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1. Introduction

In formulating and estimating macroeconomic models, researchers tend to

either ignore or just mention the problems of aggregation over individuals.

Instead, linear relationships are fit to aggregate data, with the coefficients

interpreted as representing individual behavior. As the aggregate data often

fails to reject the form of such equations, the view that the aggregation problem

is of secondary importance is confirmed.

Such an inference, however, is not justified. The true relationship between

aggregate data is the result of averaging individual (micro) behavior across the

population distribution for each time period. A linear aggregate relationship

can arise in a number of situations. A sufficient condition for aggregate

linearity is when each agent is characterized by a common linear model, which is

also necessary if the distribution can change over time without restriction. 2 If

individual behavior is nonlinear, then a linear aggregate relation can result

if the movement of the distribution obeys certain restrictions (c.f. Stoker (1980)).

Usually, the form of such restrictions will depend on the nonlinear form of micro

behavior.3 However if the distribution movement obeys a simple form of trending

(known as linear probability movement), the true aggregate relation will be

linear regardless of the form of individual behavior.

These points indicate a difficulty in the interpretation and application of

estimated macroeconomic equations. When the movement of the population distri-

bution is limited, it is possible for a linear model to describe the observed

configuration of aggregate data quite closely, although the underlying individual

behavior is nonlinear in form. As shown later, in this situation the macro

coefficient estimates will depend not only on the form of micro behavior, but

also on the actual pattern of distribution changes underlying the aggregate data.

Consequently, the use of such coefficients for forecasting or policy analysis

implicitly assumes the extension of past patterns of distribution movements. In

most applications there is no reason to believe that such patterns will continue --
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on the contrary, many studies concern economic events (such as oil price shocks)

or policies (such as tax changes) which likely involve a substantive change in

the underlying population distribution.

In order to assess the extent of this problem in an application, a charac-

terization of micro behavior, or at least a test of micro linearity, is necessary.

The above discussion indicates that such a characterization is not possible with

aggregate data alone, and requires some additional type of data input.

If the additional data is in individual, cross-section form (for one time

period), then it is possible to test for linearity directly, as indicated in

Stoker (1981). Even if linearity fails, conditions of asymptotic sufficiency

imply that cross-section OLS coefficients provide the proper effects for short-

term forecasting. But while providing one method for testing aggregation con-

ditions, this approach is not without flaws. First, the quality of the individual

data may be questionable, or it may be definitionally incompatible with the

average data. Second, the actual movement of the underlying population distri-

bution is not observed.

The purpose of this paper is to discuss a different approach to testing

micro linearity. Often, in addition to the average macroeconomic data, there

exists data on the population distribution over time, usually via observations

on the proportions of agents in a cellular breakdown of the distribution. ere

we indicate how the data on proportions can be used together with the average

data to test for linear micro behavior.

Perhaps an example will best illustrate our conclusions. Suppose that the

relationship between average food consumption and average income is of interest,

and that our theory states that food consumption is a stable function of income

for individual families (ignoring prices and other economic variables for

simplicity). As data, we have time series of average food consumption, average

income and the proportion of agents in N > 2 cells of the income distribution

(say, those agents with incomes less than $5,000, between $5,000 and 10,000,
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etc.). How can these data be used to test the linearity of the micro food

consumption-income relationship?

Here we show that regressing average food consumption on a constant, average

income and N-2 of the proportions can indicate the micro behavioral structure.

In particular, the coefficients on the proportions indicate the deviations of

the micro food consumption-income function from linearity. If any of the proportion

coefficients is significantly different from zero, micro linearity is rejected.

Whether micro linearity is rejected or not, more can be learned from further

scrutiny of the above test. If we fail to reject linearity, and the constant-

average income-proportions moment matrix is of full rank N, then micro linearity

is strongly confirmed. If the matrix is of less than full rank, then the distri-

bution movement is restricted, and the linearity of the micro food consumption

function is not assured. If, assuming that average income is not constant over

time, the moment matrix is of smallest rank 2, then the distribution obeys linear

probability movement, and the micro behavior, while possibly linear, could be of

any form. In these latter cases, the only method of characterizing micro behavior

is with individual data.

If micro linearity is rejected, then the same technique can be used to test

whether individual food consumption is a more general function of income, say a

linear function of income and income squared.5 This is done by regressing

average food consumption on a constant, average income, the second moment of the

income distribution, and N-3 proportions; -- proceeding as before. If linearity

here is rejected, one can continue to add statistics of the income distribution

and test for linearity in up to N-2 statistics, the most these data could

distinguish. In this way the micro behavior can be characterized, as much as

the available evidence will permit.

We begin the exposition by introducing the notation to be used, starting

with the case of a discrete population distribution. We next investigate the

regression of the observed proportions on the average explanatory variables,
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which will later serve as auxiliary regressions, and which also indicate the

relative gain in fit (via residual variance) of aggregate (time-series)

regressions over individual (cross-section) regressions. We then discuss the

linearity test, showing our various conclusions. Next, changes are indicated

in the interpretation of the test when the underlying distribution is continuous.

Finally, we close with a summary and discussion of additional topics.

III
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2. Preliminaries

We begin by assuming a dependent quantity x, which is determined by an

independent quantity A through a micro behavioral function x = x(A). A is

assumed to be a scalar variable for simplicity, and the function x(A) is

assumed unchanging over time t = 1,...,T. We assume that the population

distribution in each year consists of N discrete cells, with Pit denoting the

proportion of agents in cell j in year t. Each agent in cell j has A = Aj

where without loss of generality A A., for i j, and x = x = x(A.). It

is convenient to form the vectors A' = (A1,...,AN), x' = (xl,...,xN) and

Et = (Plt" 'PNt)

The mean of A in year t is denoted t, where Et(A) = t = A'pt. The

mean of x in year t is denoted Et(x), where Et(x) = 'pt. We assume that

T N, N > 2 and that t is not constant for all time periods. Finally, in

Section 4 we will assume that xt = Et(x) + vt is observed, where vt is normally

distributed with mean 0 and variance a , uncorrelated with t and uncorrelated

over time.

In the example referred to in the Introduction, x denotes family food

consumption, A denotes income and at a proportional breakdown of the income

distribution. A is the vector of average income over cells, and x is the

vector of average food consumption over cells, where, for the moment, each

vector is assumed constant over time. ~t is average income and Et(x) and

xt are true and observed average food consumption, respectively. The macro

function is the relationship between Et(x) and pt' induced by the movement of

the population distribution t

In order to characterize this relationship, we require some results of

Stoker (1980), concerning the orthogonal decomposition of pt. Let i denote

the N vector of units, and write A uniquely as A = Ai + A , where A = EA./N,

and A'i = 0. In Stoker (1980), it was shown that Pt could be written

uniquely as

(2.
Pt = '+ pt (2.1)

__
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where D(vt ) = (t - A)/A'A, and ipt = A'pt = 0.

The first two terms of this decomposition are the same for any density vector

obeying Et(A) = t' with all differences in such distributions appearing in

the pt term, which is orthogonal to i and A.7 x is decomposed uniquely as

x = xi + bA + x (2.2)
Xi

where x = x(A.)/N , b = x'A/A'A and x 'i = x 'A = 0. From (2.1) and (2.2) we

have that

Et (x) = t + bD(t)AA + x ' = (x - b-) + b + x 'p (2.3)

It is useful to illustrate the structure of (2.1) and (2.2) graphically.

In Figure 1 we have graphed a possible x = x(A) function for N = 5. The first

two terms of (2.2) represent the points lying on line a-a, the fitted line

from "regressing" x(A.) on A. and a constant. The numbered "residuals" (deviations)
J J

are the component of x . Clearly, x = x(A) is a linear function of A if and

only if x is zero, in which case (2.2) and (2.3) become:
-n

-x = xi + bA (x - bA)i + bA = ai + bA

Et(X) = xt = a + bt (2.4)

In Figure 2 we have plotted a possible Pt' t=l,...,T; sequence for N = 3

and T = 5. In Figure 2a, we show the unit simplex S = {i'p =1 p 0} , the

T = 5 distribution points, and the vectors i and A. In Figure 2b, we show the

unit simplex S in two dimensions. Referring to eqn. (2.1), the i term places

the Pt vectors in the unit simplex. The term D(lpt)A indicates points along the

line a-a. The p terms indicate the orthogonal deviations of the actual density

points Pt, from the line a-a. Further, the invariance of the first two terms is

reflected in the fact that the position on a-a corresponds to the value of t -

in Figure 2b, if p is such that A'p = P2, then p must lie on line c-c.
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As mentioned in the Introduction, a linear macro relation can result with a

nonlinear micro function if the underlying distribution movement is restricted.

The extreme form of distribution movement, termed linear probability movement

(LPM), occurs if pt follows a linear function of t; i.e. there exist vectors

c and d such that t = c + d t' This implies that the density vectors Pt lie

along the same line in S, such as b-b in Figure 2b. In this case, the macro

relation (2.3) appears as:

Et(x) = 'Pt = x + bD(it)A + x '( + d- )

= ( - bA + x 'c) + (b + x 'd)u
--n --n - t

= a + b*P

Note that x is not necessarily zero, i.e. this result holds for any nonlinear

x = x(A) function. This completes the presentation of notation and preliminary

results.

In Section 3, we show how data on pt and pt can be used to investigate the

possibility ot restricted distribution movement. In Section 4 we show how xn

can be estimated from data on xt, t and Pt, and in particular, how x = 0 can

be tested, the case of linear micro behavior.
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3. Studying Distribution Movement

In this section we assume that we observe pt and it for t = 1,...,T. Our

interest is in studying whether the movement of pt is restricted. This is

trivial if the pt series strictly obeys LPM, as the difference t, - t must

be (t' - Pt)d, for all t,t' with d a constant vector. But what are the

implications if the Pt series is "close" to LPM, and how should we define "close"?

We begin this inquiry by supposing that c and d are arbitrary vectors of

constants, and defining the vector ut as:

= - c - d Pt N- -t - - t
-t t t ---t -- -

Without loss of generality, we can assume that c'i = d'i = c'A = d'A = O, so

that ut lies in the N-2 dimensional subspace of RN orthogonal to i and A.

Our object is to choose c and d so as to describe pt as an LPM process as

closely as possible. Regressing each component of -t (or at) on t and a

constant appears to be a good idea, as the components of u are each made small,

but why is this the proper metric? We now justify this procedure by a least

squares argument pertaining to the macro variable Et(x).

Suppose that x = x(A) is a given function, i.e. x = xi_ + bA + x is given.

f
Define xt as:

fc) + (b + x'd) (p t
= XIE - u ) =(x - bA + x 'c) + (b + x 'd) t

xistfite 
enx tlzn 

h nain

Xt is the fitted mean x, utilizing the invariant

d. By definition we have that

coefficients of Pt plus c and-t

f
Et(X) - t = xn -t

and so

(E t ( x) - ' 2 =t) 2 (x ' 12 l t12t .x - t --n --t--

by the Cauchy-Schwartz inequality. Summing over t=l,...,T gives:

E(Et(x) - xt ) 2 < Ix12 E t I2 (3.1)
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The bound (3.1) on the average sum of squares will be "tightest" (for a

given x) if we choose c and d to minimize Eut12 . But this is computationally

equivalent to choosing the components of c and d from OLS regressions for

j=l,...,N, of Pjt on t and a constant, t=l,...,T. Clearly, the same estimated

residuals ut are obtained from OLS regressions for jl,...,N of pjt on pt and a

constant. Figure 3 reproduces Figure 2b, where now line b-b represents the

fitted distribution vectors, and the residual vectors u1 ,..., 5 are noted.

In addition to justifying OLS as above, the bound (3.1) is informative

about the difference between the fit of an unweighted cross-section regression

of x(Aj) on A, and a time-series regression of Et(x) on t Let x be the
A ' t

fitted value at time t from regressing (the true) Et(x) on t and a constant.

Then, since xt is a linear function of lt' (3.1) can be expanded to:

f2 22 2
Z(Et(x) - xt )2 < E(Et(x) - x2 1 Ixl 2 utl (3.2)

By considering the Gauss-Markov Theorem, it is easy to see that if c and d are

fchosen by OLS as indicated above, that xt = xt , t=l,...,T, and so the left

inequality of (3.2) can be replaced by equality. Define the average aggregate

residual variance as:

(E t (X) - x 0)2
ARV =

Now, in Section 2 it was indicated that the components of x could be
-n

viewed as residuals from an unweighted regression of x(Aj) on A, j=l,...,N.

If a cross-section data base consisted of M agents in each of the N cells,

then the average residual variance from regressing x on A and a constant would

be:

CRV = Ixn12/N
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Thus (3.2) can be rewritten as:

Zlu 12
ARV CRV N (3.3)

T

Now, if the micro function x = x(A) were exactly linear, then CRV = 0 and

ARV = O. Otherwise, we have

ARV Zfut 
CR < N (3.4)

T

Equation (3.4) gives the relative gain in fit between an (unweighted) cross-

section regression and a time-series regression due to aggregation, when the

underlying micro function is nonlinear. Note that if the distribution follows

LPM exactly, then Itl = 0 for all t, and ARV = O, independent of the value of CRV.

Unfortunately (3.'4) is not a strong theoretical tool, as there are circum-

stances when the right-hand side is relatively large. But for "reasonable"

values of N, T and u, (3.4) indicates a substantial gain in fit from aggregation.

For example, suppose that N = 10, T = 20, and that the standard deviation of the

proportion residuals ujt is .01 (one percent of the population). In this case

E/lt2 < .02, and

ARV
CRV .

so that the time series standard error is less than one-tenth the cross-section

standard error. Whether one views these numbers as reasonable or not, the main

importance of (3.4) is that it holds for any (nonlinear) function x = x(A), and

using data on proportions to get the u , the right-hand side of the bound is
--t

calculable, and so may indicate the extent of standard error differences due

8to aggregation. Do bear in mind, however, that CRV represents unweighted

(between) cross-section residual variance and that ARV represents the true aggre-

gate variance, omitting aggregate disturbances.
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To close this section, we raise one more issue concerning the interpretation

of the regressions of proportions on t and a constant. For purposes of the

linearity test, presented next, we see these regressions only as auxiliary

regressions, absent a formal model of distribution movement. If, however, it

is believed that past distributional trends and policy effects should follow

a linear process in t up to a stochastic component, then a multivariate

regression model is appropriate to estimate the trend parameters. The only

assumption crucial to the next section is that Et(x) has been formed from the

observed proportions, and not just the parametric model. Otherwise, an errors-

in-variables problem appears with respect to the proportion data.
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4. Testing Micro Linearity

The true model determining xt, t=l,...,T is

Xt = xt + Vt (4.1)t -- t t

where x represents fixed coefficients of the distribution proportions t and

vt is the disturbance introduced earlier. For now we assume that the TxN matrix

P with t row Pt' is of full rank N. Later this assumption is relaxed, and

its implications discussed.

Under these assumptions, we see that BLUE estimates of x can be obtained

by regressing xt on t (without a constant). Of more central interest, though,

is the relationship between xt and t' the mean of A. From our previous develop-

ment, (4.1) can be rewritten as

= (a + x '-) + (b + x ') +x + t (4.2)
-7 · -n -- t -n -t

with x ai + bA + x, and c, d and 6t the estimated coefficient and residual
-- -- -- --n -- t

vectors from the auxiliary proportion regressions pt = c + dpt + u t . Since u

is uncorrelated with both t and the constant by construction, estimating

xt a + bt +et

by least squares yields a" and 6*, where

E(a*) = a + x--n -

E(b*) = b + x 'd

Thus, the estimates of a* and b* depend on three factors; the behavioral coefficients

a, b, the nonlinearity of x = x(A) (through x ) and the movement of the underlying

distribution (through c and d).

This illustrates the general notion that if microeconomic behavior is non-

linear in form, the estimated coefficients of a linear macro function (such as

(4.3)) will depend on the empirical history of distribution movements. Moreover,
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it is easy to see that a forecast from such an equation will be unbiased only

if the future distribution movement extends the pattern of past distribution

movement.9 Since forecasts often involve evaluating effects of different policies

(such as tax changes) or of outside economic shocks, assuming such regularity in

future distribution changes may not be warranted. In this situation, micro

linearity is virtually mandatory for confidence in forecasts from linear macro

equations.

Testing micro linearity in our framework amounts to testing whether x = 0.
-n

With reference to equation (4.2), we could include the proportion residuals u
-t

as regressors in the macro equation, but this suffers from collinearity through

the relations i'u = A' = O. This implies that f'x is estimable only if
---t - -t - --n

f'i = fA= O. But this suffices for our purposes, since by construction we have

i'x = A'x = 0. Therefore, BLUE estimates of x (and a ,b*) are obtained by

performing the regression of xt on t, ut and a constant, constraining the ut

coefficients to obey i'x = A'x = O. (The details of this procedure are pre-
---n -- n

sented in the Appendix.) x = 0 is then tested by a conventional F test. More-
-n

over, by the mechanics of least squares, we can replace it by t in the above

procedure, dispensing with the need to calculate t

A much simpler technique is to omit two of the proportions, including only

N-2, which we collect here as a vector Pt". That is, we estimate by least

squares the model

Xt a' + b'nt + x 'l (4.4)

The new coefficients x are unconstrained, and are connected to the original

coefficients x via
--n

weMxe =i at x

w na xn--

where M is a nonsingular matrix that depends on A (see the Appendix).
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Therefore x = 0 if and only if x "= 0, and so the standard F test of x = 0
--n --n --n

provides a test of micro linearity. This procedure avoids having to perform a

constrained regression, and provides a test of micro linearity which does not

require knowledge of the vector A. A must be known to transform the estimates of

x * to estimates of x (for constructing M), but not for testing x = 0, the case
--n --n --n

of most interest.

The problems of restrictions on distribution movement discussed earlier

manifest themselves empirically in a reduced rank of the matrix P. If the rank

of P is N-l (since t is not constant over time), then there exists such that

'u = 0 for all t, with a'i = a'A = O. In this case f'x is estimable in the
- -t .

constrained regression if and only if f' = f'i = f'A = O. Thus, the nonlinear

coefficients are not all identified. This situation clearly imparts a similar

lack of identification to the coefficients in the unconstrained regression

technique (see Appendix for details). The extreme form of this problem occurs

when the rank of P is 2, which implies that u = 0 for all t. In this case no

linear combination of the x coefficients is estimable. This is nothing more
-n

than the case of LPM discussed earlier.

This discussion points out that difficulties in discerning nonlinear micro-

economic structure arise from a classical source, namely multicollinearity. The

extreme forms of collinearity or distribution restrictions discussed above forbid

identification of certain linear combinations of x . Even if the rank of P is N,
'-

limited movement of the distribution in a direction c will result in 'x not

being estimated precisely. From an analysis of the proportion residuals t, it

may be possible to discern which combinations of x will not be estimated precisely,

and a priori considerations used to mitigate the problem. But if the data is

weak, there is no easy empirical resource. If the problem is severe (as with LPM),

either more aggregate data must be obtained, or attention turned to a different

data source, such as cross-section data on individuals.
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So far our discussion has centered on the use of only a single statistic t

to describe the movement of xt. If either linearity of micro behavior is

rejected, or if other variables (other than A) are thought to affect x, then the

micro linearity of x in several variables can be studied. In particular, suppose

that the basic model is x = x(A,B), where each agent in cell j has B = B, and
J

B = (B1,...,B)' Denote the mean of B as t Bp Now, as long as i, A and

B are linearly independent, a regression of xt on a constant, Pt vt and N-3 of

the proportions can be used to test linearity of x = x(A,B) in both A and B.

That is, we estimate

x= a + b + CV + + (4.5)
x t t -n Pt t

where P** is the vector of N-3 proportions, and test for x = O.-t n

If micro linearity of x in A is rejected, then a plot of the estimates of x--n

can indicate how to revise the model. As in the example cited in the Introduction,

if such a plot indicates parabolic curvature, then B = A2 can be chosen, with

V = p tA. In this case, a test of x; = 0 (of (4.5)) is a test of whether x

is a quadratic function of A.

As above, in the case where rank P = N, one can test the linearity of x in

at most N-2 variables (plus the constant). N-1 variables (plus the constant)

will exhaust all the available degrees of freedom of the observed N proportions.

Moreover, if when a certain number of distribution statistics are included, a

problem of multicollinearity (imprecise estimation). arises, then including more

statistics will only make the problem worse. However, subject to these consid-

erations, a rather complete characterization of the micro behavior consistent

with the aggregate data is possible by our techniques.
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5. Complications of Continuous Distributions

In an empirical investigation of aggregation structure, the analyst is

likely to encounter problems not covered by our basic setup. For instance,

there may be variables common to all agents in each time period which affect

behavior, such as prices or general economic conditions. Thus the problem of

varying behavior (i.e. changing functional form of x = x(A)) must be faced as

well as the aggregation problem.

The issues connected with changing functional form will vary from one appli-

cation to another, and so we refrain from discussing them here. A related

problem refers to when the basic (within cell mean) vectors x and A vary over

time. This can occur if the actual variation in the predictor variable A is

continuous, but the distribution is only observed as cell proportions over time.

In this section we indicate potential biases in our test of micro linearity

when the true underlying distribution is continuous.

For this discussion we must expand our notation slightly. As before,

j=l,...,N indexes a cellular division of the population, with jt the proportion

of agents in cell j at time t. A is a continuous random variable distributed across

the population, with Ajt = Et(AIj), j=l,...,M, denoting the within cell means of

A at time t. x = x(A) is a stable behavioral function, and xjt = Et(x(A) j)

j=l,...,N are the within cell means of

vectors Pt, At = (Alt,...ANt)' andt

and x at time t are given as t = Et(A)

assume that Pt' Pt and xt = Et(x) + vt

If A and x are constant over all
-t -t

applies, with a test of (between cell)

of equation (4.4). But suppose that th

vary -- is the test of (between cell) 1

such estimation is subject to biases, p

x at time t. As before we form the

= (Xlt...XNt)'. The overall means of A

= A t ' , Et(X) 
=

t 'p t. As before we

are observed for each time period.

time periods then the previous analysis

micro linearity provided by the estimation

is estimation is performed when Lt and At

inearity still valid? We show below that

ossibly invalidating the linearity test,

with the source of bias a familiar one to students of aggregation theory.

III
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¥We must first reinterpret the coefficients a, b and x of (4.4). Ideally,
--n

we would like a characterization of the entire function x = x(A), or at least a

description of the relation between x and A for each time period. This is not
-t -t

possible by our previous method (with A varying), since the orthogonal decom-

position (2.1) changes each period. Instead, since the function x = x(A) is

unchanging over time, we consider the relation between the time averages of the

within cell means of x and A, defined as xm = Ex /T and Am = A /T. The (between
t t

cell) "average" micro relation is

xm = ai + bAm + x (5.1)

which provides an interpretation of x of (4.4). We can define the

overall means of xm and Am as E(xm) = m', t ; Et(Am ) = t = AmPt ; and pretend

that t and xt = Et(x) + vt are observed. The model corresponding to (4.4)

with (5.1) as a basis is then:

-m m *
Xt a bl t x + t (5.2)

-m m
If x and were actually observed, then estimates of the "average" parameters

t t

a',b'and x would be provided by least squares, and x * = O could be tested.
-n --n

If x " = 0 were rejected, then we clearly must reject that x = x(A) is a linear
-n

function.

--- m
The actual estimation is performed with xt and t, instead of xtm and t 

With (5.2) as the "true" model, the model relating the observed data is

t a' + b't +x + v (53)n t -nt t

where t = Et(x) - Et(xm) '(lt itm)] Estimating (4.4) with the observed

data omits yt, and thus correlation between yt and ut or Pt would lead to

biased estimates, with the test of x * = O invalid.-n

:i9�yDsran�� rar�=�nrr�----�---�olllrcra�-�-·�-*arm -·· �I_�_�_
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We can learn more about the size of this problem by writing yt as:

N
Y = E Pjt(xjt mxjb (Ajt jy X p. (xj m b(A - A.m))
t jl t t -j it J

Yt is thus the average error in predicting variations in the within cell means

of x with variations in the within cell means of A and the average slope coefficient

b'. If such errors tend to average to zero (or a constant over time) or if large

errors occur in small probability cells (i.e. x(A) is linear over heavily populated

cells), then yt will be small and biases relatively unimportant. Alternatively,

if we can consider the function x = x(A) to have constant slopes b, j=l,...,N

within each cell over the range of variations of Aj, j=,...,N, t=l,...,T, then

Yt appears as

N
¥Y T= p. (b. - b')(A - A m)

jl Jt bJ jt J
j=l

which is the average product of deviations in the slopes of x(A) and the deviations

of A. The form of this term should be familiar to readers of H. Theil, whose
Jt'

consistent linear aggregation conditions require the overall covariance of pre-

dictor variables and slope coefficients to vanish. 0 Again if large deviations

occur in small probability cells, yt is likely to be small.

The above discussion with regard to the size of t essentially bounds the

possible biases, with actual biases depending on the correlation between t and

~t or Pt. At any rate, we should expect that if x(A) is a relatively smooth function,

then the yt term will be smaller for finer cellular partitions (larger N) of the

domain of A, since the time variation of each term of xt and At should decrease.

One final point is that even if the estimated coefficients of (4.4) are

biased, multicollinearity in the pt data still indicates restricted distribution

movement as before. In this case the estimation is subject to both the above

bias problems and the more fundamental lack of identifiability of the nonlinear

micro effects.
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6. Summary and Extensions

In this paper we have introduced a new method of studying aggregation prob-

lems in empirical work. The key feature of this approach is the formal incorpo-

ration of distribution movement into macroeconomic relations.

We have shown explicitly that ignoring the aggregation problem in estimating

macroeconomic relations can lead to biases (if micro behavior is nonlinear) which

make forecasting or policy analysis from such equations problematic. A method

was provided for studying these issues through testing for micro linearity, when

the distribution movement is sufficiently varied.

A limited amount of variation in the underlying distribution will force the

estimates of the nonlinear effects to be imprecise, and in the extreme case of

restricted distribution movement, certain nonlinear effects will not be identified.

Such problems arise because of the equivalence of distribution restrictions and

multicollinearity in our procedure. Moreover, we have found a theoretical link

between average time series variation and individual cross-section variation, by

studying the consequences of limited distribution movement.

Although it is hoped that these considerations provide some headway into

studying aggregation issues, it is clear that our basic (static) framework is

much too simplistic to address many current problems of macroeconomics, as well

as production and demand analysis. The framework must be extended to accommodate

a number of additional problems, such as distributed lags, simultaneity and

external effects in the behavior of individual agents. We conclude the paper

with a few cursory remarks on these areas, in order to motivate further study.

For each of these topics, it is likely that aggregation problems can be

very severe. Consider first the case where agents behave with respect to a

number of lags in a certain variable. A moment's reflection will reveal that if

such behavior is nonlinear, then the number of (averaged) lags in the true macro

relation can be either greater than, equal to, or less than the number of lags

considered by individual agents. Here linearity tests must be directed toward

.rL�i*rrys��arsp� � __��_�__�
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the identification of the length of individual lag structures as opposed to

aggregate lag structures.

Usual textbook examples of simultaneity in econometrics, such as supply

and demand interplay, must be re-examined as to whether they arise from indi-

vidual behavior or aggregate consequences of individual behavior. The task

of modeling such detailed interactions is likely to be monumental, and must

address the issues of whether the population distribution is endogenous.

The problems of external economies or diseconomies in individual behavior

lie in a rather fundamental change in the definition of the correct macro-

economic relation. Although there is substantial theoretical discussion and

some progress on empirical techniques in this area, the issues of distribution

and behavior change have not been resolved. This topic, however, may be the

most important, as many current theories of the macroeconomy are based on the

use of aggregate data by individual decision makers.
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APPENDIX: OMITTED FORMULAE

In this Appendix we present some formulae relevant to the estimation of

Section 4. Although our discussion utilizes u as predictors, bear in mind

that for estimating the nonlinearity effects x , it is equivalent to replace
--n

t by Pt.

Constrained Estimation of Equation (4.2)

Least squares subject to an identifying constraint is a standard technique

(c.f. Scheffe, The Analysis of Variance or Theil, Principles of Econometrics),

and so here we present only the formulae for the estimator. LetX be the T x 1

matrix with tTH element xt, W be the T x (N+2) matrix with t
T row Cl,pu ], H e

the matrix of constraints

001 1 ... 1
H =

O O A A2 ... A

and n = [a*,b*,x ]' be the parameters to be estimated. Then we seek n hich
-n

uniquely solves

W'Wn = W'X ; H; = O

n is given as

n = (W'W + H'H) W'X

The Transformation of x * to x
-n -n

In this section we present the matrix M for transforming x values to x

values. We assume that the first two components of u are dropped in order to

estimate x *. Partition u and x into vectors with 2 and N-2 components as
--n -t -n

u (uu ) and x = (x ,x ). Let K denote the matrix
-t -(_1t , an-t -- 2

[A t [ ]1 

where K1 is a 2x2 matrix, and K2 a 2x(N-2) matrix.

���____�_ __



Now, if J denotes the matrix

J =

then J is nonsingular and

Ju =
T-t

Therefore

x 'u = (x J )(Ju ) = xIu-n -t n -t -n -t

where x = x
-n =-2

' -1
-K K Kx.x Solving for x from x " amounts to solving the system

--n -n

K1 K2

-K2 K1 IN-2

K1
M =

-K2
2

K1 -
1

K2

IN-2

With the above development, the remark in Section 4 on the identifiability of

x" is trivial:
--n

Suppose a'ut = 0 for t=l,...,
- -t

T, where a'i = 'A = O, then

0 = a'u
- -t

= ( 'J- )(Jt) = ut*-t - - t~~~·f

so that B'x * is not identified.
---r
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· K1 K2

.0 IN-2

0

- t

so that

X
0

x
LJ
0 

-
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FOOTNOTES

1. In this paper we use the terms "aggregate" and "average" interchangeably,

although the issues (and results) apply to studies of "total" variables.

From a practical standpoint, we refer to usual macroeconomic relations,

such as consumption and investment functions, as well as "microeconomic"

studies of average production or demand.

2. See Lau (1980) for a proof of this result. The linearity condition is

known as an exact aggregation condition; see also Muellbauer (1975,1977)

and Gorman (1953), among others.

3. A well-known example of this is found in the consistent aggregation approach

of Theil (1954), where agents behave with respect to differing linear micro

functions, and aggregate linearity is assured by the assumption that the

covariance between slope coefficients and predictor variables vanishes.

Note that our use of the term "linear micro behavior" refers to a common

linear model for each individual agent. We return to this point in Footnote 10.

4. These problems with estimated macroeconomic relations have been discussed

in partial form before. Certain sections of Theil (1954) and the chapter

on aggregation in Allen (1965) indicate awareness of these problems. The

essential structure of this argument is presented in the pioneering article

de Woolf (1941). Finally, it should be noted that this criticism is distinct

from that of Lucas (1976), where it is argued that behavioral parameter

change will render estimated macro equations ineffective for policy analysis.

5. As indicated in Section 4, if the within cell means of income are observed

and constant, one can solve for estimates of the actual deviations from

linearity of micro food consumption. These deviations can then empirically

indicate how to generalize the individual (and aggregate) model.

"Vl�cara·�--ra-�� ��_ �_��______ ____
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6. There is rather substantial literature on aggregation problems in econometrics;

notably Grunfeld and Griliches (1960), Kuh (1959), and Kuh and Welsh (1976)

among others.

These studies begin with the consistent aggregation approach of Theil (1954),

which does not focus explicitly on the distributional aspects, as does our

approach. Certain aspects, such as the "synchronization" effect noted by

Grunfeld and Griliches, are present in our current analysis (see Section 3,

Note 8).

7. Note that (2.1) does not restrict the form of the distribution vector Pt,

other than to reflect the condition t = A'p .

8. The inequalities (3.2) and (3.4) illustrate the "synchronization" effect

of Grunfeld and Griliches (1960) in our format.

9. Notice that this is true even if c = d = 0.

10. Note that in the consistent aggregation framework (Theil (1954)) if the

within cell covariances of slope coefficients and predictor variables

do not vanish, the between cell micro relationship can be nonlinear.
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Illustration of the x Decomposition (2.2)
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Illustration of Probability Regressions
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