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I. Introduction

Nearly all of the public immunization programs for influenza imple-
mented in the past by the U.S. government have been "limited" programs.
The primary objective of these "limited" programs has been to minimize
epidemic costs by preventing illness among members of the population who
are at higher than average risk of either dying from the disease or
developing complications for which the treatment would be costly. High-
risk population groups, as they are called, are somewhat arbitrarily
constituted, but typically include all individuals over age 65 and also
younger persons suffering from chronic diseases regardless of age. Though
attack rates for influenza may be somewhat lower among high-risk indivi-
duals than others, hospitalization rates and mortality rates are consid-
erably higher, thereby accounting for the greater societal costs when
members of the high-risk groups become ill.l

An alternative public health strategy for minimizing influenza
epidemic costs is to mount a 'broad" program which seeks to immunize a
sufficiently large and homogeneous segment of the entire population
that the epidemic would be averted together. This alternative strategy
has been tried only once in recent memory - during 1976, in anticipation
of an epidemic of swine influenza that never materialized. Because the
1976 swine influenza immunization program was beset with problems in its
implementation and with a higher than expected occurrence of life threat-
ening complications among vaccinated persons, the program is widely believed
to have failed.2 Failure of the swine flu program may have been seen to
reflect adversely on the broad-scale immunization strategy, even though

the viability of the strategy remained largely untested.
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Policy-makers faced with decisions about how best to protect the pop-
ulation apainst infectious diseases might find useful the capability to
compare alternative immunization strategies systematically, in economic
terms. We have developed a two-stage model that forms the basis for a
decision support gystem to help predict the circumstances under which
gpecified public immunization strategies for influenza are likely to be
best suited to national needs. The first stage of our two-stage model
is a deterministic epidemic model, which, when solved numerically,
describes the fraction of the population that becomes infective during
the course of a hypothetical epidemic. The output from the epidemic
model is an important input variable into the second stage, a cost/benefit
model which allows the comparison of the expected net economic benefits,
in dollars, of alternative public immunization programs. With the assump-
tions we made, the decision system predicts that despite the wide dis-
enchantment about the success of the 1976 Swine Influenza Immunization
Program, broad public immunization programs can, under certain circumstances,
be at least as useful in economic terms as limited programs.

II. Structure of the Model

The rate of occurrence of influenza cases among susceptibles is

related to the extent éf contact with infectives, those persons already
able to transmit the disease. Those who are neither susceptible nor
infective are immune. This immune protection must have been conferred
either by vaccination or by previous exposure to influenza. When an
immunization program is mounted, its effect is to raise the fraction of
the population which, at baseline, is already immune. The effective-
ness of such a program in the prevention of disease depends, of

course, on the members of the population who will accept the vaccine when
offered. Program effectiveness also depends on the efficacy of vaccine,

the probability that an immunized individual will avoid becoming ill.



Four kinds of exogenous variables are required as inputs to the two-
stage model that ultimately allows the comparison of alternative immunization
program strategies in terms of expected net dollar benefits. These include:
information specific to the potential disease threat; details about the
immune status of the population under each alternative immunization program;
the societal costs, direct and indirect, associated with the outbreak of
the disease in epidemic proportion; and the probability that the epidemic
will, in fact occur.*

Stage One: The Epidemic Model - Description and Suitability

Since about 1920 deterministic epidemic models have been the object
of an academic literature of interest to applied mathematicians and others.
Early work addressed the elucidation of factors involved in the causation
of disease. Recently, some models of similar form have been proposed
and used by researchers as decision aids in the selection from among
competing policy alternatives.4 The epidemic model we used builds upon
this recent work.

We chose to adapt the deterministic epidemic model originally pro-
posed by Kermack and McKendrickSin 1920. Three states are represented
in the epidemic model: susceptible, infective, and immune. These three
states describe the entire population at risk . Population is, itself a
vector describing seven segments of society according to age and health
status. In equations, 1, 2, and 3, below, E, %, and E are vectors and refer,
respectively to the fraction of the population which resides in each of

the three states as a function of time. A transition rate B, hetween

Notice that in the absence of a disease outbreak no "benefits" will accrue
to the population in terms of societal costs averted. The probability that
the epidemic will actually occur is, therefore, a necessary parameter for
the computation of the level of expected dollar benefits under each
immunization program.
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susceptibles. and infectives, is called the 'contact rate'" and is related

to the number of individuals in close enough proximity to one another

such that disease could be transmitted if a susceptible contacted an
infective. The transition rate Y , between the infective and the immune
states, is called the "removal rate'" and is the inverse of the average
duration of the infective period. Note that since the éntire population
must at any point in time be in one of those states, four parameters specify
the model.*

The Kermack-McKendrick Model is considered suitable for this research
in part because it has proven useful in predictiﬁg some aspects of the
course of local influenza outbreaks in the Soviet Unionéand in Great
Britain7to within a reasonably close fit. This straightforward modei
also offers the practical advantage of being easy to work with and
amenable to solution-using numerical methods.

The drawbacks of using this deterministic model for infiuenza
epldemics lie in the need for making cervtain simplifying assumptions
whose significance may be testable only after extensive and costly
field research. For example, the country is assumed to be sufficiently
homogenous that the differences among geographic areas in population density
distribution and weather conditions can be ignored. The population

is closed; neither births nor deaths are accounted for in this model.

*
The model is specifiod by beta, gamma, and two of the following throee
parametervs:  the percentage of the populatfon Inftially susceptiblie (So),
the percentage inftially intfective (1o), and the percentace initially
immune (Ro).



The attack rate for the disease is assumed to be uniform within the susceptible
population. People must either be immune, susceptible, or infected, and
variation is not permitted in the degree of immunity, the level of suscepti-
bility, or the virulence of one's infective state. Finally, an individual
who recovers from the disease is treated as immune for the duration of the
epidemic.

A consequence of the structure and assumptions of the epidemic model
is that non-immunized individuals benefit each time an additional susceptible
accepts vaccine. Logically extended, this implies it should be possible to
avert the outbreak of an epidemic, altogether, without the need to immunize
everyone. Whether this observation has practical significance in influenza
control could, in theory, only be determined through field research.

Stage Two: The Cost/Benefit Model

We now describe the cost/benefit model employed as the second stage

of this analysis.* Expected net benefits associated with a particular

6 NP 6 P 2
* = - - 3 -
E(NB) P(E) x4,Z; DC; &1 DC;.§ - 4E;8EC) - PC

E(NB) = Expected net benefits of program;

DC? = Expected disease - related costs associated with resource i,
given the inoculation program and the occurrence of the epidemic;

DCI;]P = Expected discase - related costs associated with resource 1,
given no inoculation program and the occurrence of the epidemic;

SECj = Expected side effects costs associated with resource j, given
the inoculation program;

PC = Program expenditures for production and administration of the
vaccine;

P(E) = Probability of epidemic occurring;

i = The six categories of disease - related costs: hospitalization,

inpatient physician, outpatient physician, prescription drugs,
lost productivity due to restricted activity and premature mortality

i = The two components of side effects costs: minor and major.
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public immunization prégram for influenza are expressed as the difference
between the expected benefits (i.e., expected reduction of societal costs)
due to the immunization program and the costs associated with the imple-
mentation of the program. The expected benefits are written as a

function of both the probability of occurrence of an epidemic and the
difference in expected disease~related costs as a result of having imple~-
mented as compared to not having implemented an immunization program. Costs
include hospitalization costs, the costs of physician services rendered to
both hospitalized and ambulatory patients, and the cost of drugs used to
treat complications. Costs also encompass the indirect costs associated
with excess premature mortality as well as the loss of productivity asso-

?

ciated with days of restricted activity due to the disease. The costs

of premature mortality are evaluated via a foregone earnings approach.*

* A foregone earnings approach also known as the "human capital

approach", calculates the present value of the expected fore-
gone earnings stream of a person dying at age % , as:

8 g 1%
= - >
PVE nEy Pﬁ,s(n) X Ys(n) % Es(n) x (7if for £ 16
(for 2 <16, start summation at n = 16)
where,
2 = age at death, s = sex of individual, Y = average
annual rate of increase in labor productivity; r = discount rate;
P2, s(n) = probability of a person in the general population
of age %, and sex s, surviving to a subsequent age n;
Ys(n) = mean annual earnings of employed people and

homemakers in the general population of age n and sexs, measured at
base year (1976) levels;

Eg(n) = proportion of the general population of age n,
and sex s, employed in the labor force or engaged in housekeeping
tasks;

PVE = present value of an individual's expected foregone
earnings discounted back to the base year.



Those of lost productivity associated with restricted activity are

based upon estimates of disease-related restricted activity derived

from a schedule generated by the National Center for Health Statistics.10
The costs of implementing an iamunization program are seen to include

the public expenditures for manufacturing and distributing the

vaccine as well as the cost of side effects due to the vacéine. In

our analysis, side affects costs are limited to the costs of minor
systemic reactions from the vaccine shot as reflected in restricted-
activity days and the cost of life-threatening vaccine complications

resulting in premature mortality.

III. Calibration of the Model

Disease Parameters

A baseline run of our deterministic epidemic model was possible
once values were specified for the initial population of infectives (Io),
the initial population of immunes (Ro), the contact rate (B), and the
removal rate (y). Sensitivity of results to alternative values will
be considered later. The value for one of these, Io, was by definition
assigned to be arbitarily small, in this case 0.17%.

Assigning values to two other paramters, Y and Ro, required an

interpretive search of the published literature.lo’ll’lz’13

A large
number of published sources offer empirical data from previous outbreaks
of influenza in the U.S. The various data sources are uneven in quality
and do not reflect readily comparable study designs and data collection
methodologles. Because of these differences, the use of statistical

estimating procedures in a meaningful fashion would have proven

difficult to defend. The most important data have been reviewed in
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the context of public policy implications for the control of
influenza.lO

From the best data available, we intentionally derived a value
for ¥y which, when run in the model, should have made broad-scale
immunization programs look less favorable compared to limited programs.
In this fashion, if our results justified broad-scale programs using
these conservative assumptions, then the conclusions should not
change when those conservative assumptions are relaxed., The removal
rate Y is the reciprocal of the average number of days during which
an infective is able to spread the disease. Although the commonly
reported duration of the infective period of influenza ranges from
1 to 5 days, the removal rate is also influenced by the number of
influenza infectives who happen to isolate themselves from contact
with others in the population before their infection dies out., A
value for the removal rate equal to 0.5, the reciprocal of two days,
has been used in this work.

To arrive at a value for Ro, the fraction of the population
already in the immune state at baseline, empirical data were reviewed
from previous flu epidemics, Previously published work has defended
the selection of a value for Ro that appropriately reflected the
severity of the perceived impending threat at the time when the 1976
public immunization program for swine influenza was 1aunched.1
Age-specific values for the fraction of the population initially
immune have been chosen and are presented in Table 1 along with a

summary of other baseline parameters calibrations. The average



value selected for the fraction initially immune in the entire
population in 1976 is 197%.

Determining a value for B, the contact rate, proved most
difficult. Once the numerical values for Io, Ro, and Y were decided
upon, a value for B, equal to 0.75, was selected both for compati-
bility with empirical data reported for actual influenza epidemics
occurring in 1957 and 1968 and for internal consistency with the values

10,11,12,13
selected for the other three parameters described above.

An estimate of the probability that an influenza epidemic would
actually occur was also needed. Prior to sensitivity analysis, we
estimated that probability to be 10%. This is consistent with the
estimate made by other researchers who used the Delphi technique to
ascertain the concensus of experts in infectious diseases concerning

the likelihood of a swine flu epidemic occurring in the U.S. in

1976.1

Cost Parameters

Cost parameters were also calibrated with the aid of published
estimates emanating from attempts to anticipate an impending 1976

swine influenza threat. >10»12>14

The assignment of initial
values for these cost parameters (sensitivity analysis will be
described later) reflected the long-standing belief held by many
medicai practitioners, researchers, and decision-makers that if
an influenza epidemic matcerialized, the largest fraction of the
costs incurred by society would be those generated by members of

high-risk groups. Table 2 identifies the categories of costs

accounted for in our model and also offers estimates for dollar
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costs attributed to high- and low-risk population groups. According
to our estimates, high-risk individuals would be expected to account
for approximately 44.0 percent of the $21.1 billion (1976 dollars)

in epidemic-related costs.

As mentioned previously, the entire U.S. population has been
divided into seven population segments. EFEach is characterized according
to the age and risk status of the group of individuals involved. The
different segments are charac;erized in Table 3 which summarizes the
values assumed in our baseline case for the cost parameters. Notice
that although, as mentioned above, population groupings designated
high-risk genefated 44.0 percent of epidemic-related costs, they
account for only 24.6 percent of the entire population.

IV. Results and Discussion

General Findings

The approach used for this analysis was to specify characteristics
of several hypothetical public influenza prevention or control programs
and to use our model to compare the resulting net benefits in dollar
terms. Because the original context for our analysis was the swine
influenza immunization program, we generated the expected net dollar
benefits associated with three alternative public influenza immﬁnization
programs that were actually considered by decision-makers in 1976.

Two of the programs, Programs A and B, are broad population programs
that address the issue of eliminating epidemic-associated costs by
averting the epidemic altogether. Program A would have offered vaccine
to the entire U.S. population. Program B excluded only those children
under 16 years of age who had not been identified as high-risk. The

third alternative, Program C, refers to a limited immunization program
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that would have reached only the high-risk segment of the population,
accounting for 24.6 percent of the total population. The results of
our analysis are summarized in Table 4. On an expected net benefit
basis, each of the three programs easily pays for itself. However, the
expected net benefits under both broad Programs A and B significantly
exceed those under limited Program C because of the former programs'
ability to avert all anticipated consequences of the epidemic. Program
B's total expected net benefits ($997.1 million) are in the same range
as those of Program A ($944.1 million).

Sensitivity Analysis and Discussion

To test the robustness of our results, a sensitivity analyéis was
performed on nearly all of the baseline values assumed for the model's
input parameters. Results from the sensitivity analysis concerning
three specific parameters warrant special mention because of the range
of uncertainty in the actual value of each of them. These parameters are:
acceptance rate of the vaccine; efficacy rate of the vaccine, and prior
probability of an outbreak of influenza.

Figure 1 considers the variation in expected net benefits from the
alternative programs as a function of the acceptance rate of the
vaccine. The acceptance rate is difficult to specify because there may
have been insufficient experience with public immunization programs for
influenza to make a reliable prediction of public willingness to submit
to immunization. From Figure 1 one sees that, assuming a constant efficacy
rate of the vaccine of 707, immunization Programs A and B achieve their
maximum expected net benefits with 20-30% of the target population

accepting vaccine. With Program C, however, over 807 of the target
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population is required to accept vaccine in order to achieve the same

1eﬁe1 of expected mnet dollar benefits as is reached by the other programs
at far lower acceptance rates. Even though, for Program C, 80% of the
targeted highfrisk population translates to only 20% of the whole U.S.
population, this result could be significant. Strategies for the

marketing of immunization programs might be very different if the goal was
a representative 307 of an entire population as opposed to 80% of a

special high-risk group. Furthermore, the mechanism for cost savings in
these examples is different. Cost savings in limited Program C would result
primarily from minimizing premature mortality costs and the costs of treating
the disease and its complications among the high-risk population. The
largest component of the costs averted in broad Programs A and B is

the indirect cost due to the productivity loss among younger members of

the population who, on a per capita basis, suffer less disability and

miss less work.

Figure 2 is a mapping.of the locus of vaccine efficacy rate and
acceptance rate combinations over which alternative immunization Programs
A, B, or C would be expected to yield the highest expected net economic
benefits. Like the acceptance rate, the efficacy rate of flu vaccine
has proven difficult to specify, in advance. As can be observed from
Figure 2, there exists a large domain of values for the efficacy rate and
acceptance rate over which broad immunization programs which target
the entire population dominate limited Program C, which targets only the
high-risk segments.

Finally, from Figure 3, we observe that large scale inoculation
programs can be attractive from the standpoint of expected net benefit
criteria even at estimates for the probability of occurrence of an epidemic

which are considerably lower than the 107% initially assumed, and become even more
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attractive as the probability estimates increase from 10%.

This work suggests that there may be real situations in which
broad public immunization programs for influenza aimed at the entire
population are preferable to limited programs directed at specific high-
risk segments of the population. In the context of the assumptions
called for in our model, we are led to ask under what circumstances it
would be easier to gain an acceptance rate of 20-30% of the whole population
as opposed to 80% of a high-risk group. As long as there continues to
be broad recognition by medical specialists of the importance of pro-
tecting a high-risk group, then one possible policy might be to gain as
high an acceptance rate as possible from among the limited Program C
population and to attempt to supplement this group with other population
members in order to attain 20-30% of the whole population required in
broad Programs A and B. There has been some recent attention in the
published literature of medicine and public health that questions the
value of making the distinction of a high-risk grouping for influenza.15’16
While the controversy is far from resolved, if those arguments were to
be accepted, the attractiveness of broader public immunization programs
for influenza epidemic prevention and control would be enhanced.

Yet to be raised is the issue of whether the findings of our work,
which assumes a severe flu threat as was anticipated in 1976 would hold
for less severe epidemics. When the model was calibrated with alterna-
tive, understated values for the key parameters, a considerably less
severe epidemic, in economic terms, was simulated. Even when the epidemic
is mild the findings suggest that the broad population programs coutinue
to compare favorably to the more limited ones.

Sensitivity analysis was also performed using the cost parameters

discussed earlier including the side effects costs and indirect costs
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indirect costs were caluculated using two different rates (6 and 10 percent),
Over a broad range of reasonable values, the major result described above
remained unchanged: broad Program A and B were clearly perferable to
limited Program C on an expected net dollar benefit basis.
V. Validation of the Model

The results of the sensitivity analysis described above ofler support
for the contention that broad-scale immunization programs should be worthy
of consideration when flu epidemics are anticipated. The significance
of this observation would be greatly enhanced if it were possible to

gain some empirical evidence of the applicability of the underlying epidemic model.

Ideally, it would be desirable to effect an empirical test of the
Kermack-McKendrick model comparing its predictions with data with the data
from the epidemics of influenza that occurred in the U.S. during 1957 and
1968. However, the quality of the data that are available from these

years makes it difficult to defensibly carry out such a test.

An important theorctical consequence of the epidemic model should be
amenable to verification. The structure and basic assumptions of the
moedel predict that non-immunized individuals should benefit each time an
additional susceptible accepts vaccine. Integrating over time, it should
be possible to avert an outbreak of disease altogether if less than the
whole population has been protected by immunization. The level of
immunity to the prevailing varieties of influenza virus can be
determined by blood tests conducted in a serology laboratory. When
influenza vaccine is made available voluntarily, one expects a
distribution of vaccine acceptance rates across the large number of
local communities offering the vaccine. It should be possible to design
a prospective field study that could give correlative data regarding a

community's level of protection against influenza and its 'performance"
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during an upcoming epidemic year. If the findings were consistent with
the predictions of the epidemic model, then strong support would have
been gained for the validity of the current application.

VI. Implementation of the Model

We now speculate about how our two-stage model might pbtentially

influence public policy toward the prevention and control of epidemic
influenza. Models such as this one can offer decision-makers an opportunity
to improve the effectiveness of immunization as a tool in reducing disease.

Decision makers did not, so far as we know, have access to an explicit
model at the time alternative policies for Swine Influenza were under consider-
ation in 1976. On the basis of our analysis, the decision to mount a broad-
scale immunization program was not unreasonable. Failure of the program did
not, as some unfortunately believe, imply failure of the broad program stratepy.
Had a high percentage of the public accepted the swine flu vaccine and had
there been no outbreak of disease, it might have proven difficult to decide
whether the epidemic had been averted or whether there had never been any
real threat of one.

Our model predicts that if an outbreak of virulent disease is feared,
broad-scale immunization programs might be warranted even at lower epidemic
probabilities than had been assumed in anticipating the swine flu. But,
if a decision-maker recommends and implements such a program and then
appears to have '"cried wolf," the success of future immunization policies
may be threatened.

Fortunately, the threat of epidemics of virulent influenza occurs
only once in a great while. A model such as the one used here need have
utility for the kind of decisions that are less dramatic and are faced
more frequently. Annually, there are choices to be made about the

allocation of limited stockpiles of vaceine and a model provides the
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capability of shedding light on the preferred strategy. Frequently, more
information is available than had been the case in anticipation of the
swine flu outbreak.

A model can also assist policy-makers by providing a framework to test
radical new strategies that had been proposed, but not previously used for
influenza. It has been suggested, for example, that immunizing school age
children might prove effective in preventing and controlling the disease.l7
Scﬁool children, it is argued, are a readily identifiable group and can
be expected to show a relatively high acceptance rate. Advocates of this
approach support their arguments with results from limited empirical field

18,1 . . .
19 When the model is used to analyze this alternative, our

trials.
finding is that this approach would have less to offer than vaccinating only

the high-risk and elderly population. The model predicts that an epidemic

will still occur even at very favorable levels of vaccine acceptance among

school children. Yet, the elderly and high-risk group has essentially been left
unprptected from the consequences of influenza. However, this alternative

may. deserve further investigation.

Finally, it is worth considering whether models could successfully be
developed to evaluate alternatives for the control of potentially a wide range of
infectious diseases through immunization. There has recently been renewed
recognition of the favorable economic benefits that accrue from preventing
disease instead of curing it.ZOImmunization has proven useful in eradicating,
through prevention, diseases such as small pox, and polio. The utility of
models. in decision-making lies in the real possibility that, in conjunction with
émpirical field research, they can improve the effectiveness with which

immunization programs are implemented.
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TABLE 2

L

ESTIMATED COSTS OF AN UNPREVENTED SWINE INFLUENZA

EPIDEMIC FOR THE LOW-RISK, HIGH-RISK

"AND TOTAL POPULATION:*+

Cost Category

Direct Costs:
Physician Services
Outpatient
In Hospital
Hospital Services
Prescription Drugs

Total Direct

Indirect Costs:
Premature Mortality
Lost Productivity due
to Restricted Activity

Total Indirect

Total, Direct and Indirect

*Using base case value for model's input parameters.
P

T in 1976 dollars.

Low-Risk
Population

($000,000)

$ 196
33
327
80

$ 636

1,714
4,425

$6,139

$6,775

+Addpted from references 6, 7, 8.

High-Risk Total
Population Population
($000,000) ($000,000)

$ 53 $ 249

64 97

727 1,054

23 103

$ 867 $1,503

3,109 4,823

L.342 5,767

$4,451 $10,590

$5,318

$12,0093

18

All costs expressed
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TABLE 4:

SAVINGS IN COSTS AND EXPECTED NET BENEFITS THROUGH
INFLUENZA IMMUNIZATION PROGRAMS (HYPOTHETICAL) A, B, AND C*+

Program A Program B Program C
($000,000) ($000,000) ($000,000)
Direct Costs
ePhysician Services
Outpatient S 249 $ 249 $ 139
In-Hospital 97 97 64
eHospital Services 1,054 1,054 702
ePrescription Drugs 103 103 58
Indirect Costs
ePremature Mortality 4,823 4,823 3,043
eLost Productivity due
to Restricted Activity 5,768 5,768 3,225

Estimated Total Cost Sav-

ings Given Epidemic 12,094 12,094 7,231
eExpected Benefit of Pro-

gram (with likelihood of

epidemic at 10%) 1,209.4 1,209.4 723.1
Program Costs 215.1 162.6 53.0
Side Effects Costs 50.2 49.7 9.0

eExpected Net Benefits of

Program 944.1 997.1 661.1

*All costs expressed in 1976 dollars.
+Output from simulation.
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