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OPERATIONAL ANALYSIS OF A JOB SHOP

ABSTRACT

We precpose and develop a discrete-time, continuous~flow model with
linear control for studying the operation of a job shop that sees a
stationary input mix of job types. We are not concerned with issues
of detailed scheculing, but razther hope to dévelop a planning tool for
a job shop operation. With the model we are able to characterize the
operational behavior of each work center in the job shop for 2 given
control policv. The control rule that we assume sets the production
rate at a work center as a fixed proportion of its queue level in each
time period. This control rule is consistent with the assignment of a
planned lezd time to each work center. TFor such control rules the model
gives the steady-stete distribution of the production levels at each
work center, as well as the distribution of queue lengths. We show how
to use the model not only to eva‘géte a specificetion of the control
rules but zlso to find a good specification of the contrcl rules theat

results In acceptadble shop behavior,



1. Introduction

The intent of this work is to develop a2 model-based framework for
performing an operational analysis of a complex batch or discrete-part
manufacturing operation as typified by a job shop. The focus of the
operational analysis is on understanding the interrelationship and inter-
play of the three key components in a manufacturing operation, namely
the available production capacity, the inherent variability and-uncertain-
ty of the production requirements, and the level of work—in-proééss in-
ventory, We are interested in understanding how job flow time, or
equivalently the level of wOTk-in—process (WIP) inventory, depends upon
production capacity at each work center or production stage. Similarly,
we want to understand how job flow time relates to the variability of
production requirements that comes from the inherent job mix faced by
the manufacturing operation. To do this we present and illustrate a
mathematical model that -permits such analyses in the context of a job-
shop operation.

A job shop is a very flexible production facility that consists of
a set of versatile machine centers or work stations, and is capeble of
producing a wide variety of jobs. The processing requirements for each
job consist of an crdered set ot tasks where each task is toc be performed
on 2 distinct macnine center, These processing requirements, as specified
by the tasks, dictate how the job is routed through the machine centers
in the job shop. Due to the wide variety of jobs (i.e. routings) processed
by the shop, it may not be possible to discern any strong pattern in the
flow of work thnrough the shop. In particular, z machine center may receive
jobs from several other machine centersg likewise, jobs at the wecrk center
may go next to one of several other work centers or mev leazve the shop

if completed. Beczuse of this lack of dominant work flows through the
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shop, production control is often very difficult in
it is often not possiﬁle to have very sophisticated
because of the complexity and variety of work flows.

Prcducticn control is often based on 2 queue

a job shop. Indeed,

production control

management system,

This approach views the job shop as a network of queues where each work

center is a server and the jobs weziting there form its queue. For each

work center we assign 2 planned lead time that represents the expected time,

both waiting andé in process, that 2 job will spend at that work center,

Production control, in its crudest form, just prioritizes the jobs in

queue at each work center, typicslly by means of some measure of the

perceived urgency or criticality of the jobs. Job criticality is usually

specified as a function of the diiference between the need or promised

date for the jcb znd the projected completion date of the job based on the

planned lead tizes (i.e. job slack}; Jobs with the least slack get highest

priority. The prciected completion date reflects the processing time and

expected queuveing time (i.,e. the planned lead times) for each remaining

task for the jcb,

is mvopic since It is virtuelly impossible to anticipzte fully how all jobs

will complete their trocessing through the shop.

A sczmewhat more scphisticated scheme for queue

r.is pricritizetion or sequencing of jobs in each queue

management is input/

output ccatrel (Wight, 1970). Here, the intent is to manage the flow of

X

work through the shep so that the size of the queue

at each work center

remains relatively szzble about & predetermined level, Clearly to do this,

one needs toO ccnirol tNeinput rate to each work center to match the

output rate., <-nis Zs relatively straightforward for the work centers at

which new jobs enter the shop; nzmely, new jobs are

released to the shoep

at a rate in acccrdence with the production rate of the 'geateway" work centers.”

m

However, it is =

¢ all clear now to maintain input/ocutput control at



non-gateway work centers, especially if they receive input from multiple
sources. Nor is it all clear how to determine the proper queue levels
about which to target the input/output control.

~ In this paper we present a model that, in a particular way, formalizes
Wight's concept of input/output control. In the model we describe a queue
management system that relies on planned lead times, as is common in pro-
duction practice. However, we are not concerned with detailed scheduling
issues, and do not use the planned lead times to prioritize jobs; rather
we use the planned lead times for planning the operation of the shop, and
in particular to prescribe the production rates by work center by time pe:;od.
This is done in order to achieve some level of input/output control at all
work centers. As we will see, the planned lead times are the key decision
parameters for implementing this form of input/output control.

Most of the previous research on job shops has been in the area of
detailed scheduling, with two major thrusts. One thrust has been research
that explores the performance characteristics of various mvopic sequencing
rules. This research has relied upon sizulation studies that compare the
performance of a prespecified set of secuencing rules on a particular job
shop with a particular job mix; Conwav, Maxwell and Miller (1967) give
anvexcellent illustration of this type of work and review some of the
earliest studies. A second research thrust hes been to determine optimiza-
tion methods for finding the best way to sequence a given set of jobs
through the shop. This research views the scheduling of a job shop as
2 large combinatorizl-optimization problem to which highly specialized
solution procedures may be applied, Lageweg, lLenstra and Rinnooy Kan
(1978) give.a good illustration cof this‘type cf research, as well as provide

a review of earlier work,
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There has not been much work that has tried to step bach from the
very detailed issues of sequencing to consider the broader issues of
planning in a jobd shép. A noteworthy eXxception ié the work of Jackson
(1957, 1963) on queteing networks. This work provided a model for character-
izing the flows through a complex job shop. From this model one could get
insights into the relevant planning fradeoffs between additional capacity,
reduced flow times, and an altered job mix. Other work that has focused on
planning issues is that of Jones (1973), Holstein and Berry (19%0, 1972),
Bertrand (198l1), and Bertrand and Wortmann (1981). Jones gives an
economic framework for considering the costs of idle resources, of carrying
inventory, of missing due dates, and of making extended due date promises;
the decision varizbles in the framework are the level of work-in-process
inventory, the tightness of the promised due dates and the sequencing rule.
Holstein and Berry explore the development of a work flow matrix to help

identify the dominant flows in a job shop and to serve as a guide for

smoothing the work flow in the shop. They also show how to use the work
flow matrix to make labor assignments and transfers. Bertrand (1981)

and Bertrand and VWortmann (1981) cevelop and applv a model that strives to
control the flow time of jobs by controlling the aggregate work locad in
the shop. They model the behavior of the shop at a very aggregate level
and providé 2 discrete~time analysis of the flow of jobs through the shop.
In this respect their model and znalvsis are similar te that given in this

paper.

There has recently been work that focuses on understanding the impact
of lot sizing on shop behavior. Karmarkar(1983) proposes a simple queueing

model to exarmine the relationships azcross lot sizes, manufacturing lead



times and resource utilization. Zipkin (1983) also uses queueing modelé

to model a production facility; he then develops an optimization

framewqu that combines queueing considerations with inventory consideraticns
in order to set lot sizes for a multi-item, batch production system. These
papers are similar to the current paper in their recognition of the
importance of understanding and controlling shop floor time. They focus

on the use of.lot sizing to control flow time, while the current ﬁaper

does not consider lot sizing at all. Rather, the current paper uses

production rates as the mechanism for control.

The current paper presents a new planning model for analyzing the
operation of a job shop. We will try to argue that this model is a valuable
addition to the existing array of planning models. The remainder of the
paper is organized into three sections. The next section develops the model.
The model represents the job shop as a continUOus-flow, discrete-time
svstem with linear control. Section 3 gives an illustrative example that
shows how the model might be used to analvze the operations of a job shosz,
Section 4 gives & discussion of the model and its assumptions, indicates
how the model.might be generalized, and indicates how the model compares w:th

alternative approaches.
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2, Model Develooment

This section presents the model that underlies the intended operational
analysis. First we present the assumptions of the model and develop the
basic éperational equations that describe the shop behavior. Next we
provide the analysis.of these equations that allows us to characterize
the work flow, Finally we show how to determine the effect on the work
flow from marginal changes in the shop parameters.

We base the analyses on a discrete-time ﬁodel of the job-shiop operation.
Implicit in the model is an underlying time period that governs the
trahsitions within the model. The model assumes that the movement of jobs
from one work center to another, as well as the arrival of new jobs to thé
shop, can occur only at the start (or eguivalently the end) of a time period;
that is, a job completed during a time period at a work center moves to its
next work center at the start of the next time periocd. Clearly, we must
choose the time pe:iod'carefully in order for the model to be a meaningful
representation of the job shop uncer consideration. OCn the one hand, the
time period should be short enOugh so that it would be highly unlikely that
one»job would move tRhrough two successive work centers during one time
period. Yet, on the other hand, the time period should be long enough so
that each work center is capable of completing a handful of tasks during
each time period. (The reason for this statement will be clearer after
we preseant the model.) The time period is clearly dependent upon the shop.
In some shops the job movement mav be such that a2 two-hour period is
appropriate, whereas in other shops a multi-day perioé may best correspond
to the way jobs meve,

The model is a ceatinuous~flow modél in which we track work loads
rather than jobs. As will be seen, we express the arrivals to the work
cenfer and the cueue &t the work center in terms of the backload (e.g.

heurs) for the work ceater rather than as the number cf jobs. Similarly



the production at the work center during a time period is given as the
amount of work performed, not the number cf jobs completed. Consequently,
individual jobs have no identity in the model. This may be a serious
drawgack for certainrinstances; however we contend that for the purposes
cutlined earlier, concentrating on the aggregate work flow will be
adequate,

We model each work center by describing a control rule thaf'determines
the amount of work performed by the work center in a time period; this control

rule is

(1) P. = ¢.Q,

where Pit is the production of work center i in time period t, and Qit is
the queue of work or backlog at the start of time period t. The parameter

o

i1 0 < a, < 1, relates the current backlog to the current production.

In particular, the model states that production is a fixed portiom (ai) of
the queue of werk remaining at the start of the period. For instance, if
@, = .25 then we say that each time period the work center produces one
quarter of its queue; on average, a job would take four time periods (l/ai)

to get through the work center,

This model of production at a work center treats the work center as
if it had no capacity constraint. The model zssumes that the work center
is always able to complete the fixed portion &y of its queue, regardless
of the queue size. In some instances this may be a very strong assumption;

nowever, I would rzise a few points in support of this model. First, the

choice of the parzmeter oy is critical. As will be seen, this is a smoothing



parameter., We set the parameter ay such that the resulting time series
for production is consistent with available capacity at the work center, i.e.
we need set a, so that we are assured that Pit is achievable most of
the time. Second, the model asserts that the producticn rate varies directly
with the queue length. This says that when the queue grows, the work

center works harder, and vice-versa,. There is evidence, albeit primarily
anecdotal, that complex shops behave in this manner, especially-when
production is both labor and machine~constrained (e.g. Gomerséli 1964) ,

As a queue builds at a work center, a manager will direct more resources

to the work center to reduce the queue to normal levels. This may entail‘
shifting workers to the heavily-loaded work center, or working overtime,

or working more efficiently (e.g. postponing maintenance or other non-
productive activities), SImilarlv as a queue at a work center drops

below its normzl level, the manager may divgrt resources away from the

work center, Labor may be shifted.to other work centers, and more non-
procuctive activities such as maintenance, training, and trial.production
will be undertzken.

Although we czn view this model of work-center behavior as a descriptive
model, we primerily think of it as being prescriptive c¢f how a shop should
be run, The model lends itself to cases where production control in the
shop is based cn planned lead times at each work center. If the planned
lead time at a work center is n time periods (n>1), thea the work center,
on average, must process 1l/n of its queue each period. But this is what
(1) does; the control rule prescibes that exactly 1/n of the gueue be
processed ezch time period, where &, = l/n. Furthermere, we will see that

this control rule not only is consistent with the planned lead time, but



alsc acts to stabilize the work flows through the shop. Each work center
behaves as a filter that smooths its arrival stream of work before passing
the work onto other work centers, Indeed, we will argue that a shop ought

to be managed in this manner,

Now to use (1) we need specify the queue level Qit' The first step

is to pose the standard balance equation

2 - -
(2) Q. Q,e-1 ~ Pi,e-1 A

where Ait is the amount of work that arrives at work center i at the start

of time period t. By using (1) to replace Qit in (2), we obtain

(3) Pio = (epBy o) * oy,

which is a simple smoothing equation. By repeated substitution, we can.
then write production as

s

Ti,t-s

1>

., (1-%)

(4 Py - 0 i i

it

t~1 8

s
where we assume we have an infinite history of arrivals. Thus we see
that the production model given by (1) is effectively a simple smoothing
function where the output time series (production) is just a smoothed
version oé the input time series (arrivels). 1If we can characterize
the arrivals to the work center, then we can characterize the production.
For instance, if the elements of the time series {Ait} are i.i.d. random

variables with mean p and variance c?, then we find that
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Unfortunately, though, the arrival stream to a work center in a job shop
will not consist of i.i.d. random variables, Rather the arrival stream will
tend to be highly correlated over time, as will be seen. Consequently, a
more complex cderivation is needed to characterize the time series {Pit}'

The arrival stream to a work center is comprised of two types of flows,
One flow consists of new jobs entering the shop that have their first
processing step (task) at this work center. The second flow consists of
jobs in process that have just completed a processing step at amother work
center and have their next processing step at this work center. We describe

the arrival process to each work center from each other work center by
(5) A, = ¢,.P + €

where Aijt is the amount of work arriving to work center i from work center j
at the start of time period t, ¢i‘ is a positive scalar, and Eijt is a
J

random variadle with zero.mean. 7That is, everv time unit (e.g. hour) of

production at work center j generates Cij times units (hours) of input to

I

work center i, on average., The term Eijt is an error or noise term that
introduces uncerzainty into the relationship between prodﬁction at work
center j and inputs to work center i. We assume that Ior each pair (1,3
the elements in the time series {sijt} are i.i.d.

We offer two comments with regard to (5). First, we have made a
strong assumption here that we can model the work flow using a Markov
property. That is, we assume that the arrivals to work center i from wcrw
center j do not Zepend on how that work got to j. In essence, we assure
that each time period work center j processes a relatively stable or
representative mix of jobs, so that subsequent inputs to downstream WCTk
centers are similierly stable., The validity of this assumption depencs

vpon overall s:zztilitv of the job mix in the shop, as well as the length

of the time period, 1If the job =ix veries drastically (in terms of
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production requirements by work center) from one week to another, then the
assumption may not be very good. Similarly, if the period length is

such that at most only a few jobs are completed at the work center each
time period, then it may be unlikely that there is a very stable output.

- The second cormment concerns how uncertainty or noise enteré the
relationship between production at j and inputs to i. One might argue that
the noise should be proportional to the volume of production at work center
j; namely, we might expect with greater production volume, we would have
greater variability in the input stream to i. In (5) the noise‘term is
independent of the production level. As will be seen, this assumption
pernmits a great deal of tractability in analyzing the model. Clearly the.
validity of this assumption would have to be examined in the light of
actual shop data.

Now the arrival stream to work center i is given by

(6) AL T 130 Vi

e ~1
r

- £ o s 40
where N is a random variable thzt represent the work load from new jobs
. it
+hat enter the shop at time t and have their first processing step at work
£l
center i. -We assume that for each work center i the elements of the time

series {N. } are i.i.d. We now substitute (5) into (6) to get
Ly,
it

- [

- = &7 + £,
(7) AL % "ij73,t-1 it

it it
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Thus €, represents the éart of the ar?ivals that are not predictable from
the production levels of the previous periods, i.e. the new arrivals and the
noise in the flows from other work centers. By assumption, the elements
cf ;he time series {sit} for each work center are i.i.d. Note that the

expected values of ¢ equals the expected amount of new arrivals each time

it

period to work center i.
We are now ready to perform the analysis of the job shop model
specified by equations (3) and (7). It will be convenient to réwrite these

equations in vector notation as

' P = - P
(3%) P (I-DPF _;+DA
' = -+
(7 ) ét 2 gt—l Et
o = I 1 = [ 1 = 1
where P (Py seen? 31, A “Alt""’Ant} » € {Elt""’ent} are

column vectors of random variables, n is the number of work centers, I is

the identity matrix, D is a diagonael matrix with {a an} on the diagonal,

l”"’

and ¢ is an n-dv-n matrix with elements Qi_. By substituting (7') into
]

[Ze]

(3') we obtain

(8) P = (I-D+ Qg)P + D¢ .

By repeated substitution we can rewrite (8) as a geometfic series
[~}

(9) poo= L @-pepp)De

where we assuze an infinite histcry of the system exists, We use
(9) to characterize the joint distribution of the production vector gt.

- . - I 3
To do this, we let the noise vector g/ have mean u = L;l,...,unP and a

covariance matrix given by L = {z. .}, Ve note from the definition of €5

23
thar its mean, Ly corresponds to the expected amount of new arrivals to

- 3 . . . - r - ‘v
work station i, that is uy s ELN, .

it
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The expectation of the production vector, call it p = {ol,...,on‘

-9

is given by

10)

[ ke}
"
e-18

Pany
N

]
o
+
[[w]
v
S’

7]

Q-7

provided the spectral racius (maximal absolute eigen value) of. ¢ is less

than 1. If the spectrél radius of ¢ is greater than or equal to 1, then

the above power series diverges and the expectation of the prodﬁction vector

is not defined Isee éppendix for details]. This condition on ¢ is the standard
requirement on an input/output matrrix, namely a unit of work at any work center
(input) cannot ultimately result in more than one unit of additional worg
(output) at that work center. If this condition is violated, then the

system does not reach a steady state but "blows up" over time (i.e. infinite
queues)., Finelly, we note that the existence cf a steady state does an
depend on the smoothing parameters {c,}, but is entirely determined by

the matrix 9. As will be seen, the szoothing parameters just.influence

the variance of Et’ and do not affect its mean as might be expected after

& little thought.

Ve find from (9) the covariance matrix of P, call it § = {s .}, to be

1]
(o3 s -
(11) s = vVar(p) = = B°z B
= _t - = =0 =
s=0
where
(11a) B = I-D+I
and )
(116) z, = DLD



14

We sihiow in the apryendix that the power series again converges provided that

the spectral radius of ¢ is less than one. Now we can simplify (11) if

B has a set of distinct eigen values; if this is true then we can diagonalize
B so that

’ -1
(12) B = RAER

where | is a diagonal matrix with the eigen values of B, {Xl,...,kn}, on

the diagonal and P is the corresponding matrix of eigen vectors for B.

By substituting (12) into (11) we can reexpress § as

(13) $ = BCE

where C = {cij} is such that

(14) ey Cyy A2
where .

(15) c = {cij} = g'l Z, gf"l .

Hence, once we cizponalize B as in (12), then we can immediztely find the
covariance matrix § from (13) - (15).

An zlternate anproach to evaluate S 'is to approximate the infinite
series in (11) by 2 finite séries. To do this, first défine S eas ;he sum

of the first n terms, i.e.

Then we see that

(26) Spp B S
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By repeated application of (16) we quickly obtain a very good estimate
of §; for instance, six applications gives the sum of the first 64 terms
in the series,

In addition to 3: we will find it useful to characterize the distri-

bution of the queue levels at each work center. From (1) we see immediately

that

an Qv

so that

(18) E(Q) = g'lg

and

19) Var(gt) = 2-1 s 2_1

where P and § are given by (10) and (llj. But we may also de;ire to
describe the mzke-up of the queue in order to measure the waiting time
at each work center. To do this we define Q?t to be the amount of gueue
at work center i at time period t that has been in queue for at least
m periods;. Assuming that we process the oldest part of the queue firs:,

i.e. FIFO, then we define for m>1

(20) Q.

that is, the gueue at time t that is zge m or olcder, is just the queue
at time t-1 that is age m-1 or older minus production in time period =-1,

Tor m = 0 we have Qgt = Q asbgiven by (1) and (2). We see from (20)

it
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. e . .
that we permit Qit to take on negative values; this denotes not only that

none of the current queue has been there for m periods, but also that the

5 - m
work center has processed an amount of work, equal to —Qit, of more recent

arrivals. 1In matrix notation we rewrite (20) and simplify to find for

m:l

(21)

where QO

obtain

(21"

m _ m-l
% =81 - B
m
_ A0
T Stem ) L
s=1

so that the queue is expressed entirely in terms of the production random

vectors.,

From (9) it is clear that we can rewrite (21'") as an infinite

series in the i.i.d. random vectors ¢ . From this representation and
-

after a2 certain anount of algebrz, we can find that

(22)

and

(23)

~1 -
2@ = @ -mp-oty
m-1
. -1 -1
\ar(£i> =] (@ 4.+ Zo(L +oo ¥ B> L
j=1
-1 S RO |

m-1.1

=)



17
where S, B and EO are defined in (11), (11a) and (11b). Knowledge of the
distribution of 9? will permit us to get some notion of how long work
waits in queue at each work center, as we will see in the next section.

If we now assume that the noise vector Et has an i.i.d. norpal distri-
bution with mean H and covariance matrix E, then we have that 3: is also
normally distributed with mean p and covariance matrix S given by (12)-(15).
(Similarly we see that 9? is normally distributed with mean and variance
given by (22) and (23) for m>1, and by (18) and (19) for m = O.j;We can use
this information to assess the‘performance of the job shop. In particular
we are interested in assessing whether the work flow that results from the
choice of the parameters {ai} is consistent with the available capacity at
each work center. In general, specification of ai corresponds to setting
a planned lead time for work center i equal to l/ai. On the one hand,
we desire for these parameters to be set large so that the lead times
are as small as possible and the work-in process inventory is minimal.

On the other hand, we aiso want the production requirements at each work
center to be as smooth as possible in order te utilize availabi; resources
efficiently. But this suggests setting the smoothing parameters at small
values. Hence we intend to use the above model as a guide to locking pri-
marily at the tradeoff of smoother flow and better resource utilizgtion
versus shoiier lead times and lower WIP inventoryvy. Furthermore, we will
use the model to discern the benefits from reducing the uncertainty or
noise in the work flow. Since the tradeoff between resource utiliza-
tion and inventery is largely a consequence of the uncertainty in the work
flow, ' one must be able to assess explicitly the ramifica-

tions of the various sources of this uncertainty.



Since we are concerned with the consequences that arise from
changes in the system parameters, it is of value to compute the
appropriate derivatives. We let ag/aak denote the matrix whose (i,j)

element is Ssij/éak. Then from (11) we find that

. 5T e, e
dak s=0 fk
where B is given in (11a) and
- & ' 4T e T
&y E, [(&-DgB" + ID) + [BS(S'-D) + DIIE, ..

where gij is a matrix of all zeroes except for a one in element (i,j).
We note that the infinite series in (24) is the same as that in (11),
except that Z is replaced by Z,. Hence we can find 98/80, by the same
manner as we find S, but with éo replaced by ék' From this observation
it is easy to see that once we have found § [for instance,by performiné
the dizgonalization in (12)], we immediately can obtain 3§/5e, for

k

any k.

We may also have interest in changes to the covariance matrix 3
with respect to changes in an element Gij in the input/ﬁutput matrix ¢
and to changes in an element Cij in the covariance matrix for the noise
process, ;,1 If we let Bg/BQij and Bg/%cij denote these derivatives, then

we findé that

~
¢S o
= T RS < s
=7 = ) B~ Y.. B'
I “, = =ij =
i3 =0
and
a\
oS o
= = Y Sy 'S
80.. - = =i =
ij s=0 3
) 3 . o p-ax3 - V‘_
! Since the covariance matrix T :g necessarily symmetric we deriné thne deri
bt =T =

o : i £ 3
- X . -1 : . and ¢,, for 1 ¥ 3.
vative of S to be in terms of cnanges in both Cij “51
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where
= A -+
and
. ) {E(Eij + jS)g for 1 # 3
=ij - 4
2 Eii g for i j .

Hence these derivatives also have the same form as‘§ and can be computed

immediately once § is determined from (13) - (15).
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3. Example
We illustrate the model here with a small example. The work flow

matrix is derived from a work cell at a factory that produces grinding machines.
The‘work cell fabricates several families of spindles that are components
in the assembly of the grinding machinés. The work cell consists of ten
types of machining stations, and the work flow is described by the matrix
2' given in Table 1. We note that the work flow matrix is quite‘éparse,
indicating that there are deminant flows thfough the work cell., 1In partic-
ular, all work enters the shop at the first work center (lathe) and then
moves serially through the shop but with some recycling. We remind the
reader that the work flow matrix is not a probability matrix but rather

its elements indicate the expected amount of work generated at a subsequent
station bv a fixed amount of work at the currentAstation. For example,

one hour of work zt station 8 generates, on average, 3.43 hours of work

at station 9.

In addition to the matrix i we need to specify the time pefiod for the
model, the vector of expected inputs i and the covariance matrix L. For
this example we set the nominzl tize period to be two hours. Work enters
the shop only at station 1 and we zssume that the expected input is four
hours of new work every time perioc (i.e.,'ul = 4, By = d i=2, ..;10).

We note that there ere three identical lathes at work center 1 so an averége
input of four hours of work each two hours is not obviously infeasible;

all other work stztions have a single machine. We assume the noise prccess
{sit} is normally distributed with its covariance matrix I being a diagenal
matrix as specified in Table 1, We note Fhat most of the uncertainty is
introduced at the work center 1, presumably by the stream of new arriveals;

however, the arrival streams to the other work centers alsc are subject tc

a noise process, but with smaller variances.,



21

Given $ and U we can compute the expected work load for each work
center.by (10). We report this in Table 1. We see that work centers 1, 6,

9 and 10 are the most heavily utilized centers. For a nominal time period

of two hours, the utilization at work center 1 is 83% since it consists of
three lathes. Work center 6 also has é utilization of 83%, and work center

9 has a utilization of 90%, while work center 10 has a utilization of 110%.
Indeed this analysis indicates that work center 10 ﬁéed do, on avérage,

2.19 hours of work every two hoﬁrs. This seens impossible given that there

is only one precision gfinding machine available at this work center. Yet
this is what is required to meet the production requirements. Although

the model cannot prescribe how to meet this seemingly impossible requirement,
it does assist in identifying the necessary Tesource requirements. In par-
ticular, one might expect that this work center will work a ten-hour day
while all of the other work centers;work eight-hour days; hence, the effective
time period for work centér 10 might actually be 2.5 hours rather than two
hours. The model should help to zssess whether or mot ten hour; per day

is sufficient to cover the variabi:ity in these production requirements.

We are now readv to consider several different scenarios for managing
the flow of work through the shop. We specify a scenario by setting the
smoothing pafameters oy or equivalently setting the planned lead times
n, = 1/&i for each work station. Tor the first case we set the planned
lead time for each work station to be one period (ni = 1); that is, at
each work station all work that arrives by the start of 2 time period is to
be processed by the end of that time period. Teble 2 gives the characteriza-
tion of the shop behavior for this case, .-For each work center we report the

expected work load and its standaré deviation, the expected queue at the

start of a period, and.the expectec backleg at the start of & period. We
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define the backlog at york center i to be the amount of the queue that has
been in queue at least ng periods; but this is just the positive part of

Q;i for == n,, given by (20). From Table 2, we see that the work-in-
proceés levels are quite low and that there is never any backlog since

each work center clears its queue each time period. However, the production
requirements for each work center azre highly variable., For instgpce, for
work center 1 the production requirement per time ﬁeriod has a normal
distribution with mean 5.01 hou?s and a standard deviation of 2.02 hours.
Hence, with probability..Bl the production requirements for a time period
exceed the nominal production capacity of 6.00 hours, in which case
overtime would be worked or additional resources would be directed to this
work center. Similerly, we see that the other bottleneck work centers have
highly varisble production requirements that will tend to result in ineffi-
cient procduction and high costs due to their lack of smoothness.

For the second case.in Table 3 we attempt to smooth the production

'requiremen:s et the heavily loaded work centers by imposing & pianned queue.
We plan a lead time of four periods at work center 1, twe periods at work
center 6, znd three periods each at work centers 9 and 10, This results in
longer queues at these work centers as well as larger baqklogs. Fo; instance,
at work center 9, increasing the planned lead time from cne to three time
periods triples the size of the guesue. The expected backlog at work center

9 increases froz zero to .13 hours; that is, on average the queue will contain
.13 hours of work that has been in queue for three or more time periods. Since
the average production per period at this work center is 1,89 hours, this
suggests that roughlv 7% of the work takes longer than the planned lead time
of three time periods. (Due to the symmetry of the normal distributionm,

2 comparab:e amount of work, i.e., 7%, takes less than the planned lead

time of three tize periods.) But the additional queues do result in signifi-
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cant production smoothing as reflected in the smaller standard deviations
for production at thevbottleneck work centers.

The third case reported in Table 4 is a continuation of the second
case in attempting to smooth the work flows., Again we have added'queues
at the heavily loaded work centers to make their production requirements
less variable. But we begin to see here the effects of the decreasing
marginal benefits from additional smoothing. For instance, for work center
6 increasing the planned lead time from one to two periods reduce; its
production standard deviation by 56%, while increasing the planned lead
time from two to three periods gives only a 25% reduction in the production
standard deviation. (This is not an entirely fair comparison since the
reduction in the variability of the production requirements is not only
a2 consequence of the increased lead time at the w&rk center, but also results
from the smoother zrrival stream to that work center from the other work
centers).

The purﬁose of the fourth case (Table 5) is to show that we can smooth
production not only by placing a queue as a buffer at & work center, but also
by smoothing the errival streem seen by the work center. We note from the
¢ matrix that work center 9 only receives work from work center 8. 1In the
previous two cases we try to smooth the work locad at 9 by imposing a queue
there; alternztively we could smooth the arrivals to work center 9 by
smoothing the production at 8. This is zpparent not only f{rom the above
reésoning, but a2lso from computing the derivative of the variance of produc~
tion at work center 9 taken with respect to the smoothing parameters for
work center-8 [equation (24)]. 1In Table § we have increased the planned
lead time at work center 8 from cne to two time periods; this results in
a2 smoother arrivel stream to work center 9 thét sllows us to0 reduce its

plenned lead time from five to four time periods with no increase in its
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production variability. Hence, we can begin to see how the control at one
work center impacts the work flow at another work center.

This example, as described by the four cases, illustrates a type of
analysis that one would do with the model. The analvsis, as presented,
allows one to explore‘for a given shop configuration the tradeoff between
short flow times and low work-in-process inventory versus smooth production
and efficient allocation of production resources, As we have seen, attempting
to smooth production results in longer queues, énd longer and moré variable
flow times. Similarly, attempts to prume work-in-process or to speed up
the work flow will lead to more wvariable production requirements, if we
assume all else is uvnchanged, We have not prescribed a formal mechanism
for doing this exploration, although we have found reference to the deriva-
tive matrices {es /Eak} to be most helpful in guiding the search. .

The model framework should also be helpful in doing other types
of analyses. In particular, we could examine a variety of "what if"
questions: What if we had more/less capacity at various work centers? What
if the job mix or flow structure changes? What if we had better control
over ;he input streem to the sheop sc that the arrivels were less uncertain?
What if through improved scheduling we could reduce the variebility in the
work flows between work centers? Indeed, we expect that the nodel can be
a valuable glanning tool for designing and assessing control strategies under

a variety of envirommental conditiens,
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TABLE 2: CASE A

planned expected standard expected expected
lead time production deviation queue ~backlog
n E(P) o(P) E(Q) E@QM
Work Center A .

1 1 5.01 2,02 5,01 0

2 1 .75 .32 .75 0

3 1 .69 .19 ' .69 . 0

4 1 .36 .17 .36 0

5 1 - 1.37 .39 1.37 0

6 1 1.65 .54 1.65 0

7 1 .14 .04 14 0

8 1 .55 .17 .55 -0

9 1 1.89 .61 1.89 0

10 1 2.19 ) .74 2.19 0
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TABLE 3: CASE B

planned expected standard expected expected
lead time production deviation queue " backlog
n__ - E(P) o(P) E(Q) E(QY)
Work Center
1 4 5.01 .80 20.04 .71
2 1 .75 .16 .75 0
3 1 .69 .15 .69 0
4 1 .36 .12 .36 0
5 1 1.37 .32 1.37 0
6 2 1.65 24 3.31 .05
7 1 .14 .03 14 0
8 1 .55 .13 .55 0
9 3 1.89 .29 5.68 13
10 3 2.19 .31 6.58 .10
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TABLE 4: CASE C

planned expected " standard expected expected
lead time prodnction deviation queue backlog
n E(P) o (P) E(Q) E(QM)
Work Center
1 8 5.01 .55 40.07 ©1.05
2 1 .75 : .13 .75 0
3 1 .69 .14 .69 0
4 1 .36 .11 .36 0
5 2 1,37 .20 2,74 .06
6 3 1.65 .18 - 4.97 .07
7 1 .14 ' .02 .14 0 —
8 1 .55 .11 .55 0
9 ) 1.89 .22 ©.45 . .18

10 5 2.19 .23 10.96 .13
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TABLE 5: CASE D

planned expected standard expected l‘expected
lead time ~ production deviation queue backlog
n E(P) : o(P) EQ) E(O™)
Work Center
1 8 5.01 .55 40,07 1.05
2 1 .75 .15 .75 0
3 1 .69 © W14 .69 0
4 1 .36 .11 .36 0
5 2 1.37 .20 2.74 .06
6 3 1.65 .18 4.97 .07
7 1 .14 .02 .14 0
8 2 .55 .08 1.10 .02
9 4 1.89 .22 7.56 .12
10 5 2.19 .23 10.96 .13
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4, Discussion

In this section we review and discuss the key assumptions of the
proposed model. We also indicate in what directions we may extend the
basic model, as well as suggest issues in need of further invesfigation.

The most controversial assumption is likely to be the control rule
given by (1). 1In particular, we assume that there are no constraints on
setting the production levels in each time period. We suggest ‘that one
set the control parameters (i.e. planned lead times) so that thé produc-
tion requirements rarely.exceed the normal range of production capacity.
Yet we do not explicitly constrain the production requirements to
do so, but argue that when the requirements exceed the normal capacity,
we can still satisfy the requirements (a2t a cost) by redeploying resources.
In some situations one might not be able to do this; in these iﬁstances,
we might have a rigid constraint so that we need restate the control rule

(1) as

= 1 ; ) }
Pit mln{QiQit? Pit‘

where Pi: is the production cezpacity at work center i in time period t.
Although we have not tested this control rule in the context of a network
of queues, Cruickshanks et al, (19¢54) have studied an analogous rule in 2
simpler setting consisting of one production stage., They find that the
study of the unconstrainted contrecl rule [i.e. (1)] provides a reascratle
prediction of the behavior of the constrzined control rule., We neec :c
investigzte, presumably by a simulation study, whether this observatice
holds in the mcre complex setting of a ﬂetwork of queues.,

A second critical assumption is the Markov assumption made in (3).
We éssume that it is po;sible tc model the work flows between work centers

in a Markov fazshion sc that the history of a work flow is not necessary.



31

In general it is hard to imagine how this assumption might be overcome
without resorting to a much more complex model structure, However, one
might relax the assumption that all jobs are of the same type and are
modelable by a single 2 matrix., If there are a few distinct types of
jobs.with different %outings and production requirements, then one
might identify a work flow matrix (gk) for each job type k so that its
work flow could be modeled separately. Each work center would ‘have a
queue of work for each part type,and we would need a control ruie that
set the production level as a function of the multiple queues; for instance,
we might restate (1) as

P, =%y Q

ikt ikt

and

Pie = E Pike

where Q*“t is the queue of work for jobs of tvpe k at work center i,
-

G,

is production
ik P ¢

is the corresponding smoothing parameter, and Pikt
of jobs of type k at work center i, This extension would mecre fai;hfully
model the work flon when it is possible to identify distinct types of
jobs.

We have developed the model in the context of & job shep in which
work "pushes" its way through the system., Each work center has a queue
of work from which it sets its production level; the werk center then
pushes its queue of work to the queues of downstream wcrk centers, as
specified by the work flow matrix 2. In contrast to this we could conceive

of a shop in which work "pulls" its way through the shcp. After each

work center is an inventory of work that has completed processing at
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that work center; production is triggered by demand on this inventory, which
creates a backlog to -be replenished., 1In other words, production at the
work center acts to £ill the backlog by replenishing the inventory, Further-
more, producticn at';he work center will pull inputs from the inventories
of upstream werk centers, as specified by a work flow matrix., Such a
pull system is a mirror image of the job shop (push system) that we have
used to develop ﬁhe model. We can apply the model directly to this system
by equating the queue (push) to the backlog (pull), and by defiging the
® matrix to reflect how inputs are pulled into each work center,

Finally, the model may also be valuable for supporting the application
of a Materials Requirements Planning (MRP) system [Orlicky (1975)] in a
multi-stage or multi-plant production environment. The fundamental
.consfruct of an MRP svstem is the notion of a planned lead time. Associated
with each production activity or stage is a lead time that forms the baéis
fer producticen pleaning and materiélprocurement. These lead times are
the primary control mechanisms for deciding when to order raw meterials,
when to initiate part production aznd when to schedule subassemblies and
final assextlies in order to satisfy a given set of demand requirements,
Yet in the MRP literature I know of no theory on how to set these lead
times. What cne often hears is that the planned lead times should be set
based on experience and observation; for instance, if we observe that the
actual lead tizes for a production activity often exceed the planned
lead time, then we need increase the planned lead time, But it is not
at all clear now much to increase the planned lead time or even if this
is the proper cesponse. Indeed, one can argue that planned lead times
bevond & point are just self—fulfilliné prophecies; if I plen on an
activity to teke, say, ten weeks, then T will'load the activity with

work ten weexs before it is due zné not surprisingly, it will take ten
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weeks (or more if something goes wrong) before the work passes through the
activity. What one needs is a normative model that could help to assess
the proper lead times for a given production system. It would seem that
the model proposed in this paper could be directly extended to ghe MRP

environment and would be of value in setting these planned lead times.
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APPENDIX

We show here that the power series in (10) and in (11) will converge
if and only if the spectral radius (gaximal absolute eigen valué) of 2
is less than omne,

In order for the power series in (10) to converge we need

(Al) ( )5 —>

L
]
[[{e)
+
n
o
no

as s goes to infinity where Q is the matrix of zeroes. But this is equi-
valent to requiring that the spectral radius of (I - D+ D ¢) be less thar.n
one (Noble 1969). We will show that this will be true if and only if the
spectfal radius of 2 is less than one. To do this we will use results from
the Frobenius theory of positive matrices (e.g. Kerlin and Taylor, 1975;
pp. 542-551).

Let o(é) denote the spectral radiuvs of matrix A. Assume that p(g) < 1.
Suppese that ©(I - D + D i) > 1 and let ~p and x, be the maximal absolute

eigen value and corresponding eigen vectoer for I - D+ D ¢, That is
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But this can e rewritten as

E X o= X 4+ (X, - 1) Q- X e

_ =5

Thus if kc > 1 we neve that
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. -1 s . . . .
since D is a positive matrix. But this contradicts the assumption that

p(®) < 1. Hence, if p(2) < 1 we must have

o(I-D+D% <1 .

Assume that p(2) > 1 and let i, and X be the maximal absolute eigen

value and corresponding eigen vector for $. Consider

(

[ L]

-D+Dx, = (I-Dx, +2Dx

n
»
(=]
+
)
>
o
1
-t
-t
(=]
»

Thus if Ao > 1 we have that
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since D is a positive matrix. But this implies that p(1 - D+ D &) > 1,

Hence, if 0(€) > 1, then we must have that

o(1 -

no
+
o
Il‘\(;)'
v
-

This completes the proof showing that (10) converges iff p(§&) <.

We now argue that (11) converges iff p($) < 1. First, if (Al) is nce
true, then it is easy to see that the series in (11) cannot converge. Second,
if (Al) is true, then we can show that the series is absolutely convergent
(2nd thus convergent) by using (10) and (Al) to bound the corresponding series

of azbsolute values term by term,
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