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ABSTRACT

This paper analyzes how a firm should adjust its marketing expenditures

and its price to defend its position in an existing market from attack by a compe-

titive new product. Our focus is to provide usable managerial recommendations

on the strategy of response. In particular we show that if products can be repre-

sented by their position in a multiattribute space, consumers are heterogeneous and

maximize utility, and awareness advertising and distribution can be summarized

by response functions, then for the profit maximizing firm,

e it is optimal to decrease awareness advertising,

o it is optimal to decrease the distribution budget

unless the new product can be'kept out of the market,

* a price increase may be optimal, and

* even under the optimal strategy, profits decrease as a result

of the competitive new product.

Furthermore, if consumer tastes are uniformly distributed across the spectrum

e it is optimal to decrease price in regular markets,

* it is optimal (at the margin) to reposition by advertising,

in the direction of the defending product's strength and

* it is optimal (at the margin) to improve product quality in

the same direction.

In addition we provide practical procedures to estimate (1) the distribution of

consumer tastes and (2) the position of the new product in perceptual space from

sales data and knowledge of the percent of consumers.who are aware of the new

product and find it available. Competitive diagnostics, such as the 'angle of

attack' are introduced to help the defensive manager.
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1. PERSPECTIVE

Many new products are launched each year. While some of these products

pioneer new markets, most are new brands launched into a market with an existing compe-

titive structure. But there is no reason to expect the firms marketing the existing

products to be passive. The new brand's sales come from the existing products' market

shares or from foregone growth opportunities. In fact, for every new brand launched

there are often four to five firms (or brands) who must actively defend their share of

the market. this paper investigates how the firms marketing the existing brands should

react to the launch of a competitive new brand. We will refer to this topic as defensive

marketing strategy.

The offensive launch of a new brand has been well studied. See for example

reviews by Pessemier (1977), Shocker and Srinivasan (1979), and Urban and Hauser (1980).

Good strategies exist for brand positioning, the selection of brand features and price,

the design of initial advertising strategies, and the selection of couponing, dealing,

and sampling campaigns. But the analysis to support these decisions is often expensive

and time consuming. (A typical positioning study takes 6 months and over $100,000.

[Urban and Hauser 1980, chapter 3]). While such defensive expenditures are justified

- for some markets and firms, most defensive actions demand a more rapid response with

lower expenditures on market research. Indeed, defending firms must often routinely

determine if any response is even necessary. Little or no practical analytic models

exist to support such defensive reactions.

The competitive equilibrium of markets has also been well studied. See for

example reviews by Lancaster (1979), Lae (1980),Scherer (1980), and Schmalensee (1980a,

1980b). lhis literature provides useful insights on how markets reach equilibrium, how

market mechanisms lead to entry barriers, and how product differentiation affects

market equilibrium. This body of research attempts to describe how markets behave

and assess the social welfare implications of such behavior. This research does not

attempt to prescribe how an existing firm - faced with a competitive new entrant - should

readjust its price, advertising expenditures, channel expenditures and product quality

to optimally defend its profit.

We are fortunate to have a breadth of related concepts in marketing and economics
to draw upon. However, we will find that the special nature of defensive strategy will

require the development of additional new. theory. Ultimately, researchers will develop

a portfolio of methods. to address the full complexity of defensive strategies. We

choose a more selective focus by addressing an important subclass of problems that are

: at the heart of many defensive strategies. Future research can then address broader

classes of defensive strategies.
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Problem Definition

Timely response. We are concerned with firms who.wish to begin planning

soon after a competitive new brand is launched. This means that we must identify

strategies well before the new brand reaches its equilibrium share. Thus we will re-

quire not only its current sales but have estimates of the percent of consumers who are

aware of it and the (weighted) percent of retailers who carry the product.

Prior information. We address how to estimate a new product's position in

the market (in a multi-attribute space) from sales, awareness, and availability data,

but we assume that the defending firm already knows the positions of existing products

prior to the launch of the competitive new product. This is not an unreasonable assump-

tion because such perceptual maps are usually developed for a product launch and should

be available from data collected-when the (now)defending product was itself a new product.

We assume of course that the maps have been updated with our procedure each time a new

competitive product was launched. (This assumption can be relaxed if the firm is wil-

ling to invest in a positioning study while analyzing defensive strategies.)

Defensive actions. Our focus is on price, advertising expenditures (broken

down by spending on awareness and on repositioning), distribution expenditures, and

product improvement expenditures. We do not address detailed allocation decisions such

as the advertising media decision or timing decisions; we assume that once the level

of an advertising or distribution budget is set that standard normative marketing tech-

niques are used to allocate within this budget. See Aaker and Myers (1975), Blattberg

(.1980), Stern and El-Ansary (1977), and Kotler (1980). This paper does not explicitly

address the counter-launch of a "me-too" or "second-but-better" new product as a

defensive strategy. Our analyses enable the firm to-evaluate non-counter-launch

strategies. Once such strategies are identified they can be compared to the potential

profit stream from a counter-launch strategy.

Finally, we analyze in detail how one firm reacts to the new competitive

entry. We do not analyze how other firms react to our defense. Once we fully under-

stand the former problem, future research can use this understanding to address the

second problem. Furthermore, there is some evidence in the economics literature that

the Nash equilibrium solutions for sequential entry with foresight are consistent with

our results. See Lane (1980, tables 1 and 2). However, these specific economic models

do not include marketing variables and make simplifying uniformity assumptions that

abstract away phenomena of interest to marketing scientists.

Research Philosophy

Defensive strategy is a complex phenomena, and particularly for industrial produc-
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advertising response functions and distribution response functionsl are rarely known

with certainty. While it is possible to hypothesize response functions dnd competitive

counter-response to derive the optimal defensive strategy, such a research philosophy

(which is valid for many marketing problems) does not reflect the current state of our

understanding of defensive strategies. On the other hand, basic models of consumer

response to product positioning and marketing expenditures are will documented in mar-

keting and in economics.

Faced with little previous research on defensive strategies and a rich liter-

ature on consumer response we adopt a research philosophy that is common in the physical

sciences and economics but less common in marketing. 2 We begin with an accepted model

of consumer behavior and mathematically derive (1) methods to estimate the parameters

that adapt the model to specific situations and (2) implications from the model that

deductively identify qualitative guidelines for defensive strategy. For example, we

prove a theorem that states that the optimal defensive strategy requires less money to

be spent on distribution incentives unless the defending firm can spend enough to pre-

vent entry of the new product. Such a result is robust with respect to the details

of the distribution response function and is thus valuable to the manager who seeks in-

sight into defensive strategies. Quantitative results are also derived but they depend

on the accurate measurement of various response functions.

Such theorems naturally require assumptions, some of which abstract the
world into a mathematical model that identifies structure within the complexities of

reality. We recognize the "insofar as the propositions of mathematics refer to reality

the6y are not certain and insofar as they are certain they do not refer to reality"

(Einstein 1922). The strength of mathematical abstraction is that it allows us to seek

the dominant forces of defensive strategy. Once these are understood, future research

can modify our assumptions, find their limits, relax them, or add second order forces

to more fully understand defensive strategies.

As an analogy, consider the assumption made in Newtonian mechanics that the

effect of gravitational force on matter is independent of velocity. It is clearly

false in the extreme case of special relativity when velocities approach that of light.

Even in more mundane situations, other phenomena such as friction, which is velocity

A distribution response function gives product availability as .a function of dollar
expenditures for channel incentives. Advertising response functions have related
definitions. For example, see Little (1979).

2 This type of research is less common but not unknown. In 1964, Davis and Farley
developed a mathematical theory of salesforce compensation. This theory was tested
empirically and in 1980 Srinivasan synthesized the theory and empirical tests into a
comprehensive theory. Other examples include Kalish and Lilien (1980) who show that
federal subsidies for durable goods should be monotonically decreasing in time, and
Blattberg, Buesing, Peacock, and Sen (1978) who theoretically identify the deal prone
consumer.
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dependent, affects the motion of falling objects. Nonetheless, by studying the simple

case, stripped of its complexity, physicists can explain the tides and the motions of

planets. Indeed, Einstein's special relativity may not have been derived without first

knowing tNewton's "laws."

Defensive strategy is not as grand as that of celestial mechanics but mathe-

matical modeling can be used as it is used in the physical sciences. As in the physical

sciences, we seek an interpretation of behavior in terms of the structure of a system.

"Having studied the properties of a system, we construct in our mind's eye a model of

the system... [We] predict the properties of such an ideal system. If many of the pre-

dicted properties are in agreement with the observed properties, the model is a good one.

If none, or only a few, of the predicted properties are in agreement with the observed

properties, the model is poor. This, ideal model of the system may be altered or re-

placed by a different model until its predictions are satisfactory." [Castellan 1971, p.5C I

The remainder of this paper is deductive from a simple model of consumer

response. We attempt to make our assumptions clear. Insofar as our model accurately

abstracts reality, the results are true. But we caution the manager to examine his

situation and compare it to our model before using our results. Wle expect future research

to examine and overcome the limitations of our analysis both empirically and theoreti-

cally. We hope that "a very simple model can lead to a rich set of implications."

[Sen 1980, p. S18].

We- begin with the consumer model.

2o CONSUMER MODEL

Our managerial interest is at the level of market response. Thus our

primary concern in modeling consumers is to predict how many consumers will purchase

our product, and our competitors' products, under alternative defensive marketing

strategies. However, to promote the evolution of defensive analysis we build up mar-

ket response as resulting from the response of individual consumers to market forces.

Although defensive models may ultimately incorporate complex micro-models such as

those reviewed by Bettman (1979), we begin with several simplifying assumptions such

as utility maximization.

A further requirement of a defensive model is that it be sensitive to how

a new product differentially impacts each existing product. Thus our consumer model

can not be based on the axiom of proportional absorption, also referred to as the

constant ratio rule of Luce's axiom, that is imbedded in many marketing models.

Finally, we require a model that incorporates important components of con-

sumer behavior, but is not too complex to be inestimable from available data.
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Asswnptions

We assume: (1) Existing products can e represented by their position

in a multi-attribute space such as that shown in figure 1. The position of the brand

represents the amount of attributes that can be obtained by spending one dollar on

that brand. (2) Each consumer chooses the product that maximizes his utility, and

(3) The utility of the product category is a concave function of a summary measure

linear in the product attributes, (or some linear transformation of the product attri-

butes). This last assumption allows us to represent the brand choice decision with

a linear utility function, however, we do not require te actual utility function to

be linear. (For a detailed discussion of assumption 3, see Shugan and Hauser, 1981.)

Mildness/$

0 Palmolive

0 Ivory

0 Joy

OA ax

Efficacy/$

Figure : Hypothetical Perceptual .:'sp of Four
Liquid Dish Washing Deters ants

Assumption 1, representation by a product position, is commonly accepted

in marketing. See Green and Wind (1975), Johnson (1970), Kotler (1980), Pessemier

(1977), and Urban (1975)o Scaling by price comes from a budget constraint applied

to the bundle of consumer purchases and from separability conditions that allow us

to model behavior in one market (say liquid dish washing detergents) as independent

of another market (say deodorants). This implicit assumption is discussed in Hauser

and Simmie (1981), Horsky, Sen and Shugan (1981), Keon (1980), Lancaster (1971, chap-

ter 8), Ratchford (1975), Shugan and Hauser (1981) and Srinivasan (1980a).

e
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Assumption 2, utility maximization, is reasonable for a market level model.

At the individual level stochasticity (Bass 1974, Massy, Montgomery and Morrison 1970),

situational variation, and measurement error make it nearly impossible to predict

behavior with certainty. At the market level, utility maximization by a group of

heterogeneous consumiers appears to describe and predict sufficiently well to identify
dominant market forces. For example, see Givon and Horsky (1978), Green and Rao (1972),
Green and Srinivasan (1976), Jain, et.al. (1979),.Pekelman and Sen (1979), Shocker and
Srinivasan (1979), Wind and Spitz (1976), and ittink and Montgomery (1979). Utility
maximization is particularly reasonable when we define utility on a perceptual space

because perceptions are influenced by both product characteristics and psycho-social
cues such as advertising image, and hence already incorporate some of the effects due

to information processing.

Assumption 3, linearity is a simplification to obtain analytic results. With

linearity we sacrifice generality but obtain a manageable model of market behavior. In
many cases the linearity assumption can be viewed as an approximation to the tangent
of each consumer's utility function in the neighborhood of his chosen product. Fur-

thermore, Green and Devita (1975) show that linear preference functions are good ap-
proximations, Einhorn (1970) and Einhorn and Kleinmuntz (1979) present evidence based

on human information processing that justifies a linear approximation. In our theorems.

we treat the utility function as linear in the product attributes, however it is a simple

matter to modify these theorems for any utility function that is linear in its 'taste'

parameters. Thus, our analysis can incorporate much of the same class of non-linear

utility functions discussed in McFadden (1973).

We make a final assumption to simplify exposition. We limit ourselves to

two product attributes to provide pictoral representations of the attribute space.

Notation

By assumption, products are represented by their attributes. Let xlj
be the amount of attribute 1 obtainable from one unit of brand j. Define x2j to be
the amount of attribute 2 obtainable from one unit of brand j. (Note: ->xij>O for
i = 1,2.) Let pj be the current price of brand j. Let Uj be the utility that a

randomly selected consumer places on purchasing brand j Note that j is a random
variable due to consumer heterogeneity. If every consumer is aware of each brand
and finds it available,. all brands will be in everyone's choice set, otherwise choice

sets will vary. Let A be the set of all brands, let A, a subset of A, be the set of
brands called choice set , and let S be the probability that a randomly chosen

consumer will select from choice set for = 1,2,..., L. See Silk and Urban (1978)
for empirical evidence on the variation of choice sets.

I- _ _ _
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Mathematical Derivation

We first compute the probability, mj, that a randomly chosen consumer

purchases brand j. In marketing terms, mj is the market share of product j. Apply-

ing assumption 2, we obtain equation (1).

mj = Prob fj > Ui for all i]

where Prob [.] is a probability function
In addition, define mR = Prob "[jt>Ui for all i in A], In marketing terminology,

mj I is the market share of product j among those customers

who evoke A. Now, equation (l) and assumption 3 imply equation (2).

Now, equation (1) and assumption 3 imply equation (2).

mjlk = Prob [wlxlj +wxj)/j > (WlXli + W2X2i)/ i for all i A] (2)

where iAR denotes all products contained in choice set 

Here w and w2 are relative "weights" a randomly selected consumer places on attributes
1 and 2 respectively. Suitable algebraic manipulation of equation (2) yields equation (3).

mji = ProbI [(Xlj/Pj-xli/Pi) > (w2/w1) (2i/Pi-x2j/Pj) for all icA .(3)

Moreover, equation (3) is equivalent to equation (4).

mjlQ = Prob [W2/w1 > rij for all icAQ] Prob 1[2/*1 < rij for all icA"] (4)

where r ij (lj/p - Xli/Pi)/(x2i/ -x2jPj)

A = {ilisAA and x2i/Pi > x2j/Pj}

A: f{ilicAz and x2i/Pi < x2 /Pj})

Note that equation (4) illustrates that W2/W1 is a sufficient statistic for computing

choice probabilities and that rij = rji. Now, consider figure 2. Basically, 'Joy' will

be chosen if the angle of the indifference curve defined by (w2,w1) lies between the

angle of the line connecting 'Ivory' and 'Joy' and the line connecting 'Joy' and 'Ajax'.

Note that consumers will only choose those brands, called efficient brands, that are

not dominated on both dimensions by another product in the evoked set.
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Mi 1 dness/$

(WlXlj+W2X2j)/Pj

Efficacy/$

Figure 2. Geometric Illustration of the -Reltionships
in Equation 3 for a Tee Produaoc .arket

be simplify equation (4) by defining a = tan' ( 2/w) where a is a

random variable (derived from Wl and 2) and represents a measure of consumer preference.

Moreover, we introduce the convention of numbering brands such.that x2j/Pj > x2~/P j
if j > i. This will assure that numbers increase counter-clockwise for efficient

brands in A. For the extreme points let rij = 0 and let rj = . We can now simplify

equation (4) and obtain equation (5).

mj. = Prob [ minimum
JIRg ~ over. k

frkj > tan a > aximum {rhi} for all k>j>h in A:]
over '

(5)

We now introduce consumer heterogeneity in the form of a variation in

tastes across the consumer population. Since each consumer's utility function is

defined by the angle, a, we introduce a distribution, f(a), on the angles. One

hypothetical distribution is shown in figure 3. As shown, small angles, a+O, imply

that consumers are more concerned with attribute 1, e.g. efficacy, than with

attribute 2, e.g. mildness; large angles, acL900 , imply a greater emphasis on

attribute 2.
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Finally, we introduce the definition of adc-aencjy. In words, a lower

(upper) adjacent brand is simply the next efficient brand in A as we proceed clock-

wise (counter-clockwise) around the boundary. Mathematically, a brand, j-, is lower

adjacent to brand j if (1) j-<j, (2) j->i for all i<j where both i and j are contained

in A, and (3) both brands are efficient. Define the upper adjacent brand, j+, similarly.

Note that j- and j+ depend on the choice set A. With these definitions mjj is simply
computed by equation (6)

fcajj+
mj. j f (a) da (6)

aJj

Here cij tan 1 r.ij Thus, mj l is the shaded area in figure 3. Finally, if the
choice sets vary, the total market share, mj, of brand j is given by equation (7).

L
mj : Z mjl SQ (7)

An interesting property of equation 7 is that a brand can be inefficient on A,

but have non-zero total market share if it is efficient on some subset with non-

zero selection probability, S.

Mi 1 dness
., a,~~~~~

o. aj j_ jj+ 900

Fiq:-re 3: Hpothctic-1a distribution of Tase" :..t2. Respect to
Efficacu and L.!ildness. The shadi r.-ion represents
thoze consuA.;ers who wi.ll choose 'Jc-. 
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As an illustration for A = {Ajax (j=l), Joy j-3), Ivory (j=4)} suppose

that the positions of the three brands are given by (xlj/-, x2j/pj) = (5,1), (2,4.6),

and (1,5) for j -= 1,3,4, respectively. We first compute rij, finding r13 3/3.6 = .83

and r34 = 1/(.4) = 2.5. Finding the angle whose tangent is rij, gives us aCl = 0,

c13 = 400, a 34 = 680, and a4o = 90°. For this example 'Ajax' is lower adjacent to

'Joy' and 'Ivory' is upper adjacent to 'Joy'. See figure 4.

If tastes are uniformly distributed over a, then f(aJ = (1/900) da and

mj[Z = (Cjj+ - ajj_)/900. For our example if everyone evokes choice set A,

market shares are .44 for 'Ajax', .31 for 'Joy', and .25 for 'Ivory'

Suppose a new brand, 'Attack', is introduced at (3,4) and suppose it is in

everyone's choice set. Since 'Attack' is positioned between 'Ajax' and 'Joy' we

number it j = 2. See figure 4. We compute rl2 = 0.67, r23 = 1.67, 12 = 34 , and

a23 = 59. The new market shares are .38 for 'Ajax', .27 for 'Attack', .08 for 'Joy',

and .26 for 'Ivory'. Thus 'Attack' draws its share dominantly from 'Joy', somewhat

from 'Ajax', and not at all from 'Ivory'. 'Joy' will definitely need a good defen-

sive strategy'

Mildness/$

5

4

3 -

2

1

0l Ivory (.24)
Joy (.10)

O Attack (.28)

OI Ajax (.38)

* -' -§Fffircarcv/t

1 2 3 4 5

Figure 4. Hypothetical Market After the EntrŽ f, the New
Product 'Attack' (Nubers in Paren.,seses Indi-
cate New Market Shares. )
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Clearly the threat posed by the new brand depends upon how it is

positioned with respect to the defending firm's brand. We formalize this notion

in section 6. However, to use the consumer model for forecasting consumer response

we must be able to identify the taste distribution, f(). Section 4 derives esti-

nation procedures for f(a). For specific defensive tactics we must be able to

identify the position of the new brand. Section 5 derives a Bayesian estima-

tion procedure that enables us to update a defensive manager's prior beliefs about

the new competitive brand's position and provides technioues to estimate te impact of

the new brand on evoked sets. The updating procedure requires only sales data

which is corrected for awareness and availability.

We turn now to the analysis of general strategies for defensive pricing,

advertising, distribution incentives, and product improvement. The theorems in

the following section are based on the consumer model derived above. For analytic

simplicity, unless otherwise noted, we base our derivations on the full product

set, A. Extension to variation in evoked sets is discussed in section 5.

3. STRATEGIC IMPLICATIONS

We examine in turn pricing, distribution, advertising, and product

improvement.

Pr-cing Strategy

For simplicity we assume that advertising and distribution strategies

are fixed. We relax this assumption in the following sections.

Based on the consumer model, euation (8) shows Drofits before entry of the

new brand. Wle simplify the exposition by supressing fixed costs which, in no way,

affect our analysis.

]b (P) = (P - Cb)NbJ[i' f(a) d, (8)

Here Nb is the number of consumers, cb is o.ur per unit costs before any competitive

entry, p is our price (We.are brand j.) and n]b(P) is our before entry profit given

price p. Note ajj+, jj_, and cb are functions of price.

The new brand can enter the market in a number of ways. (1) If it is

inefficient, it does not affect our profits. (2) If it exactly matches one of our

competitors, our profit is unchanged. (3) If the new brand is not adjacent in the

new market, our profits are unchanged. Conditions. (1) - (3) are based on the recog-

nition that none of our consumers are lost to the new brand.
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Defensive strategy only becomes important under condition (4) j+>n>j-. Since the

problem is symmetric with respect to j+>,ij and j>n>j-, e analyze the former case

where the new product becomes efficient and upper adjacent.

In case (4), our profits after the launch of the competitive new brand, with

price p, are given by equation (9).

jn
Ia(p) = ( - ca) Na - f(a)da (9)

ajj.

Here, Na and ca are the market volume and our per unit costs after the competitive

entry, respectively. Note that our per unit cost may change because of a change in
sales volume.

At this point e introduce the function Z(p), given by equation (10), which

represents lost potential.
jj+

Z(p) = (p- ca) Na / f(al) d (10)

ajn

Note that ca is a function of p because ca may vary with sales volume. Moreover,
if p-c is positive, Z(p) is non-negative for all f(a) and positive for any f(a)

a
that is not identically zero in the range j to aj. I'f we lose no customers,an jj+'
the new brand is no threat, thus we are only concerned with the case of f(a) not

identically zero in the range ajn to ajj+. Call this case for an adjacent product,

competitive entry.

Our first result formalizes the intuitive feeling that we can not be

better off after the new product attacks our market.

Theorem : If totalZ market size does not ~crease, opti.al defensive profits

must decrease if the new producwt is competitive, regardless of the

defensive price.

Proof: Let p be our optimal price before entry and let p* be our optimal price

after entry.

Let M a(P) f(c) da and Mb() f(a) da. Now ajj+ > ajn

ajj_ jj-

because the new entry is competitive. Hence Mb(P*)> Jla(p*). It is easy to show that
Mb() is a decreasing function of price for a competitive entry. See Lemma 3 in

the appendix. By assumption Nb > Na, hence NbMb(p ) > Nat1a(p*). Since Mb(p*) is

decreasing in price, there exists a p1 > p* such that NbMb(pl) NaMa(p*).

�I- I�·�_�I_-_____���_._.
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Since cost is a function of volume cb(p) ca(P ). But since p > , (pl-cb) NbMb(p) >

(p - Ca) Naa(p j hence ilb( ) > Ia(P ). By the definition of optimal, Ib(p°) >b(pl)

hence b (p ° ) > la (p )

Theorem 1 illustrates the limits of defensive strategy. Unless the market

is increasing at a rapid_rate, the competitive entry will lower our profit even with

the best defensive price. Even if the market is growing, as long as our growth is not

due to the new brand, it is. easy to show that the competitor decreases potential profits.

A key assumption in theorem 1 is that the defending firm is acting optimally

before the new brand enters. However, there exist cases where a new brand awakens a

"sleepy" market, the defending firm responds with an ctive defensive (heavy adver-

tising and lower price), and finds itself with more sales and greater profits. A

well known case of this phenomenon is the reaction by Tylenol to a competitive threat

by Datril. Before Datril entered the market actively, Tylenol was a little known,

highly priced alternative to aspirin. Tylenol is now the market leader in analgesics.

Theorem 1 implies that Tylenol could have done at least as well had it moved opti-

mally before Datril entered.

Theorem 1 states that no pricing strategy can regain the before-entry profit.

Nonetheless, optimal defensive pricing is important. Defensive profits with an optimal
defensive price may still be significantly greater than defensive profits with the

wrong defensive price. Intuitively, consumer package goods managers expect a strong

defense to require a price reduction. Theorem 2 shows that a price reduction is not

always optimal.

Theorem 2: There exist distributions of consumer tastes for which the optimaZ

defensive price requires a price increase.

Proof (by counterexampZe): Suppose f(a) is discrete taking on values only at

f(14 0) = 1/27, f(18.50 ) = 15/27, f(33.70 ) = 10/27, and f(840 ) = 1/27. Suppose we are

positioned at (xlj/ip, x 2j/P) = l/p, 50/p) and our two adjacent competitors are
positioned at (.1,60) and (21, 20). If cb = $.9/unit and Nb = 270,000 our profit at

various price levels is given in table 1. By inspection, the optimal price is the

highest price, $1.00, that captures both segments 2 and 3. Suppose now that the new

brand enters at (16,40) and that ca = cb and Na = Nb. By inspection of table 1, the

optimal price is the highest price, $1.03, that captures segment 3. Since the opti-

mal price after entry exceeds that before entry, we have generated an example and

proved existence.
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TABLE 1; EXAMFLE TO DEMONSTRATE A CASE OF THF OPTIMAL DEFENSIVE

PRICE REQUIRING A PRICE ICREASE ( indicates optimal price

before competitive entry, * indicates optimal price after entry).

PRICE
under .90

.90

.91

.92

.93

.94

.95

.96

.97

.98

.99

1.000

1.01

1.02

1.03*

1.04

1.05

1.06

1.07

1.08

1.09

over 1.09

BEFORE
VOLUME

260,000

250,000

250,000

250,000

250,000

250,000

250,000

250,000

250,000

250,000

250,0000

100,000

100,000

100,000'
.100,000

100,000

100,000

100,000

100,000

0

0

ENTRY
PROFIT

<0

0

2,500

5,000

7,500

10,000

12,500

15,000

17,500

20,000

22,000

25,0000

11,000

12,000

13,000

14,000

15,000

16,000

17,000

18,000

0

0

AFTER
VOLUME

260,000

250,000

250,000

250,000

100,000

100,000

100,000

100,000

100,000

100,000

100,000,

100,000

.100,000

100,000*

0

0

0

0

0

0

ENTRY
PROFIT

< 0

0

2,500

5,000

7,500

4,000

5,000

6,000

7,000

8,000

9,000

10,000

11,000

12,000

13,000*

0.

0

0

0

O.

0

0

With careful inspection, the example used to illustrate theorem 2 is

quite intuitive. The key idea in the example is that there are two dominant

segments in the market. Thirty-seven percent (10/27) have a slight preference

for attribute 1, w2/w1 = tan= 2/3; fifty-five percent (15/27) have a stronqer
preference for attribute 1, w2/w 1 = 1/3. Before the competitive entry, we were
selling to both markets. Segment 3 clearly preferred our brand. However,
we were forced to lower our price to compete for segment 2. It was profitable

to do so because of its large size. When the new brand entered, targeted

�___1�·_ 11__1 �1�_�_ _�X__�IIX_���____I_��_�-�1111_ 1I��..II� .__
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directly at segment 2 we could no longer compete profitably for segment 2.

However, since we are still well positioned for segment 3 and they are willing

to pay more for our brand, we raise our price to its new optimal profit level.

In the social welfare sense, consumers must pay a orice for variety. (In table 1,

the price increase is only 3, but it is possible to generate examples where the

pric- increase is very large.)

Theorem 2 clearly illustrates that in the case of a highly segmented

market, it may be optimal to raise our price after the competitor enters. But

not all markets are so extreme. The following theorem illustrates that a price

decrease is optimal if taste segmentation is less extreme. In particular, we

investigate the market forces present when preferences are uniformly distributed.

This line of reasoning is not unlike that of Lancaster (1980) who assumes a dif-

ferent form of uniformity to study competition and product variety.3 As Lancaster
(1980, p. 583) states: Uniformity provides "a background of regularity against

which variations in other features of the system can be studied."

We introduce an empirically testable market condition which we call

regulcrity. Let oj be the angle of a ray connecting product j to the origin,
0j = tan- (x2j/xlj). Then a market is said to be regular if product j's angle,

oj, lies between the angles, ajj, and ajj+, which define the limits of the tastes
of product j's consumers. Regularity is a reasonable condition which we expect

many markets to satisfy, however, as intuitive as regularity seems it is not

guaranteed. We present the following theorem for regular markets and then dis-

cuss its extension to irregular markets.

Theorem 3, Defensive Pricing: If consumer tastes are uniformly distributed

and if there are constant returns to scaZe, then the optimal defen-

sive price strategy in a regular market is to decrease price.

Proof: By assumption, ca = cb=c. Thus b(P) [ra(p) + Z(p)] (Nb/Na) for

all p. Since Nb/Na is assumed independent of p, n'b(P) =[ a(p) + Z' (p)]
(Nb/Na), where the prime (') denotes the partial derivative with respect to p.

Since p is the before entry optimal price, 'b(Po) = 0 and hence n'a(p°) -Z'(p°).
Thus na(p°) is decreasing in p at p if Z(p°) is increasing in p. Thus to show
that a price decrease increases profit we must show that Z'(p°)> 0. We show that

this leads to a global maximum by showing that na(P) is unimodal under the
conditions of the theorem.

Lancaster's uniformity assumption is more complex than an assumption of uniform
tastes. However, to derive his results he also assumes a form of uniform tastes.
See also analyses by Lane (1980).
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(1) Proof of Z'(p°)>O. Since f(a) is uniform, Z(p) is given by

Z(p) = (p-ca)(Na/90) (ajj+ - ajn). Taking derivatives with the product rule

gives us Z'(p) = K(p-ca) (aj - ajn) +K (ajj+ - ajn) where K Na/90

is a ositive constant. Since Cd+- ajn is positive when n and j+ are efficienit

and (p°-c) is positive (or else p would not be optimal), Z'(p ©) is positive if

(aj+' - ajn) is non-negative at p. The proof of this fact is complex and is

given in the appendix as Lemma 1. However, this can be seen intuitively in

figure 5a. As we have drawn it, the angle A=(ajj+-ajn) increases as we increase

the price. (A price increase moves the point j toward the origin along the ay,

oj = tan -1 (x2j/xlj ) ) As Lemma 1 shows, the condition aj+.oj is sufficient

for A' > O. a.j+ >O is true in a regular market.

attribute 2/$
..a (P)

a) First order conditions b) Second order conditions

Figure 5: Intuitive Visualization of the Proof o' Defensive Pricing for

;zniform Tastes: a) A= ajj+jn increases as price increases,

b) Tn (p) is unimodal.a

a-C

.

__1_�__11_�_____1_1__I__�lll··1(��C---��
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(2) Proof of [ a(p) unimodal: If "a(P) is negative, Ra(p) is unimodal,

where the double prime (") denotes the second partial derivative. Using the product

rule n"a(P) = K [2(ajn - ajj ) + (p-c) (an - ajj ")]. The first tirm is pro-

portional to the first derivative of sales. As shown formally in Lemma 2 in the

appendix, sales are indeed decreasing in price. Since (p-ca) is non-negative

for all p > c, the result follows if ajn - aj is non-positive. [p > and

na(p) < 0 for p<c, therefore we need only examine p ca .] The result that

ajn" - a.j" < 0 for > a and oj < aj, which are true in regular markets is
jn ' - -- n > nj 3< jj-

straightforward but algebraically tedious. See Lemma 4. Since conditions (1)

and (2) are true, the defensive pricing theorem follows.

Theorem 3 provides us with useful insight on defensive pricing; insight

that with experience can evolve into very usable "rules of thumb". For example,

when some managers find the market share of their brand decreasing they quickly

increase the price in thehopes of increasing lost revenue. Historically,

transit managers fall into this class. (Witness the recent fare increases in

both Boston and Chicago.) Other managers believe an aggressive price decrease

is necessary to regain lost share. This strategy is common in package goods.

Theorem 3 shows that if consumer tastes are uniform, the price decrease is likely

to be optimal in terms of profit. The result itself may not surprise the ag-

gressive package goods managers, but the general applicability of the result to

regular markets is interesting.

IrreguZar Markets. Regularity is sufficient to prove theorem 3, however

regularity is not necessary. For example, we only used the condition, ajj+ > ej,

to prove that profits are decreasing in price at p. We only used the conditions,
0
n > alij and j > jj_, to prove global optimality. Even these conditions were

not necessary.4 Thus it is possible, indeed probable, that a price decrease will

also be optimal in irregular markets. We have not been able to develop a general

proof, but in 1,700,000 randomly generated irregular markets we have found that

profits are decreasing in price in all tested markets.

Non-uniform Taste Distributions. Even with uniformly distributed tastes

the proof of theorem 3 is complex. But like regularity, uniformly distributed

tastes is sufficient but not necessary. We leave it to future researchers to

E.G., Z'(p°) contains two tenns, the first is always positive; only the second
negative when ajj+ < j. Similarly only one term of :"a(p) hanges sign when the

conditions are violated and 1I" (p)< 0 is sufficient, not necessary, for na(p) to

be unimodal. Even these conditions can be relaxed.
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identify necessary and sufficient conditions for a price decrease, but we suspect

it is true for some general class of unimodal distributions.

Suvnary. Together theorems 2 and 3 provide the manager with guidelines

to consider in making defensive pricing decisions. Our proven results are very

specific, but we can generalize with the following propositions which are stated

in the form of managerial guidelines:

a If the market is highly segmented and the competitor is attacking

one of your segments, examine the situation carefully for a price

increase may be optimal.

8 If the market is not segmented and consumer tastes are near uniform,

a price decrease usually leads to optimal profits.

Finally, it is possible to show that if a competitive brand leaves the market

and consulmer tastes are near uniform, a price increase usually leads to otimal

profits.
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Distribution Strategy

One strategy to combat a new entrant is for the defending firm to exercise

its power in the channel of distribution. Channel power is a complex phenomena,

but to understand defensive distribution strategy we can begin by summarizing the

phenomena.with response functions. See Little (1979) for a discussion of the

power and limitations of response analysis.

In response analysis we assume that sales are proportional to a distribu-

tion index, D. The index is in turn a function of the effort in dollars, kd, that

we allocate to distribution. In other words, kd summarizes spending on inventory,

transportation, channel incentives, salesforce, etc. D(kd) is the result of

spending kd dollars optimally in the channel. Because we are dealing with dis-

tribution it is useful to think of D as a form of brand availability such that

sales under perfect distribution is given by the sales that would be achieved if

the product were available in all retail outlets. In this case, D(kd + a) = 1

and O<D(kd)<l for any finite expenditure, kd. Finally, we assume that over the

relevant range of analysis, D is a marginally decreasing function of channel sup-

port. An example response function is given in figure 6.

Distribution Index, D
n I

I.V 

Channel Expenditure, kA

Figure 6: An ExampZe Distribution Response Function Exhibiting Decreasing Marginal

Returns Over the Relevant Range

Under the conditions of response analysis, profit after competitive-entry

is given by:

na(p, kd) = (p-ca)NaMa(p) D- kd

qnj
where Ma(p) f() d (11)

3jj-

I
I
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That is, Ma(P) is the potential market share of product j as a function of price. lle

begin by examining the interrelationship between defensive pricing and distri-

bution strategies.

Theorem 4, Price Decoupling: Based on the assumption of response analysis, the

optimal defensive pricing strategy is independent of the opti.mal de-

fensive distribution strategy, but the opti-al distribution strategy

depends on the optimal defensi-ve price.

Proof: Differentiating nIa(P,kd) with respect to p and setting the derivative to

zero yields [M(p) + (p-ca)dMa(p)/dp] NaD = O. Since Na, D > 0 for the optimal

price, the solution, p , of the first order conditions is independent of kd.

Differentiating d (P,kd) with respect to kd and setting the derivative to zero

yields (-ca)NaMa()(dD/dkd) = 1. The solution to this equation, kd*, is clearly

a function of p.

Theoremn 5, Defensive Distribution Strate:,-: Based on the assumption of response

analysis, the optimnaZ defensive distribution strategy is to decrease

spending on distribution.

Proof: Differentiating Ia(P,kd) with respect to kd and recognizing that a(p) 

(P-ca)Na Ma(p) as given by equations 8 and 10 yields the first order condition

for the optimal kd* as a(p*) [dD(kd*)/dkd] = 1. Similarly we can show that the

first order condition for the optimal before entry spending, kd°, is

lib(p°)[dD(kd°)/ d] = 1. Since lb(P°)> a (p*) by Theorem 1, we have

dD(kd*)/dkd > dD(kd°)/dkd. But dD(kd)/dkd is decreasing in kd, hnce kd* < kd °

Theorem 6, Pre-emptive Distribution: If market voZume does not increase, optinmal

defensive profits must decrease if a new bra-nd enters competitively,

regardless of the defensive price and distribution strategy. However,

profit might be maintained, under certain corditions, if the new brand

is prevented from entering the market.

��-------�� -�--
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Proof: Define nb( kd) analogously to equation 11 Recognize that Ia(P.kd) =Ina(P)D(kd)-k d
where jr:ap) is defined by equation 9. Then IIb (p ,kd,) > b(pk k*) =

a * , . :

nb(p)D (kd )-kd > ]Ia(P)Dtk&d- kd N1a(P*k d ) The first step is by the
definition of optimality; the second step is by expansion; the third step is by

Theorem 1, and the fourth step is by definition. The last statement of the

theorem follows from the recognition that it is potentially possible to construct

situations where the cost of preventing entry is smaller than Ib(p°, kd0 )-'Ta(p ,kd)

Together theorems 4, 5, and 6 provide the defensive manager with valuable insights

on how much of his budget to allocate to distribution. If he can prevent competitive

entry by dominating the channel and it is lesaZ to do so, this may be his best strategy.

However, in cases when it is illegal to prevent entry, the optimal profit strategy is

to decrease spending on distribution.

Although decreasing distribution expenditures appears counterintuitive for an

active defense, it does make good economic sense. The market's potential profitability

and rate of return decreases as the new product brings additional competition. Because

the market is less profitable, the mathematics tells us that we should spend less of

our resources in this market. Instead, we should divert our resources to more profit-

able ventures. If demand shrinks fast enough, the reward for investment in the mature

product decreases until new product development becomes a more attractive alternative.

Just the opposite would be true if a competitor dropped out of the market; we

would fight to get a share of its customers, Witness the active competition between

th.e Chicago Tribune and Chicago Sun Times when the Chicago Daily News folded and the

active competition by the Boston newspapers when the Record-American folded.

Theorem 4 tells us that price strategy is independent of distribution strategy

but not vise versa. Thus the results of theorems 2 and 3 still hold. If preferences

are uniformly distributed the defensive manager should decrease price and decrease

distribution spending. In addition, these results imply that a defensive manager

should first set price before other defensive variables.

Finally, we note that the tactics to implement a distribution strategy include

details not addressed by response analysis. Nonetheless, although the details may

vary, the basic strategy, as summarized by total spending, is to decrease the distri-

bution budget when defending against a new competitive brand.

__._ _________^___�__11_1_I___l__________lq__ _�11. _-__..�_ IX --.X -1__���_1. _· i.- _..�_
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Advertising Strategy

There are two components to advertising strategy. One goal of advertising is

to entice consumers into introducing our brand into their evoked sets. We will refer
to this form of advertising, as awareness advertising, and handle it with response analysis
much like we handled distribution. (Sales are proportional to the number of consumers
aware of our product.) Another goal of advertising is to reposition our brand. For
example, if we are under attack by a new liquid dishwashing detergent stressing mild-
ness, we may wish to advertise to increase the perceived mildness (or efficacy) of
our brand. In this form of advertising we invest advertising dollars to increase

Xlj or x2j. Since repositioning advertising affects anj and ajj_, it is more complex.
In the following analysis we consider expenditures on wareness advertising, ka, and
repositioning, kb, separately. In other words, our esults enable the defensive manager
to decide both on the overall advertising budget and on how to allocate it amonq aware-
ness and repositioning.

We begin by considering awareness advertising. Let A, a function of ka, be
the probability a consumer is aware of our brand. Brands must continue spending in
order to maintain awareness levels. Equation -(11) expresses our profit after the

new brand enters.

na(P'kd'ka) = (P-Ca)NaMa(p) A D - ka - kd (12)

Ma(P) was defined in equation 11.

Theorem 7, Defensive Strategy for Awareness Advertising: The optimal defensive

strategy for advertising includes decreasing the budget for awareness

advertising.

Proof: Differentiating jIa(p*, kd*,ka) with respect to kayields the equation

[Lna(P*,kd*) + kd*] [dA(ka*)/dk a ] = . Similarly we get [b(P°,kd°) + kd° ]

[dA(ka°)/dka] = 1. The result follows analogously to the proof of theorem 5

since b(p°,kd°) > ila(*,kd*),kd>kd*, and A is marginally decreasing in ka

Theorem 7 is not surprising because awareness advertising is modeled with a
response function that has properties similar to the response function for distribu-
tion. Thus all of our comments (and an analogy to the pre-emptive distribution

theorem) apply to awareness advertising.

_����_1_�� �m_·1_1�___11____1__1__111�______ .. _._
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Repositioning advertising is more complex. First, we consider advertising

that can increase consumers' perception of xlj. Using a form of response analysis

we assume that if kr dollars are spent we can achieve a new position (xlj(kr)/Pj,

x2j/pj)) in perceptual space. We further assume that the repositioning function,

Xlj(kr), is increasing in kr but marginally decreasing (concave). If the latter

were not true, the optimal kr might be infinite. Profit is then given by:

na(p,kd,kakr) = (p-ca) NaMa(P,kr) A D - kd ka - kr (13)

-Here xlj, and hence Ma(p,kr), is now an explicit function of k,

To select the optimal repositioning strategy we examine the first order

condition implied by equation (13), it is given in equation (14).

dM (p*, kr*)/dk= /[p* - c) N D(kd*) A(k (14)a r r Ca a d*)A(k*)](

Even if we simplify M (p*,k *) with uniform tastes, equation 14 is quite complex.

The optimal repositioning strategy depends on the optimal price, optimal distri-

bution strategy, and optimal advertising awareness strategy.

Fortunately we can obtain some insight into the solution of equation 13 by

examining the marginal forces affecting the optimal spending, k, before the new

brand entered. While this may not guarantee a global optimal, it does suggest

a directionality for improving profit. Define a conditional defensive profit

function,lEa(krlo ), given by equation (15).

11 (krlO) = (p - c)NbMb (pokr) D(kd )A(ka kd° - k (15)

The conditional defensive profit function can be interpreted as the profit

we can obtain after competitive entry if we are only allowed to reposition. Then from

equation (14) and equation (15) we find profit before entry is given by equation (16).

Tnb(kr) = na(krIo) + G j f(j()d (16)

where G = (p°-cb)Nb D(kd °) A(ka°) is a positive constant independent of reposi-

tioning spending, kr.
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Theorem 8, Repositioning y Advertising: Suppose conswer tastes are uniformly

distributed and the new competitive brand attacks along attribute 2

(i.e., an upper adjacent attack), then at the margin if repositioning

is possible,

(a) profits are increasing in repositioning spending along attribute 

(i.e., away from the attack);

(b) profits are increasing in repositioning spending along attribute 2

(i.e., toward the attack) if and only if (xlj/p - xi/Pn)( + rn-2) <

(Xlj/P - Xlj+/p + ) (1 + rjj+ ).

where Pnand p+ are the prices of the new and upper adjacent brands,

respectively.

Symmetric conditions hold for an attack along attribute Z.

Proof: Let zj = xlj/ and let yj = x2j/p. Let kri be repositioning spending along
xij, for i = 1,2. Differentiating equation 16 with respect to kri yields lb' (kr°) =

lIa' (kr o) + (G/9Q) ( - ajn ) = 0 where () denotes the derivative with respect to
krie Because G > O, a' (k r0 o) follows if ajj. < j ' Since z is proportional to
Xlj and xj > 0, part (a) follows if (dajj+/dzj) <(dcjn/dzj). Similarly, part (b)
follows if (dajj+/dyj) < (da j/dyj).
Part (a):

Redefine (') to denote differentiation with respect to zj. Then we must show a. < ajn
Since r+ (zj-zj+)/(yj+-yj) r = (yj+ - y) . Similarly r = (y -y) 

JJ++ 2.-1 in .n 2J,.1Hence 0 < r < r . Now r > rj, hence O < (1 + rn )j3+ · jn jn>J hence0<J~ 4 < r ) 1
Putting these results together yields rj+ ( + rjj+ ) <r~j& (l+r2n) Finally for at.an I

I=~ r 2'(l -+ l. 1 I +J ' n
' r'( + r2) 1 . Ihus <jj+ < n and the result follows.

Part (b):

Redefine (') to denote differentiation with respect to yj. We derive conditions for
ajj+ < an . As shown above this is equivalent to r+ (1 + r2+ -1 < rJ (l+rn 2). Sir--

rjj+(zj-Zj .)/(yj+ - yj),rjj+ = (zj - zj+)/(yj+ - yj) = rj+ /(zj - zj+). Similarly

rjn = rjn2/(zj -Z n). Substituting yields the condition in part (b). Finally, the
last statement of the theorem follows by symmetry.

The results of theorem 8 can be stated more simply. Part (a) says reposi-
tion to your strength. I.e., the competitive new brand is attacking you on one flank,
attribute 2, but you are still positioned better along your strength under this attack,
attribute 1. Theorem 8 says that if you can move along attribute 1, do so.

�����1� II � _�_ ____
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Part (b) says that repositionisj to your competitor's strength, attribute

2, is not automatic. The testable condition given in theorem 8 must be checked.

(Section 5 of this paper provides a practical procedure to estimate the new brand's

position which is the data necessary to check the condition of Theorem 8.)

Movement along attribute 2 is more complex because there are two conflicting effects.

First, marginal returns may be low in the direction of competitive strength. Second,

we seek to regain lost sales by attacking our competitor's strength. The first effect

will dominate when our competitor is very strong, i.e., rjj+ >> rjno In this case,

Theorem 8b directs us not to counterattack on the competitor's strength. The second

effect will dominate when the competitor attacks strongly on xlj as well as x2'

i.e. when x/p- x n/pn. In this case, Theorem 8b directs us to counterattack on

our competitor's strength in additiron to moving to our strength.

Theorem 8 is a conditional result at the old optimal. But coupled with

theorem 7 it provides very usable insight into defensive advertising strategy

Theorem 7 says decrease awareness advertising. Theorem 8 says that at least in the'

case of uniform consumer tastes, marginal gains are possible if we increase reposi-

tioning advertising along our strength. Together these results suggest that the

defensive manager (facing uniformly distributed tastes) should reallocate advertising

from an awareness function to a repositioning function. For example, he might want

to select copy that stresses "more effective in cleaning hard-to-clean dishes" over

copy that simply gets attention for his brand.

Product Improvement

The last component of defensive strategy is whether the defending manager

should invest money to improve his physical product° We consider the case where

the manager has the option to make improvements in small increments. We assume that

he has the option to increase consumer perceptions of his brand by modifying his

brand to improve its position. In doing so he incurs increased production cost,

c. In other words, xlj (or x2j) is an increasing function of c. Let cb be the

optimal production cost before competitive entry and let ca be the optimal produc-

tion cost after entry.
As in advertising repositioning we examine conditional defensive profit

to gain some insight on physical product improvement. Wle define a conditional de-

fensive profit function, II(clo)for production cost similar to equation 15. We can

then show by substitution that the before entry optimal profit as a function of

production cost is given by:
.~~~~~~~~~~~
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ITb(C) I(CJo) + H (p- c) f(s)dl. (17)
Jjn

where H = NbD(kd °) A (k ° ) is a positive constant independent of production cost.

Theorem 9, Defensive Product Improvement: Suppose th oat osuer tastes are

uniformly distributed and the com.rpetitive ro; r~.n attacks aZong

attribute 2 (i.e., an upper aa3.cent attack), t t;:n at the margin if

product improvement is possible,

(a) Profits are increasing in improvements in attribute ;

(b) Profits are increasing in improvements in attri'aute 2 if

-2 + 2

(Xj/ - xn/prn) ( 2) < - Xlj/P+) (1 + rj2

Sylnetric onditions hold for cn attack ala.n2c attrite Z1.

Proof: Differentiating equation 16 with respect to c yields

b'(cb) - na' (cb 1o) + (p - Cb) (ajj ) - (jj+ = O at cb.

Since H>O, part a, na(cblo) > 0 follows if the term in brackets is negative.

Since (cjj+ - ajn) > 0 by the definition of competitive and since (p - b) > 

at the before-entry optimal, the term in brackets is negative if (jj - ajn)

is negative at cb. In the proof to theorem 8 we showed that d(a jj+ - ajn)/dzj <0

for zj = xlj/p. Since xlj is increasing in c, part (a) follows. As in theorem 8,

part b follows from algebraically simplifying the condition that dajj+/dxij <

dajn/dxlj. The last statement is obvious by symmetry.

Since Theorem 9 is so similar to Theorem 8 we do not discuss it in detail.

Related comments apply.

Sziur.?ary

Our goal in this section was to provide insight on defensive strategy, i.e.,

rules of thumb that rely on believable abstractions that model major components

of market response. Toward this end we searched for directional guidelines that

help the manager understand qualitatively how to modify his marketing expenditures

in response to a competitive new product. In many situations, especially where

data is hard to obtain or extremely noisy, such qualitative results may be more

___
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usable than specific quantitative results. If good data is available the qualita-
tive results may help the manager understand and accept ore specific optimization

results.

In particular our theorems show in general that:

* distribution expenditures should be decreased, unless the new brand

can be prevented from entering the market,

o awareness advertising should be decreased, and

* profit is always decreased by a competitive new brand°

More specifically, if consumer tastes are uniformly distributed,

* price should be decreased in regular markets,

* (at the margin) advertising for repositioning should be increased

in the direction of the defending brand's strength,

o (at the margin) the brand should be improved in the direction of

the defending brand's strength.

We have also shown that there exist highly segmented taste distributions for

which a price increase may be optimal.

We caution the manager that like any mathematical scientific theory, the

above results are based on assumptions. Our results are only true to the extent

that the market which the defensive manager faces can be approximated by our

model. Since our model is based on a previously tested model of consumer be-

havior, we believe there will be many situations that can be approximated by

our model. At the. very least we believe that theorems 1 through 9 provide the
foundations of a theory of defensive strategy that can be subjected to empiri-
cal testing and theoretical modification. In the long run it will be the inter-

play of empirics and theory that will provide greater understanding of defensive

strategy.

4. ESTIMATION OF THE CONSUIMER TASTE DISTRIBUTION

The defensive marketing strategy theorems depend on the new product's

position, (Xln/pn , X2n/Pn) and on the distribution of consumer tastes, f(a).
We now provide a methodology to estimate this information from readily obtain-

able data.

We begin with a technique to estimate consumer tastes when everyone has

the same evoked set. We then extend this technique to the case where evoked sets

vary.
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Homocenous Evoked Sets

We return to the notation of section 2. Let jl = ?rob [jj_ < a < jj+

for j A and let MjlI be observed market share of product j for consumers who

evoke A. For this subsection we are only concerned with consumers who evoke A,

thus for notational simplicity, drop the argument .o Our problem is then to select

f(a) such that mj - Mj for all jcsA.

One solution is to select a parameterized family of functions, say a Beta distri-

bution, f (a!,6), and select and 6 with maximum likelihood techniques. While tempt-

ing, most common distributions are not appropriate for defensive strategy. For ex-

ample, the directionality of defensive pricing strategy is dependent on whether f(a)

is bimodal (counter-example in theorem 2) or unimodal (see theorems 2 and 3). The

beta distribution is limited to unimodal or bimodal at the extremes.

An alternate solution is illustrated in figure 7. te approximate f(a) with a

series of uniform distributions. This procedure can approximate any f(a) and, in the

limit, as the number of line segments gets large, the procedure converges to the true

f (a). The problem now becomes how to select the endpoints and the heights of the

uniform distribution.

f(c)

0 u 90

Figure 7: Approximating the Consumer Taste Distrib.'ti;- wit a Series of

Uniform Distributions.

�1�-a�� � ILI�
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If our approximation is a good one, the area under the approximate curve should be

close to the area under the actual curve. In other words, if we calculate the area

under the actual curve between any two angles, that area should roughly equal the

area under the curve formed -by the uniform approximation. Now, if we take the area

between the lower and upper adjacent angles for any brand, that area should equal

the brand's market share. For example, in figure 7, if "a" and "d" are the low-er

and upper adjacent angles for the brand, the area of the rectangle a-b-c-d should

equal the market share for the brand. Moreover, if we choose the end points to be

the adjacent angles, the brand market shares become the estimates of the respective

areas. Then the area of the jth rectangle is mj and the height, hj, of the jth

uniform distribution becomes mj/(ajj+ - ajj_). Given this approximation, we ex-

actly satisfy mj = Mj. Figure 9 illustrates this approximation for a six brand

market, It turns out that our approximation has a number of useful properties,

such as being a maximum entropy prior, but for our purposes it provides one approxi-

mation to f(a) that distinguishes among alternative defensive pricing strategies.

Summarizing f(a) estimates f(a) and is given by equation (18).

f(a) = (ajj+ - ) Mj/(cjj - jj ) where aj > a > (18)

f()

;

h2

.~~~~~ h

h1

h5

h3

h4
h4

.
6,

I e 3 · rti 0 

Figure 8: Estimation of Consumnr Tastes For A Hypoti caZ Six Product Market
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Heterogeneous Evoked Sets

Extension to heterogeneous evoked sets is deceivingly simple. Since a.j_ and

ajj+ are dependent on the evoked set, A, we can obtain f(a) by a weighted sum of
f(a) given A, denoted f(]CA,). That is,

f(a) = Z S£ f(a[A) (19)
Q=1

A

where f(a) estimates f(a), f(alA.) estimates f(alA.) and S is the proportion of
consumers who evoke A. In general, equation (19) will provide an excellent approxi-

mation to f(a). If there are N brands in the market there will be 2N choice sets

and multiple brands within each choice set. Redundancy reduces the number of in-

dependent line segments to N(N-1)/2, but this is still a large number. For ex-

ample, f(a) for a 10 brand market will be approximated by 45 line segments. Estimates
of-SR are discussed in the next section.

5. ESTIMATION OF THE NEW PRODUCT'S POSITION

Many of the theorems in section 3 are quite general depending only on the new

brand being competitive. But, besides knowing how to respond (e.g., decrease distri-

bution) most defending managers want to know how strongly to respond. The magnitude

of response depends on the new brand's position. For example, intuitively, the

closer the new brand is to our market, the more we should be concerned with an effec-

tive defense.

In this section we provide a general maximum likelihood procedure for estimating

the new brand's position as well as a very practical Bayesian estimation procedure.

We close with a technique to'estimate the probability that the new product enters

each evoked set.

Maximumwn Likelihood Estimates

Suppose the new brand, n, enters the evoked set A with the corresponding

probability, S. (A*p = A U{n}.) Then the market share of the new brand as well
as after-entry market shares for previous brands can be computed with the consumer

model in section (2) if the'.new brand's position, (xln/Pn, x2n/Pn), is known. Thus,

given the new brand's position, we can obtain equations (20) and (21)o

L L * (
mnj RE 1 9,mnl= SQ (20)

* SS

Mn m n S (21)R.=lnj £
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where imj = the post entry market share for brand j given the new brand

enters at n

* = the post entry market share for brand j among those with evoked

set A given the new brand is positioned at -An'

mn* = the market share of the new brand given -n and A.

If we assume consumers are drawn at random to form an estimation sample, the

likelihood function, L(xn), is given by equation (22).

J · 2
L(xn) = Z Mj log mj(xn) + Mn log m*(_ ) (22)

j=l

where L(x) = the likelihood function evaluated at -n

m(xin) = mj evaluated at xn.

m*(x ) = mn evaluated at x.
n-n n

The maximum likelihood estimator of the new brand's position is then the value

of n that maximizes Ln)

Equation 2Z is easy.to derive but difficult to use. The key terms, mj() and

m Ln), are highly non-linear in n even for a uniform distribution. Thus the op-

timization implied by equation 22 is soluble in theory, but extremely difficult in

practice.5 Fortunately, there is a more practical technique for obtaining estimates of En

Bayes Estimates

In discussing defensive strategies with product managers in both consumer and

industrial products we discovered that most defending managers have reasonable hy-

potheses about how the competitive new brand is positioned. For example, when Col-

gate-Palmolive launched Dermassage liquid dishwashing detergent with the advertising

message: "Dermassage actually improves dry, irritated detergent hands and cuts even

the toughest grease", the experienced brand managers at Proctor and Gamble, Lever

Bros. and Purex could be expected to make informed estimates of Dermassage's position

in perceptual space. 'he existence of such prior estimates suggest a Bayesian solution.

Suppose that the defending manager provides a prior estimate, fx(n ), of the

distribution of the new product's position, .n' (Note that n denotes E expressed

as a random variable.) For tractability we discretize the prior distribution. We

then use the consumer model in section 2 to derive nm[,nt3) ] and mn[n()] for each

potential new product position, where B indexes the discretized new brand positions.

5 If L(x ) is reasonably smooth, gradient search or grid search might be feasible.
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See equations (z0) and 21). If consumers are drawn at random for the estimation

sample, then the Bayesian posterior distribution, fx(Xnt,!) is given by:

fx(X M) = fx[xn()] K(MIm)/yfx[n(Y)]K(MIm) (23)

Mn 'J M-n
Where K(MIm)- {n[ n ( n)]} . T {mj[x (3)} j

n[Lx-n j=l

M is the vector of post entry market shares, KQM1) is the kernel of the

sampling distribution for ri consumers drawn at random from a population defined by

the multinomiinal probabilities, and {mn[xn($)] and mj[(f)] for all j}. The

use of equation (23) to update a managerial prior is shown in figure 9.

Equation (23) looks complicated but it is relatively easy to use. First, the

manager specifies his prior beliefs about the new brand's position in the form of

a discrete set of points xn (), and the probabilities, fx[Xl(B )], that each point

X ~-n Im)

'in -In

a) Bayesian Prior b) Updated Posterior

Figure 9 : Bayesian Updating Procedvure for a Hypothetical Market. (The Bayesian

prior (a) is based on managerial judgment. The Ba,,esian posterior (b) is the

result of using observed sales data to update manage-ial judgment. See equation 23.,

is the new position. For example, he may believe that the points, (3.5, 4.0), (4.0, 3.5),

(4.0, 4.0), are the potential, equally likely, positions of the new brand, Dermassage.6

b This hypothetical example does not necessarily reflect true market shares and market
positions.

X�_���I�_� l_________lslI__·s___ ___� 1�1_
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As shown in figure 10, the manager has a general idea of where Dermassage is posi-

tioned but does not know the exact position. We first use equations (20) and (21)

to compute the predicted market shares, mj[ ()], for each of the three potential

new brand positions. For this example, assume that tastes are uniform and everyone

evokes all brands. This case is shown in table 2 Now suppose that we sample 50

consumers and find that, in our sample, the observed market shares are Ajax (20%),

Dermassage (30%), Joy (20%), and Ivory (30%), We use equation (23) to compute the

kernal of the sampling distribution, e.g., K(M_/i? 1) (.30) 10 (.10)15 (.30)10 (.30)15

for =. We then compute the posterior probabilities as given in table 2.

As we have chosen the data, the market shares from 50 consumers clearly identify

(4.0, 4.0) as the most likely position for Dermassage. he point, (4.0, 3.5), still

has an 11% chance of being the actual position; the pint, (3.5, 4.0), is all but

ruled out. Not all applications will be so dramatic in identifying the new brand's

position but all applications will follow the same conceptual framework.

Mildness/$

6 

5

4 

3

2

1

0 Ivory

a Joy

I Qof Dermassage

O Ajax

·_~ . .. - ? . . ...
a a I ,__ *I I1iyI.avy l

1 '2 3 4 5

Figure O: Exwnple Managerial Priors for the NIJe- oduct's Position

(Three equally likeZy points for Dernassage.)

TABLE 2: CALCULATIONS FOR BAYESIAN UPDATiNG PROCEDURE

B=1 ,~=2 .:.=3 Observed

Position of Dermassage (3.5,4.0) (4.0,3.5) (e.0,4.0) Share

Market Shares

Ajax .30 .24 .20 .20

Dermassage .10 .19 .30 .30

Joy .30 .27 .20 .20

Ivory .30 .30 .30 .30

Prior Probability .33 .33 .33 -

Posterior Probability <.01 .11 .88

_ _ · ---*^ - -"------ .......... -·,u~l.l- ----- ·-- ···-·····r l·- ·-·---·r r ·- -·-·- ---·· lr~1~`~L I ~-~~ '"~` i~^ I
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Evoked Set Probabilities

Equation 20 depends on the evoked set probabilities, S and So In Sectiun 2

we assume that S is known prior to the new product's launch. If the manager collects

data on evoked sets after the launch of the new brand, equation 20 can be used directly,

In many cases evoked set information will be too expensive to collect after the

new brand is launched. quation 20 can still be used if we assume either that (1) the

new brand enters evoked sets randomly or (2) the new brand enters evoked sets in pro-

portion to the probability that it would be selected if it were in that evoked set.

Case I is based on the assumption that awareness and availability are indepen-

dent of preference. In case 1, equation (20) and (21) reduce to equations (24 and 25),

respectively.

mj{) : z~(1-W)mj l, + Wm*J S (24)

mJ($) = WZ~mlQa SQ (25)

where W is the aggregate percent of.consumers who are aware of the new brand and find

it available.

Case 2 is based on the assumption that evoking is functionally dependent on

preference. In other words, case 2 assumes that consumers are more likely to become

aware of brands that closely match their preferences. In case 2, equations (20) and

(21) reduce to equations (26) and 27), respectively.

m(_x) = zmj S - LWz(mjIl,-mtIj)mn 9 S)]/[m*Ij S] t26)

mn(n) = WE(m*n, 2 SEzm I S, (27)

The derivations of equations 26) and (27) are given in lemma 5 in the appendix.

Equations (24)-(27) are useful computational results since together they provide

flexibility in modeling how a new brand enters evoked sets. Most importantly each

can be applied if we know only the aggregate percent of consumers who evoke the

new brand.

Swimnary

This section has provided a practical means to estimate the new brand's posi-

tion and its impact on sales. The only data on the new market that are required are

(1) sales of each brand and (2) aggregate evoking of the new brand.7

We assume of course that the old product positions, the old evoked set probabilities,
and the taste distribution are known.

Illl�m�Vsl)llB� u - __
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6. DIAGNOSTICS ON COMPETITIVE RESPONSE

Defensive strategy is how to react to a competitive new product. However,

the concepts developed in sections 2 and 3 are useful for representing competi-

tive threats and, in particular, for representing how our competitors might react

to the new brand. In this section we briefly outline these concepts. We leave

full equilibrium analysis to future research.8

Angle of Attack

The general equilibrium for a market depends on the cost structures faced

by each firm as well as the distribution of consumer tastes. However, in talking

with managers we have found it useful to represent the competitive threats posed

by each firm as that portion of the taste spectrum that that firm is capturing.

In particular we define the "angle of attack", Aj, to represent the average tastes

of product j's consumers, i.e.:

Aj =(jj+ + aj_)/2 (28)

With this definition we should be most concerned with products that have angles

of attack that are close to ours. In defensive strategy formulation we believe

it is useful to superimpose the angle of attack of the new product on the pref-

erence distribution to determine how competitive the new product is and to

determine which of our competitors is most likely to engage in an active defense.

A related concept is the "strength of attack", j, which indicates how

product j is penetrating its portion of the taste spectrum. We define the

strength of attack as:

wh j iX lp + X2 /Pj (29)

where oj is to be compared to the average over all efficient products,

Price Diagnostics

Theorems 2 and 3 tell us how to react to a competitive new product, but

they can just as easily be applied to predict how our competitors should react

to the new product if they are maximizing profit. Beyond that we can provide

8 Existing models of equilibrium analysis assume symmetries in both cost func-
tions and taste distributions. The resulting model places products uniformly
about the spectrum. See Lancaster (1980). For defensive strategies we need
to know more about the dynamics of the market and the cost functions of
existing firms. Symmetric markets are powerful economic tools but are not
sufficient to address specific marketing problems in defensive strategy.

~~~`- 1~~~~~--~~~~~~111----__11_1 ~~~~~~~__. _~~~__ _ . _ ̂ 1 1 _ 1 _.1._ -_ __ "I ___- - -- -1- ._ -1 --- -_ - - - _ _ ___
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(1) an upper bound on competitors' reactions by assuming they price to remain

efficient and (2) a lower bound by assuming that they price to avoid a suicidal

price war with the new product. These upper and lower bounds are illustrated
in figure 1.

Miildness/$

0 Ivory

,t Joy

¶New Product

A xj . Lower Bound

Ajax-_ j-- Upper ound

Efficacy/$

Figure ZZ: Upper and Lower Founds on Competitive Price Responses to

the New Product

7. NORMATIVE ANALYSIS

The directional insights of theorems 1 through 9 are generally applicable
because they do not depend upon the specific details of the awareness, reposi.-

tioning, distribution, and production cost response functions. In the -few cases

where the manager is fortunate enough to have well specified response functions

from previous econometric or experimental marketing analysis, he can go beyond
qualitative insights to specify quantitative levels of the marketing mix budgets.

In particular, he can select p , ca , ka , kd , and kr to maximize profit as

defined by equation 13 in section 3. If the appropriate second order conditions

are satisfied, then the optimal levels can be obtained (in theory) by solving
the following five simultaneous differential equations, (30) through (34).

P c Ep /(Ep - 1) (30)

c = P Ec /(Ec + 1)(31)

ka R Ea (32)kr =R Er (32)

kd = R Ed (33)

kd R Ed (34)



- 37 -

where R (p - c ) M (p *,c ,k ) A D is the net revenue before marketing

costs at the optimal and Fp E a E dE are the elasticities of demand with

respect to price, cost, awareness, advertising, repositioning advertising, and

distribution respectively.9

Equations 25 are complex because each elasticity is a function of the

marketing mix variables. Furthermore, the measurements necessary to obtain

accurate response functions may be difficult and expensive -- but they are feas-

ible. See Bass (1980), Little (1979), and Parsons and Schultz (1976). A prac-

tical measurement and optimization model to set the specific levels of the.

defensive marketing mix has yet to be developed, but with the advent of improved

marketing data such as that based on universal product codes (UPC) and instrumented

markets, such models are likely to be developed in the next few years. In the

meantime the qualitative results of theorems 1 through 9 help marketing scientists

to better understand the optimization structures from which to develop such nor-

mative models.

8. SUMMARY AND FUTURE DIRECTIONS

Among the key results of this paper' are the nine theorems which investigate defen-

sive market strategy. hese theorems are the logical consequences of a consumer model

based on the assumptions that consumers. are heterogeneous and choose within a product

category by maximizing a weighted sum of perceived product attributes. Since this con-

sumer model is based on empirical marketing research we feel that it is a good startin:

point with which to analyze defensive marketing strategies.

We feel that the nine theorems provide usable managerial guidelines. When the

appropriate data is available normative optimization models (equations 30-34).may be

the best way to proceed, but, by their very nature, defensive marketing strategies

are often made quickly and without extensive data collection. The nine theorems tell

the manager that as the result of a competitive entrant (1) the defender's profit will

decrease, (2) if entry cannot be prevented, budgets for distribution and awareness

advertising should be decreased, and (3) the defender should carefully compare the

competitors angle of attack to his position and the distribution of consumer tastes.

If tastes are segmented and if the competitors clearly out-position his product in

one of his consumer segments, a price increase may be optimal. If consumer tastes

are uniformly distributed across the spectrum, the defender should decrease price,

For example, E (ka /demand)[D(demand)/aka] where demand equals M(p*, c , k )

A(ka )D(k),. All elasticities are defined to be positive.
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reposition by advertising to his strength, and improve product quality in the same

direction. Sections 4, 5 and 6 provide practical procedures to identify the consumer

taste distribution, the new brand's position and its entry into evoked sets. This

data allows us to decide when each theorem is appropriate. Because these results are
robust with respect to the details of the model they are good managerial rules of

thumb even when the data is extremely noisy.
We do not mean to imply that the theorems replace empirical modeling. We do

mean to suggest that the theorems are a good beginning to guide the development of

empirical models and to encourage the development of a generalizable managerial

theory of how to respond to competitive near products,

Future Directions

There are many theoretical extensions that may be possible based on the nine
defensive theorems. For example, a price decrease is optimal in regular markets
with uniformly distributed tastes. We suspect that there are conditions under which

a price decrease is optimal for many unimodal distributions of taste. Another ex-

tension might investigate the conditions under which the repositioning and product

improvement theorems lead to global solutions. Other theoretical extensions might

investigate market equilibrium, interrelationships among products in a product line,
and the relationship of defensive strategy to marketing strategy in general.

Our theorems are based on mathematical deduction from one accepted consumer

model. Empirical tests of our theorems, perhaps through practical normative models
based on a good measurement system for the optimization equations in section 7,

will determine how well that consumer model captures the essence of consumer res-

ponse to an active defense. Such empirical tests should lead to new insights and

improved understanding of defensive marketing strategies.

� I�O� ___ __�li�l�
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APPENDIX

This appendix provides the formal lemmas necessary for the proofs to theorems

1 and 3.

Lemma Z: The angle, A = ajj+ - ajn, is non-decreasing- in price for ajj+ > .

Proo£: Lemma 1 is a problem in analytical geometry. We begin by simplifying no-

tation. Examine figure 5. Let a be the line segment connecting points j+ and n,

let b be the line segment connecting poings j+ and j. Consider the triangle formed

by points n, j, and j+, and let A,B,C be angles opposite a, b, and c respectively.

Note that C is obtuse when n, j, and j+ are all efficient. By the law of cosines

a2 = b + c2 - 2bc cos A. Since a is independent of p, a' = O. By implicit dif-

ferentiation 0O= 2bb' + 2cc' - 2(bc' + c'b)cos A - 2bc(cos A)'. Simplifying and

recognizing cosA = (b2+c2-a 2/2bc, we get 2b2c2(cos A)' (c2+a2-b2)bc'+(b2+

a2-c2 )cb' . Since C is obtuse, c2+a2 - b2>0 and b2+a2-c2<0.

We now further simplify notation. Let zi = xl /pi and yi = x2 i/Pi for i

j,n,j+. Note that both zj and yj are decreasing in pj while zn, Yn' zj+, yj+ are
independent of pj. Temporarily redefine (') to denote differentiation with respect

to zj recognizing yj = zj tanoj. After simplification we get c' = (2/c)(y+ - yj)

(tanajj+ - tanj) and b' = (2/b)(yn - yj)(tananj - tanej). By assumption,

aJj+ >oj, and since j+ is upper adjacent, yj+ > yj. Thus c'>O. Similarly

b' {<} 0 if anj {<} e.2

Suppose anj <ej Then b' < 0 and (b +a2+c 2 ) cb' >0 since b +a -c <0.
Thus both terms on the right hand side of the implicit equation for (cos A)' are

positive, hence (cosA)' > 0. Now suppose n.j > e.. (cos A)' is still positive if

(c +a -b 2 (b/c) > (b2+a -c )(c/b) since (yj+ - yj) > (y - yj) and tanajj+ > tananj.

This is easily shown by expansion and collecting terms. Thus (cosA)' >0 for all

a
nJ*

Finally, since cos A is decreasing in A and (cos A)' > O, we have shown

dA/dzj <O. But the derivative is with respect to zj and zj is decreasing in pj.
Thus we have the result that dA/dp. >0.

Lenmna 2: Sales under uniformly distributed tastes are decreasing in price.

Proof: Sales under the condition of uniform tastes is given by Na(anj-ajj_).

The result holds if anj' - a'jj <0 where the derivative is with respect to price.fln 33-

1-1-~ -- ---- ·----- -- ---- --- ----- ------ -------------- - - -- -- ... 
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By direct computation a'nj = Pn(X2jxln - x lj2n)/[jX2n - Pnx2j) 2 + PnXlj - pjxln)2]

Since the denominator is positive the result holds if 2n xln <xlj XZn. Since n is
now upper adjacent to j, x2j < x2n and Xln <xlj where at least one inequality is
strict. Thus a nj' < 0O By symmetry ajj ' > . Thus anj' aj' < O.

Lemmna 3: Mb(p) is a non-increasing function of price. M4b(p) is a decreasing

function of price for f(ajj+) or f(ajj ) > 0.
3+ 33-

Piroof: Mb(P) fJ J+ f(a) da. Let (') denote the derivative with respect to price.

cjj_

Mb'(p) = f(tjj+) a'j - f(ajj_) aj . Following lemma 2, it is clear that a'j+>O,

and ajj <0. Since f(a) > U, it follows that M(p) < O. If f(E.j+) or fa..) > ,

Mb(p) < O.

Lemma 4: a. "- a " is non-positive if Oj < ai .
3f S- 33 - t __

Proof: y direct computation

aj,= Pn(XzjXln - XljX2n) | x2n (PjX2n PnX2j) 

[(Pjxn PnX2j) + (Pnxlj - pjxln)2]2 2 ln(Pnlj -

As shown in the proof of Lemna 2, the first term is negative. Thus the result holds

if the second term in non-positive. Using the notation of Lemma 1, this condition

reduces to z 2 - zjzn < YjYn - yn2 after expansion and simplification. ..But this con-

dition is simply Yn/Zn Zn ( Zjn /(Y- - yn) or tan On tan nj: By symmetry we

show a " > 0 if tan Oj < tan aj. Since ant" < 0 and ajj" > 0 under the
J3- - j- ajc. nj 33

conditions of the lemma, the result follows.

Lemma 5: If evoking is proportional to the probability that the new product will

be chosen if it is in the evoked set, then the forecast market shares are given by

equation 27 in the text.

Proof: By equation 21, m(Xn = : mnRi s -( m~[2 Sa ) (k mnt Sk)/

i'k mnl k Sk) 'Ekmnl-mnIS Sk(S St kskl)/(Zk mlikSk). By assumption, St is pro-

portional to Skmnlk. Substituting and rearranging terms yields mn (Xn) =

Q2,kmnI mnlk S mnit Sk Sk Sk- ' mn'-i /(zkmnjk Sk). Rearranging terms yields

mn mn = (PskM) (hemn Sr2 S k). Recognizing W = kSk yields the equation
for m*(xn) in the text. Using this result and similar substitutions yields equation 25.

I^_I��L��__I� __�II_^_C_���___·ls______I__�__ ___
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