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ABSTRCT

In this paper several results are established which provide for the

consistent estimation of macroeconomic effects using cross section data, for

general assumptions on the movement of the population distribution over time.

We show that macroeconomic effects are always consistently estimated by linear

instrumental variables coefficients, where the instruments are.determined by

the form of distribution movement. This leads to a natural way to assess the

biases in OLS coefficients as estimators of macroeconomic effects, provides a

nonparametric macroeconomic interpretation of linear instrumental variables

coefficients when the true microeconomic behavioral model is unknown, and

gives a nonparametric interpretation of standard regression decomposition

statistics such as R2 relative to the information costs of nonlinearities in

aggregation. All of the results are valid without imposing any testable

restrictions on the cross section data.
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AGGREGATION, EFFICIENCY AND CROSS SECTION REGRESSION

1. INTRODUCTION

In Stoker(1?82), necessary and sufficient conditions are established for

cross section OLS regression coefficients to consistently estimate

macroeconomic effects - the effects of varying the means of the regressors on

the dependent variable mean. A particularly interesting sufficient condition

for this property exists when the distribution of regressor values in the

population varies over time via the exponential family form. The striking

feature of this condition is that it implies no restrictions which are

testable using the cross section

macroeconomic interpretation of

behavioral model underlying the

The purpose of this paper i

which provide for the consistent

cross section data, for general

distribution over time. We show

consistently estimated by linear

the instruments are determined b

leads tc a natural way to assess

data, and therefore establishes a

linear OLS coefficients when the true

data is unknown.

s to establish several characterizing results

estimation of macroeconomic effects using

assumptions on the movement of the population

that macroeconomic effects are always

instrumental variables coefficients, where

v the form of distribution movement. This

the biases in OLS coefficients as estimators

of macroeconomic effects, provides a nonparametric macroeconomic

interpretation of linear instrumental variables coefficients when the true

behavioral model is unknown and gives a nonparametric interpretation of

standard regression variance decomposition statistics (such as R2) relating to

the information costs of nonlinearities in aggregation. All of our results are

valid without imposing any testable restrictions on the cross section data.

In Section we introduce the basic assumptions required, and discuss

both the microeconomic and macroeconomic aspects of the framework. Section 3
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provides a brief derivation of the result that macroeconomic effects are

always consistently estimated by linear cross section regression coefficients,

where the score vectors of distribution movement are used as instruments.

Section 4 allows a deeper understanding of the result by noting its intimate

connection to the statistical theory of the efficiency of data aggregates,

which characterizes valid micro instruments for estimating macroeconomic

effects, and shows how the standard OLS variance decomposition terms exactly

reflect the Cramer-Rao bounds for dependent variable averages as estimators of

their means. Section 5 treats several related topics - exponential family

special cases and the characterization of R2 , as well as a result on the use

of consistent distribution parameter estimates in the formation of the proper

instruments. Section 6 gives a brief numerical example and Section 7 contains

some concluding remarks.

It may be helpful to consider at the outset a simple example which we

will return to in Section 6. Suppose we are studying the demand y of a

commodity over a period of constant prices, with our model stating that demand

is determined by total budget expenditure X via a stable Engel curve

E(ylX)=F(X) for all families. Suppose that the total expenditure distribution

p(XIf t) is lognormal in each time period t, with In X normal with mean 8 t and

constant variance. We can determine the means of y and X in terms of t as

Et y!=*(8t) and t=Et(X)=H(t). and the mean of y in terms of t as

Et/v =*(H-1(6t))= (t), which constitutes the aggregate demand function.

Now, suppose that we have cross section data at time t=t° (where =8°) -

a random sample (yk,Xk}k. Since the above lognormal distribution is an

exponential family with driving variable n X, the result of Stoker(1982)

implies that if we perform the regression

A / A

(1.1) Yk = a + b n Xk + k

then b consistently estimates a8/88a - the effect of changing the log
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geometric mean of total expenditure e on mean demand Ey). For most practical

purposes, however, we would be more interested in 2B/~ °, the effect of mean

total expenditure on mean demand. Here we show that if we estimate the

equation

(1.2) yk = C + d Xk + Uk

using n Xk as the instrumental variable, then d consistentlv estimates

8t/8 °. We characterize how In Xk can be reoaraoed as a valid instrument, and

we show how the variance decomposition of regressions such as the above relate

to the efficiency properties of sample averages - for example the large sample

value of R2 from (1.1) is the "first order efficiency" of the sample average

y. All of these results are valid regardless of the true Engel curve form

E(ylX)=F(X).

2. THE BASIC FRAMEWORK

2.1 Notation and Formal Assumptions

This section presents the notation and basic assumptions used. The

salient features of the framework are as follows. We model changes over time

in the joint distribution of a dependent variable y and a vector of

predictor variables X, and formulate the aggregate relationship between the

means of y and X over time. When the microeconomic model between y and X is

stable over time, the aggregate relationship explains the mean of v as a

function of changes in the marginal distribution of X. The results of the

paper connect regression statistics from cross section data (observed for a

single time period) to the derivatives of the aggregate relationship, or

macroeconomic effects.

Formally, we assume that the values of iy,X) across the population at

time t represent a random sample from a distribution 6P(y,XISt), which is

absolutely continuous with respect to a -finite measure v, with Radon-Nikodym



density P(y,XI8t) = d (y,XI8t)/dv. 8 is a vector of parameters which indexes

movements over time in the joint distribution of y and X.

At time t=t°, a cross section data set is observed, which consists of K

observations Yk, Xk; =,...,K. These observations are assumed to be a random

sample from the distribution with density PF(y,X)=Piv,XiS°), where =80 for

the cross section time period t=t°. We make the following assumptions

concerning the local structure of the distribution around 6=8°.

ASSUMPTION 1: 8 is an M-vector of parameters, and P exists for 8e8, where is

a coioact subset of PMs which contains an open neighborhood of 8°.

ASSUMPTION 2: P(y,XI8) is twice differentiable in 8 for all 8e8.

We define the score vector of P with respect to 8 in the usual way as

'2.1) n,31 P(v,X )
8 8ae

ASSUMPTION 3: The means of y, X and the score vector 1. , and the variances

and covariances of y, X and P9 exist and are continuous in 8 for all 8=8. The

information matrix I =E (. Q') is positive definite for all E8.

The means of and X as functions of 8 are denoted as follows

2.2) E(,/ = uy = fy/P(y,XIl)dv = (8)

(2.3) E(X! = J fXP(y,X I )dv = H(8)

We denote the relevant covariance matrices as follows: Var(y)=Ly, Var(X)=Ixx,

Cov(X,y)=E((X-p)(y-p))=Ex,, where the dependence of these parameters on 8 is

suppressed in the notation, and Cov(,,Y)=E(.QY,)=tay Cov(.t8,X)E=E((X) =S'X '

and Var(X )=I . For the parameter value =80, we denote the score vector o 

as .Qo and the respective covariance matrices as oy, ox and Io. The sample

moments computed from the cross section data are given as follows: the
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averages are denoted by y=yk/K and X= Xk/K and the sample covariance matrices

are denoted by S with the same subscripts as the population covariances, as in

Sxx=(Xk-X) (Xk-X) /K and Sxy =Xk -X)yk-y) K.

ASSUMPTION 4: '* and H are differentiable with respect to the components of 8

for al 8a8.

AESUMPTION 5: H is invertible for all 8e.

The overall induced relation between E(Y)=H'v and E(X)=p - the acqreqate

function - is defined by inverting (2.3) and inserting into (2.2) as

(2.4) Y-* (H- ()= ()

These definitions and assumptions are discussed below. Two additional

regularity assumptions are presented in the Appendix.

2.2 Discussion

2.2a Microeconomic Model

The microeconomic model between y and X is represented implicitly in the

above framework by the conditional distribution of y given X, which captures

all restrictions on the behavioral relationship between y and X. While

Assumptions 1-5 suffice for the majority of the development, the most

attractive practical advantages of the results exist when the microeconomic

model is stable over time. Formally, this occurs when the density P factors as

P(y,XI8)=q(ylX)p(Xl8) for all 8eE, with the conditional density q(ylX) of y

on
given X independent of 8. In this case, the score vector ., depends only the

marginal distribution p(XI8) of X, with (2.1) simplifying to

81n (xia)
(2. a) , =aln 

To interpret this framework, consider that a standard (micro) econometric

analysis of the relationship between y and X begins with the specification of
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a behavioral function y=fT(X,u), where u represents unobserved individual

heterogeneity and T a set of parameters to be estimated, together with the

stochastic distribution of u given X, say with density q(ulX). Combining the

behavioral function and the heterogeneity distribution gives the conditional

density q.(yiX), which could be used to formulate a likelihood function for

estimation. Here, we suppress T in the notation, just assuming the existence

of such a model. Clearly the framework is quite general, easily accomodating

standard normal (linear or nonlinear) regression models, logit or probit

discrete choice models, etc.

Assumptions 1-5 also allow for the possibility that the conditional

distribution of y given X explicitly depends on 8, as in q(ylX,8). Thus tie

framework applies to externality models such as those of bandwagon effects in

demand, or situations where Lucas critique arguments would suggest that the

distribution of X was important for the determination of y by individual

agents.

2.2b Distribution Movements and Macroeconomic Effects

The macroeconomic structure of the framework lies in the relation between

the means of y and X over time. At time t, there is a value et of the

distribution parameters, which determine the values Et(y)=Pyt=~*(8t) and

Et(X)=P=H(Ct). The induced macroeconomic relation between Hp and over time

is given by the aggregate function wyt=+(yt) of (2.4). We denote parameter

values at the cross section time period t=t ° with 0 superscripts, as 8=8 °,

y O=*(8 0 ) and °0=H(8°).

The distribution parameters 8 can represent virtually any shape or

location parameters desired - means, variances, skewness, etc. The important

specification requirement is Assumption 5, which states that the means of

the chosen micro predictor variables X completely parameterize distribution

movements.3 If we reparameterize the distribution as P'(y,XIp)=P(y,XIH-'"()),



we can find the score vector and information matrix with respect to as

{ 5) 1 =8H ]-1 I = [] -1 I ([H -F- l-' '
2.a_ re ; I-'LP eJ =\LC

where H/88 is the differential (Jacobian) matrix of =H(8).

The macroeconomic effects of interest are the effects of changes in on

y,, or 8*/a;, which is given explicitly by the chain rule applied to (2.4) as

(2 . 6 i aH L - a

The question of interest to this paper i how these effects (evaluated at

P=Po) can e estimated using cross section data at time t=t°.

3. MACROECONOMIC EFFECTS AND INSTRUMENTAL VARIABLES REGRESSION

In this section we present a quick derivation of the connection between

macroeconomic effects and cross section instrumental variables coefficients.

We begin by showing

LEMMA 1: Under Assumptions 1, 2, 3, 4 and 6, we have that 8*/88 = @y and

8H/88 = 'Z Xa

Proof: Fol

differenti

lowing Cramer(1946, p.67), from (A.la) of Assumption 6 we can

ate (2.2) under the integral sign as

A y -. =dv = Y J 8 P P(y,XtE)dv = y. P(y,XIS)dv = y
ia a e a E i y

Similarlyv for aH/88 of (2.3). QED

In order

section data,

8=8° , yk and

cross section

to characterize the macroeconomic effects using the cross

we define kok=8lnP(yk,XklI°)/88 as the score vector evaluated at

Xk, for k=l,...,K. Now consider the coefficients d of the linear

equation

+ dXYk = C + d'Xk + Uk(3. 1) k=l,...,K
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We denote the estimates obtained by instrumenting with ok by d*, defined

4
via

(3.2) d"=(Sox)-lSox

where Sox, Soy are the sample covariance matrices between KQok and Xk, yk

respectively. The major result characterizing macroeconomic effects and cross

section regression is

THEOREM : Under Assumptions 1,2,3,4,5 and 6, we have d = lim d* = 3/8 °0 a.s.

Proof: By the Strong Law of Large Numbers Rao(1973), p.115, SLLN2),

Assumption 3 implies that lim Sox=Zox a.s. and lim So0y=o a.s. We therefore

have lim d*=(Sox)-lSoy a.s., where ox is invertible by Assumptions 4, 5 and

Lemma . The result follows from Lemma 1 applied to (2.6) evaluated at 8=8°.

QED

Thus, under our general framework, the macroeconomic effects of a change

in the mean =E(X) on the mean wy=E(y) at time t are consistently estimated

by the coefficients of the linear instrumental variables regression of Yk on

Xk using the score vector 9 Ok as the instrumental variable. The interesting

feature of this result is that the score vector Ok represents only the

differential distribution movement at time t, with the actual shaoe of the

base density P°(y,X) entering only through the random sample eature of the

cross section data.

The power of this latter observation is best seen in the case of a stable

microeconomic model q(ylX). From (2.la) the score vectors 1Ok are determined

only by the direction of movement of the marginal distribution of X. Theorem 2

says that the linear coefficients d consistently estimate the macroeconomic

effects regardless of the true form of the microeconomic model q(ylX). Thus

Theorem 2 provides a valid large sample macroeconomic interpretation of linear

8
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instrumental variables regression coefficients when the true microeconomic

model is general and unknown.5

A practical problem with Theorem 2 is that the score vectors ok will in

general depend on the true values of the distribution parameters. This problem

is treated in Section 5. We now turn to Section 4, where Theorem 2 is

integrated with the theory of efficient estimation.

4. AGGREGATION, EFFICIENCY AND CROSS SECTION REGRESSION

To obtain a deeper understanding of the theoretical structure of Theorem

2, we alter the focus of the exposition to consider the seemingly unrelated

problem of estimating the population parameter values 8° , po and ,O using the

cross section data observed at time t=t°. In Section 4.1, the (Cramer-Rao)

theory of first order efficiency of consistent, uniformly asymptotically

normal (CUAN) estimators is reviewed, and related to the sample averages

y=Eyk/K and X=Xk!K of the cross section data. In Section 4.2, the efficiency

concepts are integrated with Theorem 2 on the estimation of macroeconomic

effects with cross section data.

4.1 Efficient Estimation of the Population Parameters

To introduce efficiency concepts, we take Yk,Xk; k=l,...,K to represent a

random sample from a distribution with density P(y,X19), and consider the

generic problem of estimating population parameter values. The sample averages

Y=Yk/K and X=EXk/K are natural estimators of the means u =(8) and =H(8)

respectively. The asymptotic properties of y and X are given in Theorem 3,

which follows directly from the Strong Law of Large Numbers and the Central

Limit Theorem:

THEOREM 3: Under Assumptions 1, 2 and 3, y and X are strongly consistent

estimators of -Pv='(8) and =H(8) respectively, and the limiting distribution

of

9
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_'^;-H(8)

is multivariate normal with mean 0 and covariance matrix

iWXy fixx

where convergence is uniform for all I88.

The quality of CUAN estimators (such as y and X) can be judged on the

basis of asymptotic efficiency. Formally, we introduce the definition of

"first order efficiency" of Rao(1973, p. 48-9) as follows. Denote the

probability density of the Yk, Xk sample as P(yX,...,yK, X XK I ) =P (yk, Xk I )

and define the normalized score vector as

(4.1) L ln P Sk
8 K ae K

where sk is the score vector (2.1) evaluated at and y, Xk. We can now state

DEFINITION: A CUAN estimator TK of (8) is first order efficient if there

exists a matrix B(8) such that

(4.2) plim (T=-g(8)- B(8)[8 )= 0

uniformly in 8e8.

Notice that condition (4.2) implies that the limiting distribution of

W.K(TK-g(E)) is normal with mean 0 and covariance matrix B(8)I B(8)', which is

the matrix representation of the asymptotic Cramer-Rao lower bound. Formally,

it is well known that if TK* is a CUAN estimator of g(8) with asymptotic

variance V(6), then V(8)-B(6)I 8B(6)' is a positive semi-definite matrix for

all 8. In particular, if g(8)=8, then B(8)=l 5s that TK has asymptotic

10



variance I -, or if g(E)=p, then T has asymptotic variance I -L. Finally, we

note that if g(8) is a scalar parameter, then (4.2) implies that the

asymptotic squared (canonical) correlation between T and L8 is unity, and

that we can define the "first order efficiency" of any CUAN estimator as its

asymptotic squared (canonical) correlation with L .

Recalling that our interest is in estimation using the cross section data

at time t=t °, we utilize these concepts first to define the locally best

estimator of near =80, and second to indicate the inefficiency inherent in

the sample averages X and y as estimators of their means. Following

Efron(1975) and Pitman(1979), we define the best locally unbiased estimator of

8 near 80 as

(4.3) U = (10 )- aok + o
80 K

Clearly U is locally unbiased and attains the asymptotic Cramer-Rao lower

bound. For our purposes, we note that U is a sample average: if we define

Zk=(Io)-1 tOk+8 0, then UO-Zk/K=Z.

Finally, in view of Theorem 3, we denote the asymptotic inefficiency of X

as an estimator of =Io as the difference between its asymptotic variance and

the asymptotic Cramer-Rao bound as

(4.4) IN(X) = Ixx - (IXo)- ' = -xx - (Io)'

where the latter equality follows from (2.5). The asymptotic inefficiency of y

is similarly denoted as

(4.5) IN(y) = I,, -a o , L seo I

4.2 Efficiency and the Cross Section Estimation of Macroeconomic Effects

The above development on efficiency can be usefully integrated with

Theorem 2 on the cross section estimation of macroeconomic effects by

considering the use of the locally efficient estimator components Zk as

11



instruments for the cross section regression (3.1):

(3.1) Yk = c + d Xk + Uk k=I,...,K

We begin by noting the covariance structure between Zk, Yk and Xk as

i4.6ai 2 = E°((Z7- 0 )y) : (Io)-Zoy

(4.6b) 2 = E (Z- 0) X =lo) 

(4.6c) lzz = E°((Z-B°)(Z-E 0 )') = Io) ~

if we denote the instrumental variables slope coefficient estimator of (3.1)
A

as d=(Szx)-'Sz, where Sx, Szy are the sample covariance matrices between Zk

and Yk, Xk respectively, then we can state

A

COROLLARY 4: Under Assumptions 1,2,3,4,5 and 6, we have d = lim d = 88/i ° a.s.

Proof: Obvious from Theorem 2, noting that Szx=(Io)-'Sox and Szy=(Io)-'So,.

QED

Consequently, the Zk vectors provide valid instruments for estimating

macroeconomic effects.

The theoretical attractiveness of the Zk instruments over the score

vectors Ok derives from the following two corollaries, which pertain to the

reduced form regressions underlying (3.1):

(4.7) yk = a + b'Zk + k

A A A

(4.8) Xk = A + B'Zk + Vk

If we denote the respective OLS slope coefficient estimators as b=(Szz)-Szy

and B=(Szz)-'Szx, where Szz is the sample covariance matrix of the Zk vectors,

then we have

12



COROLLARY 5: Under Assumptions 1,2,5,4 and 6, we have

b lim b 8 eae 0

= li B =a
2 ~m0

Proof: Obvious from Lemma 1

Szz, Szy and Szx.

and the Strong Law of Large Numters applied to

QED

Consequently the OLS slope coefficients from the reduced form equations

consistently estimate the macroeconomic effects on E(y)=py and E(X)= of

changes in the original parameters 8 evaluated at =80.7 The "indirect least

squares" method of calculating d of (3.1) is reflected in B-'b=d, which is

consistent with the chain rule formula (2.6).

The final corollary concerns the large sample analysis of variance

decomposition of the reduced form equations. If we define s =-sk
2/K and

S =Z,(vkvk')/K, then we have:
V V

COROLLARY 6: Under Assumptions 1,2,3,4 and we have that

(4.10a)

(4. lOb)

= lim s = IN(v) a.s
EE -im EE s

= li S = IN(X) a.s.
YV - vv

Proof: Clearly we have that =lim(syy-b'Szzb)=vy-b zzb

result follows from Corollary 5, (4.6c) and (4.5). Similarly

Consequently, the large sample analysis of variance decompos

the reduced form equations can be characterized as follows:

average sum of squares corresponds to the asymptotic varianc

of the dependent variable, the average fitted sum of squares

the relevant Cramer-Rao lower bound and the average residual

corresponds to the relevant first order inefficiency.

Before proceeding, it is useful to note the role of the

13
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parameterization above. For ooth the instrumenrta! variables regression (3.1)

and the variance decompositions of Corollary 6, the particular 

oarameterization used to index distribution chances is irrelevant. If =G(8)

represented an equivalent parameterization, then the entire development in

terms of yields the same results, provided that Zk is correctly defined as

the componenrt f the locally efficient estimator U, . The nly difference is

that the reduced form coefficients b and B would then consistently estimate

the approoriate derivatives with respect to . In particular, we could have

egun with B=l=E(X) , defined 7k=(I o)-t. +Po and obtained the results

directly, with B an NxN identity matrix and b=d=&./Bp °. This emphasizes that

distribution movement is the important feature of the framework, not the

specific 8 parameterization used to index it, and justifies choosing the most

convenient parameterization in the examples that follow.

J. THE COMPUTATION OF ESTIMATES AND RELATED DISCUSSION

In this section we consider the important special case of exponential

family distribution movement, where for particular parameterizations the

required instruments Z can be written as independent of the population

parameter value 8= °0. We then show a result which indicates how to construct

ZL in general (nonexponential family) circumstances, and close with some

related remarks.

5.1 Distribution Movement of the Exponential Family

5.1a The Exponential Family with Driving Variable X

The first natural question concerns when Xk is an appropriate instrument

for estimating macroeconomic effects, with d of (!3.1) (and b of (4.7)) the OLS

slope coefficient of yk on Xk. By te development, this case occurs when X is

an efficient estimator of YJ=P, which y the Fisher-Darmois-Koopman-Pitman

Theorem occurs if and only if P(y(!XI) is (locally) an exponential family

with driving variable X; given here as

14
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5. 1) P(y ,X I )=C(8)n(v,X)expE[i() 'X]

where the range of tf(6) contains a neighborhood of ( °) and

C(9)=C[h(y.X)exp[ (6)'XIdvl- is a normalizing constant. Without loss of

generality, n can be defined so that t(°io=-, in which case h(y,X)=P(v,X I 0 .

It is well known that if xx is nonsingular for all e8, then (5.1) with

Assumptions 1, 2 and 3 imply Assumptions 4, 5 and 6, and if the conditional

distribution of y given X exists for 8=%8, a stable microeconomic model is

imclied as well.

If we take =Wi(6) as the appropriate distribution parameters, then 1 if=X- 

and Ixx; p=Hf() and k.v=f**(f!) have derivatives H"l*s=Exx and 8a*°/i3=Zx,

so that a8/ SB=(Ex x)-xy, which for t=t° is the a.s. limit of d=b=(Sxx!-Sx,.

For the =H'(t) parameteriation, JL (Exx) (X-H) and I (xx) - l so by (4.3)

we have U= X and Zk=Xk.

As originally pointed out in Stoker(1982), the interesting feature of

this special case is that it justifies a nonparametric interpretation of cross

section OLS slope coefficients when the true microeconomic model is general

and unknown, namely as the macroeconomic effects of changes in E(X)= on

E(y)=py evaluated at t=t°. Thus a Taylor series interpretation of OLS

coefficients is always valid, where the relevant Taylor series is that of the

aggregate function )y=~(p) around =O, and distribution movements are in form

51l1 0

5.1b The Information Interpretation of R2

Applying Corollary 6 to the case of distributi-on movements of the form

(5.1) provides an interesting interpretation of the goodness of fit statistic

R2 from cross section OLS regression. Since X is an efficient estimator, v
vv

is a matrix of zeros. or, representing the inefficiency in y, will be nonzero

unless y is an exact linear function of X a.s.

If we denote the large sample value of the squared multiple correlation

15
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coefficient as R2=l-(c /oyr), Corollary 6 implies that the appropriate
EE

Cramer-Rao lower bound is the exact fraction R2 of the asymptotic variance of

y. Clearly, R2 represents the first order efficiency of y as defined in

Section 4. Equivalently, since the Cramer-Rao lower bound can be regarded as

the reciprocal of the relevant amount of statistical information, the use of y

to estimate y,=-y° incorporates R2 of the available information, and 1-Rf2 is

lost.

Thus, when distribution movements are of the form (5.1), the costs of

nonlinearities in aggregation are measured by 1-R2; the exact percentage of

information loss in y, regardless of the true form of the microeconomic model.

Note that this implies that the source of departures from linearity is

irrelevant; R2 is the exact fraction of the available information utilized

regardless of whether the true microeconomic model is nonlinear, or linear

with an additive stochastic disturbance.

5.lc The Macroeconomic Interpretation of Cross Section Instrumental

Variables Estimators

The final exponential family case of interest is when Zk represents

observable data, but ZktXk. Zk may contain some of the components of Xk or

nonlinear functions of Xk, as in Zk=D(Xk), or represent entirely different

observed variables from the cross section data set. To accomodate this case,

consider the expanded population density Py,X,ZIS), where we denote the

implied mean of Z as E(Z)=iz.

Zk represents a correct instrument if and only if Z is an efficient

estimator of z=yz°, which as above occurs if and only if P(y,X,Zl1) can be

written (locally) in exponential family form with driving variables Z;

(5.2) P(y,X,Z 1 a)=C()h(y,X, Z ) expE ) ' Z]

where the range of (8) contains a neighborhood of ( °0) and C(6) is the
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appropriate normalizing constant. In this case it is easy to verify that

S+/8=(-zx) 1-~zy, which for t=t ° is the a.s. limit of the linear instrumental

variables coefficients d=(Szx)-Szy.

This expanded case is of interest because form 5.2) accomodates

situations where there is a stable microeconomic model of the form

q(y,XIZ), which clearly allows for general (simulteneous equation) benavioral

models where components of X are endogenous variables, with Z appropriately

ancillary to the assumed stochastic structure. In this case d consistently

estimates the induced effects of changing =E(X) on py=E(y) evaluated at t=t°,

which provides a macroeconomic interpretation of d when the true

microeconomic model is general or unknown.

5.2 Computation in the General Case

Unless distribution movements are locally in exponential family form

(5.1) or (5.2), the proper instruments Rok or Zk will necessarily depend on

the true population parameter value 8=8 °. In this section we consider this

general case where Qa depends not only on the movement parameters , but also

on additional shape parameters A, as in

an P(y,Xi,A) =1n P(vXIF)

In this extension, =(,.A) represents a finite set of parameters required for

the complete characterization of the score vectors, although our interest is

only in estimating the macroeconomic effects of varying 8. When there is a

stable microeconomic model, A can represent additional parameters describing

the shape of the marginal distribution of X (see Section 6 for an example, and

Section 5.3 for the case of a varying microeconomic model, each with A

nonempty). The true value of these parameters at time t=t° is r°-=(8°,A°), and
a A A

we assume that there is a strongly consistent estimator r=(,A) of Fr=r

available. Under the additional structure of Assumption 7, we show that all of

17
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our previous results are valid when is used in place of T O in the

construction of tOk or Zk.

We begin by defining Ok as the score vector evaluated at yk, Xk and r as

.0° = 8 n P(vYkXk(r)
(5.4) ok k - I )

Denote the sample covariance matrices formed using ok as Soy, Sox and Soo.

The major result can now be stated as

A A

Theorem 7: Under Assumptions 1, 2, 3 and 7, if r is such that lim r=ro a.s.,

then lim So=E o, a.s., lim Sox=Eox a.s. and lim Soo=Io a.s.

Proof: Define k(Tr)=an(nPy k,Xk r)/e8, so that . k(r O)=.Ovk and .k(r0°) =Qok. To

prove the result for Soy, define the matrix S(r)=Zkk(Fr)y,/K, so that

S,(°O)=Soy and Sy()=Soy. In view of (A.2a) of Assumption 7, Lemma 2.3 of

White(1980b) implies that S() converges uniformly in to E(.Q(r)y). Since

lie r=rO0 a.s., by Lemma 4 of Amemiya(1973), lim So,=lim S,(r)=EO(.,(FO)y)=,,

giving the result. Similar arguments establish the remainder of the Theorem.

QED

Theorem 7 allows for the consistent estimation of macroeconomic effects in

nonexponential family circumstances. If Zk is similarly defined using r

instead of F0, then corresponding versions of Theorem 2 and Coroilaries 4, 5

and using ok and Zk can easily be shown to be valid, as long as !s.sumption

7 is appended to the list of antecedents. 1

5.3 Further Remarks on Biases in OLS

In this Section, we have shown how macroeconomic effects can be computed

under alternative assumptions on distribution movement. The central special

case is given by (5.1) - exponential family distribution movement with driving

variables X - which is associated with cross section OLS as a consistent

18
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method of estimating macroeconomic effects. If Sv O0 in (4.10b), then X fails
vv

to be a proper instrument, with the OLS slope coefficients of y on X

potentially biased estimators of the macroeconomic effects. Consequently,

distribution movements not of the form (5.1) can be regarded as inducing an

"errors-in-variables" problem into the cross section OLS regression of y on X,

with a precise measure of the departure of distribution movements from

exponential family with driving variables X.12 A natural method of assessing

the size of the biases is to compute the proper consistent estimates as above,

and compare them to the OLS estimates.

Finally, as indicated in Section 2. the most attractive practical

advantages of our results exist for the case of a stable microeconomic model.

In this case the relevant instruments depend only on the movement of the

marginal distribution of X, and provide macroeconomic interpretations of cross

section regression estimators regardless of the true form of behavior

connecting y and X. When the microeconomic model varies with 6, our results

are still valid, however the proper instruments will depend on precisely how 8

affects individual behavior. In other words, in this case there is a

behavioral component of the score vector - aln q(yiX,8)/88 - which may depend

on the exact specification of q and/or the values of the behavioral parameters

T. The additional parameter vector A would then contain T, which must be

estimated prior to the construction of the score vector Aok.

6 A COMPUTED EXAMPLE

In this section we present some illustrative calculations based on the

iognormal distribution movement example of the Introduction. Suppose that

demand y for a commodity depends on total expenditure X via a true

microeconomic model q(ylX), where in each time period the total expenditure

distribution is lognormal

(6.1) p(Xlit)=(1/2Tt(S t)X)exp-(lnX-Et) 2/2 t )2 )
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where in X has mean 8 t and variance (at) 2. For illustration, we consider two

forms of distribution movement:

Case A (Fixed log-variance): (Et)=cO, constant over time.

Case B (Fixed og-coefficient of variation): c (8t)=Xt, where X is a constant.

Mean total expenditure under each scenario is given as

(6.2) ,=E (X) =exp (+ (1/2) C()2) 

and mean demand is formally given as kY=E(y)=.*( 8) (e) .

Now, suppose we observe cross section observations on y and X at time

t=t°, where 8=80. Our results say that the linear coefficient of y regressed

on X obtained by instrumenting with either the score P.v8 or the component Z of

the efficient estimator of will consistently estimate the macroeconomic

effect 8.~/8 °. For Case A, we have . =(ln X-8)/(c 0 )2, and Z=ln X, which is

consistent with the fact that under Case A, (6.1) is a exponential family with

driving variable Z=ln X. For Case B, we have =[(ln X)2-81nX-(X6) 2]/X263 and

Z=(Io)-P1o +60, where I=1-2X2 ]/X282. Here we would use the results of Section

5 to construct either .Qo or Z using a strongly consistent estimator of

F0=(80 ,X), where (=A° in (5.3') is an additional shape parameter.

For illustration we present the computed values of the macroeconomic

effects assuming a precise Engel curve function of the form

(6.3) y = ToX + TXlnX

which is Muellbauer's(1975) PIGLOG form (see also Deaton and Muellbauer(1980)

and Jorgenson, Lau and Stoker(1982)). The aggregate functions for cases A and

B can be seen to be

(6.4A) ,y=E (y)= ( p)=P[To+ (n+ ( 1 /2) () ) 

(6.4B) =E(y)= ()=![ To+T: (ln +(-I +4+2\ nlI) ]

' .)
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All of our results regarding limits of regression estimators can be

formally verified here, which we leave to the reader. In Table 1 we present

the values of the various effects for typical demand coefficient values -o=.2

and XT=-. 01, and population parameter values 80=9.119, 0o=.578 (and

X=°/8°0=.0634), which represent the values of these parameters fr the 1974

distribution of family total expenditures in the United States given in

Stoker(1979). Also, for comparison, we present the large sample value of the

OLS slope coefficient of y on X, namely =( xx)1Zxv as well as the asymptotic

oias -d.

From Table 1 we see that there is virtually no difference in the true

macroeconomic effects between the two scenarios, while in each the true

macroeconomic effect d differs substantially from the leading coefficient of

demand To=.2. The asymptotic bias in least squares is quite small in both

cases. X is more highly correlated with the density score .o under Case B than

Case A, although the efficiencies of y and X are reasonably high under each

scenario. Finally, we should note that while the demand formulation (6.3) does

not include an additive random disturbance, including one would only lower the

R 2 values of Table 1, and narrow the difference between them.z

7. CONCLUDING REMARKS

In this paper we have shown how macroeconomic effects can always be

consistently estimated using cross section linear instrumental variables

regression coefficients, by developing a general framework connecting cross

section regression and the efficiency properties of data aggregates. The

striking feature of our results is that they involve no testable restrictions

on the cross section data, and thus provide interpretations of standard

regression statistics when the true microeconomic model is misspecified or

unknown. The sensitive feature of the framework is the precise specification

of distribution movement, which determines the form of the proper instruments
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Comparison of Cases A and B

= 9.119, a = .578, y = .2, 1

Case A

= -.01

Case B

11,1 81.1 910,786.40

b = DE(y)

d = DE( )
EE(X)

s (OLS)

- d

Efficiency of

X -R
V

- 2
y- R

£-

1,029.78 1,063.44

.0955 .0951

.0937

-.0018

.0937

-.0014

.9127.3423

.8729

E0

B = E(X)
ael

__

TABLE 1:

.9354



for cross section regression. Consequently, the broad context of the results

on estimating macroeconomic effects may be viewed as an exchange of specific

functional form assumptions for specific assumptions on distribution movement.

These features naturally suggest a number of related theoretical research

areas. For instance, a general interpretation of the standard omitted variable

bias formula is given in Stoker(1983a), and the macroeconomic effects of

behavioral parameter changes is analyzed in Stoker(1983b). Topics for future

research include the extension of the micro linearity tests of Stoker(1982) to

general distribution movements (and how such tests would compare to

traditional specification tests), as well as how one would test (say using

panel data) whether a particular parameterization of distribution movements

was appropriate.

__�__
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Appendix: Further Regularity Assumptions

For the purpose of di

difference quotients as

Dyj(yX , h) = yEP(y,XI

Dij(yX,h) = Xi[P ( X

fferentiating under integral signs, define the

0 +hej)-P (v .X 10)
h

8 9+he.,)-P (v.X 18°0)
h

where Xi

and h is

ASSUMPTI

,=1,..

is the ith component of X, ej is the unit vector with jth component 1

a scalar. We now assume

ON 6: There exist

.,M and ho>O, such

v-integrable functions g(y,X), g(y,X);

that for all h where 0 Ihl ho,

(A.1a) ID.j(y,X,h)l I gj(y,X).

(A.2b) IDij(y,X,h)l I g j(yX)

for all i,j=1,... ,M.

Clearly Assumption 6 will be guaranteed by Assumption 3 if the carrier set

over which v is defined is compact. Note that Assumption 6 could be replaced

by a less restrictive but much more technical assumption, along the lines of

Roussas (1972).

For using consistent estimates of the population parameters in Section 5,

we assume that F=(8,A) is an M+L vector of parameters, where eSB*, where e is

a compact subset of R ' containing an open neighborhood of0 r. We denote the

jth component of A8 from (5.3) as aj . We then require



ASSUMPTION 7: There exists measurable functions hoj(y,X), h(y,X) and

hj*(y,X); i,j=l,...,M such that

!(A._a) iy.q I < ho.(Vy,X)

(A. 2b )i Xi I hij (y, X)

(A.2 c l!i. v I < hj*(y,X)

for all e", where E° i h o I

some O,>0 i=l,...,M, j=1,...,M.

i=1,... IM

i,j=,. . . ,M

i, j=l,...,M

hi S +and E bounded 
E0Ih1i and Ellhjf° are bounded for
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NOTES

1. The terms "predictor variable" and "regressor" are used interchangeably to
describe Xk in the equation yk=a+b'Xk+k, with "dependent variable" refering
to yk.

2. See Stoker(1994) for several examples of computed aggregate functions.

3. X could include squares, cross products, etc., of a smaller set of
variables.

4. By convention, we always assume that a constant is appended to the set of
instrumental variables for calculation of estimates.

5. It should be noted that if the function 8()/3P were known exactly, then
better estimates of its value at = '° are available than the slope
coefficients. In particular, if j is a consistent. first order efficient
estimator of =p° , then a ()/ay is consistent and first order efficient for
B~ / 2.y° .

6. See Rao(1973) for a thorough development of these ideas. It should be noted
that under some further regularity conditions, maximum likelihood estimators
are first order efficient - see Rao(1973) or Roussas(1972), the latter
containing a very general development.

7. The aggregation - sufficient statistic connections noted in Stoker(1982)
are also at work here, since U is a locally sufficient statistic for 8 near
8=8 - see Barankin and Maitra9 1963).

8. See Barankin and Maitra(1963) for a generalized version of this theorem,
and Stoker(1982) for the original references.

9. Textbook treatment of the exponential family can be found in Lehmann(1959)
and Ferguson(1967). For modern treatments see Barndorf-Neilson(1978),
Efron(1975,1978) and Efron and Hinkley(1978).

10. White(1980a) shows that OLS coefficients consistently estimate the
derivatives of the true microeconomic model evaluated at the mean of X only
under very restrictive conditions.

11. While the ability to find strongly consistent estimators depends on the
exact form of the density P(yk,Xk8,A)) it should be noted that if (i,A is
used to parameterize the density, then X is a strongly consistent estimator of
=P° by Theorem 3.

12. One should be careful with this interpretation, because the standard
errors-in-variables bias formulae are not generally applicable here. Also, it
should be noted that =t0 is a stronger condition than zero statistical
curvature (Efron(1975)y, since vv depends on the particular variables X.
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