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Fast Polyhedral Adaptive Conjoint Estimation 

Abstract 
 

We propose and test new “polyhedral” question design and estimation methods that use recent 
developments in mathematical programming. The methods are designed to offer accurate estimates after 
relatively few questions in problems involving many parameters.  With polyhedral question design, each 
respondent’s questions are adapted based upon prior answers by that respondent to reduce a feasible set of 
parameters as rapidly as possible. Polyhedral estimation provides estimates based on a centrality criterion 
(the “analytic center” of the feasible parameter set). The methods require computer support but can oper-
ate in both Internet and other computer-aided environments with no noticeable delay between questions.  

We evaluate the proposed methods using two approaches.  First, we use Monte Carlo simulations 
to compare the methods against established benchmarks in a variety of domains.  In the simulations we 
compare polyhedral question design to three benchmarks: random selection, efficient Fixed designs, and 
Adaptive Conjoint Analysis (ACA).  We compare polyhedral estimation to Hierarchical Bayes estimation 
for each question design method.  The simulations evaluate the methods across different levels of respon-
dent heterogeneity, response accuracy, and numbers of questions. For low numbers of questions, polyhe-
dral question design does best (or is tied for best) for all domains. For high numbers of questions, effi-
cient Fixed designs do better in some domains.  The best estimation method depends on respondent het-
erogeneity and response accuracy.  Polyhedral (analytic center) estimation shows particular promise for 
high heterogeneity and/or for low response errors.   

The second evaluation employs a large-scale field test.  The field test involved 330 respondents, 
who were randomly assigned to a question-design method and asked to complete a web-based conjoint 
exercise.  Following the conjoint exercise, respondents were given $100 and allowed to make a purchase 
from a Pareto choice set of five new-to-the-market laptop computer bags.   The respondents received their 
chosen bag together with the difference in cash between the price of their chosen bag and the $100.   We 
compare the question-design and estimation methods on both internal validity (holdout tasks) and external 
validity (actual choice of a laptop bag).  The field test findings are consistent with the simulation results 
and offer strong support for the polyhedral question design method.  The preferred estimation method 
varied based on the question design method, although Hierarchical Bayes estimation consistently per-
formed well in this domain.   

The findings reveal a remarkable level of consistency across the validation tasks.  They suggest 
that the proposed methods are sufficiently promising to justify further development.  At the time of the 
test, the bags were prototypes.  Based, in part, on the results of this study the bags were launched success-
fully and are now commercially available.  Sales of the features of the laptop bags were consistent with 
conjoint-analysis predictions.
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1. Polyhedral Methods for Conjoint Analysis 
We propose and test (1) a new adaptive question design method that attempts to reduce respon-

dent burden while simultaneously improving accuracy and (2) a new estimation procedure based on cen-

trality concepts.  For each respondent the question design method dynamically adapts the design of the 

next question using that respondent’s answers to previous questions. Because the methods make full use 

of high-speed computations and adaptive, customized local web pages, they are ideally suited for web-

based panels. The adaptive method interprets question design as a mathematical program and estimates 

the solution to the program using recent developments based on the interior points of polyhedra. The es-

timation method also relies on interior point techniques and is designed to provide robust estimates from 

relatively few questions.  The question design and estimation methods are modular and can be evaluated 

separately and/or combined with a range of existing methods. 

Adapting question design within a respondent, using that respondent’s answers to previous ques-

tions, is a difficult dynamic optimization problem.  Adaptation within respondents should be distinguished 

from techniques that adapt across respondents. Sawtooth Software’s Adaptive Conjoint Analysis (ACA) 

is the only published method of which we are aware that attempts to solve this problem (Johnson 1987, 

1991).  In contrast, aggregate customization methods, such as the Huber and Zwerina (1996), Arora and 

Huber (2001), and Sandor and Wedel (2001) algorithms, adapt designs across respondents based on either 

pretests or Bayesian priors.   

ACA is based on a data-collection format known as metric paired-comparison questions and re-

lies on balancing utility between the pairs subject to orthogonality and feature balance.  We provide an 

example of a metric-paired comparison question in Figure 1.  To date, aggregate customization methods 

have focused on a stated-choice data-collection format known as choice-based conjoint (CBC; e.g. Lou-

viere, Hensher, and Swait 2000).  Polyhedral methods can be used to design dynamically either metric-

paired-comparison questions or choice-based questions.  In this paper we focus on metric-paired-

comparison questions because this is one of the most used and most widely applied data-collection format 

for conjoint analysis (Green, Krieger and Wind 2001, p. S66; Ter Hofstede, Kim, and Wedel 2002 p. 

259).  In addition, metric paired-comparison questions are common in computer-aided interviewing, have 

proven reliable in previous studies (Reibstein, Bateson, and Boulding 1988; Urban and Katz 1983), pro-

vide interval-scaled data with strong transitivity properties (Hauser and Shugan 1980), provide valid and 

reliable parameter estimates (Leigh, MacKay, and Summers 1984), and enjoy wide use in practice and in 

the literature (Wittink and Cattin 1989). In future research we are extending polyhedral methods to CBC 

formats. 
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Our goal is to evaluate whether polyhedral methods are sufficiently promising to justify further 

development.  We do not expect that any one method will always out-perform the other benchmarks, nor 

do we intend that our findings be interpreted as criticism of any of the benchmarks.  The findings indicate 

that polyhedral methods have the potential to enhance the effectiveness of existing conjoint methods by 

providing new capabilities that complement existing methods.   

Figure 1   
Metric Paired-Comparison Format for I-Zone Camera Redesign 

 

Because the methods are new and adopt a different estimation philosophy, we use Monte Carlo 

experiments to explore the properties of the proposed polyhedral methods.  The Monte Carlo experiments 

explore the conditions under which polyhedral methods are likely to do better or worse than extant meth-

ods.  We demonstrate practical domains where polyhedral methods show promise relative to a representa-

tive set of widely applied and studied methods.  The findings also highlight opportunities for future re-

search by illustrating domains where improvements are necessary and/or where extant methods are likely 

to remain superior.   

We also undertake a large-scale empirical test involving a real product – a laptop computer bag 

worth approximately $100.  Respondents first completed a series of web-based conjoint questions chosen 

by one of three question design methods (the methods were assigned randomly). After a filler task, re-

spondents in the study were given $100 to spend on a choice set of five bags. Respondents received their 

chosen bag together with the difference in cash between the price of their chosen bag and the $100.  We 

compare both question design and estimation methods on both internal and external validity.  Internal va-

lidity is evaluated by comparing how well the methods predict several holdout conjoint questions.  Exter-

nal validity is evaluated by comparing how well the different conjoint methods predict which bag respon-

dents later chose to purchase using their $100.   
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The paper is structured as follows.  We begin by describing polyhedral question design and ana-

lytic center estimation for metric paired-comparison tasks.  Detailed mathematics are provided in Appen-

dix 1 and open-source code is available from the website listed in the acknowledgements section of this 

paper. We next describe the design and results of the Monte Carlo experiments.  Finally, we describe the 

field test and the comparative results.  We close with a description of the launch of the laptop bag and a 

summary and discussion of the findings.  

2. Polyhedral Question Design and Estimation 
 We begin with a conceptual description that highlights the geometry of the conjoint-analysis pa-

rameter space.  We illustrate the concepts with a 3-parameter problem because 3-dimensional spaces are 

easy to visualize and explain.  The methods generalize easily to realistic problems that contain ten, 

twenty, or even one hundred product features.  Indeed, relative to existing methods, the polyhedral meth-

ods are more useful for larger numbers of product features.  By a parameter, we refer to a partworth that 

needs to be estimated.  For example, twenty features with two levels each require twenty parameters be-

cause we can scale to zero the partworth of the least preferred feature.  Similarly, ten three-level features 

also require twenty parameters.  Interactions among features require still more parameters. 

  Suppose that we have three features of an instant camera – picture quality, picture taking (2-step 

vs. 1-step), and styling covers (changeable vs. permanent).  If we scale the least desirable level of each 

feature to zero we have three non-negative parameters to estimate, u1, u2, and u3, reflecting the additional 

utility (partworth) associated with the most desirable level of each feature.1  The measurement scale on 

which the questions are asked imposes natural boundary conditions. For example, the sum of the part-

worths of Camera A minus the sum of the partworths of Camera B can be at most equal to the maximum 

scale difference.  In practice, the partworths only have relative meaning and so scaling allows us to im-

pose a wide range of boundary conditions, without loss of generality.  Therefore, in order to better visual-

ize the algorithm, we impose a constraint that the sum of the parameters does not exceed some large 

number (e.g., 100).  Under this constraint, prior to any data collection, the feasible region for the parame-

ters is the 3-dimensional bounded polyhedron in Figure 2a.  

Suppose that we ask the respondent to evaluate a pair of profiles that vary on one or more features 

and the respondent says (1) that he or she prefers profile C1 to profile C2 and (2) provides a rating, a, to 

indicate the strength of his or her preference.  Assuming for the moment that the respondent answers 

without error, this introduces an equality constraint that the utility associated with profile C1 exceeds the 

utility of C2 by an amount equal to the rating.  If we define Tuuuu ),,( 321= as the 3×1 vector of parame-
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FAST POLYHEDRAL ADAPTIVE CONJOINT ESTIMATION  

ters, z  as the 1×3 vector of product features for the left profile, and rz as the 1×3 vector of product fea-

tures for the right profile, then, for additive utility, this equality constraint can be written as auzuz r =− . 

We can use geometry to characterize what we have learned from this response.    

+ u+ u
δ+a

n of

+ u3 ≤ 100
δ+a

n of

+ u3 ≤ 100
δ+a

n of

+ u3 ≤ 100

aux =

Specifically, we define rzzx −=  such that x  is a 1×3 vector describing the difference between 

the two profiles in the question. Then, a=ux  defines a hyperplane through the polyhedron in Figure 2a.   

The only feasible values of u  are those that are in the intersection of this hyperplane and the polyhedron. 

The new feasible set is also a polyhedron, but it is reduced by one dimension (2-dimensions rather than 3-

dimensions).  Because smaller polyhedra mean fewer parameter values are feasible, questions that reduce 

the size of the initial polyhedron as fast as possible lead to more precise estimates of the parameters.  

Figure 2  
Respondent’s Answers Affect the Feasible Region 
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(a) Metric rating without error           (b) Metric rating with error  

 However, in any real problem we expect a respondent’s answer to contain error.  We can model 

this error as a probability density function over the parameter space (as in standard statistical inference).  

Alternatively, we can incorporate imprecision in a response by treating the equality constraint as a 

set of two inequality constraints: δδ +≤≤− auxa .  In this case, the hyperplane defined by the question-

answer pair has “width.”  The intersection of the initial polyhedron and the “fat” hyperplane is now a 

three-dimensional polyhedron as illustrated in Figure 2b.   

                                                                                                                                                                           
1 In this example, we assume preferential independence which implies an additive utility function.  We can handle 
interactions by relabeling features.  For example, a 2x2 interaction between two features is equivalent to one four-
level feature.  We hold this convention throughout the paper.   
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When we ask more questions we constrain the parameter space further.  Each question, if asked 

carefully, will result in a hyperplane that intersects a polyhedron resulting in a smaller polyhedron – a 

“thin” region in Figure 2a or a “fat” region in Figure 2b.  Each new question-answer pair slices the poly-

hedron in Figure 2a or 2b yielding more precise estimates of the parameter vector u .  

 We incorporate prior information about the parameters by imposing constraints on the parameter 

space.  For example, if um and uh are the medium and high levels, respectively, of a feature, then we im-

pose the constraint um ≤ uh on the polyhedron.  Previous research suggests that these types of constraints 

enhance estimation (Johnson 1999; Srinivasan and Shocker 1973).  We now examine question design for 

metric paired-comparison data by dealing first with the case in which subjects respond without error (Fig-

ure 2a). We then describe how to modify the algorithm to handle error (e.g., Figure 2b). 

Selecting Questions to Shrink the Feasible Set Rapidly 

 The question design task describes the design of the profiles that respondents are asked to com-

pare. Questions are more informative if the answers allow us to estimate partworths more quickly.  For 

this reason, we select the respondent’s next question in a manner that is likely to reduce the size of the 

feasible set (for that respondent) as fast as possible. 

 Consider for a moment a 20-dimensional problem (without errors in the answers).  As in Figure 

2a, a question-based constraint reduces the dimensionality by one.  That is, the first question reduces a 20-

dimensional set to a 19-dimensional set; the next question reduces this set to an 18-dimensional set and so 

on.  After the twelfth question, for example, we reach an 8-dimensional set: 8 dimensions = 20 parameters 

– 12 questions.  Without further restriction, the feasible parameters are generally not unique – any point in 

the 8-dimensional set (polyhedron) is still feasible.  However, the 8-dimensional set might be quite small 

and we might have a very good idea of the partworths.  For example, the first twelve questions might be 

enough to tell us that some features, say picture quality, styling covers, and battery life, have large part-

worths while other features, say folding capability, light selection, and film ejection method, have very 

small partworths.  If this holds across respondents then, during an early phase of a product development 

process, the product development team might feel they have enough information to focus on the key fea-

tures. 

Although the polyhedral algorithm is most effective in high-dimensional spaces, it is hard to 

visualize 20-dimensional polyhedra.  Instead, we illustrate the polyhedral question design method in a 

situation where the remaining feasible set is easy to visualize.  Specifically, by generalizing our notation 

slightly to q questions and p parameters, we define a  as the q×1 vector of answers and X as the q×p ma-

trix with rows equal to x for each question (recall that x  is a 1×p vector).  Then the respondent’s answers 

to the first q questions define a (p-q)-dimensional hyperplane given by the equation auX = .  This hyper-

 5  
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plane intersects the initial p-dimensional polyhedron to give us a (p-q)-dimensional polyhedron.  In the 

example of p=20 parameters and q=18 questions, the result is a 2-dimensional polyhedron that is easy to 

visualize.  One such 2-dimensional polyhedron is illustrated in Figure 3. 

Figure 3   
Choice of Question (2-dimensional slice) 

x′ a′(   ,    )

ax(   ,    )

a ′′(   ,     )x

ax(   ,    )

x′ a′(   ,    )x′ a′(   ,    )

ax(   ,    )ax(   ,    )

a ′′(   ,     )x a ′′(   ,     )x

ax(   ,    )ax(   ,    )

 

(a)  Two question-answer pairs   (b)  One question, two potential answers  

 

Our task is to select questions that reduce the 2-dimensional polyhedron as fast as possible.  

Mathematically, we select a new question vector, x , and the respondent answers this question with a new 

rating, a.  We add the new question vector as the last row of the question matrix and we add the new an-

swer as the last row of the answer vector.  While everything is really happening in p-dimensional space, 

the net result is that the new hyperplane will intersect the 2-dimensional polyhedron in a line segment 

(i.e., a 1-dimensional polyhedron).  The slope of the line will be determined by x  and the intercept by a.  

We illustrate two potential question-answer pairs in Figure 3a.  The slope of the line is determined by the 

question, the specific line by the answer, and the remaining feasible set by the line segment within the 

polyhedron.  In Figure 3a one of the question-answer pairs ( x , ) reduces the feasible set more rapidly 

than the other question-answer pair (

a

x′ , ).  Figure 3b repeats a question-answer pair (a′ x , a ) and illus-

trates an alternative answer to the same question ( x , a ). ′′

If the polyhedron is elongated as in Figure 3, then, in most cases, questions that imply line seg-

ments perpendicular to the longest “axis” of the polyhedron are questions that result in the smallest re-
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maining feasible sets.  Also, because the longest “axis” is in some sense a bigger target, it is more likely 

that the respondent’s answer will select a hyperplane that intersects the polyhedron.  From analytic ge-

ometry we know that hyperplanes (line segments in Figure 3) are perpendicular to their defining vectors 

( x ).  Thus, we can reduce the feasible set as fast as possible (and make it more likely that answers are 

feasible) if we choose question vectors that are parallel to the longest “axis”.  For example, both line seg-

ments based on x  in Figure 3b are shorter than the line segment based on x′ in Figure 3a. 

If we can develop an algorithm that works in any p-dimensional space, then we can generalize 

this intuition to any question, q, such that q≤p.  After receiving answers to the first q questions, we could 

find the longest vector of the (p-q)-dimensional polyhedron of feasible parameter values.  We could then 

ask the question based on a vector that is parallel to this “axis.” The respondent’s answer creates a hyper-

plane that intersects the polyhedron to produce a new polyhedron. We address later the cases where re-

spondents’ answers contain error and where q>p.   

Centrality Estimation 

 Polyhedral geometry also gives us a means to estimate the parameter vector, u , when q≤p.  Re-

call that, after question q, any point in the remaining polyhedron is consistent with the answers the re-

spondent has provided.  If we impose a diffuse prior that any feasible point is equally likely, then we 

would like to select the point that minimizes the expected error.  This point is the center of the feasible 

polyhedron, or more precisely, the polyhedron’s center of gravity. The smaller the feasible set, either due 

to better question design or more questions (higher q), the more precise the estimate.  If there were no 

respondent errors, then the estimate would converge to its true value when q=p (the feasible set becomes 

a single point, with zero dimensionality).  For q>p the same point would remain feasible.  As we discuss 

below, this changes when responses contain error.  

This technique of estimating partworths from the center of a feasible polyhedron is related to that 

proposed by Srinivasan and Shocker (1973, p. 350) who suggest using a linear program to find the “in-

nermost” point that maximizes the minimum distance from the hyperplanes that bound the feasible set. 

Philosophically, the proposed polyhedral method makes maximum use of the information in the con-

straints and then takes a central estimate based on what is still feasible. Carefully chosen questions shrink 

the feasible set rapidly. We then use a centrality estimate that has proven to be a surprisingly good ap-

proximation in a variety of engineering problems.  More generally, the centrality estimate is similar in 

some respects to the proven robustness of linear models, and in some cases, to the robustness of equally-

weighted models (Dawes and Corrigan 1974; Einhorn 1971, Huber 1975; Moore and Semenik 1988; 

Srinivasan and Park 1997).   
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Interior-Point Algorithms and the Analytic Center of a Polyhedron 

To select questions and obtain intermediate estimates the proposed heuristics require that we 

solve two non-trivial mathematical programs.  First, we must find the longest “axis” of a polyhedron (to 

select the next question) and second, we must find the polyhedron’s center of gravity (to provide a cen-

trality estimate).  If we were to define the longest “axis” of a polyhedron as the longest line segment in 

the polyhedron, then one method to find the longest “axis” would be to enumerate the vertices of the 

polyhedron and compute the distances between the vertices.  However, solving this problem requires 

checking every extreme point, which is computationally intractable (Gritzmann and Klee 1993).  In prac-

tice, solving the problem would impose noticeable delays between questions.  Also, the longest line seg-

ment in a polyhedron may not capture the concept of a longest “axis.” Finding the center of gravity of the 

polyhedron is even more difficult and computationally demanding. 

Fortunately, recent work in the mathematical programming literature has led to extremely fast al-

gorithms based on projections within the interior of polyhedrons (much of this work started with Kar-

markar 1984).  Interior-point algorithms are now used routinely to solve large problems and have 

spawned many theoretical and applied generalizations.  One such generalization uses bounding ellipsoids. 

In 1985, Sonnevend demonstrated that the shape of a bounded polyhedron can be approximated by pro-

portional ellipsoids, centered at the “analytic center” of the polyhedron.  The analytic center is the point in 

the polyhedron that maximizes the geometric mean of the distances to the boundaries of the polyhedron.  

It is a central point that approximates the center of gravity of the polyhedron, and finds practical use in 

engineering and optimization.  Furthermore, the axes of the ellipsoids are well-defined and intuitively 

capture the concept of an “axis” of a polyhedron.  For more details see Freund (1993), Nesterov and Ne-

mirovskii (1994), Sonnevend (1985a, 1985b), and Vaidja (1989).  

Polyhedral Question Design and Analytic Center Estimation 

We illustrate the proposed process in Figure 4, using the same two-dimensional polyhedron de-

picted in Figure 3.  The algorithm proceeds in four steps.  We first find a point in the interior of the poly-

hedron.  This is a simple linear programming (LP) problem and runs quickly.  Then, following Freund 

(1993) we use Newton’s method to make the point more central.  This is a well-formed problem and con-

verges quickly to yield the analytic center as illustrated by the black dot in Figure 4.  We next find a 

bounding ellipsoid based on a formula that depends on the analytic center and the question-matrix, X. We 

then find the longest axis of the ellipsoid (diagonal line in Figure 4) with a quadratic program that has a 

closed-form solution.  The next question, x , is based on the vector most nearly parallel to this axis.  A 

formal (mathematical) description of each step is provided in Appendix 1. 

 8  
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Analytically, this algorithm works well in higher dimensional spaces. For example, Figure 5 illus-

trates the algorithm when (p – q) = 3, where we reduce a 3-dimensional feasible set to a 2-dimensional 

feasible set.  Figure 5a illustrates a polyhedron based on the first q questions.  Figure 5b illustrates a 

bounding 3-dimensional ellipsoid, the longest axis of that ellipsoid, and the analytic center.  The longest 

axis defines the question that is asked next which, in turn, defines the slope of the hyperplanes that inter-

sect the polyhedron.  One such hyperplane is shown in Figure 5c.  The respondent’s answer locates the 

specific hyperplane.  The intersection of the selected hyperplane and the 3-dimensional polyhedron is a 

new 2-dimensional polyhedron, such as that in Figure 4.  This process applies (in higher dimensions) 

from the first question to the pth question.  For example, the first question implies a hyperplane that cuts 

the first p-dimensional polyhedron such that the intersection yields a (p – 1)-dimensional polyhedron. 

Figure 4   
Bounding Ellipsoid and the Analytic Center (2-dimensions) 

 
 

The polyhedral algorithm runs extremely fast.  We have implemented the algorithm for the web-

based empirical test described later in this paper.  Based on this example, with ten two-level features, re-

spondents noticed no delay in question design nor any difference in speed versus a fixed design.  For a 

demonstration see the website listed in the acknowledgements section of this paper.   

Inconsistent Responses and Error-Modeling  

Figures 2, 3, 4, and 5 illustrate the geometry when respondents answer without error.  However, 

real respondents are unlikely to be perfectly consistent.  It is more likely that, for some q < p, the respon-

dent’s answers will be inconsistent and the polyhedron will become empty.  That is, we will no longer be 
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able to find any parameters, u , that satisfy the equations that define the polyhedron, auX = .  Thus, for 

real applications, we extend the polyhedral algorithm to address response errors.  Specifically, we adjust 

the polyhedron in a minimal way to ensure that some parameter values are still feasible.  We do this by 

modeling errors,δ , in the respondent’s answers such that δδ +≤≤− auXa (recall Figure 2b).  We then 

choose the minimum errors such that these constraints are satisfied. This same modification covers esti-

mation for the case of q > p.  Appendix 1 provides the mathematical program (OPT4) that we use to esti-

mate u and δ .  The algorithm is easily modified to incorporate alternative error formulations, such as 

least-squares or minimum sum of absolute deviations, rather than this “minimax” criterion.2  Exploratory 

simulations suggest that the algorithm is robust to the choice of error criterion.  

Figure 5 
Question design with a 3-Dimensional Polyhedron 

                     
(a) Polyhedron in 3 dimensions        (b) Bounding ellipsoid, analytic center, and longest axis 

 
(c) Example hyperplane determined by question vector and respondent’s answer 

                                                      
2 Technically, the minimax criterion is called the “∞-norm.” To handle least-squares errors we use the “2-norm” and 
to handle average absolute errors we use the “1-norm.”  Either is a simple modification to OPT4 in Appendix 1. 
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To implement this policy for analytic center estimation, we use a two-stage algorithm.  In the first 

stage we treat the responses as if they occurred without error – the feasible polyhedron shrinks rapidly 

and the analytic center is a working estimate of the true parameters.  However, as soon as the feasible set 

becomes empty, we adjust the constraints by adding or subtracting “errors,” where we choose the mini-

mum errors, δ , for which the feasible set is non-empty.  The analytic center of the new polyhedron be-

comes the working estimate and δ  becomes an index of response error.  As with all of our heuristics, the 

accuracy of our error-modeling method is tested with simulation. 

Addressing Other Practical Implementation Issues 

 Implementation raises several additional issues.  Alternative solutions to these issues may yield 

more or less accurate parameter estimates, and so the performances of the polyhedral methods in the vali-

dation tasks are lower bounds on the performance of this class of methods.  

 Product profiles with discrete features.  In most conjoint analysis problems, the features are speci-

fied at discrete levels as in Figure 1.  This constrains the elements of the x  vector to be 1, –1, 0, or 0, de-

pending on whether the left profile, the right profile, neither profile, or both profiles have the “high” fea-

ture, respectively.  In this case we choose the vector that is most nearly parallel to the longest axis of the 

ellipsoid.  Because we can always recode multi-level features or interacting features as binary features, 

the geometric insights still hold even if we otherwise simplify the algorithm. 

 Restrictions on question design. For a p-dimensional problem we may wish to vary fewer than p 

features in any paired-comparison question. For example, Sawtooth Software (1996, p. 7) suggests that: 

“Most respondents can handle three attributes after they’ve become familiar with the task.  Experience 

tells us that there does not seem to be much benefit from using more than three attributes.”  We incorpo-

rate this constraint by restricting the set of questions over which we search when finding a question-vector 

that is parallel to the longest axis of the ellipse.  

 First question.  Unless we have prior information before any question is asked, the initial polyhe-

dron of feasible utilities is defined by the boundary constraints.  If the boundary constraints are symmet-

ric, the polyhedron is also symmetric and the polyhedral method offers little guidance for the choice the 

first question.  In these situations we choose the first question for each respondent so that it helps improve 

estimates of the population means by balancing how often each feature level appears in the set of ques-

tions answered by all respondents.  In particular, for the first question presented to each respondent we 

choose feature levels that appeared infrequently in the questions answered by previous respondents.  

 Question design when the parameter set becomes infeasible.  Analytic center estimation is well-

defined when the parameter set becomes infeasible, but question design is not.  Thus, in the simulations 
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we use a random question design heuristic when the parameter set is infeasible.3  This provides a lower 

bound on what might be achieved.   

   Programming.  The optimization algorithms used for the simulations are written in Matlab and 

are available at the website listed in the acknowledgements section of this paper.  We also provide the 

simulation code and demonstrations of web-based applications.  All code is open-source. 

3. Monte Carlo Simulations  
Polyhedral methods for conjoint analysis are new and untested.  Although interior-point algo-

rithms and the centrality criterion have been successful in many engineering problems, we are unaware of 

any prior application to marketing problems.  Thus, we turn first to Monte Carlo experiments to identify 

circumstances in which polyhedral methods may contribute to the effectiveness of current methods. 

Monte Carlo simulations offer at least three advantages for the initial test of a new method.  First, they 

facilitate comparison of different techniques in a range of domains such as varying levels of respondent 

heterogeneity and response accuracy.  We can also evaluate combinations of the techniques, for example, 

mixing polyhedral question design with extant estimation methods.  Second, simulations resolve the issue 

of identifying the correct answer.  In studies involving actual customers, the true partial utilities are unob-

served.  In simulations the true partial utilities are constructed so that we can compare how well alterna-

tive methods identify the true utilities from noisy responses.  Finally, other researchers can readily repli-

cate the findings.  However, simulations do not guarantee that real respondents behave as simulated nor 

do they reveal which domain is likely to best summarize field experience.  Thus, following the simula-

tions, we examine a field test that matches one of the simulated domains. 

Many papers have used the relative strengths of Monte Carlo experiments to study conjoint tech-

niques, providing insights on interactions, robustness, continuity, feature correlation, segmentation, new 

estimation methods, new data-collection methods, post-analysis with Hierarchical Bayes methods, and 

comparisons of ACA, CBC, and other conjoint methods. Although we focus on specific benchmarks, 

there are many comparisons in the literature of these benchmarks to other methods (see reviews and cita-

tions in Green 1984; Green, Krieger, and Wind 2001, 2002; Green and Srinivasan 1978, 1990.) 

We test polyhedral question design versus three question design benchmarks and analytic center 

estimation versus Hierarchical Bayes estimation.  The initial simulations vary respondent heterogeneity, 

accuracy of respondent answers, and the number of questions.  In a second set of simulations we also con-

sider the role of self-explicated responses and vary the accuracy of self-explicated responses. 

                                                      
3 Earlier implementations, including the field test, used ACA question design when the parameter set became infea-
sible.  Further analysis revealed that it is better to switch to random question design than ACA question design when 
the parameter set becomes infeasible.  Fortunately, this makes the performance of polyhedral question design in the 
field test conservative. 
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Respondent Heterogeneity, Response Errors, and Number of Questions 

We focus on a design problem involving ten features, where a product development team is inter-

ested in learning the incremental utility contributed by each feature.  We follow convention and scale to 

zero the partworth of the low level of a feature and, without loss of generality, bound it by 100.  This re-

sults in a total of ten parameters to estimate (p = 10). We anticipate that the polyhedral methods are par-

ticularly well-suited to solving problems in which there are a large number of parameters relative to the 

number of responses from each individual (q < p).  Thus, we vary the number of questions from slightly 

less than the number of parameters (q = 8) to comfortably more than the number of parameters (q = 16). 

We simulate each respondent’s partworths by drawing independently and randomly from a nor-

mal distribution with mean 50 and variance , truncated to the range. We explored the sensitivity of the 

findings to this specification by testing different methods of drawing partworths, including beta distribu-

tions that tend to yield more similar partworths (inverted-U shape distributions), more diverse partworths 

(U-shaped distributions), or moderately diverse partworths (uniform distributions).  Sensitivity analyses 

for key findings did not suggest much variation.  Nonetheless, this is an important area for future re-

search.  By manipulating the standard deviation of the normal distribution we explore a relatively homo-

geneous population (

2
uσ

uσ = 10) and a relatively heterogeneous population ( uσ = 30).  These values were 

chosen because they are comparable to those used elsewhere in the literature and because their range 

illustrates how the accuracy of the methods varies with heterogeneity. 

To simulate the response to each metric paired-comparison (PC) question, we calculate the true 

utility difference between each pair of product profiles by multiplying the design vector by the vector of 

true partworths: ux .  We assume that the respondents’ answers to the questions equal the true utility dif-

ference plus a zero-mean normal response error with variance .  The assumption of normally distrib-

uted error is common in the literature and appears to be a reasonable assumption about PC response errors 

(Wittink and Cattin 1981 report no systematic effects due to the type of error distribution assumed).  We 

select response errors, comparable to those used in the literature. Specifically, to illustrate the range of 

response errors we use both a low response error (

2
pcσ

pcσ = 20) and a high response error ( pcσ = 40).4  For 

each comparison, we simulate 500 respondents (in five sets of 100). 

Question Design Benchmarks  

 We compare the Polyhedral question design method against three benchmarks: Random question 

                                                      
4 Response errors in the literature, often reported as a ratio of error variance to true variance (heterogeneity), vary 
considerably. In our case, the “respondent’s” answer, a, is the difference between the sum of the uf’s.  Thus the vari-
ance of a is a multiple of .  For our situation, the percent errors vary from 8% to 57%. 2

uσ
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design, a Fixed design, and the question design used by Adaptive Conjoint Analysis (ACA).5  For the 

Random benchmark, the feature levels are chosen randomly and equally-likely.  The Fixed design pro-

vides another non-adaptive benchmark. For q > p, we select the (q = 16) design with an algorithm that 

seeks the highest obtainable D-efficiency (Kuhfield, Tobias, and Garratt 1994).  Efficiency is not defined 

for q < p, thus, for q = 8, we follow the procedure established by Lenk, et. al. (1996) and choose ques-

tions randomly from an efficient design for q = 16.   

We choose ACA question design as our third benchmark because it is the industry and academic 

standard for within-respondent adaptive question design. For example, in 1991 Green, Krieger and Agar-

wal (p. 215) stated that “in the short span of five years, Sawtooth Software’s Adaptive Conjoint Analysis 

has become one of the industry’s most popular software packages for collecting and analyzing conjoint 

data,” and go on to cite a number of academic papers on ACA.  Although accuracy claims vary, ACA 

appears to predict reasonably well in many situations (Johnson 1991; Orme 1999).   

The ACA method includes five sections: an unacceptability task (that is often skipped), a ranking 

of the features, a series of self-explicated (SE) question, the metric paired-comparison (PC) questions, and 

purchase intentions for calibration concepts.  The question design procedure, has not changed since it was 

“originally programmed for the Apple II computer in the late 70s” (Orme and King 2002).  It adapts the 

PC questions based on intermediate estimates (after each question) of the partworths.  These intermediate 

estimates are based on an OLS regression using the SE and PC responses and ensure that the pairs of pro-

files are nearly equal in estimated utility (utility balance).  Additional constraints restrict the overall de-

sign to be nearly orthogonal (features and levels are presented independently) and balanced (features and 

levels appear with near equal frequency).   

To avoid handicapping the ACA question design in the initial simulations, we simulate the SE re-

sponses without adding error.  In particular, Sawtooth Software asks for SE responses using a 4-point 

scale, in which the respondent states the relative importance of improving the product from one feature 

level to another (e.g., adding automatic film ejection to an instant camera).  We set the SE responses equal 

to the true partworths, but discretize the answer to match the ACA scale. 

Our code was written using Sawtooth Software’s documentation together with e-mail interactions 

with the company’s representatives.  We then confirmed the accuracy of the code by asking Sawtooth 

Software to re-estimate partworths for a small sample of data. 

Estimation Benchmark 

The two estimation methods are the Analytic Center (AC) method described earlier and Hierar-

chical Bayes (HB) estimation. Hierarchical Bayes estimation uses data from the population to inform the 

                                                      
5 Beginning in this section we capitalize the question design and estimation methods for easy reference. We retain 
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distribution of partworths across respondents and, in doing so, estimates the posterior mean of respon-

dent-level partworths with an algorithm based on Gibbs sampling and the Metropolis Hastings Algorithm 

(Allenby and Rossi 1999; Arora, Allenby and Ginter 1998; Johnson 1999; Lenk, et. al. 1996; Liechty, 

Ramaswamy and Cohen 2001; Sawtooth Software 2001).  For ACA question design, Sawtooth Software 

recommends HB as their most accurate estimation method (Sawtooth Software 2002, p. 11).  For this ini-

tial comparison, for all question design methods, we use data from the SEs as starting values and we use 

the SEs to constrain the rank-order of the levels for each feature (Sawtooth Software 2001, p. 13).6   

Criterion 

To compare the performance of each benchmark we calculate the mean absolute accuracy of the 

parameter estimates (true vs. estimated values averaged across parameters and respondents).  We chose to 

report mean absolute error (MAE) rather than root mean squared error (RMSE) because the former is less 

sensitive to outliers and is more robust over a variety of induced error distributions (Hoaglin, Mosteller 

and Tukey 1983; Tukey 1960). However, as a practical matter, the qualitative implications of our simula-

tions are the same for both error measures.  Indeed, except for a scale change, the results are almost iden-

tical for both MAE and RMSE.  This is not surprising; for normal distributions the two measures differ 

only by a factor of (2/π)1/2. 

The results are based on the average of five simulations, each with 100 respondents.  To reduce 

unnecessary variance among question design methods, we first draw the partworths and then use the same 

partworths to evaluate each question design method.  The use of multiple draws makes the results less 

sensitive to spurious effects from a single draw. 

4. Results of the Initial Monte Carlo Experiments 
We begin with the results obtained from using eight (q = 8) paired comparison questions.  This is 

the type of domain for which Polyhedral question design and Analytic Center estimation were developed 

(more parameters to estimate than there are questions).  Moreover, within this domain there are generally 

a range of partworths that are feasible, and so the polyhedron is not empty.  In our simulations the poly-

hedron contains feasible answers for an average of 7.97 questions when response errors are low.  When 

response errors are high, this average drops to 6.64. 

Table 1 reports the MAE in the estimated partworths for a complete crossing of question design 

methods, estimation methods, response error, and heterogeneity.  The best results (lowest error) in each 

column are indicated by bold text.  In Table 2 we reorganize the data to indicate the directional impact of 

                                                                                                                                                                           
lower case for generic descriptions. 
6 Another version of Sawtooth Software’s HB algorithm also uses the SEs to constraint the relative partworths 
across features.  We test this version in our next set of simulations.  This enables us to isolate the impact of the 
paired-comparison question design algorithm. 
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either heterogeneity or response errors on the performance of the question design and estimation methods.  

In particular, we average the performance of each question design method across estimation methods (and 

vice versa).  To indicate the directional effect of heterogeneity we average across response errors (and 

vice versa).   

Table 1 
Comparison of Question Design and Estimation Methods for q = 8  

Mean Absolute Errors 

  Homogeneous Population Heterogeneous Population 

Question 
design Estimation  

Low           
Response 

Error 

High           
Response 

Error 

Low           
Response 

Error 

High           
Response   

Error 

Random AC 16.5  24.1 15.9 21.7 

 HB 8.1 10.2 19.8 22.2 

Efficient Fixed AC 13.7 22.9 14.3 21.0 

 HB 7.8* 10.3 20.4 22.5 

ACA AC 14.9 24.2 16.1 22.1 

 HB 8.3 9.8* 23.9 22.9 

Polyhedral AC 10.7 20.9 12.5* 19.7* 

 HB 7.8* 9.9* 20.6 22.2 

   Smaller numbers indicate better performance. 
    *For each column, lowest error or not significantly different from lowest (p < 0.05).  All others are significantly different from lowest. 

 

Table 2 
Directional Implications of Response Errors and Heterogeneity for q = 8 

Mean Absolute Errors 

 Homogeneous 
Population 

Heterogeneous 
Population 

Low Response 
Error 

High Response 
Error 

Question design    

Random 14.7 19.9 15.1 19.5 

Efficient Fixed 13.6 19.5 14.0 19.1 

ACA 14.3 21.2 15.8 19.8 

Polyhedral 12.3* 18.4* 12.9* 18.2* 

Estimation     

AC 18.5 17.9* 14.3* 22.1 

HB 9.0* 21.8 14.6* 16.2* 

Smaller numbers indicate better performance. 
*For each column, lowest error or not significantly different from lowest (p < 0.05).  All others are significantly different 
from lowest. 
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Question Design Methods  

The findings indicate that when there are only a small number of PC questions, the Polyhedral 

question design method performs well compared to the other three benchmarks.  This conclusion holds 

across the different levels of response error and heterogeneity. The improvement over the random ques-

tion design method is reassuring, but perhaps not surprising.  The improvement over the Fixed method is 

also not surprising when there are a small number of questions, as it is not possible to achieve the balance 

and orthogonality goals that this method seeks.   

The comparison with ACA question design is more interesting.  Further investigation reveals that 

the relatively poor performance of the ACA method can be attributed, in part, to endogeneity bias, result-

ing from utility balance – the method that ACA uses to adapt questions.  To understand this result we first 

recognize that any adaptive question design method is, potentially, subject to endogeneity bias.  Specifi-

cally, the qth question depends upon the answers to the first q-1 questions.  This means that the qth ques-

tion depends, in part, on any response errors in the first q-1 questions.  This is classical problem, which 

often leads to bias (see for example Judge, et. al. 1985, p. 571).  Thus, adaptivity represents a tradeoff: we 

get better estimates more quickly, but with the risk of endogeneity bias.  In our simulations, the absolute 

bias with ACA questions and AC estimation is approximately 6.6% of the mean when averaged across 

domains.  This is statistically significant, in part, because of the large sample size in the simulations.  

Polyhedral question design is also adaptive and it, too, could lead to biases.  However, in all four do-

mains, the bias for ACA questions is significantly larger than the bias for Polyhedral questions (1.0% on 

average for AC).  The endogeneity bias in ACA questions appears to be from utility-balanced question 

design; it is not removed with HB estimation.  Detailed results are available from the authors.7  While 

further analyses of endogeneity bias are beyond the scope of this paper, they represent an interesting topic 

for future research.  In particular, it might be possible to derive estimation methods that correct for these 

endogeneity biases.  

Estimation Methods  

 For homogeneous populations, Hierarchical Bayes consistently performed better than Analytic 

Center estimation, irrespective of the question design method. The performance differences were gener-

ally large.  Hierarchical Bayes estimation uses population-level data to moderate individual estimates.  If 

the population is homogenous, then, at the individual level, the ratio of noise to true variation is higher 

and so moderating this variance through population-level data improves accuracy.  However, if the popu-

lation is heterogeneous, then reliance on population data makes it more difficult to identify the true indi-

                                                      
7 The endogeneity biases persist in most domains for q = 16.  In most cases the endogeneity biases for ACA ques-
tions are larger than those for Polyhedral questions.  We have been able to show formally that utility balance leads to 
bias for OLS, but we have not yet been able to construct proofs for AC or HB.  Proofs available from the authors. 
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vidual-level variation and Analytic Center estimation does better.  For a heterogeneous population, the 

combination of Polyhedral question design and Analytic Center estimation was significantly more accu-

rate than any other combination of question design or estimation method (Table 1).    

 The findings also suggest that Hierarchical Bayes is relatively more accurate when response er-

rors are high, while Analytic Center estimation is more likely to be favored when response errors are low.  

The reliance of Hierarchical Bayes on population-level data may also explain the role of response errors.  

If response errors are large, much of the individual-level variance is due to noise.  Population-level data 

are less sensitive to response errors (due to aggregation) and so reliance on this data helps to improve ac-

curacy.  On the other hand, when response errors are low, the polyhedron stays feasible longer and the 

Analytic Center method appears to do a better job of identifying individual-level variation. 

Additional Paired-Comparison Questions  

 Although polyhedral methods were developed primarily for situations with only a relatively small 

number of questions, there remain important applications in which a larger number of questions can be 

asked of each respondent.  To examine whether the potential accuracy advantages of polyhedral methods 

for low q leads to a loss of accuracy at high q, we re-examined the performance of each method after six-

teen paired-comparison questions (q = 16).   

Recall that the Polyhedral method is only used to design questions when the polyhedron contains 

feasible responses.  For low response errors the polyhedron is typically empty after 8 questions, while for 

high response errors this generally occurs at around 6 or 7 questions.  Once the polyhedron is empty we 

choose questions randomly.  Because the Polyhedral question design method is only responsible for 

around half of the questions we use the label, “Poly/Random.”   

The findings are reported in Table 3, which is analogous to the previous Table 2.  They reveal the 

emergence of Fixed question design methods in some domains.  Asking a larger number of questions re-

sults in more complete coverage of the parameter space.  This increases the importance of orthogonality 

and balance – the criteria used in efficient Fixed question design.  With more complete coverage, the abil-

ity to customize questions to focus on specific regions of the question space becomes less important, 

mitigating the advantage offered by adaptive techniques. 
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Table 3 
Directional Implications of Response Errors and Heterogeneity for q = 16 

Mean Absolute Errors 

 Homogeneous 
Population 

Heterogeneous 
Population 

Low Response 
Error 

High Response 
Error 

Question design    

Random 12.1 14.3 10.4 15.9 

Efficient Fixed 10.3 13.1* 8.8* 14.6 

ACA 12.5 18.1 13.5 17.2 

Poly/Random 9.2* 15.2 10.4 14.0* 

Estimation Method    

AC 13.9 12.5* 9.9* 16.4 

HB 8.2* 17.9 11.6 14.4* 

Smaller numbers indicate better performance. 
*For each column, lowest error or not significantly different from lowest (p < 0.05).  All others are significantly different 
from the lowest. 

 
 

• 

• 

• 

However, even after sixteen questions there remain domains in which Polyhedral question design 

can improve performance.  The Poly/Random method appears to be at least as accurate as the Fixed de-

sign when the population is homogenous and/or response errors are high.  Its advantage for low q does 

not seem to be particularly harmful for high q, especially for high response errors.   Table 3 also suggests 

that Analytic Center estimation remains a useful estimation procedure when populations are heterogene-

ous and/or response errors are low.  We note that this result is not inconsistent with Andrews, Ansari, and 

Currim (2002, p. 87) who conclude that “individual-level models overfit the data.”  They test OLS rather 

than the Analytic Center method and do not test adaptive methods.  

In summary, our Monte Carlo experiments suggest that there are domains in which Polyhedral 

question design and/or Analytic Center estimation improve the accuracy of conjoint analysis, but there are 

also domains better served by extant methods.  Specifically, 

Polyhedral question design shows promise for low number of questions, such as the fuzzy front-

end of product development and/or web-based interviewing. 

For larger numbers of questions, efficient Fixed designs appear to be best, but Poly/Random 

question design does well, especially when response errors are high and populations are homoge-

nous.    

Analytic Center estimation shows promise for heterogeneous populations and/or low response er-

rors where the advantage of an individual-respondent focus is strongest. 
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• Hierarchical Bayes estimation is preferred when populations are more homogeneous and response 

errors are large.  

5. The Role of Self-Explicated Questions 
Hybrid conjoint models refer to methods that combine both compositional methods, such as self-

explicated (SE) questions, and decompositional methods, such as metric paired-comparison (PC) ques-

tions, to produce new estimates.  Although there are instances in which methods that use just one of these 

data sources outperform or provide equivalent accuracy to hybrid methods, there are many situations and 

product categories in which hybrid methods improve accuracy (e.g., Green 1984).   

An important hybrid from the perspective of evaluating polyhedral methods is ACA – the most 

widely used method for adaptive metric paired-comparison questions.  While ACA’s question design al-

gorithm has remained constant since the late 1970s, its estimation procedures have evolved to address the 

incommensurability of the SE and PC scales.  Its default estimation procedure relies on an ordinary least 

squares (OLS) regression that weighs the SE and the PC data in proportion to the number of questions 

asked (Sawtooth Software 2002, Version 5).8  We label the current version “weighted hybrid” estimation 

and denote it by the acronym WHSE (the SE suffix indicates reliance on SE data).  Sawtooth Software 

also incorporates the SE responses in their Hierarchical Bayes estimation procedure by using the SEs to 

constrain the estimates of partworths both within a feature and between features to satisfy the ordinal 

conditions imposed by the SE data.  For example, if a respondent’s responses to the SE questions indicate 

that picture quality is more important than battery life, then the Hierarchical Bayes parameters are re-

stricted to satisfying this condition. We denote this algorithm with the acronym HBSE to indicate that the 

SE responses play a larger role in the estimation. 

We also create a polyhedral hybrid by extending AC estimation to incorporate SE responses.  To 

do so, we introduce constraints on the feasible polyhedron similar to those used by HBSE.  For example, 

we impose a condition that picture quality is more important than battery life by using an inequality con-

straint on the polyhedron to exclude points in the partworth space that breach this condition.  When the 

polyhedron becomes empty, we extend OPT4 to incorporate both the PC and SE constraints.  We distin-

guish this method from the Analytic Center method by adding a suffix to the acronym: ACSE.   

To compare WHSE, HBSE, and ACSE to their purebred progenitors, we must consider the accu-

racy of the SE data.  If the SE data are perfectly accurate, then a model based on SEs alone will predict 

perfectly and the hybrids would be almost as accurate.  On the other hand, if the SEs are extremely noisy, 

then the hybrids may actually predict worse than methods that do not use SE data.  To examine these 

questions, we undertook a second set of simulation experiments. 
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To simulate SE responses we assume that respondents’ answers to SE questions are unbiased but 

imprecise. In particular, we simulate response error in the SE answers by adding to the vector of true 

partworths, u , a vector of independent identically-distributed normal error terms with variance .  We 

simulate two levels of SE response error – low error relative to PC responses (

2
seσ

10=seσ ) and high error 

relative to PC responses ( 70=seσ ).  We expect that these benchmarks should bound empirical situations.  

Recall that in the first set of simulations we assumed no SE errors ( 0=seσ ), but discretized the scale.  For 

consistency, we also use a discrete scale when there are non-zero SE errors.  Based on these SE errors, we 

redo the simulations for each level of PC response errors and heterogeneity. 

We summarize the results with Table 4 for lower numbers of questions (q = 8), where we report 

the most accurate question-design/estimation methods for each level of response error and heterogeneity. 

Detailed results are available from the authors.  For ease of comparison, the earlier results (from Table 1) 

are summarized in the column labeled “Initial Simulations.”   

There are three results of interest.  First, when the SEs are more accurate than the PCs, then the 

hybrids do well.  In this situation, the PC question design method matters less: Polyhedral, Fixed, and 

Random hybrids are not significantly different in accuracy.  Second, the insights obtained from Tables 1-

3 for population-level versus individual-level estimation continue to hold: HB or HBSE do well in homo-

geneous domains while AC or WHSE do well in heterogeneous domains.  Third, when the SEs are noisy 

relative to the PCs, then the hybrid methods do not do as well as the purebred methods.  Indeed, we ex-

pect a crossover point at some intermediate level of relative accuracy.   

Table 7 also highlights the emergence of WHSE in some domains. Of the hybrids tested, WHSE 

is the only method that makes use of the interval-scale properties of the SEs.  These metric properties ap-

pear to help when the “signal-to-noise ratio” is high (more variation in true partworths, less error in the 

SEs).  This result suggests that other methods which use interval-scaled properties of the SEs should do 

well in these domains – a topic for further hybrid development (e.g., Ter Hofstede, Kim, and Wedel 

2002).   

In summary, as in biology, where genetically-diverse offspring often have traits superior to their 

purebred parents, heterosis in conjoint analysis improves predictive accuracy in some domains.  Further-

more, Polyhedral question design remains promising in these domains and many of the insights from our 

earlier simulations still hold for hybrid methods. Finally, we expect and obtain analogous results for lar-

ger numbers of questions (q = 16).  They provide no additional insight beyond Tables 1-4.  

                                                                                                                                                                           
8 Earlier versions of ACA either weighed the scales equally (Version 3) or selected weights to fit purchase-intention 
questions (Version 4).   
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Table 4 
The Impact of a prior Self-Explicated (SE) Questions (q = 8) 

Heterogeneity Response Errors Initial Simulations 
(no SEs) 

Relatively Accu-
rate SEs 

Relatively Noisy 
SEs 

Homogeneous Low error Polyhedral HB 
Fixed HB 

Polyhedral HBSE  
Fixed HBSE     

Random HBSE 

Polyhedral HB 
Fixed HB 

 High error Polyhedral HB   
ACA HB  

Polyhedral HBSE 
Fixed HBSE     

Random HBSE 

Polyhedral HBSE 

Heterogeneous Low error Polyhedral AC Polyhedral WHSE  
Fixed WHSE    

Random WHSE 

Polyhedral AC 

 High error Polyhedral AC  Polyhedral WHSE  
Fixed WHSE    

Random WHSE 

Polyhedral AC 

 

6. Empirical Application and Test of Polyhedral Methods 
While tests of internal validity are common in the conjoint-analysis literature, tests of external va-

lidity at the individual level are rare.9  A search of the literature revealed four studies that predict choices 

in the context of natural experiments and one study based on a lottery choice.  Wittink and Montgomery 

(1979), Srinivasan (1988), and Srinivasan and Park (1997) all use conjoint analysis to predict MBA job 

choice. Samples of 48, 45, and 96 student subjects, respectively, completed a conjoint questionnaire prior 

to accepting job offers. The methods were compared on their ability to predict actual job choices.  First 

preference predictions ranged from 64% to 76% versus random-choice percentages of 26-36%.  In an-

other natural experiment, Wright and Kriewall (1980) used conjoint analysis (Linmap) to predict college 

applications by 120 families.  They were able to correctly predict 20% of the applications when families 

were prompted to think seriously about the features measured in conjoint analysis; 15% when they were 

not. This converts to a 16% improvement relative to their null model.  Leigh, MacKay and Summers 

(1984) allocated 122 undergraduate business majors randomly to twelve different conjoint tasks designed 

to measure partworths for five features.  Respondents indicated their preferences for ten calculators of-

fered in lottery.  There were no significant differences among methods with first-preference predictions in 

the range of 26-41% and percentage improvements of 28%.  The authors also compared the performance 

of estimates based solely on SE responses and observed similar performance to the conjoint methods. 

                                                      
9 Some researchers report aggregate predictions relative to observed market share.  See Bucklin and Srinivasan 
(1991), Currim (1981), Green and Srinivasan (1978), Griffin and Hauser (1993), Hauser and Gaskin (1984), 
McFadden (2000), Page and Rosenbaum (1989), and Robinson (1980).  
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In this section, we test polyhedral methods with an empirical test involving an innovative laptop-

computer carrying bag.  Our test differs from the natural experiment studies because it is based on a con-

trolled experiment in which we chose pareto sets of product features.  At the time of our study, the prod-

uct was not yet on the market and so respondents had no prior experience with it.  The bag includes a 

range of separable product features, such as the inclusion of a mobile-phone holder, side pockets, or a 

logo.  We focused on nine product features, each with two levels, and included price as a tenth feature.  

Price is restricted to two levels ($70 and $100) – the extreme prices for the bags in both the internal and 

external validity tests.  We estimated the partworths associated with prices between $70 and $100 by line-

arly interpolating.  A more detailed description of the product features can be found on the website listed 

in the acknowledgements section of this paper. 

Because ACA is the dominant industry method for adaptive question design, we chose a product 

category where we expected ACA to perform well – a category where separable product features would 

lead to moderately accurate SE responses.  We anticipate that SE responses are more accurate in catego-

ries where customers make purchasing decisions about features separately by choosing from a menu of 

features.  In contrast, we expect SE responses to be less accurate for products where the features are typi-

cally bundled together, so that customers have little experience in evaluating the importance of the indi-

vidual features.   If Polyhedral question design and/or estimation does well in this category, then, based 

on Table 4, we expect it to do well in categories where SE responses are less accurate. 

Research Design  

Subjects were randomly assigned to one of the three conjoint question design methods: Polyhe-

dral (2 cells), Fixed, or ACA.  We omitted Random question design because the Fixed question design 

method dominates Random design in Tables 2 and 3.  After completing the respective conjoint tasks, all 

of the respondents were presented with the same validation exercises.  The internal validation exercise 

involved four holdout metric paired-comparison (PC) questions, which occurred immediately after the 

sixteen PC questions designed by the respective conjoint methods.  The external validation exercise was 

the selection of a laptop computer bag from a choice set of five bags.  This exercise occurred in the same 

session as the conjoint tasks and holdout questions, but was separated from these activities by a filler task 

designed to cleanse memory (see Table 5). 

Conjoint Tasks  

Recall that ACA requires five sets of questions.  Pretests confirmed that all of the features were 

acceptable to the target market, allowing us to skip the unacceptability task.  This left four remaining 

tasks: ranking of levels within features, self-explicated (SE) questions, metric paired-comparison (PC) 

questions, and purchase intention (PI) questions.  ACA uses the SE questions to select the PC questions, 
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thus the SE questions in ACA must come first, followed by the PC questions and then the PI questions.  

To test ACA fairly, we adopted this question order for the ACA condition. 

Table 5 
Detailed Research Design 

Row Polyhedral 1 Fixed Polyhedral 2 ACA 

1   Self-explicated Self-explicated 

2 Polyhedral          
paired comparison 

Fixed              
paired comparison 

Polyhedral          
paired comparison 

ACA               
paired comparison 

3 Internal validity task Internal validity task Internal validity task Internal validity task

4   Purchase intentions Purchase intentions

5 Filler task Filler task Filler task Filler task 

6 External validity 
task 

External validity 
task  

External validity 
task  

External validity 
task 

 

The Fixed and Polyhedral question design techniques do not require SE or PI questions.  Because 

asking the SE questions first could create a question-order effect, we asked only PC questions (not the SE 

or PI questions) prior to the validation task in the Fixed condition.  To investigate the question-order ef-

fect we included two polyhedral data collection procedures: one that matched the Fixed design (Polyhe-

dral 1) and one that matched ACA (Polyhedral 2).  In Polyhedral 1 only PC questions preceded the 

validation task, while in Polyhedral 2, all of the questions preceded the validation task.  This enables us to 

(a) explore whether the SE questions affect the responses to the PC questions and (b) evaluate the hybrid 

estimation methods that combine data from PC and SE questions.10  

                                                     

The complete research design, including the question order, is summarized in Table 5.  Questions 

associated with the conjoint tasks are highlighted in green (Rows 1, 2 and 4), while the validation tasks 

are highlighted in yellow (Rows 3 and 6).   The filler task is highlighted in blue (Row 5).  In this design, 

Polyhedral 1 can be matched with Fixed; Polyhedral 2 can be matched with ACA.  

Internal Validity Task: Holdout PC Questions 

Each of the question design methods designed sixteen metric paired-comparison (PC) questions. 

Following these questions, respondents answered four holdout PC questions – a test used extensively in 

 
10 Although the SE responses are collected in the Polyhedral 2 condition, they are not used in Analytic Center esti-
mation or Polyhedral question design.  However, they do provide the opportunity to test hybrid estimation methods. 
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the literature.  The holdout profiles were randomly selected from an independent efficient design of six-

teen profiles and did not depend on prior answers by that respondent.  There was no separation between 

the sixteen initial questions and the four holdout questions, so that respondents were not aware that the 

questions were serving a different role.  

Filler Task 

The filler task was designed to separate the conjoint tasks and the external validity task.  It was 

hoped that this separation would mitigate any memory effects that might influence how accurately the 

information from the conjoint tasks predicted which bags respondents chose in the external validity tasks.  

The filler task was the same in all four experimental conditions and comprised a series of questions ask-

ing respondents about their satisfaction with the survey questions.  There was no significant difference in 

the responses to the filler task across the four conditions.   

External Validity Task: Final Bag Selection 

Respondents were told that they had $100 to spend and were asked to choose between five bags.  

The five bags shown to each respondent were drawn randomly from an orthogonal fractional factorial 

design of sixteen bags.  This design was the same across all four experimental conditions, so that there 

was no difference, on average, in the bags shown to respondents in each condition.  The five bags were 

also independent of responses to the earlier conjoint questions.  The price of the bags varied between $70 

and $100 reflecting the difference in the anticipated market price of the features included with each bag. 

By pricing the bags in this manner we ensured that the choice set represented a Pareto frontier, as recom-

mended by Elrod, Louviere, and Davey (1992), Green, Helsen and Shandler (1988), and Johnson, Meyer 

and Ghosh (1989).   

Respondents were instructed that they would receive the bag that they chose.  If the bag was 

priced at less than $100, they were promised cash for the difference.  In order to obtain a complete rank-

ing, we told respondents that if one or more alternatives were unavailable, they might receive a lower 

ranked bag.  The page used to solicit these rankings is presented in Figure 6.11  At the end of the study the 

chosen bags were distributed to respondents together with the cash difference (if any) between the price 

of the selected bag and $100. 

                                                      
11 We acknowledge two tradeoffs in this design.  The first is an endowment effect because we endow each respon-
dent with $100.  The second is the lack of a “no bag” option.  While both are interesting research opportunities and 
quite relevant to market forecasting, a priori neither should favor one of the three methods relative to the other; we 
expect no interaction between the endowment/forced-choice design and PC question design and leave such investi-
gations to future research.  However, the forced choice design might add noise to the most-accurate method relative 
to less-accurate methods.  This would make it more difficult to achieve significant differences and is, thus, conserva-
tive.  Pragmatically, we designed the task to maximize the power of the statistical comparisons of the four treat-
ments. The forced-choice also helped to reduce the (substantial) cost of this research. 
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Self-Explicated and Purchase Intention Questions 

The self-explicated questions asked respondents to rate the importance of each of the ten product 

features. For a fair comparison to ACA, we used the wording for the questions, the (four-point) response 

scale, and the algorithm for profile selection proposed by Sawtooth Software (1996).  For the purchase 

intention questions, respondents were shown six bags and we asked how likely they were to purchase 

each bag.  We adopted the wording, response scale and algorithms for profile selection suggested by 

Sawtooth Software. 

Figure 6 
Respondents Choose and Keep a Laptop Computer Bag 

 

Subjects 

The subjects (respondents) were first-year MBA students.  They were not informed about the ob-

jectives of the study, nor had they taken a course in which conjoint analysis was taught in detail.  We re-

ceived 330 complete responses (there was one incomplete response) from an e-mail invitation to 360 stu-

dents – a response rate of over 91%.  Pure random assignment (without quotas) yielded 80 subjects for the 

ACA condition, 88 for the Fixed condition, and 162 for the Polyhedral conditions broken out as 88 for the 

standard question order (Polyhedral 1) and 74 for the alternative question order (Polyhedral 2). 

The questionnaires were pretested on a total of 69 subjects drawn from professional market re-

search and consulting firms, former students, graduate students in Operations Research, and second-year 

students in an advanced marketing course that studied conjoint analysis.  The pretests were valuable for 

fine-tuning the question wording and the web-based interfaces.  By the end of the pretest, respondents 
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found the questions unambiguous and easy to answer.  Following standard scientific procedures, the pre-

test data were not merged with the experimental data.  However, analysis of this small sample suggests 

that the findings agree directionally with those reported here, albeit not at the same level of significance.   

Figure 7 
Example Screens from Questionnaires 

         
 (a)  Price as change from $100        (b)  Introduction of “sleeve” feature 

        
     (c)  Metric paired-comparison (PC) question  (d)  Self-explicated (SE) questions 

Additional Details 

Figure 7 illustrates some of the key screens in the conjoint analysis questionnaires.  In Figure 7a 

respondents are introduced to the price feature.  Figure 7b illustrates one of the dichotomous features – 

the closure on the sleeve.  This is an animated screen that provides more detail as respondents move their 

pointing devices past the picture.  Figure 7c illustrates one of the PC tasks.  Respondents were asked to 

rate their relative preference for two profiles that varied on three features.  Both text and pictures were 

used to describe the profiles. In the pictures, features that did not vary between the products were chosen 

to coincide with the respondent’s preferences for feature levels obtained in the tasks such as Figure 7b.  

The format was identical for all four experimental treatments.  Finally, Figure 7d illustrates the first three 

self-explicated questions.  The full questionnaires for each treatment are available on the website listed in 
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the acknowledgements to this paper.  We note that some of these website improvements (e.g., dynami-

cally changing pictures) are not standard in Sawtooth Software’s implementation, thus, our tests should 

be considered a test of ACA question design (and estimation) rather than a test of Sawtooth Software’s 

commercial implementation. 

7. Results of the Field Test 
 To evaluate the conjoint methods we calculated the Spearman rank-order correlation between the 

actual and observed rankings for the five bags shown to each respondent.12  We report the results in Table 

6 using the same benchmark methods that we used for the Monte Carlo simulations. 

Table 6 
External Validity Tests: Correlation with Actual Choice 

(Larger numbers indicate better performance.) 

 After 8 Questions After 16 Questions 

Methods without SE data Fixed         
Questions  

Polyhedral 1    
Questions 

Fixed         
Questions  

Polyhedral 1    
Questions 

Analytic Center (AC) 0.51 0.59 0.62 0.68 

Hierarchical Bayes (HB) 0.53 0.57 0.61 0.64 

Sample size 88 88 88 88 

     

Methods that use SE data ACA          
Questions  

Polyhedral 2    
Questions 

ACA          
Questions  

Polyhedral 2    
Questions 

WHSE Estimation 0.66 0.68 0.68 0.72 

ACSE Estimation 0.63 0.70 0.65 0.71 

HBSE Estimation 0.64 0.73 0.65 0.74 

Sample size 80 74 80 74 
 

In the simulation analysis we had the luxury of large sample sizes (500 respondents) and we were 

able to completely control for respondent heterogeneity.  Although the sample sizes in Table 6 are large 

compared to previous tests of this type, they are small compared to the simulation analysis.  As a result, 

none of the differences across methods are significant in independent-sample t-tests (p<0.05).  However, 

these independent-sample t-tests do not use all of the information available in the data.  We also evaluate 

                                                      
12 As an alternative metric, we compared how well the methods predicted which product the respondents favored.  
The two metrics provide a similar pattern of results and so, for ease of exposition, we focus on the correlation meas-
ure. There are additional reasons to focus on correlations. First-choice prediction is a dichotomous variable highly 
dependent upon the number of items in the choice set.  In addition, it provides less power because it has higher vari-
ance than the Spearman correlation, which is based on a rank order of five items. 

 28  



FAST POLYHEDRAL ADAPTIVE CONJOINT ESTIMATION  

significance by an alternative method that pools the correlation measures calculated after each additional 

PC question.  This results in a total of sixteen observations for each respondent.   

To control for heteroscedasticity we estimate a separate intercept for each question number.  We 

also controlled for respondent heterogeneity in the respondent samples with a null model that assumes 

that the ten laptop bag features are equally important.  If, despite the random assignment of respondents to 

conditions, the responses in one condition are more consistent with the null model, then the comparisons 

would be biased in favor of this condition.  We control for such potential heterogeneity by including a 

measure describing how accurately the equal-weights (null) model performs on the predictive correla-

tions. The complete specification for this model is described in Equation 1, where r indexes the respon-

dents and q indexes the number of PC questions used in the partworth estimates.  The α’s and β’s are co-

efficients in the regression and εrq is an error term.  

(1)  rqr
q

M

m
mmqqrq tsEqualWeighMethodQuestionnCorrelatio εγβα +++= ∑ ∑

=

−

=

16

1

1

1

The Question and Method terms refer to dummy variables identifying the question and method ef-

fects.  The EqualWeight variable measures the correlation obtained for respondent r between the actual 

rankings and the rankings obtained from an equal weights model.  Under this specification, the β coeffi-

cients represent the expected increase or decrease in this correlation across questions due to Method m 

relative to an arbitrarily chosen base method.  Positive (negative) values for the β coefficients indicate 

that the correlations between the actual and predicted rankings are higher (lower) for Method m than the 

base method.   

We further control for potential heteroscedasticity introduced by the panel nature of the data by 

reporting robust standard errors (White 1980). We also estimated a random effects model, but there were 

almost no difference in the coefficients of interest.  Moreover, the Hausman specification test favored the 

fixed-effects specification.  The findings are summarized in Table 7.  
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Table 7 
External Validity Tests:  Conclusions from the Multivariate Analysis 

 Without SE Questions With SE Questions 

Comparison of Estimation Methods   

Fixed Questions HB > AC  

Polyhedral 1 Questions  AC >> HB   

ACA Questions  WHSE > HBSE > ACSE 

Polyhedral 2 Questions   HBSE >>> WHSE > ACSE 

Comparison of Question design Methods   

AC Estimation Polyhedral 1 >>> Fixed  

HB Estimation Polyhedral 1 >>> Fixed  

WHSE Estimation  Polyhedral 2 > ACA 

ACSE Estimation  Polyhedral 2 >> ACA 

HBSE Estimation  Polyhedral 2 >>> ACA 

Method m > Method n: Method m is more accurate than Method n but the difference is not significant. 
Method m >> Method n: Method m is significantly more accurate than Method n (p<0.05).  
Method m >>> Method n: Method m is significantly more accurate than Method n (p<0.01).  
 

Comparison of Estimation Methods 

We compare the accuracy of the different estimation methods by comparing the findings in Table 

6 within a column (for a specific set of questions) looking to Table 7 for significance tests.  This compari-

son holds the question design constant and varies the estimation method.  For those experimental cells 

that were designed to obtain estimates without the SE questions, Hierarchical Bayes and Analytic Center 

estimation offer similar predictive accuracy for Fixed questions, but Analytic Center estimation performs 

better for Polyhedral questions. 

If SE responses are available, the preferred estimation method appears to depend upon both the  

question design method and the number of PC responses used in the estimation.  For Polyhedral questions 

HBSE performs extremely well for low numbers of PC questions, perhaps due to its use of population 

level data.  However, increasing the number of PC responses yields less improvement in the accuracy of 

HBSE relative to WHSE.  After sixteen questions all three estimation methods converge to comparable 

accuracy levels, suggesting that there is sufficient data at the individual level to provide estimates that 

need not depend on population distributions.  When using PC questions designed by ACA, WHSE out-

performs HBSE, albeit not significantly so. 

Comparison of Question Design Methods 

 The findings in Table 6 also facilitate comparison of the question design methods.  Comparing 

across columns (within rows) in Table 6 holds the estimation method constant and varies the question 
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design.  The findings favor the two conditions in which the Polyhedral question design was used.  When 

the SE measures were not collected, the Polyhedral question design yielded significantly (p<0.01) more 

accurate predictions than the Fixed design.  This holds true irrespective of the estimation method.   

When SE responses were collected, the Polyhedral question design was more accurate than ACA 

across every estimation method, although the difference was not significant for WHSE.  Detailed investi-

gation reveals that for every estimation method we tested, the estimates derived using the Polyhedral 

questions outperform the corresponding estimates derived using ACA questions after each and every 

question number. 

The Incremental Predictive Value of the SE Questions 

In this category, Table 6 suggests that hybrid methods that use both SE and PC questions consis-

tently outperform methods that rely on PC questions alone.  Thus, in this category, the SE questions pro-

vide incremental predictive ability.  We caution that the product category was chosen at least in part be-

cause the SE responses were expected to be accurate.  The simulations suggest that this improvement in 

accuracy may not be true in all domains. 

We also evaluate whether the PC responses contributed incremental accuracy.  Predictions that 

use the SE responses alone (without the PC responses) yield an average correlation with actual choice of 

0.64.  This is lower than the performance of the best methods that use both SE and PC responses and 

comparable at q = 16 to those methods that do not use SE responses (see Table 6).  We conclude (in this 

category) that the sixteen PC questions provide roughly the same amount of information as the ten SE 

questions and that, for methods that use both, the PC data add incremental predictive ability.  This con-

clusion is consistent with previous evidence in the literature (Green, Goldberg, and Montemayor 1981; 

Huber, et. al. 1993, Johnson 1999; Leigh, MacKay, and Summers 1984).   

The Internal Validity Task 

We repeated the analysis of question design and estimation methods using the correlation meas-

ures from the internal validity (holdout questions) task.  Details are in Appendix 2.  The results for inter-

nal validity are similar to the results for external validity.  However, there are two differences worth not-

ing.  First, while HBSE predicted better than WHSE for Polyhedral question design in the choice task, 

there was no significant difference in the holdout task.  Second, while Polyhedral question design was 

significantly better than Fixed design for the choice task, there were no significant differences for the 

holdout task.   

Question Order Effects: Polyhedral 1 versus Polyhedral 2 

Polyhedral 1 and Polyhedral 2 varied in question order; the SE questions preceded the PC ques-

tions in Polyhedral 2 but not in Polyhedral 1.  Otherwise, both methods used the same question design 
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algorithm – an algorithm that does not use SE data.  Nonetheless, question order might influence the ac-

curacy of the PC responses.  If the SE questions “wear out” or tire respondents, causing them to pay less 

attention to the PC questions, we might expect that inclusion of the SE questions will degrade the accu-

racy of the PC responses.  Alternatively, the SE questions may improve the accuracy of the PC questions 

by acting as a training or “warm-up” task which helps respondents clarify their values, increasing the ac-

curacy of the PC questions (Green, Krieger and Agarwal 1991; Huber, et. al. 1993; Johnson 1991). 

By comparing the two experimental cells we investigate whether the prior SE questions affected 

the accuracy of the respondents’ PC responses.  The predictive accuracy of the two conditions are not sta-

tistically different (t = -0.05 for AC estimation, the preferred estimation method from Tables 1 and 7).  

This suggests that by the sixteenth question any wear out or warm-up/learning had disappeared.  How-

ever, there might still be an effect for the early questions.  When we estimate performance of AC estima-

tion using a version of Equation 1, the effect is not significant for external validity task (t = 0.68), but is 

significant on the internal validity task (t = 2.60).  In summary, the evidence is mixed.  There is no evi-

dence that the SE questions improve or degrade the accuracy of the PC questions for the choice task, but 

they might improve accuracy for the hold out task.  Further testing is warranted. 

Summary  

In the field test, Polyhedral question design appears to be the most accurate of the tested question 

design methods.   When SE data are available, the most accurate estimation methods were the hybrids, in 

particular, HBSE and WHSE.  If SE data were unavailable, the most accurate estimation method was AC 

for Polyhedral questions and HB for Fixed questions (although not significantly better).   

To compare the field test to the simulations, we must identify the relevant domain.  Fortunately, 

estimates of heterogeneity and PC response errors are a by-product of the Hierarchical Bayes estimation 

and we can use HB to estimate SE errors.  These estimates suggest high levels of heterogeneity (  ≈ 

29) and PC response errors ( ≈ 43), but moderately low SE response errors ( ≈ 18).  When SEs are 

unavailable, the simulations predict that in this domain: (1) Polyhedral question design should be better 

than Fixed for both estimation methods, (2) AC should be much better than HB for Polyhedral questions, 

(3) AC should remain better than HB for Fixed questions, but the difference is not as large.  The signifi-

cant findings in Table 7 are consistent with (1) and (2).  Contrary to (3), HB is better for Fixed questions, 

but not significantly so. 

2
uσ

2
pcσ 2

pcσ

For accurate SEs, the simulations predict that in this domain: (4) Polyhedral questions will remain 

strong for hybrid estimation methods, but the differences among question design methods will be less for 

hybrid methods than for purebred methods, (5) hybrid estimation methods will outperform the purebred 
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methods, and (6) WHSE will outperform ACSE (in the detailed simulation data HBSE also outperforms 

ACSE).  Predictions (4), (5), and (6) hold true in the field test. 

It is always difficult to compare field data to simulations because, despite experimental controls, 

there may be unobserved phenomena in the field test that are not captured in the simulations.  However, 

the two type of data are remarkably consistent, albeit not perfectly so. 

8. Product Launch 
Subsequent to our research, Timbuk2 launched the laptop bags with features similar to those 

tested including multiple sizes, custom colors, logo options, accessory holders (PDA and cellular phone), 

mesh pockets, and laptop sleeves.  Timbuk2 considers the product a success – it is selling well and is 

profitable.  We now compare the laboratory experiment and the national launch.  However, we do so with 

caution because the goal of the field test was to compare methods rather than to forecast the national 

launch.  By design we used a student sample rather than a national sample, offered only two color combi-

nations, and did not offer the large size bag.  Furthermore, one tested feature, the “boot,” was not included 

in the national launch because production cost (and feasibility) exceeded the price that could be justified.  

One feature, a bicycle strap, was added based on managerial judgment.  

There were five comparable features that appeared in both the field test and the national launch. 

With the above caveats in mind, the correlation of the predicted feature shares from the conjoint analyses 

with those observed in the marketplace was 0.9, which was significant.  (By feature share we mean per-

cent of customers who chose each of the five features.)  Predictions with various null models were not 

significant.  Unfortunately, these data do not provide sufficient power to compare the relative accuracies 

of the methods nor report correlations to more than one significant figure. 

9. Conclusions and Further Research 
 We propose new methods for design questioning and estimating partworths.  The question design 

method uses a multidimensional polyhedron to characterize feasible parameters and selects questions to 

reduce the size of the polyhedron as fast as possible. The estimation method uses the analytic center to 

approximate the center of the polyhedron, which represents a different philosophy from traditional statis-

tical methods; this paper is but a first step in evaluating such methods.  We expect that additional devel-

opment will lead to further improvements on the findings that we have reported here.    

The methods were evaluated using both Monte Carlo simulations and a large-scale field test.  The 

findings suggest that the polyhedral methods offer sufficient promise to justify further development.  The 

simulations reveal that Polyhedral question design performs particularly well when the researcher is lim-

ited to asking relatively few questions.  Interestingly, this is precisely the context that provided initial mo-

tivation for the method.  Polyhedral question design consistently shows promise in all simulated domains 
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and in the field test.  Analytic Center estimation also showed promise, particularly when the respondent 

population is heterogeneous and response errors are low. 

 Polyhedral methods are beginning to diffuse.  Sawtooth Software, Inc. now offers a polyhedral 

option to its ACA software and Harris Interactive, Inc. has begun initial testing.  Sawtooth Software has 

completed an empirical test of internal validity using a Poly/ACA question design algorithm (Orme and 

King 2002).  In their data, on average, the ACA portion chose 63% of the paired-comparison questions.  

They observed no significant differences between the methods after q = 30.  However, we have not been 

able to obtain for their data estimates of heterogeneity, PC response error, SE response error, or perform-

ance for low q. 

Other optimization methods also show promise for conjoint analysis.  Evgeniou, Boussios, and 

Zacharia (2002) demonstrate that “support vector machines” can improve estimation by automatically 

balancing complexity of the partworth specification with fit.  These researchers are now exploring a hy-

brid between polyhedral question design and support-vector estimation – an exciting development that 

can deal with non-linearities in polyhedral specifications.  Our simulations and empirical tests suggest 

many research opportunities.  Among these are (1) the development of better procedures to select ques-

tions and/or estimate partworths when the polyhedron becomes empty, (2) relaxing constraints to keep the 

polyhedron feasible longer, (3) algorithms that look more than one step ahead in question design, (4) ex-

ploration with other hybrid methods, (5) simulations to explore other domains, (6) replication of the em-

pirical tests in other field studies.
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Appendix 1: Mathematics of Fast Polyhedral Adaptive Conjoint Estimation 

 Consider the case of p parameters and q questions where q ≤ p. Let uj be the jth parameter of the 
respondent’s partworth function and let u  be the p×1 vector of parameters.  Without loss of generality we 
assume binary features such that uj is the high level of the jth feature and constrain their values between 0 
and 100.  For more levels we simply recode the u  vector and impose constraints such as um ≤ uh.  We 
handle such inequality constraints by adding slack variables, vhm ≥ 0, such that uh = um + vhm. Let r be the 
number of externally imposed constraints, of which r’≤r are inequality constraints. 
 Let z  be the 1×p vector describing the left-hand profile in the ii

th paired-comparison question 
and let  be the 1×p vector describing the right-hand profile.  The elements of these vectors are binary 
indicators taking on the values 0 or 1.  Let X be the q×p matrix of 

irz

irii zzx −=  for i = 1 to q.  Let ai be 
the respondent’s answer to the ith question and let a  be he ×1 vector of answers for i = 1 to q.  Then, if 
there were no errors, the respondent’s answers imply

t q
auX = .  To handle additional constraints, we aug-

ment these equations such that X becomes a (q+r)x(p+r’) matrix, a becomes a (q+r x1 vector, and u) be-
comes a (p+r’)x1 vector.  These augmented relationships form a polyhedron, P = { ∈ℜu p+r’ | auX = , u  
≥ 0}. We begin by assuming that P is non-empty, that X is full-rank, and that no j exists such that uj=0 for 
all  in P.  We later indicate how to handle these cases. u
Finding an Interior Point of the Polyhedron 

 To begin the algorithm we first find a feasible interior point of P by solving a linear program, 
LP1 (Freund, Roundy and Todd 1985). Let e  e a (p+r’)×1 vector of 1’s and let 0b be a (p+r’)×1 vector of 
0’s; the yj’s and θ are parameters of LP1 and y  is the (p+r’)×1 vector of the yj’s. (When clear in context, 
inequalities applied to vectors apply for each element.)  LP1 is given by: 

(LP1)  max ∑ ,  subject to:  
+

=

'

1

rp

j
jy auX θ= ,     θ ≥ 1,   0≥≥ yu ,    ey ≤   

If ( ),, *** θyu  solves LP1, then θ*-1 *u  is an interior point of P whenever 0* >y . If there are some yj’s 
equal to 0, then there are some j’s for which uj=0 for all u ∈P.  If LP1 is infeasible, then P is empty. We 
address these cases later in this appendix.  

Finding the Analytic Center 

 The analytic center is the point in P that maximizes the geometric mean of the distances from the 
point to the faces of P.  We find the analytic center by solving OPT1. 

(OPT1)  max , subject to:   ∑
+

=

'

1
)(ln

rp

j
ju auX = ,     0>u  

Freund (1993) proves with projective methods that a form of Newton’s method will converge rap-
idly for OPT1.  To implement Newton’s method we begin with the feasible point from LP1 and improve 
it with a scalar, α, and a direction, , such that d du α+  is close to the optimal solution of OPT1.  ( d  is a 
(p+r’)×1 vector of dj’s.)  We then iterate subject to a stopping rule. 

We first approximate the objective function with a quadratic expansion in the neighborhood of u .  

(A1)  ∑ ∑∑
+

=

+

=

+

=






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


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2
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1 2
)(ln)(ln

rp
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j

j
j
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If we define U as a (p+r’)×(p+r’) diagonal matrix of the uj’s, then the optimal direction solves OPT2: 

(OPT2)  max dUddUe TT 2
2

11 )( −− − ,  subject to:   0=dX  

Newton’s method solves OPT1 quickly by exploiting an analytic solution to OPT2.  To see this, 
consider first the Karush-Kuhn-Tucker (KKT) conditions for OPT2.  If z  is a (p+r’)×1 vector parameter 
of the KKT conditions that is unconstrained in sign then the KKT conditions are written as: 

(A2)  zXeUdU T=− −− 12  

(A3)  0=dX  

Multiplying A2 on the left by XU2, gives zXXUeXUdX T2=− .  Applying A3 to this equation gives: 
zXXUeXU T2=− .  Since U ue =  and since auX = , we have – a  = XU2XT z .  Because X is full rank and 

U is positive, we invert XU2XT to obtain z  = -(XU2XT)-1 a .  Now replace z  in A2 by this expression and 
multiply by U2 to obtain d  = u  – U2XT(XU2XT)-1 a . 
 According to Newton’s method, the new estimate of the analytic center, u , is given by ′

)( 1dUeUduu −+=+=′ αα .  There are two cases for α.  If 4
11 <− dU , then we use α =1 because u  is 

already close to optimal and 01 >+ − dUe α . Otherwise, we compute α with a line search. 

Special Cases 

 If X is not full rank, XU2XT might not invert. We can either select questions such that X is full 
rank or we can make it so by removing redundant rows.  Suppose that kx  is a row of X such that 

∑ +
≠== rq

kii
T
ii

T
k xx ,1 β .  Then if a , we remove ∑ +

≠== rq
kii iik a,1 β kx . If , then P is empty and 

we employ OPT4 described later in this appendix. 
∑q

i
+

≠=≠ r
ki iik aa ,1 β

 If in LP1 we detect cases where some yj’s = 0, then there are some j’s for which uj=0 for all 
u ∈P.  In the later case, we can still find the analytic center of the remaining polyhedron by removing 
those j’s and setting uj = 0 for those indices.  If P is empty we employ OPT4. 

Finding the Ellipsoid and its Longest Axis 

 If u is the analytic center and U is the corresponding diagonal matrix, then Sonnevend (1985a, 
1985b) demonstrates that E ⊆ P ⊆ Ep+r’ where, E = { u  | auX = , 1)()( 2 ≤−− − uuUuu T }and Ep+r’ is 
constructed proportional to E by replacing 1 with (p+r’).  Because we are interested only in the direction 
of the longest axis of the ellipsoids we can work with the simpler of the proportional ellipsoids, E.  Let 

uug −= , then the longest axis will be a solution to OPT3. 

(OPT3)  max ggT  subject to:  12 ≤− gUgT ,   0=gX  

 OPT3 has an easy-to-compute solution based on the eigenstructure of a matrix.  To see this we 
begin with the KKT conditions (where φ and γ are parameters of the conditions). 

(A4)  γφ TXgUg += −2  

(A5)  0)1( 2 =−− gUgTφ  

(A6)  12 ≤− gUgT ,    0=gX ,    φ  ≥ 0 
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It is clear that 12 =− gUgT at optimal, else we could multiply g  by a scalar greater than 1 and still have g  
feasible. It is likewise clear that φ is strictly positive, else we obtain a contradiction by left-multiplying A4 
by Tg and using 0=gX  to obtain 0=ggT  which contradicts 12 =− gUgT .  Thus, the solution to OPT3 
must satisfy γφ TXg = gU +−2 , 12 =− gUTg , 0=gX

/ω γ φ
, and φ > 0.  We rewrite A4-A6 by letting I be the 

identify matrix and defining η=1/φ and = − . 

(Α7)  ωη TXgIU =−− )( 2  

(Α8)  12 =− gUgT  

(A9)  0=gX ,    φ  > 0 

We left-multiply A7 by X and use A9 to obtain ωTXXgUX =−2 .  Since X is full rank, XXT is invertible 
and we obtain gUXXX T 21)( −−=ω which we substitute into A7 to obtain 

ggUXXXXU TT η=− −−− ))(( 212 .  Thus, the solution to OPT3 must be an eigenvector of the matrix, 
))(( 212 −−− −≡ UXXXXUM TT .  To find out which eigenvector, we left-multiply A7 by Tg and use A8 

and A9 to obtain 1=ggTη gT, or η/1=g where η>0.  Thus, to solve OPT3 we maximize 1/η by selecting 
the smallest positive eigenvalue of M.  The direction of the longest axis is then given by the associated 
eigenvector of M.  We then choose the next question such that 1+qx  is most nearly collinear to this eigen-
vector subject any constraints imposed by the questionnaire design.  (For example, in our simulation we 
require that the elements of 1+qx  be –1, 0, or 1.)  The answer to 1+qx  defines a hyperplane orthogonal to 

1+qx . 
 We need only establish that the eigenvalues of M are real.  To do this we recognize that 

2−= UPM where P = (I – XT(XXT)-1X) is symmetric, i.e., P=PT.  Then if η is an eigenvalue of M, 
0) =Iηdet( 2 −−UP , which implies that ])(det[ 111 −−− − UIUPUU η  = 0.  This implies that η is an eigen-

value of 11 −− UPU , which is symmetric.  Thus, η is real (Hadley 1961, 240). 

Adjusting the Polyhedron so that it is non-Empty 

P will remain non-empty as long as respondents’ answers are consistent. However, in any real 
situation there is likely to be q < p such that P is empty.  To continue the polyhedral algorithm, we adjust 
P so that it is non-empty.  We do this by replacing the equality constraint, auX = , with two inequality 

constraints, δ+≤ auX and δ−≥ auX , where δ  is a q×1 vector of errors, δi , defined only for the ques-
tion-answer imposed constraints.  We solve the following optimization problem.  Our current implemen-
tation uses the ∞-norm where we minimize the maximum δi, but other norms are possible. The advantage 
of using the ∞-norm is that (OPT 4) is solvable as a linear program. 

(OPT4)  min δ  subject to:  δ+≤ auX ,    δ−≥ auX ,   0≥u ,    

 At some point such that q > p, extant algorithms will outperform OPT4 and we can switch to 
those algorithms.  Alternatively, a researcher might choose to switch to constrained regression (norm-2) 
or mean-absolute error (norm-1) when q > p.  Other options include replacing some, but not all, of the 
equality constraints with inequality constraints. We leave these extensions to future research. 
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Appendix 2: Internal Validity Tests for Laptop Computer Bags 

Table A2.1. Correlation with Actual Response 
 

 After 8 Questions After 16 Questions 

Methods without SE data Fixed         
Questions  

Polyhedral 1   
Questions 

Fixed         
Questions  

Polyhedral 1   
Questions 

Analytic Center (AC) 0.65 0.69 0.80 0.79 

Hierarchical Bayes (HB) 0.70 0.67 0.76 0.72 

Sample size 88 87 88 87 

     

Methods that use SE data ACA          
Questions  

Polyhedral 2   
Questions 

ACA          
Questions  

Polyhedral 2   
Questions 

WHSE Estimation 0.77 0.81 0.81 0.84 

ACSE Estimation 0.74 0.78 0.77 0.84 

HBSE Estimation 0.76 0.80 0.78 0.82 

Sample size 80 71 80 71 

The missing observations reflect respondents who gave the same response for all four holdout questions (in which case 
the correlations were undefined).  

 
 

Table A2.2. Conclusions from the Multivariate Analysis 
 

 Without SE Questions With SE Questions 

Comparison of Estimation Methods   

Fixed Questions HB > AC  

Polyhedral 1 Questions AC >>> HB  

ACA Questions  WHSE > HBSE >>> ACSE 

Polyhedral 2 Questions  WHSE > HBSE > ACSE 

Comparison of Question design Methods   

AC Estimation  Polyhedral 1 > Fixed  

HB Estimation  Fixed > Polyhedral 1  

WHSE Estimation   Polyhedral 2 >>> ACA 

ACSE Estimation   Polyhedral 2 >>> ACA 

HBSE Estimation   Polyhedral 2 >>> ACA 
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