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Abstract

Consider a directed graph G in which every edge has an associated

real-valued distance and a real-valued weight. The weight of an undirected

circuit of G is the sum of the weights of the edges, whereas the distance

of an undirected circuit is the sum of the distances of the forward edges

of the circuit minus the sum of the distances of the backward edges.

A trivial circuit is a 2-edge circuit in which one edge of G appears twice

on the circuit. A quasi-dynamic fractional matching (or Q-matching) is

a collection of vertex-disjoint circuits such that each circuit is either

trivial or else it is an odd circuit whose distance is non-zero.

The Q-matching problem is to find a Q-matching that maximizes the sum .

the weights of its circuits.

The Q-matching problem generalizes both the matching problem and the

fractional matching problem. Moreover, the dynamic matching problem,

which is a matching problem on an infinite dynamic (time-expanded)

graph, is linearly transformable to the Q-matching problem, as shown in

part I of this paper.

In this paper we solve the Q-matching problem by generalizing

Edmonds' blossom algorithm. In fact, all of the major components of the

blossom algorithm -- including alternating trees, augmentations, shrinking,

and expanding -- are appropriately generalized to yield a running time that

is proportional to thatfor the weighted matching problem. Furthermore, if

all edge distances are equal to zero, this new algorithm reduces to

the blossom algorithm.
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1. fitrc F' )n

Consider a directed graph G = (V(G), E(G)) in which each edge e E(G)

has an associated distance d(e) and an associated weight w(e). The

quasi-dynamic fractional matching problem is to find a maximum weight

fractional matching subject to the additional proviso that all of the odd

circuits in the fractional matching have a non-zero distance. This problem

which we shall refer to more briefly as the Q-matching problem was introduced

in part I of this paper so as to solve the dynamic matching problem. The

reader should refer to part I of this paper for the necessary graph

theoretic terminology.

The Q-matching problem generalizes both the ordinary matching problem

and the fractional matching problem. The ordinary matching problem is the

special case of the Q-matching problem in which all edge distances are

zero. The fractional matching problem is equivalent to the special case

of the Q-matching problem in which all edge distances are one.

The Q-matching problem is a special case of the weighted F-packing

problem as proposed by Cornuejols et. al. [1982] in which the class F

consists of edges of G and some family of hypomatchable graphs. Cornuejols

et. al. showed how to solve in polynomial time a large subclass of weighted

F-packing problems, and our algorithm for unweighted Q-matchings may be

viewed as a (speeded-up) implementation of their approach. (However, the

two algorithms were developed independently.)

2. Graph Theoretical Preliminaries

In part I of this paper we defined certain basic concepts such as

paths, circuits, distance of a path, neutral and aneutral circuits, etc.

Below we introduce some other terminology that we use later to describe the

Q-matching algorithm. Many of the definitions are common in the matching
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litera. re and can be found for example in Edmonds [1965a]. Moreover, in

this section on terminology, many of the definitions are taken

directly from Cunningham and Marsh [1978].

Suppose P = v,el,v1,.. .,ek v k is a path in the directed graph G.

We say that e is an odd (resp., even) edge of P if j is odd (resp., even).

We let E (P) denote the odd edges of P and Ee(p) denote the even edges of P.

A vertex, v-, is odd (resp., even) if j is odd (resp., even).

A Q-matching is an ordered pair (M, Q), where M is a set of vertex

disjoint edges, and Q is a set of vertex disjoint odd aneutral circuits,

and V(M) n V(Q) = p. The cardinality of the Q-ma: .hing (M,Q) is

V(M)J> + IV(Q)I.

The symmetric difference of the two subgraphs H and J of the

digraph G is the subgraph K (denoted H J) such that V(K) = V(H) u V(J)

and E(K) = (E(H) - E(J)) (E(J) - E(H)). An (M,Q)-alternating path

is a path in which the edges are alternately in E(M) and E(G) - E(M) - E(Q)

(and thus no edges are in E(Q)). A vertex v is called (M,Q)-exposed

if v V(M) u V(Q).

A tree is a connected circuitless subgraph T (we do not assume that

V(T) = V(G)). An (M,Q)-alternating tree is a rooted tree in which the root

is exposed and such that the path from the root to any other vertex of

V(T) is an (M'Q)-alternating path. A vertex of a rooted tree is odd

(resp., even) if the vertex is an odd (resp., even) vertex on the path in

T from the root. We denote the set of odd (resp., even) vertices of T

as V(T), (resp., Ve (T)). (This definition agrees with that of Cunningham

and Marsh [1978], and differs slightly from Edmonds [1965a].) An alternating

tree is illustrated in Figures 3.1 and 3.2.
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Figure 3.1 A directed graph with a Q-matching in boldface.

Figure 3.2 An (M,Q)-alternating tree with root vertex 1.
The even and odd vertices are v (T) = {1,4,5,8}

and V°(T) = 2,3,6,10}.
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An Overview

In the sequel we will modify Edmonds' blossom alborithm so that it

can solve the Q-matching problem. In particular, we will modify the

concepts of (1) augmenting paths, (2) shrinking and expanding subgraphs,

(3) the linear programming formulation, i.e. the construction of the

polytope describing the convex hull of all Q-matchings, and (4) the primal-dual

algorithm.

Just as the Q-matching problem properly generalizes the matching

problem, so does much of the polyhedral and combinatorial theory for match-

ings extend to Q-matchings. In particular, we extend Edmonds' [195 

generalization of Tutte s [1947] theorem on the existence of matchings.

We also extend Edmonds' [1965b] characterization of the convex hull of the

set of matchings. Of course, we cannot include in this paper all possible

extensions from matchings to Q-matchings. For example, we have omitted

extensions of the elegant results of Pulleyblank [1973] and Pulleyblank and

Edmonds [1974] concerning facets of the matching polyhedra. We have also

restricted attention to only the primal-dual algorithm for the weighted

Q-matching problem, and thus we omit extensions of other very elegant results

including the primal algorithm developed by Cunningham and Marsh [1978].

The unweighted version of the Q-matching problem is properly viewed as

a special case of some recent (independently developed) results by Cornuejols

et. al. [1982]. By appropriately modifying and extending earlier results

by Cornuejols and Pulleyblank [1980a and b] and [1982] concerning triangle-

free two matchings, Cornuejols et. al. showed how to solve in polynomial

time a large subclass of F-packing problems. (An F-packing problem is
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the problc' of covering the vertices of a graph with a collection of

vertex dsj;n:. dges and circuits, where the circuits must satisfy a

given property F.) Moreover, the unweighted Q-matchingalgorithm presented

below may be viewed as a specialization of their techniques for solving

F-packings. Also, the characterization of graphs possessing a perfect

Q-matching (which is a special case of Q-matching duality theorem below)

is a specialization of the characterization of graphs possessing perfect

F-packings as given in Cornuejols et. al.

Our algorithms differ from those of Cornuejols et. al. in two

important respects. First, our algorithm uses data structures that

exploit the edge distances so as to speed up the algorithm significantl>.

Secondly, and more importantly, we can solve the weighted Q-matching

problem in polynomial time, whereas no polynomial algorithm is known for

the weighted F-packing problem. Thus in some significant sense, the

Q-matching problem seems to be much easier to solve than the F-packing

problem.

3. (M,Q)-Augmenting Paths

Below we define three types of paths that lead to augmentations in

Q-matchings. A type-l (M,Q)-augmenting path is an (M,Q)-alternating path P

initiating and terminating at distinct exposed vertices. To augment along

a type-1 (M,Q)-augmenting path P is to replace (M,Q) by (M',Q) with

M' = M P. A type-1 augmentation is portrayed in Figure 3.3 and 3.4.

All of the Figures below have the Q-matching in boldface lines. The

vertex numbers refer to edge distances. We omit the edge weights and

also the edge distances when they are not needed.
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Figure 3.3.

Figure 3.4

A type-1 (M,Q)-augmenting path for the directed
graph of Figure 3.1.

The Q-matching after augmentation along the path
in Figure 3.3.
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A type-2 (M,Q)-augmenting path is an (M,Q)-alternating path P whose

initial vertex is an exposed vertex, and whose terminal vertex is a vertex

of V(Q). Suppose P is a type-2 path with terminus v, and assume

that v is the initial and terminal vertex of circuit C E Q. To augment

along P is to replace (M,Q) by the Q-matching (M',Q') where

M' = (M P) u Ee(C), and Q' = Q - {C}. A type-2 augmentation is portrayed

in Figures 3.5 and 3.6.

An (M,Q) blossom is an ordered pair (P,C) where P is an (M,Q)-alternating

path whose terminal edge is in E(M)and C is an odd (M,Q)-alternating circuit

whose initial vertex is the terminus of P. An (M,Q)-augmenting blossom (or

a type-3 (M,Q)-augmenting path) is an (M,Q)-blossom (P,C) such that P is

an even path whose initial vertex is exposed and such that C is aneutral.

To augment along (P,C) is to replace (M,Q) by (M',Q') where M' = (M . P) - C

and Q' = Q u {C}. An augmentation along a blossom is portrayed in Figures

3.7 and 3.8.
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Figure 3.5. A type-2 (M,Q)-augmenting path for the directed
graph of Figure 3.1.

Figure 3.6. The Q-matching after augmentation along the path
in Figure 3.5.

Ill
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Figure 3.7. An (M,Q)-augmenting blossom for the directed
graph of Figure 3.1. (The circuit of the blossom
has length + 1 and is thus aneutral).

Figure 3.8. The Q-matching after augmentation along the
blossom in Figure 3.7
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We will refer to any of the three types of augmenting paths

described above as (M,Q)-augmenting paths, although the third type is

not a simple path. We note one interesting distinction between

augmenting paths for Q-matchings and augmenting paths for matchings.

Observation. If there is no (M,Q)-augmenting path, then it is

not necessarily true that (M,Q) is a maximum cardinality Q-matching.

The above observation is illustrated in Figure 3.9. There we

define a Q-matching of cardinality 4, even though the circuit with

vertices 1, 2, 3, 4 and 5 has cardinality 5. This result contrasts

with Berge's [1957] theorem stating the existence of an augmenting

path for any matching problem in which a given matching does not have

maximum cardinality.

Nevertheless the Q-matching algorithm determines maximum

cardinality Q-matchings via augmentations. In order to locate augmenting

paths, the algorithm performs a sequence of contractions and expansions

of the directed graph. It is during the contraction procedure (described

in the next section) that augmenting paths may be created.
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Figure 3.9. A Q-matching that is not maximum cardinality
and relative to which there is no augmenting
path.
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4. Shrinking Subgraphs

Our Q-matching algorithm parallels Edmonds blossom algorithm in

its reliance on shrinking subgraphs. Below we define some more graph

theoretic terminology related to these shrinkings. These definitions,

however, differ slightly from the common usage as given for example in

Cunningham and Marsh [1978]. First, the Q-matching algorithm only shrinks

neutral subgraphs, i.e., those containing no aneutral circuits. Moreover,

the distances on "shrunk edges" are changed appropriately. Secondly,

we assume that each subgraph to be shrunk is both rooted and connected.

Let H be a rooted, connected, neutral subgraph of the directed

graph G, and let v' be the root of H. The root function in G induced by H

is the function rH() defined as follows:

v' if v E V(H)

rH(v ) =

v if v V(H)

The distance function in G induced by H is the function dH(v) defined as follows:

the distance in H from v' to v if v E V(H)

dH(V) =
0 if v V(H)

The distance function is uniquely defined since H is connected and neutral.

The distance function dH(v) is equivalently defined to be the distance from

rH(v) to v using only edges of E(H),
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Le. H be a rooted, connected, neutral subgraph of the directed graph G

and let v' be the root of H. The graph G x H obtained from G by shrinking

H is defined as follows: V(G x H) = V(G) - V(H) {v'}. The edge set

E(G x H) is constructed as follows: for each edge e = (u,v) E(G) - E(H)

there is an associated edge e' E(G x H) denoted e' = e x H and such that:

(1) e' = (rH(u), rH(v))

and (2) d(e') = d(e) + dH(u) - dH(v)

For each subset H' c G, we let H' x H denote the subgraph of G x H induced

by H'. In particular E(H' x H) is the set of all edges in E(G x H) induced

by edges in E(H') - E(H).

The shrinking of a subgraph is illustrated in Figures 4.1 and 4.?.

Figure 4.1 portrays a directed graph in which the neutral connected rooted

subgraph is in boldface, and vertex 6 is the root. The shrunk graph is portrayed

in Figure 4.2. The distance and root functions are described in Table 4.1,

and the changes in the edges are portrayed in Table 4.2.
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Figure 4.1. A directed graph in which the boldface subgraph is

a neutral subgraph with root vertex 6. However, the

induced, subgraph of the vertices on the boldface

contains the aneutral circuit through vertices

5, 6 and 7.

0

Figure 4.2. The directed graph obtained by shrinking the rooted

neutral subgraph of Figure 4.2. The loop with

distance-2 corresponds to edge (5,6)of Figure 4.1.
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1 2 3 4 5 6 7 8

1 2 6 6 6 6 6 8

0 0 -4 1 -3 0 -2 0

Table 4.1

(5.6)

1

rage otr , Z., -, --- I- I- I ...

Distance in G 0 1 1 4

Edge of G x H

Distance in G x H

(2,1)

0

(2,6)

0

(6,1)

-3

(6,6)

0

(6,6) (6,8) (8,6)

-2 0 1

Table 4.2

Vertex

rH(.)

(7,8) (8,6)

2 1

/3 1) f) l3 L -1 ( 5 - 4- _ - -I
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The definition of edge distances is designed so that the following

lemma and its corollary are true.

Lemma 1. Let G be a directed graph, and suppose that H is a connected

neutral rooted subgraph of G. Let dH(.) and rH(.) be the distance and root

functions induced by H. Finally suppose that P is a path in G and let u

and v be the initial and terminal vertices of P. Then P x H is a path in

G x H from rH(u) to rH(v). Moreover, the distance of the path P x H is

d(P) + dH(u) - dH(v).

Proof. The lemma is easily verified if P consists of a single edge.

Suppose instead that P = el,vl,...,ek,vk and k > 2. Assume induc-

ductively that the lemma is valid for all paths of at most k-1 edges. Let

P1 - v0Oel'v1 and let P2 = vl''..ekvkk' Then P1 x H is a path from

rH(v) to rH(V 1) with distance d(P1) + dH(v)- dH(vl), and by the induc-

tive hypothesis P2 x H is a path from rH(v 1) to rH(vk) with distance

d(P2) + dH(vl) - dH(vk). Concatening P1 x H and P2 x H gives the path

x H from rH(vO) to rH(k) with distance d(P1) + d(P2) + dH(vO) - dH(vk),

completing the proof.

Corollary 1. Let H, G, dH(-), and rH(') satisfy the conditions of

Lemma 1, and suppose that C is any circuit of G. If C x H is neutral, then

circuit C is neutral, Moreover, if C x H is an aneutral circuit, then C

is also aneutral.

Proof. We first note that C x H is a closed walk and is thus the

union of edge-disjoint circuits. Since d(C) = d(C x H), it follows that

if all circuits of C x H are neutral, then d(C x H) = d(C) = 0.



.... _ _ c o rooted subgraphs of G oith maximal members

Hl,..., Hk, the graph G x is defined to be (...((G x H) x H2) x... x Hk).

It is easily verified that the graph G x does not epend on the order in

which these sets are shrunk. The roots of the max mal members of are

called pseudo-verticies of G x . The other verties of V(G x ) are

the real verticies of G x .

For a nested family and for each H e , let YSH] = {H's : E(H') c E(H)}.

Thus Y[H] is the collection of those subsets of that are strictly contained

in H.

The nested families that we are interested in all have the folk - 'ng

property:

For each H e , H x 3IH] is an odd neutral circuit. (5.1)

A nested family satisfying (5.1) is called a shrinking family. The

definition here of shrinking families is a direct extension of the usual

definition for undirected graphs (see Cunningham and Marsh [1978] for

example). The only significant modification of the definition stems from

our concerns with edge distances.

The motivation underlying the construction of shrinking families is

given in Theorem 1 as proved in the next subsection. The result parallels

and generalizes the following result proved by Cunningham and Marsh.

(We note that a shrinking family for an undirected graph is the same as a

shrinking family for a directed graph in which all edge distances are 0.)

Theorem (Cunningham and Marsh). Let be a shrinking family of G and

let M be a perfect matching (i.e., M has no exposed vertices) of G x 3.

Then there is a perfect matching M1 of G such that M = M1 x .



5. Expanding Pseudo-Vertices

The Q-matching algorithm that we develop below involves a sequence of

shrinkings of odd neutral circuits resulting in a shrinking family. The

advantage of this shrinking familyy may be stated briefly as follows: an

(M,Q)-augmenting path in G x Y leads to an augmentation in G. This result

is stated more formally in Theorem 1.

Theorem 1. Let be a shrinking family of G and let (M,Q) be a

Q-matching of G x . Then there is a Q-matching (M*,Q*) of G such that

(M,Q) = (M*, Q*) x and the number of (M,Q)-exposed vertices and pseudo-

vertices in G x Y is equal to the number of (M*,Q*)-exposed vertices in G.

Proof. The result is trivially true if = . Suppose = , and

assume inductively that the theorem is valid for all shrinking families with

fewer elements than T.

Let H be a minimal element of . Let G' = G x H, and let ' = - {H}.

Because G' x ' = Gx F and by our inductive hypothesis, there is a

Q-matching (M',Q') in G' such that (M,Q) = (M',Q') x ' and the number of

(M,Q)-exposed vertices and pseudo-vertices in G x Y is equal to the number

of (M',Q')-exposed vertices and pseudo-vertices in G'.

Because H is minimal, it follows that H is spanned by an odd neutral

circuit C. Let v' denote the pseudo-vertex of G' corresponding to the root

of H. In order to obtain the Q-matching (M*,Q*) with the properties stated

in the theorem, we consider separately the cases in which v' is (M',Q')-

exposed or v' V(M') or v' V(Q').

Suppose first that v' is (M',Q')-exposed. Then let M = M' UEe(H) and

let Q* = Q'.

Suppose next that v' is an endpoint of edge e' E(M'). Let e be the

edge of E(G) such that e' = e x H, and let u be the endpoint of e that is

__

Il
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a vert- of V(H). Finally suppose that C is expressed as a path from

vertex u to vertex u. Then let M* = (M' + e-e') UEe(C) and let Q* = Q'.

(This expansion is portrayed in Figures 5.1 and 5.2. It is an expansion

that is also used in the blossom algorithm for the matching problem.)

Lastly, we assume that v' is a vertex of some aneutral circuit

C'eQ, and assume that C' is expressed as a path frcm vertex v' to vertex

v'. Let P1 be the (unique) path in G with IE(C') I edges such that

C' = P1 x H. (It is easy to prove inductively that such a path must exist.)

Let P2 and P3 be the two paths in H from the terminal vertex of P1 to the

initial vertex of P, such that E(P2) + E(P3) = E(H) and chosen so that

(P1 ,P2) is an odd circuit in G. Then let M* = M' UEe(P3) , and let

Q* = (Q' - C') u{Pt,P 2} because C' is aneutral and by Corollary ,

tl,P 2) is an aneutral circuit of G. Thus (M*,Q*) is a Q-matching of G.

This expansion is portrayed in Figures 5.3-5.6.

In all three cases we have constructed a Q-matching (M*,Q*) such that

(M*,Q*) x H = (M',Q') and the number of (M*,Q*)-exposed vertices in G

is equal to the number of (M',Q')-exposed vertices and pseudo-vertices in

G', completing the proof.
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Figure 5.1. A Q-matching for the shrunken graph portrayed
in Figure 4.2.

Figure 5.2. The Q-matching for the graph portrayed in Figure 4.1
obtained by expanding the Q-matching of Figure 5.1.
Note that edge (7,8) had been shrunk to edge (6,8)
of Figure 5.1.
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0

0

Figure 5.3. A Q-matching for the shrunken graph portrayed
in Figure 4.2. Here the pseudo-vertex is in
the Q-matched circuit 6,1,2,6.

2

Figure 5.4. The Q-matching obtained by expanding the
Q-matching of Figure 5.3. The Q-matched circuit C
of Figure 5.3 corresponds to the path P = 3,1,2,4.

The paths P2,P3 of the proof of Theorem 1 are

P2
= 4,6,7,5,3 and P3 = 4,3, chosen so that P1,P2

is an odd aneutral circuit.
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n

-2

Figure 5.5. A Q-matching for the shrunken graph
portrayed in Figure 4.2.

Figure 5.6. The Q-matching obtained by expanding the Q-matching
of Figure 5.5. (Note that the Q-matched circuit
here has the same distance as the Q-matched circuit
of Figure 5.5.)
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h~ 'ceforth, by expanding a pseudo-vertex we mean recovering

the odd neutral circuit from which it was obtained while simultaneously

altering the Q-matching as in Theorem 1 so as to leave unaltered the

number of exposed vertices and pseudo-vertices.

6. The Cardinality Q-Matching Algorithm

The following description of the maximum cardinality Q-matching algo-

rithm closely parallels the description given by Lawler [1976].

STEP 0. Let G be a directed graph. Let M = Q = p. Let F = p.

STEP 1. (Labeling and Scanning).

(1.0) Let the alternating rooted tree be empty. All vertices

are "unlabeled" and all edges "unscanned".

(1.1) Find an unlabelled exposed vertex; label it even and start

rooting a tree at this vertex. If no exposed vertex exists,

go to Step 4.

(1.2) Find an unscanned even vertex v to T incident to at least one

unscanned edge. If no such vertex exists, go to Step (1.1). Else

continue.

(1.3) Find an unscanned edge e incident to the vertex v. If no such

edge exists then label v "scanned" and return to 1.2. Else

let v' be the other endpoint of edge e. Label e "scanned" and

continue.

(1.3a) If v' is an even vertex of T then go to Step 3.

(1.3b) If v' is an odd vertex of T then return to 1.3.

(1.3c) If v' is exposed, then go to Step 2.

(1.3d) If v' s V(Q), then go to Step 2.

(1.3e) If v' V(M) and v' is unlabeled, then continue.
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(1.4) Add edge e to the alternating tree. Find the unique

edge e' of E(M) that is incident to v' and add edge e'

to the tree T. Label e' "scanned", label v' odd and

label the other endpoint of e' even. Then return to

Step 1.3.

STEP 2. (Type 1 and Type 2 augmentations).

Find the type 1 or type 2 augmenting path in T u{e}. Augment

along this path. Recursively expand all pseudo-vertices and

return to Step 1.0.

STEP 3. (Shrinking or Type 3-augmentations).

Determine the odd circuit C in T u {e}. If C is neutral, then

replace G, (M,Q), and T by G x C, (M,Q) x C, T x C and return

to Step 1.2. If C is aneutral, then perform the type-3 augmen-

tation; recursively expand all pseudo-vertices and return to

Step 1.2.

STEP 4. (Hungarian Forest)

Each even vertex and pseudo-vertex is joined only to odd

vertices. Expand all pseudo-vertices. The resulting Q-matching

has maximum cardinality.

We note that the above algorithm determines a Q-matching in a poly-

nomial number of steps. Below we prove that the Q-matching obtained by

the algorithm does indeed have maximum cardinality. Simultaneously, we

prove a duality result that extends Edmonds' "odd cover theorem" [1965a].

A set consisting of a single vertex v is said to cover (v), and the

capacity of {v} is 2. A subset S c V(G) with SI > 2 is said to cover

the edges of G[S]. If ISI > 3 and is odd and if G[S ' is neutral, then the cap-

acity of S is SI-1. Otherwise the capacity of S is SI. A set cover is a

family of subsets of V(G) such that each edge e e E(G) is covered by at least

one member of the family.



Q-Matching Duality Theorem. The maximum cardinality of a Q-matching

of G 1. equal to the minimum capacity of a set cover of G.

Proof. We see that the maximum cardinality of a Q-matching is at

most the minimum capacity of a set cover as follows. Suppose that (M,Q) is

a Q-matching. Let the cardinality of each edge e E(M) be two and the

cardinality of each edge e e E(Q) be one. Then the sum of the cardinality

of the edges is the cardinality of the Q-matching. Moreover, the sum of

the cardinalities of the edges is at most the capacity of any set cover.

Conversely, let denote the shrinking family obtained prior to the

last step, let T be the "hungarian" tree in G x obtained prior to the

last step, and let (M,Q) be the Q-matching prior to expansion. Since

each pseudo-vertex of G x is even (as is the case with the usual cardin-

ality matching algorithms), it follows that all odd vertices of G x

are real. Finally, we construct a set cover S as follows:

(1) For each odd vertex v of G x , there is a singleton set {v} in S.

(2) For each pseudo-vertex of G x Y corresponding to a maximal

subset H 3, there is the set V(H) in S.

(3) There is a subset consisting of all vertices in V(M) uV(Q) that

are left unlabeled by the algorithms. (In fact, the set always

contains all vertices of the matched circuits of Q.)

We first see that the collection S is a set cover as follows. Suppose

edge e = (u,v) is not covered by S. If e is not an edge of G x , then e

is covered by a set defined in (2). If u or v is an odd vertex of T, then

e is covered. If neither u nor v is labeled, then e is covered by the set

defined in (3). Thus u or v is an even vertex of T(or both). If u (resp., v)

is even, then v (resp., u) is labeled by the algorithm. Hence both u and v

are even and members of different maximal subsets of . But then scanning

edge e would have led in Step 3 either to another shrinking or another expan-

sion, contradicting that edge e is not covered.
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Finally, we see that the cardinality of the Q-matching obtained

by the algorithm by expanding (M,Q) is equal to the capacity of S by observing

that the capacity of each subset T S is equal to the sum of the cardinal-

ities of the edges of (M,Q) that it covers. (Each set T constructed from

a pseudo-vertex is odd and G[T] is neutral. Thus its capacity is ITI-l,

and it covers (ITI-1)/2 edges of M).

We note that the optimality of the Q-matching algorithm is implicit

in the proof of the Q-matching duality theorem.

7. Maximum Weight Q-Matchings

Below we give a polynomial algorithm for finding a maximum weight

Q-matching. · The algorithm is a direct extension of Edmonds' [1965b] primal-

dual algorithm for the maximum weight matching problem. However, the presen-

tation of the algorithm parallels that of Lawler [1976].

In order to simplify the notation, we let G = (V(G), E(G)) be a directed

graph in which V(G) = ({,...,n}, E(G) = {el,...,e }, the distance of edge

ei is di, and wi
2w(ei). (We need the factor of 2 in order to be consis-

tent in our definition of the weight of a Q-matching.)

Let be the set of all odd neutral subgraphs of G. Let x = (xj) be

an assignment of the values in {0, 1/2, 1} to the edges in E(G) so as to

m
Maximize I w.x. (6.la)

j=l 

Subject to i x. < 1 for all vertices vV(G) (6.lb)
e 6(V) J -

e X< 1/2(IV(H)1-1) for all HN (6.1c)

ej sE(H)

x f {O, 1/2, 1} for j = ,,.,m. (6.1d)
xjA0 /,1



-28-

The Q-. itching (M,Q) induces a feasible solution x = (x.) for (6.1) given

by: xi = 1 or ei E E(M), and xi 1/2 for ei E(Q). We note that a Q-matching

(M,Q) has max .. h-, if and only if the induced solution x is optimal

for (6.1). Moreover, the weight of (M,Q) is wx. In fact, we prove a

much stronger result below. The problem obtained from (6.1) by relaxing

constraint (6.ld) and adding the constraint "x > 0" is called the continuous

relaxation of (6.1).

Theorem 2. A Q-matching (M,Q) has maximum weight if and only if the

induced solution x is optimal for the continuous relaxation of (6.1).

The proof of Theorem 2 follows the presentation of the maximum weight

Q-matching algorithm.

Theorem 2 suggests the following variant of the weighted matching

algorithm, and both may be viewed as a special case of the primal-dual

linear programming algorithm presented, for example, by Papadimitriou and

Steiglitz (1982). First, form the dual to linear program (6.1) by associ-

ating dual prices X and a with constraints (6.lb) and (6.1c) as below.

Minimize X + E (1/2)aH(IVHI-1)
,V(G) HeH

Subject to X + X + aH > w. for all e = (u,v)EE(G) (6.2)

H:ej E E(H)

and X, a > 0

As is well known, a necessary and sufficient condition for feasible

solution x for the continuous relaxation of (6.1) to be optimal is that there

exists feasible dual vectors X, for (6.2) such that for all u,v and H the

following complementary slackness conditions (6.3) are satisfied.

_ 1_�1
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If e = (u,v) and x > 0 then

u+ + aOH = j (6.3a)

H:eEE(H)

If X > 0 then X x. 1 for all vV(G) (6.3b)
v-- 3

e.C6(v)
3

If aH > 0 then x (1/2)(IV(H)1-1) (6.3c)

e eE(H)

Below we let w. denote the reduced weight of edge ej = (u,v), i.e.,

w = w. - u v - (i aH:eijE(H)). An edge e is feasible with respect

to (,a) if wj = 0. The feasible subgraph with respect to (X,a) is the

subgraph H such that E(H) is the set of all feasible edges.

Suppose is a shrinking family and T is a rooted alternating tree

in G x We say that H £ is even (resp., odd) if H is a maximal element

of that is shrunk to an even (resp., odd) pseudo-vertex of T. We say

that a vertex v V(G) is even (resp., odd) if either v is a real even

(resp., odd) vertex of T or else v is a vertex of some even (resp., odd)

subgraph H es .

The Maximum Weight Q-IMatching Algorithm

STEP 0. Let X = 1/2 max {w } for each v V(G).
v 3 w

Let a 0, and let M = Q = %. Let Y= %, and let G' be the

feasible subgraph of G with respect to (,a).

STEP 1. -Carry out Step 1 of G' as in the cardinality Q-Matching

Algorithm on subgraph G'. If G' has no exposed vertices,

then go to Step 3.

(1.1) If an (M,Q)-augmenting path is determined, then perform the

augmentation, expand all pseudo-vertices corresponding
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to subgraphs H with H = O. Then return to Step 1 with the

augmented Q-matching.

(1.2) If a neutral blossom is found, then shrink it as in the cardin-

ality Q-matching algorithm. Repeat Step 1 until a hungarian

forest is obtained. Then proceed to Step 2.

STEP 2. (Change of Dual Variables)

Let A = min {wi: ei is incident to both an even vertex and an

unlabeled vertex}.

Let A2 = min {1/2 w: ei is incident to two even vertices not

in the same shrunken pseudo-vertex}.

Let A3 = min {a H:H is odd}.

Let A4 = min :{X v is even}.

Let A = min (,a 2,a 3, ).

(2.1) Increase (resp., decrease) Xv by A if v is odd (resp., even).

(2.2) Decrease (resp., increase) aH by 2A if H is odd (resp., even).

(2.3) If A A3 expand all pseudo-vertices for which the corresponding

dual variable is 0.

If A = A4, to to Step 3. Else let G' be the resulting feasible

digraph and return to Step 1.

STEP 3. Expand all pseudo-vertices, choosing a maximum weight Q-matching

(M,Q) consisting of feasible edges. The corresponding dual

vectors X,a are optimal for (6.2).

Theorem 3. The maximum weight Q-matching algorithm determines a solution

which is optimal for the continuous relaxation of (6.1), and the algorithm

runs in polynomial time.

Proof. We first prove inductively that the dual variables X and a

are feasible for linear program (5.2). Note that the initial choice of

A and a is feasible. Assume that w. < 0 for j = 1, ..., m at a given iteration
0 --
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for a given dual solution , a. Let X',a', and w' be the dual variables

and reduced weights after the next change of variables in Step 2, and we

claim that w < 0 for j = 1, ..., m. Let e = (u,v) and we divide the

analysis into the following cases: (1) both u and v are in the same shrunken

pseudo-vertex, (2) both u and v are even but are not in the same shrunken

pseudo-vertex, (3) both u and v are odd but not in the same shrunken pseudo-

vertex, (4) u is even and v is odd, (5) u is even and v is unlabelled,

(6) u is odd and v is unlabeled, and (7) both u and v are unlabelled. (The

other cases can be obtained by interchanging u and v in (4), (5) and (6).)

It is easily verified that w = w. if e. is as in cases (1), (4), and (7).

In -case (2), w'wIn case (2), w = w. + A. In case (3), w! = w. + A.

In case (6), w = w. - A. By our choice of A in Step 2, we are guaranteed

that w < 0 in each case.
3-

We next note by case (1) above, that all edges in neutral blossoms

ramain feasible after contraction, and by cases (4) and (7), all edges in

M uQ remain feasible after the change of dual variables. We also note that

(6.3c) is satisfied at each stage because we do not expand pseudo-vertices

unless the associated dual variable is zero.

We see that the algorithm runs in polynomial time as follows. First,

the number of augmentations is bounded by Vi, and the number of contractions

between two successive augmentations is bounded by IVI/3. Finally, if

A = 1,A2, or A3 in Step 2, then the new feasible edge will result in

either (1) the labeling of an unlabeled vertex, or (2) the contraction of a

neutral blossom, or (3) an augmentation. Thus the number of iterations of

Step 2 between successive augmentations is bounded by VI. Thus the algorithm

is polynomial.
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,n ally, we claim that the algorithm terminates with a maximum weight

Q-matching. To see this, we note that the algorithm either terminates

because there a no exposed vertices, or else A = A4 in Step 2. In the

first case, we have primal feasibility, dual feasibility and complementary

slackness, and thus the Q-matching is optimal for the linear relaxation of

(6.1). In the second case, we note after the change in dual prices

that X = 0 for some exposed vertex v. In fact, = 0 for any exposed
v w

vertex w. To see this,note that at the initial step each -variable is set

to w ax/2 and at each change of dual variables each exposed vertex is

decreased by a common amount A. Because = 0 for all exposed vertices
w

w, the complementary slackness condition (6.3b) is satisfied at termina-

tion. 

8. Extensions and New Directions

Speed-up Techniques

The primal-dual algorithm for the Q-matching problem presented in

Section 7 is polynomial, but little attempt was made to minimize the

run-time. In fact, the algorithm can be made to run in O(IV(G) 13)

steps by using the data structures and implementation described by

Lawler [1976] for the weighted matching problem. However, the reader

should be forewarned that the details of such an implementation are complex

and require a great deal of care.

It is an open question as to whether the cardinality Q-matching algo-

rithm may be solved in o(IV(G) 3 )steps. In particular, it would be inter-

esting to know whether the (IjV(G) 15/2
) time algorithm developed by Even and

Kariv [1975] can be extended so as to determine Q-matchings in a proportional

amount of time. We conjecture that such an extension does not exist for
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the foll -7ing reason. The Even-Kariv result depended on theory developed

by Hopcroft Pn ?T¥r r1973] concerning "maximal sets of augmenting paths of

at most k edges". The Karp and Ullman results have no direct extension

to Q-matchings. In fact, we have already seen that the Q-matching procedure

does not depend on the existence of augmentations in the original graph.

Extensions to b-Matchings

A b-matching is the generalization of matchings in which we require

the number of edges incident to vertex i to be at most bi for each i V(G)*

The b-matching problem has been investigated and solved by Edmonds et al.

[1969] and Pulleyblank [1973] and [1977]. We conjecture that if the dynamic

matching problem of Part I of this paper is generalized to dynamic b-

matchings, then it can b solved in polynomial time by an appropriate

generalization of b-matchings to Quasi-dynamic fractional b-matchings

(Q-b-matchings).
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