and deposition may lead

to heterogeneous and non-monotonic relationships among the process parameters.

For the circuit that consists of continuous and differentiable functions, statistical de-

lay variation can be approximated to a linear function of process conditions [16].

Therefore, without detailed understanding of the individual contributions of process

conditions, we may assume that the propagation delay variation is Gaussian.

4.1.1 Linear Delay Model

In the description of our model, arbiter-based PUFs are numbered from 1 to n. We

denote a challenge as c. Let Ri(c) be the response of a challenge c measured in the ith

PUF. In arbiter-based PUFs, Ri(c) is decided by a sign of a delay difference between

top and bottom paths at the end of the delay paths We denote the delay difference as

Ai(c). In Section 3.2.3, we described the arbiter implementation using simple latches

and the asymmetric behavior of the arbiter by a setup time constraint of an actual

latch. This asymmetry introduces a skew in our delay model. We denote the skew of

an arbiter in the ith PUF by si. With Ai(c) and si, we model Ri(c) as follows.

R 1, if si +Ai(c) < 0,

0, if si + Ai() > 0.

In our model, we decompose Ai(c) into A(c) and pi(c),

Ai (c) = A(c) + pi(c), (4.1)
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where \(c) is a delay difference without process variation and pi(c) is a process

variation factor for a given challenge c. We can represent A(c) as

A(c)= (d, c),

where d = (do, d, ... , dm) is a constant vector and c = (co, C1, .. ,Cm), i E (--1, 1}

is a random challenge vector (cf. Section 5.2.1). When m is sufficiently large, the

distribution of A\(c) can be approximated to Gaussian by the Central Limit Theorem.

Since each vi has a zero mean,

A(c) N(O, v<),

where oa = ldII. We assume the process variation pi(c) to be Gaussian,

pi(c) ~ N(O, p).

Hence,

Ai (c) N(O, v),

where a = / + . In this model, (c) and pi(c) are assumed to be independent

of each other.

4.1.2 Non-Linear Delay Model

Ideally, statistical behavior of PUF responses must follow the linear delay model (cf.

Section 5.2.1). However, in real circuits, various kinds of noise such as measurement

noise, cross-coupling between wires, and environmental variations cause the delay

model to be non-linear. In order to consider these non-linear effects, we extend the

original model to

hi (c) = A(c) + pi(c) + y, (4.2)
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where y is a non-linearity factor. We assume that y is from an arbitrary distribution

and

17H < R, (4.3)

where R is the upper-bound of non-linearity.

To measure the non-linearity of experimental results, first, we estimate a model

parameter based on a linear delay model. If experimental results follow the linear

model, the model parameter must be estimated consistently within a high probability

accuracy interval in repeated independent experiments. Otherwise, we must introduce

non-linearity y > 0 to give an extra margin to the accuracy interval. We increase the

upper-bound R of non-linearity until all the estimates are included in the enlarged

accuracy interval. This upper-bound R represents the amount of non-linearity in the

experimental results.

4.2 Estimation of Model Parameters

In Section 4.2.1, we show how to estimate individual skews si's using a linear delay

model. In Section 4.2.2, we estimate Up = aA/ap based on the estimated skews.

In both sections, we derive the accuracy interval of an estimate and evaluate the

probability that a model parameter exists in the accuracy interval. We show how

to verify the correctness of model from accuracy intervals of estimates in repeated

independent experiments. In Section 4.2.3, we estimate ap using the extended model

with a non-linearity factor and derive an accuracy interval from the extended model.

4.2.1 Estimation of sil/a

In this section, a PUF i is fixed. Since

Si + Ai() N(Si, ),
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we obtain

Pi = Prob(Ri(c) = 1) = Prob( <
oa

where

s- -si/Y e-t 2/2
_ s) =f-si/ dt

o- -o X/ -7

rx et2/2
Q(x) = o dt.

.co , fi 

Let C be a random challenge set. From the response set of C, we define yi such

that

(4.4)
1

Yi -C ZRi(c).
cI C

By the law of large numbers, the binomial distribution which defines yi tends to

Yi N(pi, pi(1 - pi)/C )

(notice that pi(l - Pi) < 1/4). This proves that, when CI is sufficiently large,

Prob(lyi - pi I > ) = 2Q(-E/V/pi(l- pi)/ICI)

< 2Q(-2E J/C) (4.5)

(see the inequality (B.1) in Appendix B). From the inequality (B.4) in Appendix B

we obtain

Prob(lQ-l(yi) - Q- 1(pi)j > 6) < Prob(lYi - Pil > E), (4.6)

(4.7)

From the inequalities (4.5) and (4.6), we can prove that Prob(lyi - il > ) has the

upper bound 2Q(-2e /v).

E), f (i + )}.
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Given ICI measurements, we choose £ as large as possible such that the bound

2Q(-2Ev/CI) is sufficiently small, say p,. We compute 6 from Eqn. (4.7) and then,

with an error probability less than p, the skew -si/a, that is equal to Q-l(pi), exists

within the accuracy interval [Q 1-(yi) - 6, Q- 1 (yi) + 6].

4.2.2 Estimation of an/ap

In this section, we use PUF i and PUF j (i j) to evaluate the probability that

both PUFs output the same response 1. From our model, the process variation pi(c)

is from the normal distribution N(O, up). Let

Up = aA/Up

be the ratio between the standard deviation of A(c) and the standard deviation of

process variation. We can derive Prob(Rj(c) = 1, Ri(c) = 1) using the parameters

-si/a, -sjl, and Up.

Pi,j = Prob(Rj(c) = 1,Ri(c) = 1)

= Prob(sj + A(c) + pj(c) < O, si + A\(c) + pi(c) < 0)

= Prob P(c) < sj + 2 _ L<(c) pi(C) S< i 2 (c)

Q(j/) 1 +-ta p)Q(-(Si/U) 1 + - t) dt

P(-Sip/, -Sj /, ap),

where

P(v,w,z) = j| e + Q( 1+ z - tz)Q(w 1 +z - tz) dt

is a continuous differentiable function of three variables. For fixed i and j, v = -si/a

and w = -sjla are fixed. Intuitively, P(v, w, z) is a monotonically increasing function

in z since a larger z = Up means less process variation and two responses are more
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likely to be equal if there is less process variation. Thus, we can use a simple binary

search to evaluate

z = P(v, w, a) (4.8)

as a solution of the equation 0 = P(v, w, z).

Let

(C) 1 Ri(c)= 1,Rj(c)= 1

0 otherwise

where i L j. For a random challenge set C, we define yij as

Yi,j = C Ce Dij( (49)

Similarly, by the law of large numbers, the binomial distribution which defines Yi,j

tends to

Yi,j - N(P i,j(l -pj)/C)

(notice that pi,j(l - pi,j) < 1/4). This proves that, when ICI is sufficiently large 2,

Prob(lyi,j - pi,jl > ) = 2Q(-/El/i,j(1 -pi,j)/C[)

< 2Q(-2E 1/j) (4.10)

In Appendix A, we provide a general method to estimate a hidden parameter in

a general model from the estimates of known parameters. If the hidden parameter

can be represented as the function of directly estimable parameters, we can calculate

the accuracy interval of the hidden parameter from the accuracy intervals of other

parameters. The probability that the hidden model parameter exists in the accuracy

interval can also be evaluated using the general method.

In our model, Up is the hidden parameter and it can be represented as a function

of -sil/, -sj/a, and Pij in Eqn. (4.8). Since we can directly estimate -sie, -sj/r,

2 Do not confuse E with the one used in Section 4.2.1.
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and Pij, we can estimate Up and its accuracy interval using the general method.

We denote model parameters by v, w, 0, and z. Each notation means

V -- Si/,

W = -- Sjl

0 = Pij,

Z = Up.

We can directly estimate v,w, and 0 from experimental results yi, Yj and Yij as follows.

= Q-'(Yi)

W = Q-1 (yj),

0= Yi,j

Using the estimates v, , and 0, we can calculate the estimate of z as

z = P(v, b, ). (4.11)

We denote estimation errors v - v, tb - w, 0 - 0, and 2 - z by Av, Aw, AO, and Az,

respectively.

We assume that each parameter has an accuracy interval with an upper-bounded

error probability. If we denote the error probabilities by Pv, Pw, and Po, then

Pv > Prob(lAvl = I -vl > e,), (4.12)

Pw > Prob(JAw = Ib-wl > w),

po > Prob(IAOI = 10 - > o).

We assume that v,w, and s are sufficiently small.
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Using partial derivatives, can be approximated to

z = P(V, , )

= P(v +Av,w+ Aw, + A)

Pw,) + v P(v, w, ) +
19V

Aw-
ow

We derive the upper-bound of IAzl as follows.

IjZI = - l= = - P - (v,w, )l

- Ava P(v, w, 0) + Awa P (v, , )
av aw

< vl.

P(v, w, 9)

+ Aoaao
I P(v,w,) +lawl wa P

< vli aP(V W ) + W Ia P av aw

a
+ AO9P'(v, w, 9).09

P(V, )

+ L9l1 IoP(v,w, )

v, W, ) I + Ee P (v, W, ) .ao

The first inequality holds by the triangle inequality. The second inequality holds when

estimation errors lav, lIwl, and AOl are less than the width of accuracy intervals

Ev, w, and Co, respectively. From Eqn. (4.12), these inequalities hold with at least

(1 - pv)(1 - pw)(1 - Po) probability.

If we define E, as

O)l + EoaP -(v, w, ) ,

then we can formulate the accuracy interval and its probability of the model parameter

z by

Prob(Iz - I < E,) > (1 - pv)(l - pw)(l - po) = 1 - Pz, (4.13)

where Pz is defined as the upper-bound of the error probability of the accuracy interval.

Assuming that E, w, Co are sufficiently small, we approximate E, to

Ez c_ £Ea P(',, )I+E ±W PI-p_(oi, , )J +E P-P(V, &, )lJ.vl aw .o (4.14)
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Figure 4-1: Accuracy intervals and their overlapping region.

Thus, we can calculate E, of the parameter z from E, , AE, and partial derivatives.

The error probability of the accuracy interval can be evaluated from Pv, Pw, and po

using Eqn. (4.13).

The existence of an overlap region in repeated independent experiments

From n repeated independent experiments, we can plot the estimates of a model

parameter and their accuracy intervals. Figure 4-1 shows the figure of accuracy

intervals. In this figure, the x-axis denotes an experiment number and the y-axis

means the value of the model parameter. For each experiment, we draw an accuracy

interval parallel to y-axis.

From the figure, we can check the existence of an overlapping region of all n

accuracy intervals. Let Pi be the upper-bound of an error probability of an accuracy

interval i. If the model is correct, then the probability of existence of the overlap

region among n accuracy intervals is TJini= (1-pi) since all experiments are independent

of each other.

The correctness of model assumptions can be verified from existence of this over-

lapping region. In our model, we assumed that delays are additive. The distributions
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of Ai(c) and pi(c) are independent of each other as well as Gaussian. Let po be the

probability of existence of an overlap region. If an overlap does not exist when po

is close to 1, we conclude that the experimental results do not follow the model as-

sumptions. Thus, we must extend the model to consider unknown non-linearity . We

measure an amount of non-linearity using the suggested model in Section 4.1.2.

4.2.3 Estimation of uaz/cp using a Non-linear Delay Model

In this section, we re-calculate the accuracy intervals of ap estimates using the non-

linear delay model. Intuitively, adding a non-linearity factor to a linear delay model

will give an extra margin to the accuracy interval.

Similar to Section 4.2.2, we formulate the probability Prob(Rj(c) = 1, Ri(c) = 1)

considering the non-linearity factor y.

Pi,j = Prob(Rj(c) = 1,Ri(c) = 1)

= Prob(sj + A(c) + pj(c) + a < O, si + A(c) + pi(c) + y < O)

= Prob (pj(c) < Aj, p(c) < Ai) . (4.15)

where

s i n 7 (c)
Ai = - U -ff ..2 ap - Y

We define a normalized non-linearity factor as

I = y/5p.

Then, from Eqn. (4.3),

-R' < ' < R',
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where R' = R/ap. Using -ai/a, -aj/a, Up, and y', we derive Pi,j as follows.

Pij =

-oo

e- t2 /2

Q(-(s,/u) (1 + c4 - tap - ?')Q(-(s/i/) 1 + 2 - tcrp - ?y') dt
v 27r

= P2 (-i/o, -j/o, aoP, '),

where

f=Q(-o v - tz -
t-o 00V--7

P2(V, W, , r) = r)Q(w 1+ z 2

As solutions of 0 = P2 (v, w, z, r),

z = P(v,w,0,r).

Similar to Section 4.2.2, we can use a simple binary search to evaluate P2(v, w, 0, r)

when v,w,O, and r are given.

We use the same notations v, w, 0, and z for the model parameters -si/a, -sj/a,

Pi,j, and Up. We add r, which means the normalized non-linearity ?y', to the model.

From the definition of y,

Pr = Prob(lrl > R') = 0.

Assuming that R' is sufficiently small, we derive the accuracy interval width ez similar

to Section 4.2.2 as follows.

£z £P2 aw

+Ea I a P2- 0) +R MIa P Pvtb,6O)1. (4.16)
+010 P, , 0) R'P ,b,,)I.

Compared to Eqn. (4.14), the non-linearity term R'9P (, h,,0) has been

added to give an extra margin to the accuracy interval. Since Pr = 0, the error

probability of the accuracy interval does not change.
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Figure 4-2: Estimated skew parameters and their accuracy intervals from independent
experiments.

4.3 Experiments

4.3.1 Estimation of si

Before generating CRPs of a PUF, we compensate for the skew in each PUF by

fixing 12 of the most significant bits of a challenge vector (cf. Section 3.2.3). Using

the compensated PUFs we generate 10,000 CRPs by using random challenges. From

Eqn. (4.4), we calculate yi, the estimate of Pi. We repeat this experiment 50 times

to obtain 50 yi's and estimate -si/a by evaluating Q- 1 (yi).

Figure 4-2(a) shows 50 estimates of -si/cT for a compensated PUF i and their

accuracy intervals. For each accuracy interval, the error probability Prob(l - si/a -

Q-(yi)l > ) is less than 0.001. Each accuracy interval width 6 has been evaluated

by Eqn. (4.7). From the figure, the estimated -si/a is -0.18.

To verify the correctness of the skew model, we observe the existence of an over-

lapping region between accuracy intervals. The probability of existence of an overlap

region between 50 accuracy intervals is greater than or equal to 0.99950 0.95. Since

the overlap exists in Figure 4-2(a), this result is well-suited to our model.

Figure 4-2(b) shows non-existence of an overlap region when we decrease the

accuracy interval width until the overlap disappears. The error probability of each
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Figure 4-3: Estimated up and their accuracy intervals from independent experiments.

accuracy interval is 5.74%. Since the probability of existence of an overlap po is only

0.942650 = 0.052, This result does not contradict our model. Thus, we conclude

that a skew in each PUF can be estimated consistently using the linear delay model.

The estimate and accuracy interval of a skew can be used in estimating other model

parameters.

4.3.2 Estimation of ua/up

To estimate up, we use 10 independent pairs of two different PUFs. For each pair,

we generate 20,000 CRPs and calculate yi and yj to estimate the skews of two PUFs.

Using Eqn. (4.9), we estimate pi,j by evaluating Yi,j. These three estimates i, j,

and Yi,j are used to to estimate up.

Figure 4-3(a) shows the estimates of ap and their accuracy intervals in 10 repeated

experiments. These experiments are independent of each other. The estimates of up

have been calculated by Eqn. (4.11) and their accuracy intervals have been evaluated

by Eqn. (4.14). In this figure, the error probability of each accuracy interval is 0.3497.

The estimated up is around 1.75, which means that aA is only 1.75 times larger than

the process variation up.

56

I I I . I



We can verify the existence of overlap region L = [1.68,1.83] from the figure.

Since 10 independent experiments were performed, the probability of the existence

of an overlap region is 1.35%. The existence of this overlap means that experimental

results are well-suited to our model. In other words, the estimates of repeated exper-

iments are sufficiently consistent, and therefore, we can obtain the accurate estimate

of up. We do not need to introduce non-linearity to give an extra margin to accuracy

intervals.

To verify our model, we decrease the accuracy interval widths until the overlap

does not exist. Figure 4-3(b) shows the non-existence of the overlap when the error

probability of each accuracy interval is 68.65%. In this case, p, is only 7.5 10-6.

Since p, is extremely small, the experimental results do not contradict our model.

4.3.3 Estimation of Non-linearity

We estimate non-linearity in experimental results using the non-linear delay model

in Section 4.1.2. Assuming that y = 0, we estimate a model parameter based on

the original linear delay model. We denote Pt as the error probability of an accuracy

interval when there is no overlap between accuracy intervals of estimates. Then, we

introduce the non-linearity y > 0 to the model and increase the maximum value of

normalized non-linearity R' until we gain the overlap. The increase of R' enlarge the

width of accuracy interval following the definition of Eqn. (4.16). We denote R as

the minimum required non-linearity to gain the overlap region.

To prove our non-linear delay model, we have tested the non-linearity of PUF

responses from the simulation of two different arbiter-based PUF models. The first

model is an additive delay model without non-linear noise. We assume that every

delay segment in an arbiter circuit is a constant and the process variation in each

delay component is Gaussian. From the additive delay model in Section 5.2.1, we

model the delay difference between top and bottom paths as the inner product of the

random challenge vector c and the constant delay vector di. The delay vector di is

composed of a common delay vector d and process variation vector pi. The common

delay vector d consists of the delay values of circuit components without considering
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process variation. Each component of a process variation vector Pi is a zero-mean

Gaussian. We set p, which can be represented as is1il (cf. Section 4.4), to two.

There is no arbiter skew and measurement noise in this model.

The second model is an additive delay model with non-linear noise. The noise

source N is added at the end of delay paths to introduce non-linear random noise to

the model. As an example of non-linear random noise, we use random numbers from

x 2 -distribution. For X - X2(v, 1), where v = 20, we define N as

X-v
N = 3 , where v = 20.3v

The mean and standard deviation of N are a zero and aA/10, respectively. This

model does not have an arbiter skew and up = 2.

10-°.3 10
- .

10-°,'

Pt

Figure 4-4: Comparison of pt-R' curves depending on the existence of non-linear noise.

Figure 4-4 shows the Pt - Rt curves from simulated responses of the first and

second models. Since the two models have the same amount of process variation up,

we can directly compare the non-linearity R', which is normalized with up. From

the figure, the first model requires more non-linearity than the second model to fit

the experimental results to the linear delay model. This result follows the fact that

the second model has more non-linear random noise that cannot be predicted by
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a linear algorithm than the first model. When an adversary is willing to build a

software model to predict responses, the second model is more difficult to break than

the first model since the random noise causes prediction errors. Thus, the measured

non-linearity from this method is related to the modeling complexity of arbiter-based

PUFs. We exploit this method to analyze the security of alternative types of PUFs

in Chapter 6.

4.4 Identification/Authentication Capability

We study the identification/authentication capability of arbiter-based PUFs based

on inter-chip variation T and noise probability ,u. Since environmental variation is

the primary factor of noise, we consider only environmental variation for noise in this

section. We represent the identification/authentication capability by the probability

of errors that can occur in identifying/authenticating billions of PUFs. In the calcu-

lation of the error probability, we assume that CRP measurements are independent

of each other. Since T and are related to the number of PUF delay stages m, we

calculate appropriate m to gain the desired T and u using our delay model.

4.4.1 Inter-chip Variation and Environmental Variation

We study how inter-chip variation and environmental variation are related to the

number of delay stages. Based on the delay model in this Chapter, we represent 

and p as the function of m. When m is sufficiently large, the skew of an arbiter does

not affect PUF responses. Using the model, we evaluate the inter-chip variation and

environmental variation without the arbiter skew.

Information-bearing challenges

We can estimate the number of information-bearing challenges in the complete set

of challenges using a linear model of an arbiter-based PUF. Let k be the number of

arbiter-based PUFs. We denote the probability of a random challenge c being an

information-bearing challenge by A1. We do not consider skew in the arbiter. Using
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Figure 4-5: The change of according to the number of PUFs and up.

Up, we can derive 77 as follows.

= I - Prob(Ri(c) = 1 for all 1 < i < k) - Prob(Ri(c) = 0 for all 1 < i < k)

00 et2/2 rtap e-v2/2 eot2 /2 roo -v2/2

= the es ( - dv)kdt- (J dv)kdt. (4.17)

Using the estimate of ap (a 1.75) in Section 4.3.2, we can calculate the number

of information-bearing challenges. From Eqn. (4.17), when k = 37, r = 0.8204.

This means that 82.04% of total challenges are information-bearing challenges. In

Section 3.3.1, we verified that around 80% of total challenges are information-bearing

challenges in our 37 test-chips, which is similar to the computed 7. We conclude that

the number of information-bearing challenges can be calculated from Eqn. (4.17).

Figure 4-5 shows the change of r according to the number of PUFs and ap. When

there are more than 1,000 of PUFs, the portion of information-bearing challenges

converges to 93%. To obtain more information-bearing challenges, we must place and

route delay components symmetrically to reduce Up.
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Inter-chip variation

The inter-chip variation r between two different PUFs is defined as

T = Prob(Ri(c) Rj(c)),

where i Z j and c is a random challenge. We can evaluate T using given model

parameters -sila, -sj/la, and up as follows.

T = T(-sij/, -sjla, up), (4.18)

where

T(v, w, z) = - -/_7 ((1 - Q(v 1 + z 2 - tz))Q(w1 

+ Q(vv1 - tz)(1 - Q(wv1+ z - tz))) dt.

k z 2 - tz)

We represent r as the function of m, which is the number of delay stages. Let

pij(c) be the process variation in the jth stage of PUF i. By the Gaussian assumption

of process variation,

Pij (c) N(O , p,).

We assume that Up, is constant for every stage. Since delays are additive, we model

m

pi(c) = Pij(c).
j=1

Since pij(c)'s are independent of each other,

up = /p/,.

We represented A(c), which is the delay difference between top and bottom paths

without process variation, as (d, c), where d = (d, d2 ,..., dm) is a constant vector

and c = (Cl, c2,.. ., Cm) is a random challenge vector for ci e (-1, 1}. Assuming that
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m is sufficiently large, we can model

a(c) N(0, o),

by the Central Limit Theorem. We denote ao, as the standard deviation of ci. Since

ci E {-1, 1} and a uniform random variable, oc, = 1. We represent aa using d as

follows.

m ~ m

UA d= Ed2 d = I Ildll.
i=1 i=1

Assuming that every delay stage is identical, we can approximate

UA C

Since both cp and ua are proportional to /V, a = ± p, which is the delay

difference between top and bottom paths with process variation, is also proportional

to +'

From Eqn. (4.18), can be represented as the function of -si/a, -sj/a, and

Up. Let Si be the skew -silo when m = 64 for PUF i. We can estimate Si from

experiments (cf. Section 4.3.1). Since a is proportional to vI, we represent the skew

-si/a as a function of m as follow:

85i

Since both ai and up are proportional to /, o-p = aA/ap is a constant to m. We

conclude that
8s 8j

T(m) = T( 8q. ,up),

where Si and Sj are estimated skews from PUF i and j, respectively.

Figure 4-6 shows the curve of inter-chip variation r as a function of m. For two

different PUFs, we estimate the skews Si and Sj and up (cf. Section 4.3). Based
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Figure 4-6: The change of T according to the number of the stages in delay paths.

on these parameters, we calculate T when m varies from 32 to 1024. Intuitively, the

inter-chip variation T decreases according to the increase of m because the influence of

the skews decreases while up remains constant. From the curve, T converges to 0.22,

which is the inter-chip variation of arbiter-based PUFs that have no arbiter skew.

Environmental variation

While we cannot find any appropriate model to represent the noise of PUF responses

as a function of m, we can roughly examine the relationship between the noise and

the number of stages m. At first, we consider measurement noise of arbiter-based

PUFs. Section 3.3 shows that the setup time (t,,u) of an arbiter causes measurement

noise. When i(c) is less than t,,, the arbiter is in a meta-stable state and the

response of the arbiter is unreliable. Thus, measurement noise lm is proportional to

Probli(c) < t,,u).

In our model, Ai(c) . N(si, r). When m is sufficiently large, we can approximate

Si 0.

l cm C Prob(lx < tu), where x N(0, U).

We already verified that a is proportional to Vm/. When we increase m, lm, decreases
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because the increase of u reduces Prob(lxl < t,,). Table 4.1 shows experimental

results. We used FPGAs to change m in the PUF circuit. From the table, we can

verify that the measurement noise decreases according to the increase of m.

The number of stages (m) Measurement noise(%)
32 0.106
64 0.086
96 0.078

128 0.074

Table 4.1: Measurement noises in the different number of stages.

Similarly, we can expect that environmental variation decreases according to the

increase of m. Let's assume that environmental variation on PUF circuits increases

of decreases Ai(c) by 6(c). If we denote ten as the maximum value of [6(c)l, envi-

ronmental variation p/ is proportional to Prob(lAi(c) I< ten). Therefore, using the

same arguments in the measurement noise analysis, we can conclude that the increase

of m decreases . The maximum environmental variation 4.84% from experimental

results (cf. Section 3.3) can be decreased by increasing the number of stages. We use

p = 0.0484 as the worst case environmental variation in the calculation of identifica-

tion/authentication capability in the next section.

4.4.2 Identification/Authentication Capability

Given the inter-chip variation T and environmental variation /t, we can evaluate the

identification/authentication capability of arbiter-based PUFs. We represent this

capability as the probability of errors that can occur in identifying/authenticating

billions of PUFs. Since the error probability can be reduced by using a larger number

of CRPs, we calculate the number of CRPs to make the error probability sufficiently

small (< 10-9).

For convenience, we define two probabilities, pd(t, k) and pn(t, k). When inter-

chip variation is , the probability that at least t out of k reference responses differ
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between two different chips is equal to

pd(t, k) = 1 - (')Ti(1 - T)k (4.19)
i=--

For a single chip, when environmental variation is , the probability that at most t

out of k responses differ from the corresponding reference responses is

k

pn(t, k) = 1 I ()i (I kj. (4.20)
j=t+l

Identification

When we use PUFs for the identification of registered users, there exists the server

that stores CRP profiles of N registered PUFs in its database. Each CRP profile has

k CRPs. When a user presents a PUF to the server, the server generates CRPs using

the presented PUF and compares it with all CRP profiles of the registered users in

the database. The server identifies the user by finding the minimum distance CRP

profile from the generated CRPs of the presented PUF.

In this scheme, the probability of error is equal to

k-1 I

Pe = 1 - - () Ii(1 - -)k-i(Pd(i + 1, k))N+l, (4.21)

where Pd(i, k) is the probability defined in Eqn. (4.19). We use T = 0.22 and pu = 0.048

from experimental results (cf. Section 3.3). When N = 109, we need k > 450 to

achieve Pe < 10- 9 .

This result shows that we can identify 109 PUFs with only 450 CRPs. The er-

ror probability in this identification is less than 10- 9. However, this scheme is not

practical because the comparison with all CRPs in database imposes a significant per-

formance overhead. Furthermore, we cannot distinguish a non-registered PUF since

we always choose the minimum distance profile in the database.
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Authentication

To avoid the comparison with all CRP profiles in database, the server first asks the

user-name of the presented key-card and authenticates the PUF in the key-card by

profile matching. This scheme is significantly faster than simple identification because

the server needs to perform profile matching only once.

In the authentication of a PUF, the server compares the CRPs of a presented PUF

with the CRP profile of a presented user-name in database. If the distance between

two CRP profiles is less than or equal to the threshold t, the server authenticate the

PUF. Otherwise, this access is rejected by the server.

In this scheme, two kinds of errors are possible.

Robustness: A user presents a valid PUF, but a server recognizes it as a wrong

PUF. The probability of this error P' is equal to

k

=pe- (k) i( 1 - )k-i = 1-b(t).
i=t+1

We can see that P' decreases monotonically when t increases.

Security: When an adversary issues a wrong PUF to a server, the server authenti-

cates it by mistake. The probability of this error is

t k

"=E ()i(1 -T)k - i

i=O

Clearly, p" increases monotonically when t increases.

In n uses of authentication, we assume that an adversary tries to deceive a key-card

server by issuing a wrong PUF d times. We denote a = d/n as the frequency of

the deceiving trials. The system error probability Pe can be represented using a as

follows.

Pe = (1 - )p' + (Pe.1 (4.22)
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Assuming a = 0.5, our goal is to achieve Pe < 10 - 9 using a minimum k and

an appropriate t. Similar to identification, we use r = 0.22 and t = 0.048. From

calculation, Pe = 9.3 10-10 < 10- 9 when k = 443 and t = 48. We conclude that using

less than 450 CRPs we can authenticate the PUF with negligible error probability.
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Chapter 5

Breaking an Arbiter-Based PUF

Since an arbiter-based PUF exploits inevitable process variation in the manufacturing

of ICs, the PUF cannot be duplicated by an adversary even with the detailed knowl-

edge of a circuit. However, attacks to break arbiter-based PUFs are still possible. For

example, an adversary can build a timing accurate model to simulate the PUF cir-

cuit. Moreover, if there exists notable correlation between challenges and responses,

then an adversary can build a software model of the PUF and use it as a "virtual

counterfeit". The security of physical random functions is based on the difficulty of

response prediction (cf. Chapter 2). Therefore, these types of modeling attacks can

be critical threats to the security of arbiter-based PUFs.

In Section 5.1, we provide possible invasive and non-invasive attack models on

arbiter-based PUFs. Among the possible attack models, we provide the software

model building attack based on a machine learning algorithm called Support Vector

Machine in Section 5.2. We show how to train the algorithm using a polynomial

number of CRPs and verify the prediction accuracy of the trained algorithm using

FPGAs and custom silicon in Section 5.3.

5.1 Attack Models

In this section, we introduce possible attack models on arbiter-based PUFs. Most

of the attacks were already introduced in [2] based on the PUF that uses a MAX
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circuit instead of an arbiter. Though we use a different type of a PUF, an adversary

can use the same attacks since both arbiter-based PUFs and MAX-based PUFs use

the same delay path structure.

5.1.1 Duplication

If an adversary can fabricate a "counterfeit" PUF, which is logically identical with

the original PUF, he can break the authentication methodology. The term "logically

identical" means that a counterfeit PUF produces almost the same responses as the

original PUF for most of random challenges. A special case of this attack occurs when

an IC manufacturer attempts to produce two identical ICs from scratch.

Given the statistical variation inherent in manufacturing process we used, we argue

that it is impossible to produce an IC precisely enough to control the PUF that the

IC embodies. When producing two ICs in identical conditions (same production line,

same position on wafer, etc.), the manufacturing variations are still sufficient to yield

two significantly different PUFs. We have tested the PUFs from the same wafer and

verified that inter-chip variation is sufficient to identify each PUF in Section 3.3.

Following the identification capability discussion in Section 4.4, the probability

that two different PUFs are indistinguishable from each other is extremely low. Thus,

an adversary must fabricate a huge number of ICs and make comprehensive measure-

ments on each one in order to discover a match. This is a very expensive proposition,

both from economical and computational standpoint.

5.1.2 Timing-Accurate Model Building

Today, the accuracy of measurement devices is getting more precise. Though process

variation in the manufacturing of ICs is beyond the control of a manufacturer, by

measuring delays of all circuit components, an adversary can create a time-accurate

model of an original PUF and simulate the model to predict the responses of randomly

given challenges. The success of this timing-accurate model depends on the accuracy

of the measurement devices.
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Direct Measurement

The development of reverse engineering techniques has made it possible to extract the

important circuit information such as circuit topology and a physical dimension of

each component (cf. Chapter 1). It is also possible to directly measure the delays of

circuit components by micro-probing. These measured delays can be used to construct

a sophisticated timing model.

In order for this delay measurement to be at the level of the accuracy required

to break authentication, an adversary must remove the package of an IC and insert

probes. Alternatively, he can use non-invasive attacks such as differential power

analysis [12] and electromagnetic analysis [17] to extract information about collections

of devices. However, probing with sufficient precision is significantly difficult because

the delay of the probing device will change the measured delays. Interactions between

the probe and the circuit can introduce noise in the measurement. Moreover, in order

to insert his probes, the adversary may damage overlaid wires. Because of the high

capacitive coupling between neighboring wires (cf. [6] for the importance of capacitive

coupling between wires), damage to these overlaid wires could change the delays that

are being measured. To make the direct measurement more difficult, the circuit can

be protected by a tamper-sensing environment. How best to layout the PUF circuit

to make it highly sensitive to invasive attacks is a direction for future research.

Exhaustive Model

Clearly, a model can be built by exhaustively enumerating all possible challenges.

However, exhaustive modeling is intractable since there are an exponential number

of possible challenges. In our test-chip, a challenge is 64 bits and it takes 50 ns for

one measurement. By simple calculation, it takes more than 30,000 years to generate

all CRPs.
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5.1.3 Software Model Building Attacks

Non-invasive model building attacks are also possible. First, an adversary can use a

publicly available mask description of IC/PUF to build a timing-accurate model with

a polynomial number of parameters. In other words, an adversary can formulate

the responses of a PUF as a function of challenges and circuit parameters. If the

challenge-response model of the PUF circuit is linear, then an adversary can apply

a polynomial number of random challenges and monitor the responses to estimate

circuit parameters in the linear model. If the model can predict the response of the

circuit with the error probability lower than the maximum environmental variation,

the adversary can impersonate the original PUF with the model. We note that if the

PUF has been calibrated in different environments (e.g., different temperatures), the

adversary's job can be made harder.

In Section 3.3, we provided data on environmental variation and inter-chip varia-

tion of arbiter-based PUFs. When considering the model building attacks, we must

calculate the probability of being deceived by possible software models from the pre-

diction error probabilities of the models.

5.2 Software Modeling Building Attack: Support

Vector Machines

We model a PUF circuit using an additive delay model. In this model, we assume

that the delay of a path through the circuit is the sum of the delays of elementary

components. Knowing all the elementary component delays, an adversary can predict

responses for any challenge by calculating the circuit delay. The adversary's task is to

estimate the elementary delay parameters. Assuming that direct measurement of the

delays is impractical, the adversary can infer those delays from a polynomial number

of CRPs using the machine learning algorithm named Support Vector Machine.
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Figure 5-1: The notations of delay segments in each stage.

5.2.1 Additive Delay Model of a PUF Circuit

We denote 6 tOp(n) as a signal delay from the starting point to the top path at the end

of the nth stage. Similarly, bottom (n) denotes the delay of the bottom path.

Figure 5-1 shows the notations of the delay segments Pn, qn,, r, and Sn in each stage.

We can derive top(i + 1) as a function of 6top(i - 1), bottom(i- 1), and the delay

segments of the ith stage as follows.

Jtop(i + 1)

6bottom (i + 1)

2 (Pi+l + 6top(i)) +

+ - i+1 (Si+l + 6bottom(i))
2

- i+ (qi+l + 6bottom(i)) +

+ - Ci+' (ri+l + 6top(i)),

(5.1)

where Ci E {-1, 1} is a challenge bit of the ith stage.

Then, we denote AZ(n) as the difference between tp(n) and bottom(n). By sub-
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tracting Eqn. (5.2) from Eqn. (5.1), we can derive

A(i + 1) = Ci+1 (i) + ai+lCi+l + Pi+1,

where

a n =
Pn - qn+ rn - Sn

2
Pn - qn - rn + Sn

1-11 2

We define the parity of challenge bits Pk as

n

Pk = 1 Ci,
i=k+1

where Pn = 1

From Eqn. (5.3), we can represent AZ(n) as a function of ai, /i, and Ci for

1 i n, and simplify it using the parity Pi such that,

A(0) - 0

A(1)

A(2)

\(3)

= C 2 (aC1- ±+1) + a2C2 +2 = a 1CIC2 +a 2C2 +1C 2 + / 2

= C 3 ((lCIC 2 + C 2C2 + 012 + 2) + a3 C3 + 3

= lCC2C3+ aC 2 C + 3C3+ a C2C3 + 2 2C3 + 3+ 

A(n) = lPo + a2Pl + ... + anPn-1 + lP1 + 2P2 + ... + ... nPn

= alpo + (2 + /1)P1 + ( 3 + /2)P2 + ... + (an + /3n-1)Pn-1 + /nPn

= (p, d)

where p = (po, Pi, . ., Pn) and d = (1, a2 + /3l, ... a Ln + n-l, fn)

In conclusion, the delay difference A(n) can be represented as the inner product
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of the parity vector p and the constant vector d.

5.2.2 Support Vector Machines

Support Vector Machines (SVMs) are powerful learning machines that can perform

binary classification of data. Classification is achieved by a linear or nonlinear sep-

arating surface in the input space of the dataset. When the feature vectors of the

training set are linearly separable by a hyperplane, we can build a linear SVM that

uses the structural risk minimization principle to decrease classification errors. The

separating surfaces are not necessarily linear. In non-linear SVMs, non-linear func-

tions such as high-order polynomials, radial basis functions, and hyperbolic tangent

functions can be exploited to characterize the separating surface.

Here, we give the description of linear SVMs. We consider the problem of classi-

fying m feature vectors xl, . .., Xm in the n-dimensional real space . The goal is to

design the hyperplane described by Eqn.

g(x) = w'x + wo = 0, (5.6)

that classifies all dataset correctly. In linear SVMs, we introduce two parallel hyper-

planes

w'x + wo = ±1

to give a margin between two classes of dataset separated by the hyperplane (5.6).

Figure 5-2 shows two classes of support vectors and two hyperplanes that divide the

entire space into three pieces. To increase the performance of classifiers, the distance

between two hyperplanes, i2 11, must be maximized. In some cases, the dataset cannot

be classified clearly because of non-linearity at the boundary of each class. With

respect to this non-linearity, the goal is not only to make the distance as large as

possible, but also minimize the the number of mis-classifications. Mathematically,
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Figure 5-2: The bounding planes with a soft margin and the plane approximately
separating classes

this is equivalent to minimizing the cost function

2

where ne is the number of mis-classifications. The parameter v is the positive constant

that controls the relative influence of two competing terms. Lagrangian Support

Vector Machines (LSVMs) provide a fast converging algorithm to the minimal point

of the cost function [14]. Using the linear kernel of a LSVM [15], we can find the

hyperplane (w, wo) that minimizes the number of mis-classifications and maximizes

the decision margin between two classes.

According to the analysis we did in Section 5.2.1, the arbiter circuit can be viewed

as the linear classifier of random challenge vectors in n-dimensional space, where n

is the number of challenge bits. The parity vectors p are the feature vectors and

the constant vector d is the normal vector of the hyperplane that classifies challenge

vectors into two classes. Using the linear SVM, an adversary can build the model of

an arbiter-based PUF to predict PUF responses accurately.
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Figure 5-3: The lookup table implementation of a multiplexer in Xilinx FPGAs [2].

5.3 Experiments

5.3.1 Experiments using a FPGA implementation

To examine how accurate the software model is, we train the machine learning al-

gorithm using 90,000 CRPs measured on a FPGA implementation. When evaluated

on a different set of 100,000 challenge-response pairs, the prediction error rate of

the model was only about 3.3%. This is greater than the maximum environmental

variation (0.3%) and even worse than the inter-chip variation (1.05%) of FPGA im-

plementations. Therefore, the software model can be distinguished from the original

PUF by a simple CRP matching.

The experimental results shows that a FPGA implementation of an arbiter-based

PUF does not follow our linear additive delay model. Indeed, the switch component

in the delay path is implemented by using a pair of multiplexers (MUXs). Each

MUX has the challenge bit and both of delay paths as inputs. In Xilinx FPGAs, a

combinational logic is mainly implemented using 4 input lookup tables. In particular,

in the circuit we implemented, the MUXs are being implemented as lookup tables.

These lookup tables are laid out as 4 by 4 grids of SRAM cells as shown in Figure 5-3.

As the figure shows, a rising edge that goes through the multiplexer takes a different

path through the grid depending on the value of the spectator input that is not

currently selected. To take this difference into account would require a more complex

model than our first linear model.

To verify the non-linearity of the previous implementation, we synthesized the
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Figure 5-4: The improvement of prediction error rate of the software model according
to the size of a training set.

circuit again using the MUXCY component, which is a part of the Xilinx FPGA's

fast carry logic. This component is not implemented in the lookup table and the

delay of the MUXCY does not depend on the spectator input. Using the CRPs

from this circuit, the prediction error rate of the machine learning algorithm is only

0.61%. Though this result is still above the maximum environmental variation (0.3%)

with 40 °C variations in temperature, it is well below inter-chip variation (1.05%).

While we cannot conclude that the FPGA implementation of an arbiter-based PUF

is broken in a practical range of operation environment, the error rate of prediction

is uncomfortably close.

5.3.2 Experiments using a Custom Silicon Implementation

Similarly, we evaluate the prediction error rate of a software model using the CRP

measured on a custom silicon implementation. We use an SVM to build the software

model. In the custom silicon implementation, the structure of delay paths is the

same with that of the FPGA implementation. However, the inter-chip variation and

environmental variation are different due to technological differences (cf. Section 3.3).

We examine how the prediction error rate changes as a function of the number

of training CRPs of the SVM. From a test-chip, n CRPs are measured to train the
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software model. Using the trained model, we predict 100,000 responses of given

challenges. We evaluate the prediction error rate of the software model by comparing

the predicted responses to actual PUF responses. Figure 5-4 shows the relationship

between the size of the training set and the prediction error rate. In this figure, the

prediction error rate converges the minimal point (3.55%) when we use more than

5000 training CRPs. The maximum environmental variation of arbiter-based PUFs

is 4.82%, which is greater than the prediction error rate of the software model. We

conclude that the model can be trained within a trivial amount of time and can

impersonate the original PUF successfully.

Consequently, an arbiter-based PUF can be broken by a software modeling attack.

There can be two directions of efforts to improve the security of arbiter-based PUFs.

* Adding non-linearity to the PUF circuit to increase the difficulty in modeling

building.

* Improving the reliability of PUF responses to lower the environmental variation.

We will discuss the ways of improving the security of arbiter-based PUFs in the next

chapter.
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Chapter 6

Strengthening an Arbiter-Based

PUF

The experimental results of software model building show that an arbiter-based PUF

is not as secure against model building attacks as we would like. Thus, additional

techniques must be developed to improve the security of arbiter-based PUFs. Gen-

erally speaking, there are two possible directions to improve the PUF security.

First, adding non-linearity to linear delay paths can improve the security of

arbiter-based PUFs. Since the machine learning algorithm exploits the linearity of de-

lay paths, adding non-linearity can make the responses harder to predict by the SVM

algorithm and other algorithms. By increasing prediction error probability greater

than maximum environmental variation, we can distinguish a software model from an

original circuit. To introduce non-linearity in the delay paths, two candidates are pro-

posed: a feed-forward arbiter and a non-linear arbiter. In Section 6.1, we investigate

the feasibility and security of new arbiter schemes.

Second, the security of arbiter-based PUFs can be improved by making PUFs more

reliable. To impersonate an original PUF with a software model, the prediction error

probability must be lower than maximum environmental variation over a practical

range. Thus, improving reliability can be helpful to increase the difficulty of software

model building. Section 6.2 gives a technique termed a robust challenge method that

reduces maximum environmental variation of PUF responses.
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6.1 Secure Delay Models

In the delay paths of arbiter-based PUFs, the delay difference between top and bottom

paths is the inner product between a challenge vector and a constant vector. An

arbiter works as a linear classifier of the challenge vectors in an n-dimensional space.

In Chapter 5, we have shown that an adversary can build a software model using

the machine learning algorithm that estimates the separating hyperplane of challenge

vectors to predict PUF responses. The prediction error rate of the software model is

less than the maximum environmental variation. The software model can impersonate

the original PUF since they are indistinguishable from each other.

To strengthen our PUFs against model building attacks, we propose the non-

linear circuit models named feed-forward arbiters and non-linear arbiters. In both

schemes we introduce complex correlation between internal signals to make the delay

model non-linear. We have implemented these arbiters in custom silicon and FPGAs,

respectively, to verify their viability. From experiments, we evaluate the primary

characteristics such as inter-chip variation and environmental variation. Further, we

investigate possible model building attacks and examine their prediction accuracies.

6.1.1 Feed-forward Arbiter Approach

0
1

component

Figure 6-1: Adding unknown challenge bits using feed-forward arbiters (feed-forward
arbiter scheme).

One of the non-linear circuit models is a feed-forward arbiter PUF. Figure 6-1

depicts the concept of a feed-forward arbiter PUF scheme. In this scheme, one or
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more challenge bits (such as b55 and b63 in the figure) are determined by the result of

a race. in intermediate stages instead of being provided by a user.

To build a software model, an adversary must have a sufficient number of CRPs

to train the machine learning algorithm. In the feed-forward arbiter circuit, some

challenge bits are internally generated and hidden to an adversary. Without probing

them, the adversary could make guesses of the hidden bits, but wrong guesses of

intermediate challenge bits drop the prediction accuracy significantly. Thus, an ad-

versary needs a more complex software model for predicting the hidden bits to break

a feed-forward arbiter PUF.

Inter-chip variation of feed-forward arbiter PUFs
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Figure 6-2: Comparison of inter-chip variation between regular arbiter PUFs and
feed-forward arbiter PUFs

Figure 6-2 shows the inter-chip variation of feed-forward arbiter PUFs and regular

arbiter PUFs. We generated 10,000 CRPs from 5 feed-forward arbiters and evaluated

the the inter-chip variation of 10 possible pairs. On average, there exists 38% inter-

chip variation between two feed-forward arbiter PUFs. Compared to regular arbiter

PUFs, the average inter-chip variation of feed-forward arbiter PUFs is 1.8 times larger

than that of regular arbiter PUFs. In the worst case, we still have 28% inter-chip
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variation. Inter-chip variation between feed-forward PUFs from the same wafer is

similar to the inter-chip variation between the PUFs from different wafers.

In the feed-forward arbiter PUF, there are seven internal arbiters that generate

intermediate challenge bits. When there is a difference between at least one of internal

arbiter outputs of two PUFs, it is equivalent to evaluating regular arbiter PUFs using

different challenges. Since the responses to two different challenges are not equal with

50% probability, the inter-chip variation of feed-forward arbiter PUFs is significantly

larger than that of regular arbiter-based PUFs.

Using the delay model in Chapter 4, we model the delay difference of feed-forward

PUFs between top and bottom paths for a challenge c as

AXi(c) = X(c) + Pi(c).

The distribution of A (c) in this model is similar to the distribution in regular arbiter

PUF because both of them share the same delay paths. From simulation, we veri-

fied that A(c) is Gaussian for random challenges and the standard deviation ai of

feed-forward arbiter PUFs is similar to that of regular arbiter PUFs. However, the

distribution of pi(c) is significantly different from regular arbiter PUFs because for

feed-forward PUFs, pi(c) comes from physical process variation as well as the config-

uration variation by the inter-chip variation of internal arbiter outputs. Figure 6-3

shows the estimates of ap = aa/ap for feed-forward PUFs and their accuracy inter-

vals. The estimated ap is around 0.6. Assuming that ad is similar, cp of feed-forward

arbiter PUFs is three times larger that of regular arbiter PUFs.

Reliability and Identification Capability

To be used in practical applications, a feed-forward arbiter PUF must generate con-

sistent responses over a practical range of environment. In the previous section, we

studied that the inter-chip variation of internal arbiters in feed-forward arbiter PUFs

increases the inter-chip variation of PUF responses significantly. Unfortunately, in-

ternal arbiters can also be critical sources of noise. Environmental variation on at
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Figure 6-3: Estimates of up and their accuracy intervals for feed-forward arbiter
PUFs.

least one of internal arbiter outputs can change the response of a feed-forward arbiter

PUF with 50% probability. Since there are seven internal arbiters, feed-forward ar-

biter PUFs are more likely to be influenced by environmental variation than regular

arbiter PUFs.

Figure 6-4 shows the environmental variation of feed-forward arbiter PUFs. Com-

pared to regular arbiter PUFs (cf. Figure 3-7), the maximum environmental variation

is 9.84% when temperature changes by 45 °C. That is two times larger than that of

regular arbiter PUFs (4.84%). The measurement noise is 4.5%. However, since this

environmental variation is still far less than the minimum inter-chip variation (28%),

we can identify each feed-forward arbiter PUF even amongst billions of them.

Using the same analysis as in Section 4.4, we can calculate the error probability

in identification and authentication of feed-forward arbiter PUFs. We use T = 0.40

and = 0.10 as the parameters. When the number of CRPs is 300, Pe is 1.6. 10-1 ° ,

which is less than 10 - 9 (cf Eqn. (4.21)). We had to measure more than 450 CRPs

for regular arbiter PUFs to achieve that error probability. Thus, space overhead and

performance of identification can be improved by using feed-forward PUFs. When

we authenticate feed-forward arbiter PUFs, we need to measure 300 CRPs to obtain
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Figure 6-4: Temperature and power supply voltage variations of feed-forward arbiter
PUFs.

an error probability of 7.899 10-10. This result is better than regular arbiter PUFs,

which need 443 CRPs to achieve the same error probability.

Breaking feed-forward arbiters

Building a software model of feed-forward arbiters is challenging because internal

arbiter outputs are hidden to an adversary. Without probing the forward bits, he can

no longer exploit the same machine learning algorithms to predict responses. Since

the internal arbiters have their own skews which are different from the skew of an final

arbiter, he must evaluate more circuit parameters to build a model. Furthermore, the

delay difference between top and bottom paths is < p, d >, where p is not a given

challenge vector but a parity vector computed from a challenge vector (cf. Section

5.2.1). Since a bit-flip in the middle of a challenge vector can change half of a parity

vector, incorrectly guessing the hidden bits can dramatically lower the prediction

accuracy even when the probability of wrong guesses is small.

Here, we present a hybrid method of modeling feed-forward arbiters. Although
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Figure 6-5: The feed-forward arbiter circuit with one feed-forward stage.

predicting the feed-forward arbiter responses is difficult, we can represent a response

as a function of challenge bits and circuit parameters. In our implementation, a feed-

forward arbiter PUF shares the same delay paths with a regular arbiter PUF. There

are seven feed-forward stages and input bits of these stages are multiplexed by a mode

bit. In a regular arbiter mode, inputs of these feed-forward stages are connected

to external challenge inputs, and in a feed-forward mode, they are connected to

internal arbiters' outputs. Thus, the parameters of delay paths except for the skews

of internal arbiters can be extracted in the regular arbiter mode by the machine

learning algorithm. The adversary can use these delay parameters as supplementary

information to complete the software model of feed-forward arbiter PUFs.

We first provide some notation. For a challenge vector c = (cl, C2 ,..., Cn) where

Ci E {-1, 1}, we denote p(c) = (Po,P1, ... ,Pn) as a parity vector of c as

n

Pk = I ci for 0 < k < n- l,pn = 1.
i=k+l

The partial challenge vector cij = (ci, ci+l,. . ., cj) is a part of the challenge vector

c from the ith component to the jth component. We denote the concatenation of a

and b by alb. One-bit output functions lb(c) and rb(c) are respectively the leftmost

component and the rightmost component of c.

Figure 6-5 shows a feed-forward arbiter circuit with one feed-forward stage. When
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c = (cl,c2,...,C8) and f is the output bit of an internal feed-forward arbiter, a

response can be expressed by

R(c) = sgn(p(clf)· d), (6.1)

where sgn(x) is a modified sign function as follows.

1 x>0
sgn(x)= x

-1 x < 0

The feed-forward bit f is

f = sgn(p(cl_4) d'). (6.2)

From the CRPs generated in a regular mode, we can evaluate d using a machine

learning algorithm. Using the estimated d, the equation for f is

R(c) = sgn(f - rb(d)
p(c) dl-_

From the response and the known parameter d, we can decide f E {-1, 1. Conse-

quently, using Eqn. (6.2), we can estimate d' by a machine learning algorithm and

complete the predictor function (6.1) with d'.

Similarly, we can predict outputs of multiple internal arbiters. Figure 6-6 shows a

feed-forward arbiter PUFs with two feed-forward stages. The response of this circuit

on the challenge c can be expressed by

R(c) = sgn(p(c- 1 1l I f I c12-16 I f2) d). (6.3)

The internal feed-forward bits f and f2 can be represented as

fi = sgn(p(cl_6 ) . d') (6.4)

f2 = sgn(p(c1 1 1)' d").
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Figure 6-6: The feed-forward arbiter circuit with two feed-forward stages.

By the definition of a parity vector,

p(cl-ll fi C12-16 I f2)

= f 2 p(cl-ll I fl C12- 1 6 ) 1

= f 21b(p(c12-1 6 ))p(c1-1 fil) f 2 P(C1 2-1 6 ) 1

= f 2 f 1lb(p(c12-1 6 ))p(c1_11) I f 2 P(C 12-1 6 ) 1

From Eqn. (6.3), we can represent the response as

R(c) = Clf 2 f + C2 f2 + C 3,

(6.5)

where

C1 = Ib(p(c12-16))p(c1-11) dl-12

C 2 = P(C12- 1 6) d13-17

C3 = d1 8

All the constants C 1, C 2 ,and C3 can be calculated from challenge bits and the esti-

mated d.
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In this model, we cannot directly decide f and f2 because we have only the

knowledge of one inequality. However, we can infer fi and f2 in the cases below.

* If R(c) = 1 and Clf2fl + C2f2 + C3 is positive for only one (fi, f2) among

four possible solutions of (fil, f2), i.e., (1, 1), (1, -1), (-1, 1), and (-1, -1), then

(fl, f2) can be decided. Similarly, if R(c) = -1 and Clf2fl + C2f2 + C3 is neg-

ative for only one (fl, f2) among four possible solutions, we can decide (fl, f2).

* If R(c) = 1 and Clf2 + C2f2 + C3 is negative regardless of f2, or R(c) = -1 and

Clf2 + C2f2 + C3 is positive regardless of f2, then fi must be -1. Similarly, we

can decide f = 1 when R(c) = -1 and -Clf2 + C2 f 2 + C3 is positive regardless

of f2, or R(c) = 1 and -Clf2 + C2f2 + C3 is negative regardless of f2.

* If R(c) = 1 and Cifi + C2 + C3 is negative regardless of fi, or R(c) = -1 and

Clfi + C2 + C3 is positive regardless of fi, then f2 must be -1. Similarly, we

can decide f2 = 1 when R(c) = 1 and -Clfl - C2 + C3 is negative regardless

of fi, or R(c) = -1 and -Clfi - C2 + C3 is positive regardless of fi.

From the simulation with a feed-forward circuit model, for 10,000 measurements of

random challenges, more than 4,000 (fl, f2) combinations have been uniquely decided.

We can estimate the linear classifiers d' and d" in Eqn. (6.4) with this sufficient

amount of (p(c1- 6), fi) and (p(clll),f2) training samples. This method can be

generalized to the case when there are n feed-forward stages.

However, this algorithm is based on the knowledge of a delay vector d. If the

circuit is hard-wired to the feed-forward mode and d cannot be evaluated, then it is

still difficult to build a software model of feed-forward arbiter PUFs. On the other

hand, since the output of an internal arbiter is in a digital form, the feed-forward

arbiter circuit can be vulnerable to physical probing attacks. If we assume that

probing a digital signal is viable at every point on an IC, an adversary can build

an algorithm to predict internal arbiter outputs. It becomes an equivalent problem

to breaking regular arbiter PUFs if the internal arbiter outputs are known to an

adversary.
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6.1.2 Non-linear Arbiter-based PUF Approach

Although feed-forward arbiter PUFs have increased the modeling complexity of our

circuit, our circuit is still vulnerable to physical probing attacks because the outputs

of internal arbiters are digital. To prevent physical attacks, let us base our design on

the premise that any kind of a digital signal that can provide critical information for

model building attacks is not revealed to an adversary. As one candidate for possible

solutions, we could insert non-linear functions to give a correlation between challenge

bits and delay parameters. Figure 6-7 shows a general description of one stage of the

whole delay paths. This approach is nice as it leads to continuous delay paths, but is

hard to model because of non-linear functions. As non-linear functions, MIN(dl, d 2),

which outputs a minimum delay signal between d and d2, or MAX(dl, d2) can be

candidates.

Swit;

Figure 6-7: A candidate of the non-linear delay paths with non-linear functions.

In experiments, we implement non-linear arbiter PUFs on Xilinx SPARTAN-200S

FPGAs using a MAX function for the non-linear function 1 and 2. To verify the

viability of this non-linear arbiter PUF approach, we evaluate inter-chip variation

and environmental variation of non-linear arbiter PUFs. We verify the modeling

complexity of non-linear arbiter-PUFs by estimating the amount of non-linearity using

the analysis in Chapter 4.
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Feasibility of non-linear arbiter-based PUFs

Power supply voltage variation (%) (reference = 1.8V)

C
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Difference from reference temperature (25 C)

Figure 6-8: Inter-chip variation, temperature variation, and voltage variation of non-
linear arbiter PUFs.

Similar to regular arbiter-based PUFs, a non-linear arbiter-based PUF must have

sufficient inter-chip variation in order to be identified. In addition, environmental

variation of the PUF must be less than the inter-chip variation.

Figure 6-8 shows inter-chip variation and environmental variation of non-linear

arbiter PUFs. From 15 PUF pairs, inter-chip variation is 4.82% on average and 3.72%

as a minimum. Over a practical range ( 2.5% voltage variation and less than 50°C

temperature variation), environmental variation is less than 2.79%. Using T = 0.0482

and ,u = 0.0279, the error probability of simple identification and authentication of

non-linear arbiter-based PUFs can be calculated from Eqn. (4.21) and Eqn. (4.22).

However, in these FPGA experiments, the inter-chip variation T is too small to obtain

a reasonable identification capability. For example, when we have only two PUFs, we

need more than 1,000 CRPs to achieve only less than 10- 2 error probability.

We could not obtain a sufficient amount of inter-chip variation to identify the

PUFs efficiently because of asymmetrically synthesized delay paths. Since we do not

have full control of circuit synthesis in FPGAs, there is inevitable asymmetry of delay
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paths in the circuit layout. This asymmetry reduces an amount of information-bearing

challenges that causes different responses across ICs (cf. Section 3.3). However, the

inter-chip variation will increase if the layout of delay paths becomes symmetric in

custom silicon. For example, inter-chip variation of regular arbiter-based PUFs was

only 1.05% in FPGAs, but it has increased up to 22% in custom silicon. Based on

this result, we can expect that the custom silicon implementation of the non-linear

arbiter PUFs will have sufficient inter-chip variation to identify a large number of

chips in an efficient manner.

Modeling complexity of non-linear arbiter-based PUFs

To evaluate the difficulty in the software model building of non-linear arbiter PUFs, we

measure the non-linearity of responses using the non-linear delay model in Chapter 4.

Based on the additive delay model (cf. Section 4.1), if estimates of a model parameter

cannot be included within an high probability accuracy interval, we must introduce

non-linearity in the model to account for experimental results. The required amount

of non-linearity provide evidence of modeling complexity of a given PUF structure.

For instance, if responses of a PUF follow our linear model and all estimates of

a model parameter are within an accuracy interval, then delay differences can be

represented as a linear function of random challenges. An adversary can build a

polynomial time software model to to predict responses based on the linear function.

If the responses do not follow the linear model, an adversary needs more effort to

build more sophisticated non-linear model to break the PUF.

To compare the non-linearity of the two PUFs, a regular arbiter PUF and non-

linear arbiter PUF, Figure 6-9 shows pt -R' curves of the two PUFs from experimental

results. At the dashed line (when Pt = 10-0.1), the non-linear arbiter PUFs require 23

times larger non-linearity than regular arbiters to obtain an overlap region between

accuracy intervals. From this comparison, we conclude that the model building of a

non-linear arbiter PUF is more difficult than that of a regular arbiter PUF.
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Figure 6-9: Comparison of non-linearity between non-linear arbiter PUFs and regular
arbiter PUFs.

6.2 Reliability

For an adversary's software model to be successful, the response prediction must have

less errors than the maximum environmental variation. Thus, improvement of PUF

reliability can increases the difficulty of software model building. We can increase

reliability of PUF responses by excluding the challenges that generate inconsistent

responses when environmental parameters such as temperature and supply voltage

change. However, if some challenges are sensitive to environmental variation, then

they are also sensitive to process variation of PUF circuits. Consequently, exclud-

ing the unreliable challenges can also reduce inter-chip variation of PUFs, which can

decrease identification capability of PUFs. Therefore, we should make careful deci-

sions when excluding unreliable challenges to keep the amount of inter-chip variation

sufficiently high.
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6.2.1 Distribution of Random Challenges

We can model a distribution of random challenges according to the delay difference

between top and bottom paths, \(c), as Gaussian. Conceptually, we define two range

of A(c), an environmental variation range and an inter-chip variation range.

* Environmental variation range: When A(c) is within an environmental varia-

tion range, the response of a challenge c is likely to be changed by environmental

variation. The differential structure of an arbiter-based PUF helps to reduce the

width of this range by rejecting a significant amount of environmental variation.

* Inter-chip variation range: When \(c) is within an inter-chip variation range,

the response of the challenge c is likely to be changed by process variation.

Therefore, the challenges within this range can bear the identification informa-

tion of PUFs.

Figure 6-10 shows the distribution of random challenges and the ranges of envi-

ronmental variation and inter-chip variation. The shaded part is the range of robust

information-bearing challenges which generate identification information of PUFs but

are not likely to be affected by environmental variation. In order to improve the re-

liability, we should exclude the challenges in the environmental variation range to

increase the portion of robust information-bearing challenges.

The challenge distribution model of Figure 6-10 can be verified by experiments.

From the delay model in Section 5.2.1, \(c) is proportional to the distance from a

challenge vector to the decision hyperplane of a regular arbiter-based PUF model (cf.

Chapter 5). Using a machine learning algorithm, the distance from the hyperplane to

a challenge vector can be estimated. Consequently, a scaled A(c) can be calculated for

each challenge c and the distribution of A(c) can be verified by experimental results.

Figure 6-11 shows the distribution of random challenges according to the distance

from the decision hyperplane of an arbiter-based PUF. X-axis of each sub-figure is the

distance from the decision hyperplane and Y-axis is the density of challenges. Figure

6-11(a) shows that the distribution of total challenges is Gaussian. In Figure 6-11(b),
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Figure 6-10: Distribution of random challenges according to A(c)

most of the challenges that cause inter-chip variation exist in the interval [0, 0.17].

Compared to the range of this inter-chip variation challenges, from Figure 6-11(c)

and 6-11(d), the challenges that cause temperature and voltage variation exist in the

narrower interval [0, 0.07]. This result follows our conceptual model of the challenge

distribution in Figure 6-10 and verifies the existence of two ranges, an environmental

variation range and inter-chip variation range.

6.2.2 Robust Challenges

To exclude the challenges that cause unreliable responses, we need an initialization

process to test the reliability of a given random challenge. In this process, we ex-

amine if the challenge generates consistent responses in repetitive measurements or

supply voltage and temperature changes. Practically, without additional expensive

cooling, temperature is hard to control within a circuit. Therefore, we use repetitive

measurements and supply voltage changes to test the reliability of a given challenge.

From these tests, we obtain robust challenges that produce consistent responses in

controllable environmental changes.

There are several requirements for this method to be useful.
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(a) Distribution of total challenges (b) Challenges that cause inter-chip
variation

(c) Challenges that cause tempera-
ture variation

(d) Challenges that cause voltage
variation

Figure 6-11: Distribution of random challenges according to the distance from the
decision hyperplane.

* There must be a sufficient amount of robust challenges in total random chal-

lenges.

* Responses from robust challenges must have a reasonable amount of inter-chip

variation to identify and authenticate each PUF uniquely.

* The robust challenges should improve the stability against temperature varia-

tion.

In experiments, we examine feasibility of the robust challenge method by testing these

97



requirements.

Robust challenges to repetitive measurements

To decide the robustness of each challenge, we repeat the same measurement 15

times. When a PUF consistently responds with 0 or 1 to a given challenge for all

15 measurements, the challenge is decided to be robust. Table 6.1 shows inter-chip

variation, temperature variation, and voltage variation of regular arbiter-based PUFs

using random challenges and robust challenges. From experiments, 83 % of total

random challenges are robust in 15 repeated measurements.

Random challenges Robust challenges
Inter-chip variation 24.23 % 22.97%
Maximum temperature variation 4.57% 2.54%

(+45°C)
Maximum voltage variation (2%) 2.16% 0.19%

Table 6.1: Improvement of reliability using the robust challenges in 15 repetitive
measurements.

Using robust challenges costs approximately 1% decrease of inter-chip variation,

which can reduce the identification capability of PUFs. However, it gives significant

improvements to temperature and voltage variation. The temperature and voltage

variation are reduced from 4.57% and 2.16 % to 2.54% and 0.19%, respectively. The

reduction of voltage variation comes from the inevitable fluctuation of supply voltage

in repetitive measurements.

This reduction of environmental variation is promising because an SVM algorithm

can predict responses up to 3.55% error probability. Using robust challenges, we can

reduce the maximum environmental variation to 2.54% that is less than prediction

error probability. Therefore, an adversary cannot impersonate a PUF circuit with a

software model anymore, though we would not advocate using a regular arbiter if one

is concerned with software model building attacks.
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Robust challenges to voltage variation

Using an extra circuitry, power supply voltage of a PUF circuit can be automatically

controlled; the reliability of a given challenge to voltage variation can be tested by

forcing an intentional supply voltage change. In this test, we examine the consistency

of responses when + 1.5% voltage variation is induced. Table 6.2 shows the results of

inter-chip variation, temperature variation, and voltage variation of robust challenges

against ± 1.5% voltage variation comparing to random challenges. In the entire

random challenge set, about 97% of them are robust against the voltage variation.

There is less than 1% of inter-chip variation reduction, but using robust challenges

improves the reliability of a PUF against temperature and voltage variation from

4.57% and 2.16% to 3.48% and 0.46%, respectively. However, the reduced maximum

environmental variation 3.48% is not significantly lower than the prediction error

probability of an SVM algorithm.

Random challenges Robust challenges
Inter-chip variation 24.23% 23.48%
Maximum temperature variation 4.57% 3.48%
(+45°C)
Maximum voltage variation (2%) 2.16 % 0.46 %

Table 6.2: Improvement of reliability using the robust challenges in ±1.5% voltage
variation.

We can achieve better reliability of responses by using the robust challenges to

both repetitive measurements and voltage variation. Let

RCr = The robust challenges to 15 repetitive measurements)

RC = {The robust challenges to i 1.5% voltage variation).

Let

RC = RC, n RCv.

We use the challenges in RC to measure the inter-chip variation and environmental
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variation.

Table 6.3 shows experimental results of inter-chip variation, temperature variation,

and voltage variation. From the results, 82% of random challenges are included in

RC. Therefore, the size of RC is sufficiently large to be used in practice. Compared to

the robust challenges only to repetitive measurements, RC improves the temperature

variation from 2.54% to 2.43%. In addition, the voltage variation of RC is 0.05%

that is almost negligible. Using RC costs only 1.5% decrease of inter-chip variation.

Random challenges Robust challenges
Inter-chip variation 24.23 % 22.84%
Maximum temperature variation 4.57% 2.43%
(+45°C)
Maximum voltage variation (2%) 2.16% 0.05 %

Table 6.3: Improvement of reliability using the robust challenges to repetitive mea-
surements and voltage variation.

We conclude that by using the robust challenges, the maximum environmental

variation can be reduced to 2.43% while keeping the inter-chip variation between

PUFs over 22%. From an identification capability standpoint, with less than 300

CRPs, we can identify and authenticate billions of PUFs with an error probability

less than 10 - 9. More than 33% of space overhead is reduced compared to the result of

using random challenges (cf. Section 4.4). Furthermore, since the SVM in Chapter 5

cannot predict responses with less errors than environmental variation, the software

model is distinguishable from the original circuit.

Calibration of PUFs at different temperatures

The maximum temperature variation can be reduced by using multiple reference

temperatures. For a given challenge set C, we denote the response set of a PUF

measured at temperature T by RT(C). Let

d(RT (C), RT2(C))
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be the distance between two CRP sets generated at temperature T1 and T 2. When

we set a reference temperature (Tref) to 25°C, temperature variation at T can be

represented as

d(RT(C), RTref (C)).

The maximum temperature variation Ut is equal to d(RTMAX(C), RTe (C)), where

TMAx denotes the maximum temperature (70°C).

Instead of using one reference temperature, we use two reference CRP sets at

different temperatures T1 and T 2. When identifying/authenticating a PUF at tem-

perature T, we calculate two distances

di = d(RT(C),RT1 (C)),

d2= d(RT(C),RT2 (C)),

and use the minimum of dl and d2, MIN(dl, d2), as the distance of the PUF from

reference CRP sets.

By using MIN(dl, d2), the maximum allowed temperature change from reference

temperatures is reduced by half over the range from T1 to T 2. From the experiments

in Section 3.3, the distance d(RT1 (C), RT2(C)) is roughly proportional to the temper-

ature difference IT1 - T2[. Thus, we can reduce the maximum temperature variation

over the range from 25 °C to 70 °C, by setting the reference temperatures to 25 °C and

70 °C. Figure 6-12 shows experimental results of measuring MIN(dl, d2) at different

temperatures 25, 34, 57, 65, and 70 C. The maximum of MIN(dl, d 2) is 3.74% at

T = 57°C, which is lower than the original maximum temperature variation (4.34%).

However, since the increase of temperature variation is not linear to the increase of a

temperature change, using MIN(dl, d2) does not reduce the maximum temperature

variation by half.

We can reduce the maximum temperature variation significantly by increasing the

number of reference temperatures. For n CRP sets generated at reference tempera-

tures from T1 to T, we calculate MIN(dl, d 2,. . . , dn) for the distance of a PUF from

reference CRP sets. Since the maximum allowed temperature change from reference
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Figure 6-12: Experimental results of MIN(dl, d2) at different temperature.

temperatures is reduced according to the increase of n, the maximum temperature

variation can be improved. Further, we do not need to assign the reference temper-

atures linearly. Instead, we can assign reference temperatures more densely around

Ts where d(RT(C), RTrf (C)) increases more steeply according to the increase of T.

This non-linear assignment of reference temperatures can be helpful to reduce the

maximum temperature variation of PUFs.
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Chapter 7

Conclusion

7.1 Ongoing and Future Work

7.1.1 Reliable Secret Sharing with PUFs

Gassend et. al. defined a controlled PUF (CPUF) in [9], which can only be accessed

via an algorithm that is physically linked to the PUF in an inseparable way (i.e., any

attempt to circumvent the algorithm will lead to the destruction of the PUF). To go

beyond the simple authenticated identification applications of PUFs in this thesis,

we can use CPUFs to enable secret sharing with a remote user. Through the secret

sharing, CPUFs can be used for applications such as trusted third party computation,

certified execution and software licensing.

In certified execution, a remote user Alice, who has CRPs, wants to share a secret

with the processor with a PUF. To obtain a shared secret, Alice transmits challenges

from CRPs in her database to the processor with the PUF. Ideally, the PUF computes

corresponding responses. Based on the shared responses, Alice and the processor with

the PUF distill a shared secret key.

However, noise is present in PUF responses (cf. Section 3.3). Because of the noise,

a practical implementation of a PUF does not immediately lead to a deterministic

function. Though we have improved the reliability of PUFs using robust challenges

(cf. Section 6.2), noise of 2.43% caused by environmetal changes still exists in PUF
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responses. To correct the noise, redundant information needs to be transmitted over

a public (untrusted) network between Alice and the processor with the PUF. This

redundant information must not leak any information about the shared secret key

since the redundant information can be used by an adversary Eve (who taps the

public network) to reproduce the shared secret key.

In [19], a reliable secret sharing protocol has been suggested to solve the problem

of certified execution. In this protocol, Alice encrypts an input of a program with a

randomly generated secret key. She also computes redundant information based on

the key and PUF responses of a challenge set C in her database. She transmits to the

processor with the PUF the program, the encrypted input, the challenge set C, and

the redundant information. The processor measures (noisy) responses of C using the

PUF and distills the secret key from the responses and the redundant information.

Using the secret key, the processor decrypts the encrypted input and executes the

program with the input. An output of the execution is encrypted using the secret

key and transmitted to Alice.

A mathematical analysis based on fuzzy extractors [7] shows that the noise l

caused by the maximum environmental variation on a PUF can be corrected by the

redundant information. From calculation, when = 4.8%, for example, Alice and a

processor with a PUF can reliably share a secret key of 160 bits using 1,800 CRPs in

the protocol. A BCH code is used to generate redundant information. When inter-

chip variation is 23%, a processor with a different PUF can reproduce the secret key

with negligible probability.

An adversary can also learn the redundant information transmitted during the

protocol by tapping a public network. If he can predict responses of the PUF with an

error rate close to the maximum environmental variation, then he can also reproduce

the secret key from the redundant information. To prevent the prediction of responses,

we can employ non-linear arbiters such as feed-forward arbiter PUFs and non-linear

arbiter PUFs (cf. Section 6.1). It is difficult for an adversary to build an appropriate

software model of these arbiters.
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7.1.2 Reconfigurable PUFs using Non-volatile Storage

To protect the privacy of data in untrusted memories, we encrypt all data using the

public key of a trusted processor. The data can only be decrypted using the private

key stored in the trusted processor. Unfortunately, the hard-wired private key in the

processor is no longer secure against sophisticated physical attacks. For this reason,

a PUF can be a good candidate of a private key generator, which is secure against

physical attacks.

However, one is also concerned with the integrity of the data stored in untrusted

memory. The private key generation by a PUF is vulnerable against replay attacks.

Encrypted data stored in a memory can be replaced by other data encrypted correctly

with the same private key. The replays of data can cause abnormal operations of the

processor and an adversary can exploit the vulnerability of the processor. As a simple

solution to the replay attack, a message authentication code (MAC) of each encrypted

data block can be used to detect tampering of data. Nevertheless, a replay attack is

still possible if an adversary can replay an encrypted data with its MAC together.

In order to prevent the replay attack, we can encrypt each data with different

keys. Instead of using static key generation, we generate different public-private key

pairs for the encryption and decryption of each data. An adversary cannot replay

encrypted data since each of them uses different private keys for decryption. A key

generation device must be "reconfigurable" to generate different keys each time we

use it.

However, some problems in private key management must be considered. When

we store new data, a new public-private key pair must be generated. If old data have

not been decrypted yet, the private key of the old data must be stored somewhere in a

memory. However, the private key stored in an untrusted memory can be vulnerable

to physical attacks. An adversary can even replay encrypted data with the private

key together.

Instead of storing private keys in an untrusted memory, we can employ multiple

key generation devices in the processor. In the beginning of operation, all the devices
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are available. For the encryption of new data, one of available devices is used to

generate a new key. This device is not be available until it is used again to generate a

private key to decrypt the data. After the decryption, the device is reconfigured and

becomes available to generate a new key in the next use.

To realize a reconfigurable PUF, we can exploit a non-volatile storage device to

change the delay characteristic of PUFs and preserve the characteristic for a long

period. A floating-gate transistor, which is widely used in EPROMs and EEPROMs,

can be a good candidate of the non-volatile storage device.

Figure 7-1 shows the concept of a reconfigurable PUF. We can shift the threshold

voltage (Vth) of a floating gate transistor by changing the amount of charge in the

floating gate. The shift of Vth changes the transistor delay and the whole delay

characteristic of a PUF. Using this property, we can reconfigure the PUF by recharging

the floating gate with a different amount of charges. After the reconfiguration, the

PUF will respond differently to the same challenges. The PUF will not be changed

until the next reconfiguration since the floating gate is effectively non-volatile storage.

Floating Gate
Transistors

Challenge Vector

Figure 7-1: The circuit diagram of a reconfigurable arbiter-based PUF.

7.1.3 PUF-based Physical Random Number Generators

Random numbers are employed today for most of cryptographic systems. Numerical

pseudo-random number generation rely on the computational complexity. However,
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true random numbers cannot be generated by computational algorithms since the

algorithms are deterministic. Instead of using computational algorithms, random

physical phenomena can be used to generate true random numbers. Proving the true

randomness of physical random number generation is difficult because there can be

unknown correlation in generated sequences. Nevertheless, physical random number

generation can be useful because equivalent algorithms to simulate and predict the

physical phenomenon may not exist.

We can exploit the unreliability of PUF responses to build a physical random

number generator. There exists measurement noise which comes from the instability

of an arbiter when it is in a racing condition (cf. Section 3.3). Figure 7-2 shows

the distribution of the random variable k, which is the number of Is in 200 repeated

measurements for a given challenge. In the middle of the density function, there exist

the challenges whose responses consist of 50% s and 50% Os. Without environmen-

tal variation, the responses of these challenges are likely to be random in repeated

measurements.

U,a)
c0,
C

.,

Cc
0

0 20 40 60 80 100 120 140 160 180 200
The number of s out of 200 repetitive measurements

Figure 7-2: The density function of the random variable k, where k is the number of
Is out of 200 repetitive measurements.
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In fact, the unreliability of PUF responses depends on an environmental condition

such as temperature and power supply voltage. One challenge that generates reliable

responses in one condition can generate unreliable responses in another. Thus, each

time we use a PUF to generate random bits, we must test responses of a number of

random challenges to find the challenges that generate random responses. Statisti-

cally, from 10,000 random challenges, there exist approximately 10 challenges whose

responses are random. Based on the performance of the PUF circuit (cf. Section

3.3), it takes 0.5 sec to test the randomness of 10,000 challenges by 1,000 repeated

measurements. This initialization of a PUF-based random number generator can be

completed within 1 sec.

Compared to other physical random number generators, the PUF-based random

number generator can be a compact and low-power solution. A 64-stage PUF circuit

costs only less than 1000 gates and the circuit can be implemented using a standard

IC manufacturing process. Additionally, various kinds of low power techniques such

as sub-threshold logic design and multi-thresholds CMOS design can be utilized to

reduce the power consumption of the PUF circuit. The power consumption of the

PUF-based random number generator and the quality of random numbers will be

examined in future experiments.
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Appendix A

Parameter Estimation

Let c be the input to an experiment and let R(c) be its output. Suppose that we

have a statistical model of the experiment using parameters xi, 1 < i < k. We choose

some set F for which we can compute1

Prob(R(c) C F) = F(x,... , Xk)

as a function of the parameters which define our statistical model. We assume that F

is a continuous and a differentiable function. We introduce the notation Fi(x1, ... , xl)

such that

Fi(XI,.. .,Xk) = F(X,, k)dxi

Theorem A.1 Suppose that, for 1 < i < k - 1, Ei is an estimate for xi such that

Ixi - Eil < Ei

with probability at least 1 - pi.

Let C be an arbitrary set of inputs, let

E = I{c E C : R(c) E F}I
ICl

1The probability is taken over a uniform distribution of inputs c.
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and define Ek as the solution of

E = F(El,..., Ek-l,Ek)

(we suppose that it exists).

Let E > 0 and

p = 2Q(-2e C).

Define

Pk = 1 - (1 -p) -

k-1

J (1 - Pi )
i=l1

There exist Oi E [0, 1], 1 < i < k, such that

k

F(xl,. .. ,Xk)- E = E(xi - Ei)Fi(z1 ,... ,Zk),

i=1

(A.1)

where

Zi = iX i + (1 - 6i)Ei.

Suppose that Fk(zl,..., Zk) 0 and let

k-1
Ek = -+]-

i=l

1

Fk(zl ,..I

Then

jxk - EkI < Ek

with probability at least 1 -Pk

We call xi - Ei < Ei an accuracy intervals for xi. If Ei is small enough, then

Fi(Zl,... , Zk) z Fi(El,..., Ek).

If this approximation holds for 1 < i < k, then we can apply the theorem to compute

an accuracy interval for xk.

We can also use second derivatives of F and show that there are no local minima or
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local maxima in the region defined by the k accuracy intervals. Then Fi+-(zl,..., Zk)

can be lower and upper bounded by boundary points of the region. These bounds

can be used to compute an accuracy interval for Xk.

Notice that if Fk(zl,..., Zk) = 0 then function F does not depend on the kth

variable in a neighborhood of ( 1,..., Zk). In particular, the value of F(xl,...,zk)

does not depend on Xk. This shows that F cannot be used to accurately estimate Xk.

Proof.

By the law of large numbers, the binomial distribution that defines E tends to a

normal distribution

N(E, E(1 -E)/ C).

(notice that E(1 - E) < 1/4). This proves that,

--- e- t2 /2
2 Eo(I -E/ dt

=2-oo f2 i
-2E/CI e - t 2/ 2

< 2 / V7 dt2Q(-2E
Jt--oo y/t

/fj) = p.(A.2)

From (A.1) we infer that

I(Xk - Ek)Fi(Zl,. , Zk) 

k-1

= I(E-F(xl,. .. ,k))-E(xi-i)Fi(zl,.. ,Zk)

k-1

·.. ,iXk) I + 1:Xi - Eil IFi(Zl,< E-F(xl,

k-i

< IE- F(xl,...,Xk)I + E i Fi(Zl,. ,Zk)I

i=l

holds with probability at least

k-i

P = (1 - pi).
i=1

Additionally,

IE - F(xl,.
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holds with probability at least 1 -p. Therefore,

k-1

Prob( xk - Ekl < ek) ( 1 -p) (1-Pi).
i=l

Consequently, the error probability Prob(lxk - Ekj > k) is at most Pk-

Independent experiments, represented by different sets .F and functions F, lead to

different estimates. Only if the different estimates fall within one another's accuracy

intervals, we believe the statistical model. This shows how the theorem can be used

to verify our statistical model.
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Appendix B

Properties of Q(x)

Let

Q(x)

1
2

£x e-t2/2
I dt

t=-o 2i

1 r
oo

Et-t2/2)k/k!dt
k=O

= + :o (-t2 /2)k/k!dt

1 1 00 /2)(2+l)

2 + (1/2)k2 r- ,,k=O (2k±+1)k!
1 1

= 6-+X-X
2 6

+ 5 - o(x7 )
40

For x < 0,
e-X 2/2

The first derivative of Q-l(y) is equal to

d Q-() =
dy {

-1

dQ(x)dx:
e-Q-l(y)2/2 }1

= V/reQ-(y) 2 /2
x=Q-1 (Y) }
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J
1 X e t2 /2
- -+ ~~At

< Q() < ----
f2 -~2



The second derivative of Q-l(y) is equal to

d 2eQ -l(y) 2 /2 - 2rQ-1(Y)Q(y) 2

dy

the third derivative of Q-l(y) is equal to

d 27rQ-1(y)eQ-l(y)2
dy

= (27r)3/2e3Q-l(Y)2 /2(1 + 2Q-l(y)2 ),

and the fourth derivative is equal to

d (2r)3/2e3Q1-(y)2/2(1 + 2Q-(y) 2 ) = (21 )2e2Q-() 2 (1 + 2Q-1 (y) 2)7Q- 1(y)2

Notice that Q- 1(1/2) = 0, hence,

Q-1 (1/2 + e) = (27r)1/2 + (27r) 3/ 2 3/6 + o0(5). (B.2)

The second derivative is positive if and only if Q-1(y) > 0. Hence, by using the

first derivative,

Q- 1(y) - Q- 1 (y')

Y - Y'
< max{V/2eQ-l(y ) 2/ 2

Suppose that ly - 'I < E. Then (B.3) implies

IQ- (Y) - Q-l(y') < emax{V-eQ-l(Y)2/2, v/'7eQ-l(y')2/2}.

If y > E, then y - e < y' < y + e. Hence, the maximum in (B.3) is upper bounded by

max{V/'FeQ-l(y+e)2 /2, V2reQ-l(y-E)2 /2}

We denote this maximum by ¢eQ- (y8)2 / 2 and we obtain the inequality

IQ-1(Y) _ Q-l(y,)[ < 5 = - f27eQ-l( ( ) 2/ 2

114

(B.3)



Concluding, if y > then

Prob(lQ-'(y) - Q-1 (y')l > 6) < Prob(ly - y' > ). (B.4)
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