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ABSTRACT

In this paper several results are established which provide for the
consistent estimation of macroeconomic effects using cross section data, for
general assumptions on the movement of the population distribution over tinme.
We show that macroeconomic effects are alwavs consistently estimated by linear
instrumental variables coefficients, where the instruments are. determined by
the form of distribution movement., This leads to a natural way to assess the
biases in OLS coefficients as estimators of macroeconomic effects, provides a
nonparametric macroeconomic interpretation of linear instrumental variables
coefficients when the true microeconomic behavioral model is unknown, and
gives a nonparametric interpretation of standard regression decomposition
statistice such as R2 relative to the information costs of nonlinearities in
aggregation. All of the results are valid without imposing any testable

restrictions on the cross section data.



#Tnomas M. Stoker 1s Ascociate Frofessor, Sloan School of Management,
Massachusetts Incstitute of Technology, Cambridge, MA 02139. This research was
funded by National Science Foundation Grants No. SES-8308748 and SES-8410030,
The author wishes to thank J. Powell for ongoing discussions, and A, Deaton,
J. Hausmann, J. Heckman, D. Jorgenson, A. Lewbel, J. Muellbauer, J. Roteamberg,
A, Iellner and the referees for helpful comments on this and related work.
Special thanks go to Terence Gorman, both for comments and gracious
hiospitality shown the author during a week at Nuffield Coilege, Duford, when
the ideas of the paper were originally conceived. All errors, etc., remain the

responsibility of the author.



AGGREGATION, EFFICIENCY AND CROSS SECTIOM REGRESSION

1. INTRODUCTION

In Stoker{1982}), necessary and sufficient conditions are established for
crass section OLS regression coefficients to consistently estimate
nacroeconomic effects - the effects of varving the means of the regressors on
the depsndent variable mean.1 f particularly interesting sufficient conditicon
for this property exists when the distribution of regressor values ia the
population varies over time via the exponential family form. The striking
feature of this condition is that it i@plies no restrictions which are
testable using the cross section data, and therefore establishes a
macroeconomic interpretation of linear OLS coefficients when the true
behavioral model underlying the data is unknown.

The purpose of this paper is to establish several characterizing results
which provide for the consistent estimation of macroeconomic effects ucsing
craoss section data, for general asczumptions on the movement of the population
distribution over time. We show that macroeconomic effects are always
consistently estimated by linear instrumental variables cpefficients, where
the instruments are determined by the fors of distribution movement. This

lzade tc a natural way to aszess the biases in OLS coefficients as estimators

m

of macroeconomic eftects, provides a nonparametiric macroeconomic
interpretation of linear instrumental variables coefficients when the true
-behavioral model is unknown and givés a nonparametric interpratation of
standard regression variance decomposition statistics (such as R2) relating to
the infarmation costs of nonlinearities in aggregation., All of our results are
valid without imposing any testable restrictions on the cross section data.

In Section 2 we introduce the basic assumptions reguired, and discuss

both the microeconomic and macroeconomic aspects of the framework. Section 3
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provides a brief derivation of the result that macroeconomic effects are
always consistently estimated by linear cross section regrescion coefficients,
where the score vectors of distribution movement are used as instruments.
Section 4 allows a deeper understanding of the result by noting its intimate
connection to the staticstical theery of the efficiency of data aggregates,
ahich characterizes valid micro instruments +or estimating macroeconomic
gtfects, and shows how the standard OLS variance decomposition terms exactly
reflect the Cramer-Rao bounds for dependsnt variable averages as estimators of
their means. Section § treate several related topice - exponential family
zpecial cases and the characterization of R2, as well as a result on the use
of consistent distribution parameter sstimates in the formation of the proper
instruments. Section 6 gives a brief numerical example and Section 7 contains
some concluding remarks. )

1t may be helpful to consider at the outset a simple example which we
will return to in Section 4, Suppose we are studying the demand y of a
commodity over a period of constant prices, with our model stating that demand
is determined by total budget expenditure X via a stable Engel curve
E{y1X)=F(X) for all families. Suppose that the total expenditure distribution
p(X18%*) is lognormal in each time pericd t, with In X normal with mean 8% and
constant variance. We can determine the means of v and Y in terms of B® as
Etiy)=3*(0%) and pt=Ee(X)=H(B*), and the mean of y in terme of Wt as
E€lvi=g®(H-t (%) )=9(p*), which constitutes the aggregate demand function.

Mow, suppose that we have cross section data at time t=t° (where 8=8°) -
a random sample {y.,Xulx., Since the above lognormal distribution is an
exponential family with driving variable 1ln X, the result of Stoker(1982)

implies that if we perform the regression
(1.1 Ve = a + b 1ln Xy + &y

then b consistently estimates 89*/38° - the effect of changing the log

i
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geametric mean of total expenditure 8 on mean demand E{y). For most practical
purposes, however, we would be more interestzd in 3%/ap°®, the effect of mean
total expenditure on mean demand. Here we show that if we estimate the
equation

~ ~ ”

(1.2 yk=c+dxk+uk

using 1n Xk as the instrumental variakle, then 8 consistently estimates
3%/08pK°, We characterize how ln X« can be regarged as & valid instrument, and
we show how the variance decomposition of regressions such as the above relate
to the efficiency properties of sample averages - for example the large samplea
value of R2 from (1.1) is the "first order etficiency" of the sample average
;. All of these results are valid regardless Sf the true Engel curve fora

Edy i X)=F ).

2., THE BASIC FRAMEMWOERK

2.1 Notation and Formal Assumptiaons

This section presents the notation and basic assumptions used. The
salient features of the framework are as follows. We model changes over time
in the joint distribution of a dependent variable vy and a vector of
predictor variables X, and formulate the aggregate relationship bstween the
means of vy and X aver time. When the microeconomic madal_between y and X is
stable over time, the aggregate relationship explaines the mean of v as a
function of changes in the marginal'distribution of X. The results of the
paper connect regression statistics from cross csection data (observed for a
single time period) to the derivatives of the aggregate relationship, or
macroeconomic effects.

Formally, we assume that the wvalues of (v,X) across the population at
time t represent a random sample from a distribution 62 (y,XI8%), which is

absolutely continuous with respect to a o-finite measure v, with Radon-Nikodym
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density P(y,X18%) = ds’(y,Xlat)/dv. 8 is a vector of parameters which indexes
movements aver time in the joint distribution of y and X.

At time t=t°, a cross section data set is observed, which consists of ¥
gbservations ¥w, %u«} k=1,...,K. These observations are assumed to be a randonm
sample from the distribution with density FO(y,X)=Fiy,Xig°), where 8=8° for

the cross section time period t£=t°, We make the following assumpticns

m
m

concerning tne local structure of the distribution around E&=8°,

ASSUMPTION 1: 8 is an M-vector of parameters, and P exists for 858, where B is

a compact subset of R™ which contains an open neighborhood of 8°.

ASSUMFTION 2: Pi{y,X18) is twice differentiable in 8 for all Be®.

We define the score vector of P with respect to 8 in the usual way as

_ aln Fiv,X18)
8 38

(2.0 A

ASSUMFTION 3: The means of y, ¥ and the score vector & and the variances

8 1]
and covariances of vy, X and ke exist and are continuous in 8 for all 8eB. The
information matrix Ia =E(&ak8‘) ig positive definite for all B8e8.

The means of v and X as functions of © are denoted as +ollows
(2.2 E(vi = w, =fy?£y,xt6)dv = ()

(2.3) E(X)

po= [rriy xi8dv = Hea)

We denote the relevant covariance matrices as follows: Var{y)=c,,, Var{Xi=Zxx,
CoviX,yi=E{{X-W) (y-p,))}=Ex,, where the dependence of these parameters on 8 is

i i = v)= = ‘Y=%¢
suppressed in the notation, and Cov(&e,y) E(ke/) EBy ' CDV(RB,X) E(kBX ) Zay 0
and Var(ke)=le. Far the parameter value 8=8°, we denote the score vecter RBO

as Lo and the respective covariance matrices as Zo,, Lox and lo. The sample

moments computed from the cross section data are given as follaows: the



averages are denoted by y=Ly./K and X=ZX«/K and the sample covariance matrices
are denoted by S with the same subscripts as the population covariances, as in

Sxx=E k%) (Xe=X) 7K and Sxy=TiXe-X) (yu-v) /K.

ASSUMFTION 4: ¢* and H are differentiable with respect to the components of 8

ASSUMFTION S: H is invertible for all Be=8.

The overall induced relation between Ei{vi=p, and E(X)=p - the aggregate

function - is defined by inverting (2.3) and inserting into {(2.2) as®
2.4 pY=¢*(H=t (i) =¢ ()

These definitions and assumptions are discussed below. Two additional

regularity assumptions are presented in the Appendix.

2.2 Discussion

2.2a Microeconomic Model

The microeconomic model between y and X is represented implicitly in the
above framewcrk by the conditional distribution of y given X, which captures
all restrictions on the behavioral relationship between v and X. While

wm
ut
(U]

sumptions 1-3 suffice for the majority of the development, the mast
attractive practical advantages of the results exist when the microeconomic
model is stable aver time. Formally, this occurs when the density P factors as
Fly,X18)=gf{yIX)p(X18) for all Be8’, with the conditional density q(ny) of v
on

given X independent of 8. In this case, the score vector | depends only the
A

marginal distribution p{(X18) of %, with (2.1) simplifying to

- . _ aln pf¥igl
(2.1a) La -EE;-_———-

To interpret this framework, consider that a standard (micro) econometric

analysis of the relationship between y and X begins with the specification of

S
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a behavioral function y=f7(x,u), where u represents uncbserved individual
heterogeneity and ¥V a set of parameters to be estimated, together with the
stochastic distribution of u given X, say with density g(u!X). Combining the
behavioral function and the hetercgeneity distribution gives the conditional
density ax(in), which could be used to formulate a likelihood function for
gctimation. Here, we suppress ¥ in the notatiorn, just assuming the existence
of such a model. Clearly the framework is guite general, easily accomodating
stangard normal (linear or nonlinear) regression models, logit or probit
discrete choice models, etc.

Assumptions 1-5 also allow for the possibility that the conditional
distributicon of v given X explicitly depends on 8, as in qT(yIX,B). Thus the
framework applies to externality models such as thocse aof bandwagon effects in
demand, or situations where Lucas critique arguments would suggest that the
distribution of X was important for the determination of y by individual

agents.

2.2b Distributicn Movements and Macroeconomic Effects

The macroeconomic structure of the framework lies in the relaticn between
the means of y and ¥ over time. At time t, there 1s a value 8% of the
distribution parameters, which determine the values Et{(y)=p, t=¢~(8%) and
Et(¥)=p=H(8%), The induced macroeconomic relation between p, and p over tinme
is given by the aggregate function p,*=¢{p®) of (2.4), We denote parameter
values at the cross section time pe;iad t=t°® with 0 superscripts, as B=8°,
by 2=¢4*(8°) and p°=H(8°).

The distribution parameters 8 can represent virtually any shape or
lgcation parameters desired - means, variances, skewness, etc. The iaportant
specification requirement is Assumption &, which states that the means p of
the chosen micro predictor variables X completely parameterize distribution

movements.3 I+ we reparameterize the distribution as P’ (y,X1p)=F(y,XIH-* {1},

b



We can find the score vector and information matrix with respect to v as

3H 3H ] -t a7 -1\’
A = I p S | — ——
(2.5 e [aa] Ag L [ae:] g <[~u] )

where @H/88 is the differential (Jacobian) matrix of m=H(8]).

-

The macroecconomic effects of interest are the effects of changes in W on

Hyy OF 8%/0W, which 1s given explicitly by the chain rule applied to (2.4) as

(7.4 L. [;a_H RS- 2y
ceo & aB FE

The guecstion of interest to this paper 15 how these e2ffects (evaluated at

p=p®) can be sstimated using cross section data at time t=to°,
]

3. MACHOECONOMIC EFFECTS AND INSTRUMENTAL VARIABLES REGRESSION

In this section we present a quick derivation of the connection between
macroeconomic effects and cross section instrumental variables coefficients.

#e begin by showing

]
3
7]
2
(=B

LEMMA {: Under Assumptions 1, 2, 3, 4 and &, we have that 3%*~/38

Proof: Following Cramer {1946, p.67), from (A.1a) of Assumption & we can

difterentiate (2,2) under the integral sign as

i f _dvzfy °lan8PP(y,Xib)dv— JvagPiy,nieay = £

Similarly for 9H/38 of (Z.3). Q@ED

q- a.-

In order to characterize the macroeconomic effects using the cross
section data, we define Rox=31nF{yw,X.18°)/38 as the score vector evaluated at
8=8°, v. and Xu., for k=1,...,K. Now consider the coefficients d of the linear

cross section equation

A S
(3. 1) Yie = C + d X + Uy k=1,...,K
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We denote the estimates obtained by instrumenting with fow by 3‘, defined

4
via
(3.2) d%=(S0x) " Sox

where Sox, Soy, are the sample covariance matrices between Row and Xu, Vi
respectively. The major result characterizing macroeconomic e+fects and cross

gaction regression is
THEOREM 2: Under Assumptions 1,2,3,4,3 and 6, we have d = lim 5' = 3p/3p° a.cs.

Proot: By the Strong Law of Large Numbers (Rao(i%73), p.113, SLLHZ),
Assumption 3 implies that lim Sox=Zox &.5. and lim Soy=Loy 2.5. We therefore
have lim d’=(2°x)“Eoy a.5., where Zox is invertible by Assumptions 4, 5 and

Lemma 1. The result follows from Lemma 1 applied to (2.6) evaluated at B=8°,

BED

Thus, under aur general framework, the macroeconomic effects of a change
in the mean p=E(X) on the mean p,=Ef{y) at time t© are consistently estimated
by the coefficients of the linear instrumental variables regression of y. on
Xw, using the score vector fow a5 the instrumental variable. The interesting
feature ot this result is that the score vector Row reprecsents only the
differential distribution movement at time t°, with the actuai shape of the
base denszity PC(y,X) entering only through the random sample feature of the
cross section data.

The power of this latter observation is best seen in the case of a stable
microeconomic model qf{y!X). From (2.1a), the score vectors Row are determined
only by the direction of movement of the marginal distribution of X. Theorem 2
says that the linear coefficients 3’ cansistently estimate the macroeconomic
effects regardless aof the true form of the microeconomic model g{y!X). Thus

Theorem 2 provides a valid large sample macroeconomic interpretation of linear

8



instrumental variables regression coefficients when the true microsconomic
, 3
madel is general and unknown.
A practical problem with Theorem 2 is that the score vectors Row Will in
general depend on the true values of the distribution parameters., This problem
is treated in Section 3. We now turn to Section 4, where Theorem 2 is

integrated with the theory of efficient estimaticn,

4, AGGREGATION, EFFICIENMCY AND CRO5S5 SECTION REGSRESSION

To obtain a deeper understanding of the theoretical structure of Theoren
2, we alter the fccus of the esxposition to consider the seemingly unrelated
problem of estimating the population parameter values B8°, w® and pP,° using the
cross section data observed at time t=t°, In Section 4.1, the (Cramer-Rao)
fhenry‘of first order efficiency of consistent, uniformly asymptotically
normal (CUAN) estimators is reviewed, and related to the sample averages
§=Eyk/K and X=I¥./K of the cross section data. In Section 4.2, the efficiency
concepts are integrated with Theorem 2 on the estimation of macroeconomic

effects with cross section data.

4,1 Efficient Estimation of the Fopulation Farameters

To introduce efficiency concepts, we take ve,Xwe; k=1,...,K to represent a
random sample from a distribution with density P(y,X18), and consider the
generic problem of =2stimating population parameter values. The sample averages
§=Eyk/K and i=2gk/K are natural estimators of the means v,=¢*(8) and p=H(8)
respectively. The asymptotic properties of ; and X are given in Theorea 3,

which followes directly from the Strong Law of Large Numbers and the Central

Limit Theorem:

THEQREM 3: Under Assumptions 1, 2 and 3, ; and X are strongly consistent
estimators of p,=¢*{(8) and p=H(B) respectively, and the limiting distribution

of
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y-4*18)
7|
Y-H(B)

is multivariate normal with mean 0 and covariance matrix

where convergence is uniform for all 8s8,

The quality of CUAH estimators {(such as ; and X) can be judged on the
basis of asvymptotic efficiency. Formally, we introduce the definition of
"first order efficiency" of Rao(1973, p. 348-%) as follows. Denote the
probability denszity of the y., X« zample as ﬁiy;,xx,...,yg,xkl8)=UP(yk,X.!B)

and define the normalized score vector as

1 3ln P £ &Bl
{ S o a.n = ¢
t4. 1) LS K ag K

where AEk is the score vector (2.1) evaluated at B8 and y«, X«. We can now state

DEFINITION: A CUAN eétimatar Tw of gf{B) is first order efficient if there

exists a matrix B(8) such that
(4.2) oplin fE(TK-g(G)-B(B)LB)=0
uniformly in 8e8.

Notice that condition (4.2) implies that the limiting distribution of

laﬂféTK-g(a)) is normal with mean 0 and covariance matrix B(8)I B(8) ', which is

8
the matrix representation of the asymptotic Cramer-Rao lower bound. Formally,

it is well known that if Twk* is a CUAN estimator of g(8) with asymptotic

variance Y{8), then V(8)-B(B)! _E(B)' is a positive semi-detinite matrix for

8
all 8. In particular, if g(8)=8, then B(B)=Ié -1, so that T« has asymptotic

lAQ



variance Ia", or if g{(8)=p, then T« has asymptotic variance IP'*. Finally, we

note that if g{8) is a scalar parameter, then (4.2) implies that the

asvmptotic squared {(canonicall correlation between Tw and L_ is unity, and

8
that we can define the "first order efficiency” of any CUARN estimator as its

asymptotic squared (canonical) correlation with La.é

Recalling that our interest is in =stimation using the cross section data
at time t=t°, we utilize these concepts first to define the locally best
estimator of B8 near 8=8°, and second to indicate the inefficiency inherent 1in
the sample averages ¥ and vy as estimators of their means. Following

Efron{1975) and Pitman{(1979), we define the best locally unbiased estimator of

B8 near B8° as

«©
(4.3) Uge = (Io)™? “kk°* + 8°

Clearly U is locally unbiased and attains the asvmptotic Cramer-Raoc lower

80
bound. For our purposes, we note that er ig a sample average: if we define

1u=(lo)"*Rowt8°, then =51 /K=1.

er

Finally, in view of Theorem I, we denote the asymptotic inefficiency of X

as an estimator of p=p° as the difference between its asvmptotic variance and

i _, |24
o] ( I °) l [‘a—e-o]

where the latter egquality follows from (2.5)., The asymptotic inefficiency of §

the asymptotic Cramer-FRao bound as

23]
X

(3.4) IN(X) = Zyx - (1,6)7% = Zux - [(

[$¥]
m

is similarly dencted as
(4.5) IN(GY) = & -[éi:]'41°>-x[222]
[ age age

4,2 Efficiency and the Cross Section Estimation of Macroeconomic Effects

The above development on efficiency can be usefully integrated with

o

Theorem 2 on the cross section estimation of macroeconomic effects by

considering the use of the locally efficient estimator components Z. as
11




instruments for the cross section regression (I.1):
A N R
(7. 1) Yie = € + 3 X + Uy k=1,...,K

We begin bv noting the covariance structure between I., v. and X. as

(4,5a) Zzy = EC((I-8°)y) = (Io)~1Ls,

(4.4b) Zzx Ee({Z-8°)X") = (lo}~'Lox

(4,&c) Ee((I-g°) (I-8°)") = (lo)—?

t

N

~N
]

I+ we denote the instrumental variables slope coefficient estimator of {(3.1)
o~

ag d={Szx)~'Sz,, where Szx, 52, are the sample covariance matrices between Il

and vw, X« respectively, then we can state

3

COROLLARY 43 Under Assumptions 1,2,3,4,3 and &, we have d = lim d = 3¢/3w° a.s.

Froof: Obvious from Theorem 2, noting that Szx=(lo) 'Sox and Sz,={lo} " 'S8oy,.

RED

Conseguently, the I. vectors provide valid instruments for estimating
macroeconomic effects,

The theoretical attractiveness of the ZIx instruments aver the score
vectors 2ox derives from the following two corollaries, which pertain to the

reduced form regressions underlying (3.1):

(4,7 Ve = a + b'le + Ex

~ ~
A+ B'lu v vy

(4.8) X

1f we denote the respective 0OLS slope coefficient estimators as b=(5;z2)"!'8;,
and E=(sz,)-1sz,, where Sz, is the sample covariance matrix of the I, vectors,

then we have



COROLLARY 5: Under Assumptions 1,2,3,4 and &, we have

.o CE
(4,%9a) b =1limb = 359 a.c,
, _ 4. w _ 2H
t4.%h) B =1lina B = Zge 45

Froof: Obvious from Lemma | and the Strong Law of Large Numbers applied to

(53]

z2y Sz, and Szx. QED

Consequently the OLS slope coefficiants from the reduced foras egquations

consistently estimate the macroeconomic effects on E{y)l=p, and E(X)=p of

changes in the original parameters & evaluated at 8=8°7 The “indirect least

sguares" method of calculating 5 of (3.1) is reflected in é"5=6, which 1s
consistent with the chain rule formula (2.6).

The final corellary concerns the large sample analysis of variance

decompaosition of the reduced form equations. If we define 5_E=EEu2/K and
=
~& .

va=2{vkvk’)/K, then we have:
4

COROLLARY 6: Under Assumptions 1,2,3,4 and 6 we have that

(4.10a) IN(Y) a.s

[#]
u

= lim s _
g€

]
m

IN(X)  a.s.

(4.1¢b) I

lim §
vV

Froof: Clearly we have that o_ _=limis,,-b'5zzb)=5,,-b'Ezzb 3.s., sc that the
g .

£

result foliows from Corollary 5, (4.5¢c) and (4.3). Siamilarly for zvv‘ GED

Consequently, the large sample analysis of variance decompositions of each cof
the reduced form equations can be characterized as follows: the overall
average sum of sgquares correspands to the asymptotic variance of the average
of the dependent variable, the average fitted sum of squarss corresponds o
the relevant Cramer-Rac lower bound and the average residual sum of squares
corresponds to the relev;nt first order inefficiency.

Before proceeding, it is useful to note the raole of the 8

13




parameterization above. For poth the instrumental variables regression (3.1)
and the variance decompcsitions of Corollary 6, the particular 8
carameterization used to index distribution chances is irrelevant., If 2=6(8)
represented an equivalent paramsterization, thsn the entire development in
~
terme of 8 vields the same resulis, provided that I« is correctly defined as
the camponent of the locally efficient estimator U, . The only difference 1s
80
that the reduced {form coefficients b and B would then consistently estimate
A
the aporopriate derivatives with respect to 8. In particular, we could have
“~
begun with 8=p=E{X), defined I.=(I )'1%40+P° and obtained the results
directlyv, with B an NxM identity matrix and b=d=34/5w°, This emphasizes that
distribution movement 1s the important feature of the framework, not the
specific B parameterization used to index 1t, and justifies choosing the most

convenient parameterization in the examples that follow.

S. THE COMPUTATION OF ESTIMATES AND RELATED DISCUSSION

In this section we concsider the important special case of exponential
family distribution movement, where for particular parameterizations the
required instruments I, can be written as i1ndependent of the population
parameter value B=8°. We then show a result which indicates how to construct
Ix in general (non2xponential family) circumstances, and close with some

related remarks.”

5.1 Distribution Movement of the Exponential Family

5.1a The Exponential Family with Driving Variable X

The first natural question concerns when X« is an appropriate instrument
for estimating macroeconomic effects, with 8 af {3.1) {and g of (4.7)) the OLS
slope coefficient of v. on Xw. By tne development, this case occurs when ¥ is
an efficient estimator of p=R°, which by the Fisher-Darmois-Koopman-Fitman
Theorehe pccurs i1 and only if Py, X18) is {(locally) an exponential family
with driving variable X; given here as

i4



(5.1) Py, x181=C(8)nly,X)explu(B) X]

where the rangs of #(8) contains a neighborhood of {&°) and
Cigy=0 hiy.Siexplu(B8)'X1dvl-?' is a normalizing ccnstant.? dithout loss of
generality, % can be defined so that »{(8°)=0, in which case hiy,X)=F(v,X]18°).
It 1s well known that if IZxx is nonsingular for all 8=8, then (35.1) with
Assumptions 1, 2 and 3 imply Assumptions 4, 5 and &, and if the conditional
distribution of y given X exis@s for 8=8°, a stable microsconomic modal is
inglied as well,

1f we take w=wi{&) asz the appropriate distribution parameters, then k1f=X-y

and Iﬂ=2x,; pw=H* () and P,=$** (1) have derivatives gH®/auw=Zxx and 3%**/3uw=Iy«,

NN

sg that 3¢/3p=(Zxx) " 'Zx,, which for t=t° is the a.s. limit of d=b={5xx)~'Sxy.
For the p=H*{(mw) parameterization, L’J=(Exx)“(x-p) and ka(z,,>—', so by (4.3)
we have Up°=i and k=X

fg originally pointed cut in Stoker(1982), the interesting teature of
this special case iz that it justifies a nonparametric interpretation of cross
section DLS slope coefficients when the true microeconomic model is general
and unknown, namely as the macroeccnomic effects of changes in E(X)=p on
El{y)=p, evaluated at t=t°, Thus a Taylor series interpretation of OLS
coefficients is alwavs valid, where the relevant Taylor series is that of the

aggregate function p,=4{p) around w=r°, and distribution movements are in form

S.1b The Information Interpretation of R2

Applying Corollary 6 to the case of distribution movements of the foram

{&.1) provides an interesting interpretation of the goodness of fit statistic

R2 from cross section OLS regression. Since X is an efficient estimator, Evv

is a matrix of zeraos. GEE, representing the inefficiency in v, will be nonzero
unless vy, is an exact linear function of X« a.s.
If we denote the large sample value of the sguared multiple correlation

i3
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coetficient as R2=1"(GEE/UYV), Corollary & implizs that the appropriate
Cramer-Rao lower bound is the exact fraction R2 of the asymptotic variance of
;. Clearly, R2? represents the first order efficiency of ; as defined in
Section 4. Equivalently, since the Cramer-Fao lower bound can be regarded as
the reciprocal of the relevant amount of statistical information, the use of ;
to estimate p,=p,° incorporates K2 of the available information, and 1-R2 i¢
last.

Thus, when distribution movements are of the form (35.1), the costs of
nonlinearities in aggregation are measured by'l-Rzg the exact percentage of
information loss in ;, regardless of the true form of the microeconomic model,
Hote that this implies that the csource of departures from linearity is
irrelevant; R2 is the exact fraction of the available information utilized

regardless of whether the true microeconamic mecdel is nonlinear, or linear

with an additive stochastic disturbance.

S.1c The Macroeconomic Interpretation of Cross Section Instrumental

Variaﬁles Estimators

The final exponential family case of interest is when I, represents
observable data, but Z.#X«. IZ. may contain some of the components of X« or
nanlinear functions of Xu, as in ZI.=D(X«), or represent entirely ditferent
observed variables from the cross sectiaon data set. To accomocdate this czse,
censider the expanded population density Puly,X,118), where we denoie the
impli=sd mean of 1 as E{(Z)=pz.

1. represents a correct instruﬁent if and only i+ 7 is an efficient

estimator of pz=p2°, which as above occurs if and only if P{y,X,218) can be

written (locally) in exponential family form with driving variables I}
(5.2) Fly, X, 218)1=Ci(8)h{y,X,lexpln(B) 1]
where the range of #(8) contains a neighborhood of w{(8°) and C(8) is the
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appropriate normalizing constant. In this case it is easy to verify that
3¢/8w=(Czx)"*Lzy, which for t=t° is the a.s. limit of the linear instrumental
variables coefficients §=(Szx7"sz,.

This expanded case is of interest because form (3.2) accomodates
situatiaons where there is a stable microeconomic model of the form
gly,X12), which clearly allows for general (simultanecus esquation) behavioral
models wheres components of X are endogenaous variables, with I appropriately
ancillary to the assumed stochastic structure, In this case 3 consistantly
estimates the induced effects of changing w=E(X) on p,=E{y) evaluated at t=t°,
wiich provides a macroeconomic interpretation of 3 when the true

microeconomic model is general or unknown.

5.2 Computation in the General Case

Unless distribution movements are loc;lly in exponential family farm
(§.1) or (5.2), the proper instruments Rowx Or I, will necessarily depend on
- the true population parameter value 8=8°, In this section we consider this
general case where &_ depends not only on the movement parameters 8, but also

8

on additional shape parameters A, as in

_8ln Fly.Xx18,8) _ 8ln Py, XID)
= a8

In thie extension, '={8,A) represente a finite set of parameters required for

t

the complete characterization of the score vectors, although our interest is

gnlvy in estimating the macrcoeconomic effects of varving 9. When there is a

stable microeconomic model, A can répresent additional parameters describing

the shape of the marginal distribution of X (see Section 6 for an example, and

Section 5.3 for the case of a varving microeconomic model, each with A

nonempty). The true value of these parameters at time t=t° is I'°=(8°,A°), and
~

we assume that there is a strongly consistent estimator f=(8;A) of I'=re

available. Under the additional structure of Assumption 7, we show that all of

17




e
gur previous reasults are valid when I" is used in place of T'° in the
constructicon of Low or Zi.

He begin by defining Rowx as the score vector evaluated at v, Xx and " as

~ aln Pyu KulD)
. 78

3y

Denote the sample covariance matrices formed using Rox 35 Soy, Sox and Seo.

The major result can now be stated asz

Trneorem 7: Under Assumptions 1, 2, 3 and 7, if f is such that lia f=F° 3.5.,

~

then lim Soy=Loy 2.5., lim Sox=Cox &.5. and lim Seo=lo a.s.

Proof: Define Aw(l)=31nF (v, X IT) /88, 50 that R, ([®)=fox and Ly (F®)=fox. To
praove the result for gov, define the matrix S, (M =ER.(I}ve/K, so that
5,({I'°)=5,, and Sy(?)igoy. In view of (A.Za) of Assumption 7, Lemma 2.3 of
White{1980b) implies that 5,(I'}) converges uniformly in [T to E°(R{()y). Since
lim P=F° a.s., by Lemma 4 of Amemiva(l973), linm Eoy=1im Sy(})=E°(k(F°)y)=Eo,,
giving the result. Similar arguments =stablish the remainder of the Theoream,

GED

Theorem 7 allows for the consistent estimation of macroeconomic effects in

nonexponential family circumstances. If I« is similarly defined using I

instead of I'°, tren corresponding versions of Theorem Z and Corcllaries 4, §
~

o~
and & using Rowx and I can easily be shown to be valid, as long as fssumpticn

1
7 is appended to the list of antecedents.‘l

5.3 Further Remarks on Biases in (LS

In this Section, we have shown how macroeconomic sffects can be computed
under alternative assumptions on distribution movement. The central special
case is given by (5.1) - exponential family distribution movement with driving

variables X - which is associated with cross section 0OLS as a consistent

18



method of estimating macroecaonamic effects. If ZVV#O in (4.10b), then X fails
to be a proper instrument, with the OLS slope ceoefficients aof v on X
potentially biased estimators of the macroeconomic effects. Consequently,
dicstribution movements not of the form (3.1) can be regarded as inducing an
“errors-in-variables" problem into the cross section OLS regression of y on X,
with zvv a8 precice measure of the departure of distribution movements fronm
exponential family with driving variables X.12 A natural method of assesczing
the size of the biases is to compute the broper tonsistent estimates as above,
and compare them to the OLS estimates.

-

Finally, as indicated in Secticn 2. the most attractive practical

[17]

advantages of our results exizt for the case of a3 stable micrceconomic model.
In this case the relevant instruments depend only on the movement of the
marginal distritution of X, and provide macroeconomic interpretafions cf cross
section regrescsion estimators regardless of the true form of behavior
connecting y and X. When the microeconomic model varies with &, our results
are still valid, however the praoper instruments will depend on precicely haw 8
affects individual behavior. In other words, in this case there is a

behaviaral component of the score vector - 3ln qf(y!X,B)/BB - which may depend
on the exact specification of g and/or the values of the behavioral parameters

ar

¥. The additional parameter vector A would then contain vV, which must be

-,

estimated prior to the construction of the scare vector fLow.

5. £ COMPUTED EXAMFLE

In this section we precsent some illustrative calculations based on the
lognormal distribution movement example of the Introduction. Suppose that
demand y for a commodity depends on total expenditure X via a true
microeconomic model! g(ylX), where in each time period the total expenditure

distributicn is lognormal

(6.1) p{Xiger=(1/2uc (8%} X)expl-(1nX-B%)2/2c(8%)2)
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where 1n X has mean 8% and variance c{B%)2, For illustration, we consider two

forms of distribution movement:

Case A (Fixed log-variancel!: oc(8%)=c?, constant over time.

Case B (Fixed log-coefficient of variation): c{(8%t)=x8%, where X is a copstant.
Mean total expsnditure under each scenario is given as
{(6.2) p=E(X)=exp(B+{1/2)c(8)2)

and mean demand is formally given as p,=E(y)=¢*{8)=4 (),
Mow, suppose we observe cross section abservationes on v and X at time
t=t°, where 8=8°, Our results say that the linear coefficient of y regressed

an X obtained by instrumenting with either the score A_ or the component I of

=]
the efficient estimator of 8 will consistently estimate the macroeconomic

effect 34/9p°. For Case A, we have &_ ={ln ¥X-8)/(c°)2, and I=ln X%, which is

8
gonsistent witﬁ the fact that under Case A, (6.1) is a exponential family with
driving variable I=in X. For Case B, we have k8=[(ln X)2-8inX-(x8)2]1/1285 and
{={le)=*Ro +8°, where 18=£1-2k2]/k282. Here we would use the results of Section
3 to construct either %o or I using a strongly consistent estimator of
['°={8°,x), where » (=A° in (5.3})) i¢ an additional shape parameter.

For illustration, we present the computed values of the macrosconomic

gffects assuming a precise Engel curve function of the fora
{6.3) y = ToX + ¥iX1lnX

which is Muellbauer 's(1975) FIGLOG form (see alsoc Deaton and Muellbauer (1980)
and Jorgenson, Lau and Stoker(1%982)). The aggregate functions for cases A and

B can be seen to be

(8.8R) p=Ely)=¢ () =p[Tet+tT, (lnp+{i/2)(c®)2) ]

{6.4B) p =E(y)=¢d {p)=plTo+V (Inp+{-1+¥V1+2521np12)]

-
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All of our results regarding limits of regreession estimators can be
formally verified here, which we leave to the reader., In Table | we present
the values of the various effects for tvpical demand coefficient values Vo=.2
and ¥,=-,01, and population parameter values 8°=9,119, 5°=,578 (and
»=0°/8°=,0634), which represent the values of thase parameters for the 1974
gistribution of family total expenditures in the United States given in
Stoker{1%7%)., Also, for comparison, we present the large sample value of the
OLS slape coefficient of v on X, namely B=(Zxx) 'Ix, as well as the asyamptotic
asias B-d.

From Table 1| we see that there is virtually no difference in the true
macroeconomic effects between the two scenarios, while in each the true
macroeconomic effect d differs substantially from the leading coefficient of
demand ¥o=.2. The asvmptotic bias in least squares is quite small in both
cases., X is maore highly correlated with the density score R0 under Case B than
Case A, although the efficiencies of ; and X are reasonably high under each
scenario, Finally, we should note that while the demand formulaticn (4.3) does

not include an additive random disturbance, including one would only lower the

RE? values of Table 1, and narrow the difference between them.

7. CONCLUDINMG REMARKS

In this paper we have zhown how macroeconomic effecte can always be
consistently estimated using cross section linear instrumental variables
regression coefficients, by developing a general framework connecting cross
section regression and the efficiency properties of data aggregates. The
striking feature of our results is that they involve no testable restrictions
on the cross section data, and thus provide interpretations of standard
regression statistics when the true microeconomic model is misspecified or
unknown. The sensitive feature of the framework is the precise specification

of distribution movement, which determines the form of the proper instruments




i}

TABLE 1: Comparison of Cases A and B

0
0" = 9.119, o= 578, vy = .2, vy = ~.0]

Case A Case B
g = 8E(X) 10,786.40 11,181.19
36-‘
b = ﬁgéll 1,029.78 1,063.44
1
_ 9E(y)
a - ¥ 0955 0951
5 (0LS) .0937 .0937
5-d -.0018 -.0014
Efficiency of
X - RS .8423 9127

v - Ri .8729 .9354




for cross section regression. Consequently, the broad context of the results

on estimating macroeconomic effects may be viewed as an exchange of specific

functional form assumptions for specific assumptions on distribution movement.

These features naturally suggest a number of related theoretical
areas., For instance, a gern2ral interpretation of the standard omitted
bias formula is given in Stoker(1783a), and the macroeconomic sffects
behavioral parameter changes is analyzed in Stoker (1983b). Tepics for

e

1]

general distribution movemente (and how such tests would compare to

research

variable

of

future

earch include the extension of the micro linearity tests of Stoker(1982) to

traditional specification tests), as well as how one would test (say using

panel data) whether a particular parameterization of distribution movements

was appropriate.

e
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Appendix: Further Regularity Assumptions

For the purpoce of differentiating under intsgral signs, define the

difference gquotients as

y[Ply,X18%+he,)-F(y, X189}
h

Dys(y, X, h)

A fP{v, X18°+he i-Fly,%189°)]
h

D,,(y,X,h)

where Xy is the 1*" component of X, e, is the unit vector with jtP component |

and h 1s a scalar. We now assume

ASSUMPTIDBN 6: There exist v-integrable functions gyy(y,X), gssly,X)s

iy3%l,¢..,M and hoe*0, such that for all h where ¢ £ thl £ he,
(h.13) IDpsiy ,Xyhd 1 € gysly,X)
{A.2b) IDisfvy X h) 1 £ gasly,X)

for all i,j=1,...,M.

Clearly Acssumption 6 will be guarantsed by Assumption 3 if the carrier set
over which v 1s defined is compact. Note that Assumption 6 Eould be replaced
oy & less restrictive but much more technical assumption, along the lines of
Roussas (1972),

For using consistent estipates of the population parameters in Section §,
we assume that ['=(8,A) 1s an M+L vectar of parameters, where ['e8*, where 8* is
a compact subset of R"*“ containing an open neighborhood of I'°. We denote the

jth component of xe from (5.3) as kaj . We then reguire

™
e



ASSUMFTION 7: There exists measurable functions ho(y,X}, hyiyly,X) and

hyg®*(y,X)3 1,j=1,...,M such that

{A.Za) iyiej! ¢ hosly,X) i=l,...4H
{A.2h) ax‘geja $ hagty X} 1,030 0.0,H
(A,2c) g g 1 Ryt dyast e
_ = . 1+8 _ DR 1
for all IT'ef*, where E%ihoyl s ECThyyi and E®lhy "I

same £:0, i=1,...,M, i=l,...,M

hJ

+&

are bounded for



NOTES

1. The terms “predictor var1able" Jand “regres:ar" are used interchangeably to
describe Xu in the eguation yg= a+b Yk+=k, with "dependent variable" refering
to Y

2. See Stoker{(1954) {for several examples of computed aggregate functions.

3. X could include squares, cross products, etc., of 2 smaller set of
variables,

4. By convention, we always assume that a constant is appended to the set of
instrumental variables for calculation of estimates.

5. It should be noted that if the function 34 (p)/2p were known exactly, then
better estimates of its value at p=p® are available than the slope
coefficients. In particular,hif 0 is a caonsistent, first order efficient
gstimator of p=r°9, then 94 (p)/ 2w is consistent and first order efficient faor
atb/ape,

6. Bee Rao(1?73) for a thorough development of these ideas. It should be noted
that under some further regularity conditions, maximum likelihood estimators
are first order efficient - see Rao(!973) or FRoussas(i?72), the latter
containing a very general develaopment.

7. The aggregation - sufficient statistic connections noted in Stoker(1982)
re also at work here, since U_, is a locally sufficient statistic for 8 near
=8° ~- see Barankin and Maitrali963). ‘

m o

8. See Barankin and Maitra(l17463) for a generalized version of this theorea,
and Stoker (1982) for the original references.

9. Textbook treatment of the exponential family can be found in Lenmann{1959)
and Ferguson(1967). For modern treatments see Barndorf-Neilson(1978),
Efron{19735,1778) and Efran and Hinkley(1%978),

10, White(1980a) shows that OLS coefficients consistently estimate the
derivatives of the true microeconomic model evaluated at the mean of X only
under very restrictive conditions.

1{. While the ability to find strongly consistent estimators depends on the
axact form of the density Fly.,X.18,A), it should be noted that if (p,A) is
used to parameterize the density, then X 1s a strongly consistent estimator of
p=p° by Theores 3.

12. One should be careful with this interpretation, because the standard
errors-in-variables bias formulae are not generally applicable here. Also, it
should be noted that £ =0 is a stronger condition than zero statistical
curvature (Efrun(l??S)YY since Evv depends on the particular variables X.
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