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ABSTRACT

This paper proposes nonparametric regression tests of constraints involving

first and second derivatives of any model E(ylX)=F(X), where the true function

F is ulown. he tests are based on a statistical characterization of the

departures from the constraint. The test statistics are averages computed

using data 'n y and X and knowledge of the marginal distribution of X, and

their asymptotic distribution is derived. The applicability of the results is

illustrated using the economic restrictions of homogeneity and symmetry, and

the statistical restrictions of additivity and linearity of F in X. Extensions

as well as the use of estimates for the marginal density of X are discussed.



*Thomas M. Stoker is Associate Professor of Applied Economics, Sloan School of

Management, Massachusetts Institute of Technology, Cambridge, Massachusetts,

02139. This research was funded by National Science Foundation Grant No. SES-

8410030. The author wishes to thank J. Powell for ongoing discussions, and A.

R. Gallant, J. Hausmann, Z. Griliches, D. Jorgenson, C. Manski, W. Newey, J.

Stock and M. Watson for helpful comments on this and related work.

III



TESTS OF DERIVATIVE CONSTRAINTS

1. Introduction

Derivative constraints play an important role in the application of

econometric methods. The basic modeling restrictions implied by economic

theory can often be written in the form of derivative constraints, as well as

standard restrictions used to simplify econometric models. For instance,

standard economic theory implies that costs are homogeneous in input prices

and that demand functions are zero-degree homogeneous in prices and income,

which are restrictions that can be written as constraints on the derivatives

of cost and demand functions respectively. The symmetry restrictions inherent

to optimization provide other examples - for instance, cost minimization

implies equality constraints on the derivatives of input quantities with

respect to input prices. Examples of derivative constraints not implied by

basic economic theory but frequently used to simplify econometric models

include constant returns-to-scale restrictions on production functions and

exclusion restrictions on large demand or production systems. Such

restrictions are valuable for increasing precision in estimation or

facilitating applications of econometric odels.l

Given the importance of derivative constraints, tests used to judge their

statistical validity are of great interest in assessing model specification.

Rejection of a constraint representing a basic implication of economic theory

suggests either a revision of model specification, or reconsideration of the

applicability of the theory to the specific empirical problem. The use of

restrictions to simplify empirical models is only ustified when the

restrictions are not in conflict with the data evidence.

The major approach for testing derivative constraints in current practice

is the parametric approach, whereby a specific functional form of behavioral
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equations is postulated, and the constraints on behavioral derivatives are

related to restrictions on the parameters to be estimated. Tests of the

derivative constraints coincide with standard hypothesis tests of the

restrictions on the true parameter values. The limits of this approach concern

the initially chosen parametric form, which must be held as a maintained

assumption which the restrictions are tested against. The reaction to this

problem has been the development of very general "flexible" functional forms,

as pioneered by Diewert(1971,1973a), Christensen, Jorgenson and Lau(1971,1973)

and Sargan(1971) and developed by many others, as well as sophisticated

statistical techniques for implementing them in applications. Recent proposals

by Gallant(1981,1982), Barnett and Jonas(1983), Barnett(1984) and Diewert and

Wales(1984) display such flexible approximating properties that they often can

be considered as nonparametric solutions.

Also related to tests of derivative constraints is the nonparametric

approach to verifying the restrictions of optimizing behavior of

Afriat(1967,1972a,1972b,1973), Diewert(1973b) and Varian(1982,1983), among

others, which is based on direct verification of the inequality constraints

implied by consistency of choice. This approach involves nonlinear programming

techniques to check whether any consistent behavioral model could be found in

accordance with observed data. When the data is in conflict with the basic

inequality constraints, statistical variants of this technique can be used to

produce measures of the severity of violation of the basic inequalities, as in

Varian(1984b). A related approach to testing based on residual variance

comparison is proposed by Epstein and Yatchew(1984), who also give a good

survey of this literature.

The purpose of this paper is to propose a new nonparametric approach to

testing derivative constraints, which utilizes information on the distribution

of the independent variables in a behavioral equation. More formally, suppose
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that a behavioral model explaining a dependent variable y in terms of a vector

of continuous independent variables X implies that E(ylX)=F(X), where the form

of F is unknown. We propose tests of constraints of the form

2
aF(X) ,F (X) = C(X)

(H) O (X)F(X) Gi(X) ax l + Hij(X) aXC ax(
0i aXjaX

where G (X), G(X) and Hij(X), i,j=l,...,M and C(X) are known, prespecified

functions of X. The tests utilize data on y and X, and require knowledge (or

empirical estimates) of the density p(X) of the independent variables.

The are several attractive features of the proposed tests. First, the

tests are based on a statistical characterization of the departures from the

derivative constraint exhibited in the data. Consequently. when a constraint

is rejected, the source of rejection may be indicated by the procedure.

Second, after the density p(X) is characterized, the test statistics are based

solely on sample averages and covariances, and therefore may be very simple to

implement computationally. Third, for certain specific forms of the density

p(X), in particular multivariate normal, the test statistics are based on

standard statistics such OLS coefficients of y regressed on X, which leads to

alternative (nonparametric) interpretations of the standard statistics.

We begin by presenting the notation and basic assumptions in Section 2,

together with several examples of derivative constraints of the form (H).

Section 3 introduces the testing technique for the special case of a linear

constraint on first derivatives, and explains the conceptual intuition of the

procedure. Tests of constraints of the form (H) are presented in Section 4.

Extensions of the procedure to more general constraints are discussed in

Section 5. Issues and results on using statistical estimates of p(X) are

discussed in Section 6, and some concluding remarks are given in Section 7.
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2. Notation, Examples and Basic Assumptions

We consider the situation where data is observed on a dependent variable

Yk and an M-vector of independent variables Xk=(Xlk.... XMk)', for k=l,...,K.

(YkXk), k=l,....K represent random drawings from a distribution T which is

absolutely continuous with respect to a o-finite measure v, with Radon-Nikodym

density P(y,X)=aT/av. P(y,X) factors as P(y,X)=q(ylX)p(X), where p(X) is the

density of the marginal distribution of X. The conditional density q(ylX)

represents the true behavioral econometric model, for which we assume the

conditional expectation

(2.1) E(ylX) F(X)

exists for all X.

As indicated above, we propose tests of constraints of the form (H),

which are nonparametric to the extent that the functional form of F(X) is not

prespecified or known. The characterizing feature of (H) is that it is

"intrinsically" linear in F(X) and its derivatives, as the coefficient

functions are known. The principles upon which the tests are based are

relatively straightforward, so for expositional clarity we introduce the basic

technique and conceptual intuition of the tests for the special case of a

linear derivative constraint of the form

(H ) c Ci F(X) aXI 0
i

where c o and c, =,...,M are known constants. Tests of (H ) are covered in

Section 3, and tests of (H) are covered in Section 4.

Before proceeding to specific examples, we first consider the

interpretation of the derivatives aF/aXi relative to the derivatives of a more
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primitive econometric model. In particular, suppose that the conditional

density q(ylX) arises from a behavioral equation of the form

(2.2) y = f(X,j)

where f is differentiable n X, and £ Is assumed to stochastically represent

individual heterogeneity not accounted for by X, with distributed with

density q(EJX). It is easy to see that if is an additive disturbance (with

mean 0) in (2.2), or if is distributed independently of X, then 8F(X)/aXi is

the conditional mean of the behavioral derivatives af(X,E)/aXi, given the

value of X. Clearly, if represents an additive disturbance, as in y=f(X)+E,

then f(X)=F(X) and aF(X)/aXi=af(X,E)/aX i for all X. More generally, if X and £

are variation free and derivatives can be passed under expectations, we have

that

(2.3) F(X) = E af(X,E) x+ Cov n q(Ejx)x
axi I axi a

(2.3) implies that F(X)/8X1 is the conditional mean of the derivative

af(X,)/aXi if and only if the covariance term vanishes, which is assured if 

and X are independent (since alnq/aXi=O in this case). Moreover, under either

sufficient condition it is easy to verify that a2F/aX OXj is the conditional

mean of 2f/aXaX i,j=l,....M. Consequently, under such sufficient

conditions, (H) is implied by the same constraint with f replacing F, and

tests of (H) coincide with tests of the same constraint on the derivatives of

the primitive behavioral model f.2

We begin by presenting two examples of derivative constraints associated

with economic properties of the function F(X), namely homogeneity (of some

degree) and symmetry. For instance, demand functions derived from utility

maximization are homogeneous of degree zero in prices and income, and cost
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functions are homogeneous of degree one in input prices. In the analysis of

production, it is often of interest to test whether production exhibits

constant returns-to-scale, or homogeneity of degree one of output quantity

with respect to input levels. Symmetry restrictions exist for virtually any

model derived from optimizing behavior, such as models of input demand derived

from cost minimization. These examples are included in the framework as

Example 1 - Homogeneity Restrictions: For concreteness, suppose that F(X)

represents the logarithm of production and X represents the vector of log-

input values; input levels are x = eX and quantity produced is (x) = eF(X).

4(x) is homogeneous of degree c0 in x if (xx)=YC°4(x) for any positive scalar

x, which is valid if and only if the log-form Euler equation is valid;

(2.4) aF(X) = C
ax I 

th
Here aF/aX i is the ith output elasticity, and (2.4) requires the output

elasticities to add to cO. For constant returns-to-scale we have c = 1. (2.4)

is clearly in form (H ) where c =l, i=1,...,M, and we utilize (2.4) to

illustrate the results of Section 3.1. An alternative form of homogeneity

constraints can be obtained from the Euler equation in level form.

Specifically, suppose that F(X) represents the quantity produced and X

represents the vector of variable input levels. F(X) is homogeneous of degree

C0 if and only if the following Euler equation is valid

(2.5) I X i aF(X) = c0F(X)I ax i

It should be noted that (2.4) and (2.5) involve different definitions of y and

X relative to the homogeneity restriction, and will imply different tests

below.

6

III



Example 2 - Symmetry: Suppose for concreteness that F (X), i=l ... M-l,

represent the demands for M-1 inputs, where Xi, 1=l,...,M-1 are the prices of

the inputs and XM is the output of the firm. Then cost minimization implies

that

(2.6) F - a F i(X) = 0M-1
ax. ax.

This set of restrictions involves several behavioral equations, which are

addressed in Section 5.

It should be noted that (H) does not include all symmetry restrictions of

interest; for example the traditional form of the Slutsky restriction on

demand functions includes products of quantities and income derivatives of

other quantities, which are nonlinear terms in unknown functions.

The following two examples illustrate derivative constraints associated

with the specific functional form structure of F(X).

Example 3: "X, has no effect on y": X does not appear as an argument of F(X)i
if and only if

(2.7) aF(X) = O
axI

We will utilize (2.7) to specifically illustrate the results of Section 3.2.

Example 4 - Additivity and Linearity: F(X) is additive in Xi, 1=l,....M, if

F(X)-EiFI(XI), which is equivalent to

(2.8) 8F(X) = 0 # J; i,j=l ,...,M8X OX

Moreover F(X) is linear; F(X)= 0 + X'l ; if and only if (2.8) is valid for

all ,J=l,...,M. Each of the equality constraints in (2.8) is in the form (H);

we discuss how to test then simultaneously in Section 5.
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The formal assumptions that we utilize are as follows. We assume that X

is continuously distributed, having carrier set of the following form

Assumption 1: is a v-measurable, closed, convex subset of RM with nonempty

interior.

We will discuss the incorporation of discrete variables into the basic model

in Section 6. We make the following assumptions on the conditional expectation

(2.1) and on the coefficient functions of (H).

Assumption 2: F(X) is twice continuously differentiable in the components of X

for all XEO, where differs from by at most a set of v-measure 0.

Assumption 3: Gi(X) is continuously differentiable, and Hij(X) is twice

continuously differentiable for all XQ, i,J=1,...,M.

We make the following assumption on the marginal density p(X) of X.

Assumption 4: p(X) is twice continuously differentiable in the components of X

for all XEC.

Assumption 5: For XEdn, where d is the boundary of fC, we have p(X)=O.

As further notation, we set

Ai(x) = - aln p(X)4i ( X) = - XI

a2ln (X)
aij{(X) = x xs~~j ~ alax

i=1,....M

i,j=l,... M

and (X)-(A1(X).....i(X))', so that 1(X) is a particular type of score vector

of p.3 We will often illustrate the results for p(X) in multivariate normal

8
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form, as in

Example 5 - Normal Distribution: Suppose that X is distributed as a
0

multivariate normal variable with mean X and covariance matrix Then

(2.10) A(X = (X 0)

and eij(X) is the i,J element of X1

The basic posture of the paper is that the functions Ai(X) and eij(X) are

either known (by assumption) or can be estimated, so that they can be

evaluated for each Xk, k=l, ...... ,K. For the main development of Sections 3 and

4, we assume that the functions are known, and denote their values at each Xk

data value as A ik=A(Xk) and ijk -(X k) for and kl,...,K. le

discuss in Section 6 the mpl.iratinns of utilizing estimated Ai and ei

functions.

We also include several regularity assumptions in Appendix 1, which, for

example, assure the existence of expectations of several functions of y and X,

including F(X) and its first and second derivatives. Appendix 2 contains

proofs of theorems that are not presented in the exposition.

3. Tests of Linear First Derivative Constraints

In this section we derive annarametric tests of derivative constraints

of the form (H ). We first define tests based on the average departure from

the constraint (H ), and then define tests based on the coefficients of

departures regressed on functions of X.
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3.1 Tests Based on Average Departures

We first consider the implications of directly averaging the derivatives

. *
in the constraint (H ). To begin, define the departure (X) from the

constraint (H ) as

(3.1) (X) EC aF(X) 
i ax. co

I I

and the mean departure a as

a5 E(A (X)) = I ciE 1 'x
i i

- CO ' Ci 1li- Co
i

where 5i i=,...,M are the mean derivatives

(3.3) i E ax) i=l,...,M

* * *

When (H ) is true, we clearly must have a = 0, and so a test of (H ) can be

derived from a nonparametric estimate of a . A natural estimator can be

constructed from the estimates of li, i=l,...,M, that are suggested by

Theorem 1: Under Assumptions 1-5 and A1-A2, we have that

(3.4) li = ex ] = E(F(X)Ai(x)) = Cov(F(X)k i(X))
I

i-I,.. ,M

Proof: We begin by utilizing Fubini's Theorem (c.f. Billingsley(1979),

Fleming(1977), among others) to write the expectation of the derivative aF/aX 1

as

10
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(3.5) F ) p( ) dv 8F(X) p(X)dvl(Xl)dvo(Xo
0 1 lw(Xo )

where X1 represents the first component of X and X represents the other

components of X. The set w(Xo ) is either a finite interval [a,b] (where a, b

depend on X), or an infinite interval of the form [a,-), (-e,b] or (-.,).

Supposing first that w(Xo)=[a,b], integrate the inside integral of (3.5) by

parts (c.f. Billingsley(1979)) as in

(3.6) 8F(X) p(X)dv(X 1 = (X) p= - (X ) d X)

W(Xo ) w(Xo )

+ F(b,Xo)p(b,Xo ) - F(a,Xo)p(a,Xo)

The latter two terms represent Fp evaluated at boundary points, so that they

vanish by Assumption 5. Moreover, the same is true if w(Xo ) is an infinite

lnte,. i 4 S3SiiptlOa A2 applied to iits of the boundary terms.

Consequently, in all cases the RHS of (3.6) simplifies as

- Fp(X) ap(X d(Xl) = I F(X)[ an p(X)] 
(3.7) -JF(X) ax1 - X 1 p(X)dval(X 1)

W(Xo ) W(Xo )

= E(F(X)Al(X))

= Cov(F(X),A1(X))

where the latter equality holds because the mean of A1(X) is O. The proof is

completed by inserting (3.7) into (3.5), and repeating the same development

for derivatives of F with respect to X2, ... , X. QED

If we define the function dli(y,X) yA(X), then Theorem 1 implies that

E(dli(y,X))-lI5. A natural estimator of 51i is the sample average of the

function d; or
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E ZYkAlk Edli k
(3.8) d = ik k

where dlik=d li(Yk'Xk) i=l,...,M, k=l,...,K. Consequently, a natural estimator

* *
of a is the sample average of the function a (y,X)=Ecidli(y,X)-cO or

*

. * Ea k

(3.9) a K

* *

where ak=a (YkXk)=EICidlikk-o k=1 ...,K.

To present the properties of these estimators, define the vectors

c(c I ... CM) ' 81(11 .... im), d1(YX)=(d11(Y,X),....d (y,X))', and

dlk=dl(YkXk), k=l,...,K; denote the covariance matrix of dl(.) as d' and the

sample covariance matrix of {dlk} as Sd. The properties of a and d are

summarized in

Theorem 2: Given Assumptions 1-5, and A1-A3, we have that lim d 1 a.s.,

and that the limiting distribution of 4-K(d 1 - 1) is normal with mean 0 and

variance-covariance matrix IEd. d is consistently estimated by Sd . Moreover,

we have that lim a = a a.s., the limiting distribution of
^Ka* * ' *

i(a - a ) is normal with mean 0 and variance =c c, and Ia is consistently
a d a

estimated by Sa=c'SdC.

Proof: Because the data {Yk'k) is a random sample, the consistency of d1

follows from Theorem and the Strong Law of Large Numbers (c.f. Rao(1973),

Section 2c.3, SLLN 2) applied to each component of d1. The consistency of Sd

follows similarly from Assumption A3. The asymptotic normality of d follows

directly from the multivariate Central Limit Theorem (c.f. Rao(1973), Section

2c.5). Finally, the properties of a follow immediately from the properties of

d1. QED

The large sample distribution of Fi(a*-a)/S* is univariate normal with mean 0
a

and variance 1, so that tests of a = 0 can be performed using standard

12
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methods.

The underlying mathematical logic of the above estimator is

straightforward. The basic idea is to use the average of the derivatives to

* *

test the constraint (H ), as one could do by estimating a from performing the

regression

(3.10) v (Xk) = + uk

The difficulty with performing this regression is that the individual

derivatives F(Xk)/aXi within a (Xk) are not directly observed. This problem

is solved here by applying integration-by-parts, by which aF(Xk)/aXi is

replaced by dlk=ykQik for the purpose of estimating the average derivative. d1

and a are just the appropriate sample estimators using dk.

There is also a fairly straightforward economic logic to the above

estimators, .L~cil1 iJuo.ves reinterpreting the behavioral response represented

by (H ) as a sample reconfiguration. To see this, consider (2.4) of Example 1,

where F represents a log-production function, X represents log-inputs and (H )

represents the restriction of constant returns-to-scale (c=L, c=l). To test

(H ), one usually considers the experiment of increasing all inputs

proportionately by a factor d, or by adding de to X. For a firm at initial

log-input level X, the output response is [Zi(aF/axi)ld, which is

(statistically) compared to de.

Here we consider the experiment of increasing all firm log-input evels

by LdS, and compare the average log-output response, namely EEi(aF/aXi)]d .

to de. The test statistic derived above arises from considering the

reconfiguration of the population of firms from this experiment. Namely, after

expansion of inputs, all firms at initial log-input level X now have log-input

level X+&dS, or that the density of firms (after expansion) at level X+Ld is

p(X). Consequently, the experiment can be equivalently thought of as an

13
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adjustment of the density of firms at log-input level X by [-Ei(ap/aXi)]'da.

The overall average log-output response is given by [F(X)[-Ei(ap/aXi)]dv]de =

E[F(X)(Eiii(X))]dB, which is compared to d. a just estimates this expression

of the overall output response. The equivalence between behavioral response

and population reconfiguration formulations would break down if there were a

significant number of firms on the boundary of log-input values; we eliminate

this by Assumption 5, the boundary condition.

For illustration of the specific form of the estimator a , consider

Example 6: Consider the test of (2.4) of Example 1, where X is multivariate

normally distributed, as in Example 5. From (2.10), we can write d as

(3.11) d [k(Xk- X)Yk]
1 X1 K

so that d is asymptotically equivalent to the OLS slope coefficients of y
1 ^* k

regressed on Xk. ' a =L'd - is asymptotically equivalent to the sum of the OLS

coefficients less 1. Notice that when y represents log-output and X the vector

of log-inputs, d is asymptotically equivalent to the OLS coefficients from a

"Cobb-Douglas" regression of y on X, although no specific functional form

assumption has been applied to F(X).

3.2 Tests Based on Departure Regressions

The test proposed above is based on the fairly weak implication of (H )

* *

that E(A (X))=O, or that (H ) must be valid on average. In this section, we

* *

derive additional statistics which test whether (X)=O, or that (H ) is valid

for all X values. In particular, we consider statistics based on

generalizations of the regression (3.10) of the following form

(3.12) (Xk= + D(Xk)' + uk

**where D(Xs a general vector functon of X, and a and
where D(X)=(D1(X)...DQ(X))' is a general Q vector function of X, and a and
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B refer to the large sample limits of the OLS constant term and regression

coefficients, respectively. We rewrite (3.12) as

(3.13) a (Xk) = + (D(Xk)-JD) + Uk

O * *
where b E(D(X)), so that the true intercept is a of (3.2). If (H ) is valid,

we expect that a and 3 will equal O. We first indicate how p can be

consistently estimated with the data on k' Ak and D(Xk). We then give a

concrete underpinning to this regression, and indicate the advantages of

particular choices of the regressors D(X), namely D(X)=X.

The problem as before, is that the dependent variable of the regressions

(3.12,13) is not directly observed, so that OLS estimates of the coefficients

of those equations could not be computed directly. However, also as before, we

can solve this problem by appealing to integration-by-parts, as in Theorem 3,

thich !s shown i Arpedlix 2.

Theorem 3: Under Assumptions 1-5 and A1-A2, if DX) is a continuously

differentiable function of X, we have

(3.14) Cov(X FDq(X)) = E(F(X)aiq (y,X; )) = Cov(F(X),a2iq(y,X;PD))

i=,...M; q=l,...,Q

where

(3.15) 0 _ 1)
(3.15) a2iq(YX;PD) Ai(X)[Dq(X)-pD aX

We can now construct an estimator of g from via the natural estimators

of the covariances between aF/aX. and D(X), i=1,...M, that are suggested by
1

Theorem 3. In particular, define d2iq(y,X;D )= Y521q(yX;pD), q=l,...,Q and

d2i(YX;PD=(d2 ,.. ,d2iQ)', i=1,..,M, and denote the covariance matrix of

D(X) as D. Assemble the d2i component terms as
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(3.16) b (y,X;pD'D) =D cd2i(Y,X;UD) - Co(D(X)-pD)

i

* * *

Clearly E(b ) = 8 , and so we define an estimator of 8 to be the sample

average of the function b : set bk=b(YkXk;D,SD), k=l,... ,K, where

D=ED(Xk)/K is the sample average of (D(Xk)) and SD is the sample variance-

*t *

covariance matrix of (D(Xk)), and define the estimator b of B as

.* Eb k
(3.17) b K

* ^* ^*

For the purpose of testing (H ), both a and b may be utilized

simultaneously. For this, define the covariance matrix of (a (.),b (.)')' as

Xab and denote the sample covariance matrix of (akbk')' , k=l,...,K as Sab.
* * -1 * 

Further define the covariance matrix of (a (.),(b (.) - a D(X)')' as Eab(D )

* * -1'*
and denote the sample covariance matrix of (ak,(bk - SD a D(Xk)')', k=l,...,K

~* ~~~~^* ^*
as Sab(D) . The properties of (a ,b ')' can now be stated as

Theorem 4: Under Assumptions 1-5 and A1-A3, we have that
^' ^* * *

11m (a ,b ')' = (a , ')' a.s. The limiting distribution of

K[(a ,b ')' - (a , ')'] is normal with mean 0 and variance-covariance matrix

Iab(D)' Iab(D) is consistently estimated by Sab(D).

Asymptotic tests of (H ) using (a ,b ')' are possible using standard methods.

In particular, a natural test statistic for (H ) is given via

16
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Corollary 4: Under the Assumptions of Theorem 4, under the null hypothesis

(H ), the limiting distribution of the statistic

(3.18) H = K (a ,b ') Sab(D ) [

2 * *
is X (1+Q). Moreover, Sab(D ) can be replaced by Sab.

The following example illustrates these results, in a setting where

* $
a =E(A (X))=O.

Example 7: Consider the test of (2.7) of Example 3, where X is a univariate
2 2

normal variable with mean 0 and variance o, and the true function s F(X)=X2.

We have a (X)=aF/aX=2X. and a =E(a (X))=E(aF/aX)=O, which in view of Example

6, coincides with the fact that the large sample OLS coefficient of y o X ;
~* ~~~~~^*

O. For D(X)=X, from (3.13) we have that p =2, which is estimated by b . To

verif. ;,l valiity o (3.i4), ote that (X)=o X, 8 2 X and
-2 4 2 OX 2X

F(X)2a= 0 X -X . From the properties of the normal distribution,

(3.19) E(F(X)Z2) = E(X ) - E(X ) = 3a X = 22

* -2 *
so that b t x (Ya2), with E(b )=2.

Theorems 3 and 4 are presented for a general differentiable function D(X)

to facilitate the study of a wide range of regression equations of the form

(3.12,13). The choice of a particular D(X) depends on the types of departures

* 8
from the hypothesis (H) that one wants to study, because p is interpreted as

the regression coefficients of the departures (X) on D(X). For example, to

study whether a production function obeys constant returns to scale, setting

D(X)-X allows one to study whether returns-to-scale vary with log-input

levels. However, from this point of view, the restriction that D(X) be

differentiable is costly, as one might want to set components of D(X) equal to

indicator functions (dummy variables), to see how (H ) is violated. For
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example, one is not allowed to set D(X) equal to a dummy variable indicating

large versus small firms, because in that case D(X) is not differentiable.

This difficulty with utilizing discrete variables restricts the practical

applicability of the regression (3.12,13), but does not affect the ability of

p to detect general departures from (H ). As stated briefly at the beginning

of this section, the statistics of Theorem 4 and Corollary 4 test whether (H)

is valid for differing X values, or o (X)=O for all X. To make this notion

* *
precise, the relationship between the value of and the structure of (X)

is characterized along the lines of Stoker(1982,1985), as follows.

The large sample values of regression coefficients such as p of

(3.12,13) can be characterized in terms of the changes in the mean of the

departures (X) implied by a reconfiguration of the population using weights

in the exponential family form, following Stoker(1982,1985). In particular,

suppose that the population density is reconfigured as pD(XIn) by setting a

nonzero value of the Q vector n=(Tl, ... ,nQ)' in

(3.20) PD(Xn) = p(X)cD(n)exp[T'.D(X)]

where cD(n)=(fp(X)exp[r'D(X)]dv) 1 is a normalizing constant. Clearly we have

that p(X)=PD(XIO), and we consider only values in a neighborhood ncRQ of

1=O. We also note that PD(Xn) can be equivalently parameterized by the mean

as dXIIX II 0
~D=E[D(X)I|]HD(T) as PD(XPD)=PD(XHD (D)), where D=HD(O). Now consider the

mean departure from (H ) under the above population reconfiguration

(3.21) D() E(a (X) In) = CI$DI(() - c o

i

-1
where *Di()=E(eF/Xit[T), and define *D(JD)ED(HD {~D) ) as the Implied

18
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relation between the mean departure and D.

As indicated in Stoker(1982,1985), the derivatives of Di' i=I,...,M,,

D' HD and D can be expressed in terms of second-order moments of the 8F/aX,

D(X) distribution. In particular, we have the following theorem, which

characterizes the large sample regression coefficients .

Theorem 5 (Stoker(1982,1985)): Under Assumptions 1-5, A1-A4, we have that

a Di(O)/Oa=Cov(aF/aXi,D(X)), i=1,...,M, a8D(O)/8n=Cov(a (X),D(X)),

aHD(o)/an=zD and

(3.22) p = =

*
If (H ) is valid for all XEn, we must have *(pD)=O for all PD in a

0 * *
neighborhood of a,. Therefore, the validity of (H ) implies that B -0.

However, is there any sense in which p =0 implies that a (X)=O for all X? The

answer is given by the Lehmann-Scheffe Theorem on the completeness of the

exponential family;6

Theorem 6 (Lehmann and Scheffe(1950,1955)): Under Assumptions 1-5 and A1-A4,

if Q > M and aD/aX is of full rank M for all X, then D (n)=O for all nn

timplies that a (X)=O a.s. for XEO.

Given that the variance-covariance matri of D(X) is nonsingular for all en.,

D(P D)=O for all DeH(n) also implies that a (X)=O a.s. The rank condition is

obeyed if M components of D(X) can be Inverted in X for all XQ. In

particular, the condition is guaranteed if QM and D(X)=X. In this case b (.)

of (3.16) can be written as
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(3.23) b (y,X;pX Z.) -X[ i Ciy[Ai(X)(X-X) - ei] - c

0
where pX and X are the mean and variance-covariance matrix of X, and e is

the unit vector with i component 1.

In brief, Theorem 6 says that for certain choices of D(X), e.g. D(X)=X,

* *
the aggregate functions D and D equalling 0 imply that (H ) is valid for all

XEO, where f differs from by at most a set of measure 0. Theorems 3, 4 and 5

indicate how the first derivatives of these functions can be consistently

* *

estimated with data on y, X and the score vector (X). Clearly, a =0 and B =0

are only necessary for *D or D to vanish, but if a =0 and B =0, then

S D
departures from (H ) (nonzero values of (X)) display only second-order

aggregate effects.

The practical suggestion of Theorem 6 is that the regressor function D(X)

should include as M components either X or an invertible function of X,

* *

because then p will represent any departures from (H) with first-order

aggregate effects. Moreover, for situations where further testing is

indicated, estimates of second-order aggregate derivatives can be obtained by

applying integration-by-parts to the formulae of Theorem 7 of Stoker(1982).

4. Tests of the Derivative Constraint (H)

In this section tests are developed for the general derivative constraint

(H). The conceptual and mathematical features of the general tests are

formally identical to the tests presented in Section 3, so that derivations

are just sketched, and all proofs are relegated to Appendix 2.

We begin, as before, by defining the departure from (H) as
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(4.1) a(X) = G(X)F(X) + a( +X) aH (X) C(X)i a, a iax

The test statistics are based on consistent, asymptotically normal estimators

of the mean a=E(A(X)) and the large sample values of the slope coefficients a

of the regression

(4.2) A(Xk) = a + (D(Xk)-pD)' + uk

where D(X) is a twice continuously differentiable Q-vector function of X. As

above, when (H) is valid we have a=O and P=0. Moreover, we assemble consistent

estimators of a and from consistent estimators of the means and covariances

;with D(X) o each of the separate terms in (H). The means and covariances of

Z;i .erivaclve erms are expressed via

Theorem 7: Under Assumptions 1-5 and A1-A2, we have for i,J=1,...,M and

q=l,...,Q that

(4.3a) Err. (X) F(X) E(F(X)Vll(X)) Cov(F(X), Yi (X))

(4.3b) CovLGi(X) aP(X DX) = E((X)Y2 IQ(X;D)) Cov(F(X)Y 2iq(X;D)

a2F
(4.4a) E[ ij axax ] E(F(X)ll ij(X)) Cov(F(X),,ijx))

(4.4b) C E(F(X)2ijq(X;D ))HCo v(F(X)1 2(X;P0

Yli' Yiq E xlii and ( ijX are defined as 2

where i' V2iq' ql1J and 2ijq are defined as
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aG.
(4.5a) Yli(X) = Git i X- 

aD

(4.5b) Y2iq(XPD) = ii(X)[Dq(X) - PDq] Gi axq

OH. CaD .a lij ( X) = XQaX j- i 3 t - o + Hij ij ij

(4.6b) 2iJq(X;uD) = 11ij(X)[Dq(X) - Dq] + axJ a CJ

2
-H.I a fa Dq aDq -q

+ ax 1 J tXj + Hij LaX ax ax Ji

The usefulness of Theorem 7 arises from the fact that the Y and 1

iuLctions depend only on the known G and H functions, as well as the density

p(X). To derive consistent estimators of a and , we first define the

following components for i,j=l,...,M and q=l,...,Q

(4.7a) gl0(y,X) y G0 (X)

(4.7b) gli(Y,X) = y Y1i(X)

(4.7c) hij(y,X) = y lij(X)

(4.8a) g2 0 q(YX;p D ) = y G0 (X)[Dq(X) - PDq]

(4.8b) g2iq(YX;p D) - y Y2iq(X;PD)

(4.8c) h2jq(y,X;p D) y 2ijq(X;PD)

and define the Q-vectors g2i(Y,X;PD)=(g 2 11i...,g 2 iQ), i=O,....M, and

h2ij(X;pD)=(h 12jl,... h2iJQ)', i,J=,...,M. Next assemble the component

terms as
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M M

(4.9a) a(y,X) = g10 (YX) + g1i(y'X) + I hlij(,X) - C(X)

i=1 1ij=1

0 -1 00
(4.9b) b(y,X;JJDD) = D [g20o(YX;D ) + I g2i(YX;PD)

M 

ij=l

so that E(a)=a and E(b)=f. Now set ak=a(Yk,Xk) and bk=b(YkXk;D,SD),

k=l,...,K, where D and SD are the sample average and sample covariance matrix

of (D(Xk)), and define estimators of a and as

Eak
(4.10a) a =

K

- Ebk
(4.10b) b K

For the purpose of testing (H), a and b can be utilized simultaneously.

To characterize their limiting distribution, define the covariance matrix of

(a(.),b(.)')' as ab and denote the sample covariance matrix of (akbk')') as

Sab. Further define the covariance matrix of (a(.),(b(.) - D1aD(X)')' as

Iab(D) and denote the sample covariance matrix of (ak,(bk - SDaD(Xk)')',

k=1,...,K as Sab(D). The asymptotic properties of (a,b')' are given via

Theorem 8: Under Assumptions 1-4 and A1-A3, we have that

lim (a,b')' = (a,p')' a.s. The limiting distribution of fi[(a,b')' - (a')']

is normal with mean 0 and variance-covariance matrix ab(D). ab(D) is

consistently estimated by Sab(D ).

As above, a 2 statistic for testing (H) is directly available, as in
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Corollary 8: Under the Assumptions of Theorem 8, Under the null hypothesis

(H), the limiting distribution of the statistic

(4.11) H = K (a,b') Sab(D)

is X (1+Q). Moreover, S can be replaced by Sab(D) ab'

We illustrate theorems 7 and 8 via:

Example 8: Consider the test of the second derivative constraint (2.8) for a

particular (i',j'). We have Hij(X)=l if (i,j)=(i',j'), Hij(X)=O otherwise,

Gi(X)=O, GO(X)=O and C(X)=O. We also have that li,j, =ij, - i,j, and that

a=E(A(X))=E(a F/aXi aYj)=E(ylj), where a is estimated by a. For D(X)=X,

we have that 2i1jq1l*j (XqaXq)-Iqi _i-Kqj ,j,, where Yij=l if i=j and

Kij =O otherwise, and that Cov(&(X),Xq )=Cov( 2F/aXiax, Xq )=E(yq2ijq)' b

estimates =2xl[Cov-X&(X),X1),....Cov(a(X),XM)]. Finally, notice that if p(X)

is multivariate normal, then sli depends only on the product of deviations

from means of Xi, and X,, and that 2i'j' q depends on the product of

deviations from means of Xi,, Xj, and Xq.

Regarding the choice of D(X), the same conclusions exist for testing

constraint (H) as for testing constraint (H ); namely that when D(X) contains

a subvector that is an invertible transformation of X, will represent all

first-order changes in the mean of the departure (X) induced by the

reconfiguring the population via the exponential family density (3.20). This

is verified as above, by defining the mean of the departure from (H) under the

exponential family population reconfiguration as E(&(X))= (t), recalling the

interpretation of as aggregate distributional effects (as in Theorem 5) and

utilizing completeness of the exponential family (as in Theorem 6).
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This completes the main development of the paper. We now turn to

extensions and topics of interest to empirical applications of the results.

5. Extensions of the Testing Technique

The development of test statistics in Sections 3 and 4 is based on two

constructive steps. First, estimates of the means and covariances with D(X) of

each of the separate component terms in (H) are found by using integration-by-

parts, where the estimates depend only on data on y and X, as well as the form

of the density p(X). Second, the component estimates are assembled into

statistics describing the departures from the constraint (H), from which tests

are possible. Here we indicate how this technique extends to constraints

involving higher order derivatives, constraints involving several different

dependent variables and multi-equation constraints. The numerous extensions

provide a further ustification for understanding the constructive treatment

of the test statistics for (H).

The general constraint (H) is limited to second-order derivatives for

simplicity, since the majority of applications only involve low order

derivatives. In principle, however, tests of constraints involving derivatives

of any orders can be derived using the technique, as for

(H ) E~an(i)F(X) = (X)

i 1 n(i)

where n(i) is any integer order and l ... 'jn() are n(i) integers defining

the derivatives. A test statistic for (H1 ) can be derived as above using

estimates of the mean and the covariance with D(X) of each component term of

(H1). Such estimates are available along precisely the same lines as before,

where the estimates for nt h order derivative terms will require nt h order log-

density derivatives, as well as derivatives of the known coefficient
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functions. The form of these terms are similar, each representing a product

between y and a function of X, which can be estimated via a sample average.

The last property is presented formally as

Theorem 9: Given Assumptions 1-5 and A1-A2, assume that G(X) is any function

determined by p(X) and known functions (Hi(X)). We have that

anFX)

(5.1a) E G(X) ax. . X E(F(x) r 1(X))

j 1 in

(5.lb) Cov[G(X) A . , D(X) = E(F(X) r'2 (X;jD))

0 0 *
F2 (X;D) = - l D + r 2 (X)

where rl(X) is determined by the density p(X) and the known functions (HJ(X)),

and r2(X) is determined by D(X), the density p(X) and the known functions

{Hi(X)).

Theorem 9 validates the repeated application of integration-by-parts to obtain

estimators of the means and covariances with D(X) of general derivative terms.

As before, the asymptotic structure of the average estimators implied by

(5.1a,b) is straightforward, with the structure of r2(X;D) of (5.1b)

providing a simple asymptotic variance correction when D is used in place of

PD as in Theorems 4 and 8.

The second extension is to derivative constraints among several

behavioral equations, or equations describing several dependent variables. As

long as the constraints are intrinsically linear in derivatives, with known

coefficient functions, the technique can be applied directly. In particular,

suppose that we observe two dependent variables, yl and y2, with conditional

expectations E(yllX)MFI(X) and E2(y2 X)-F2(X), and our interest is in testing
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a constraint of the form

1 22 _ 28 n (i) 2 1
(H 2) I H X) a F + H2i(X) ax F (X) = C(X)

J jn (i) i n2 (i)

1 2
where the coefficient functions Hi(X), H(X) are known functions of X. Our

results apply directly to estimating the mean and covariance with D(X) of each

of the separate terms in (H2), and hence permit estimation of the regression

coefficients of departures from (H 2 ) on D(X). The method of assembly of mean

departure and regression coefficient estimates follows through exactly, as

does the (sample covariance) method of estimating the covariance matrix of the

estimates.

i
Example 9: Consider the test of the restriction (2.6), where yk denotes the

thk 
observed value of the i input quantity, 1=1,...,M-l. An estimate a of

,tij - or /IX i ) is defined by applying Theorem 1 to each term,

yielding

(5.2) a = k EkYk ikK K

Similarly, an estimate of =x1C Cov(aF /axj-aF/aXiD(X)) can be constructed in

a component-by-component manner.

The third extension is to testing economic hypotheses that take the form
' 1

of several (simultaneous) constraints, each in the form (H), (H ), (H ) or

(H ). We have discussed how each constraint can be tested individually; the

only issue that remains is how to test them simultaneously. As above, we can

obtain consistent, asymptotically normal estimates of the mean and regression

coefficients of departures from each constraint, with each estimator in the

form of an average. The joint distribution of all mean departure and

regression coefficient estimates for all constraints is asymptotically normal,
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and the joint covariance matrix can be estimated using sample covariances

(modified for D) of all components of the average statistics. A single grand

X2(s(I+Q)) statistic can be constructed (where s is the number of independent

constraints), which tests whether the mean and regression coefficients of the

departures from each constraint vanish simultaneously. In other words, the

construction of Sections 3 and 4 applies in estimating the multivariate mean

departure of several constraints, as well as the multivariate matrix of

regression coefficients on D(X).

For these extensions, all of the previous development carries through,

including the advantages of utilizing X (or an invertible transformation of X)

as a subvector of D(X). The specific formulae for these extensions are derived

in a straightforward fashion, and therefore are left for applications.

6. Characterization of the Distribution of X

In this section we consider several topics relevant to the empirical

implementation of the above tests; the incorporation of additional (discrete)

independent variables and the estimation of the density p(X).

Very often derivative constraints of interest in an application involve

only the effects of a subset of the X variables. Expand the notation slightly

by supposing that there are two sets of X variables, namely an M-vector X1

and an M2 -vector X2, where the behavioral model has E(yIXl,X 2 )=F(Xl,X2). For

the production example where y represents log-output, suppose that X1

represents log-input values and X2 represents additional technological

variables affecting production. The hypothesis of constant returns-to-scale

obviously involves only the derivatives of F with respect to X1, with X2

appearing as additional variables.

The techniques of the paper apply directly to this situation where

X=(X1',X2')', and the functions AI(X) and eij(X) of (2.9a,b) are defined as
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the derivatives with respect to the components of X1. This is valid because

the use of integration-by-parts in Theorems 1, 3, 7 and 9 isolates on

derivatives with respect to single components of X, and therefore can be

applied to the derivatives of F with respect to the components of X1 for each

value of X2. There are three useful observations in this regard. First, the

validity of a constraint on the derivatives of F with respect to X1 is tested

for all values of X2; in the production example, constant returns-to-scale is

tested for each value of the technological variables X2. Second, the functions

Ai(X) and eij(X) will in general depend on both X1 and X2; so that the joint

distribution of X1 and X2 must be characterized, not just the (marginal)

distribution of X1 (unless X1 and X2 are independent, in which case X2 has an

analogous role to t of Section 2). Third, the requirements of Assumptions 1-5

need only apply to X1, or in particular that X2 may represent discrete

variables, or variables in which n and/or F are not differentiable.

Returning to the original notation, the results of this paper have taken

the functions li(X) and gij(X) to be known, so that their values could be

computed for each observation value X , k=l,...,K. In certain cases, such as X

normally distributed, the above test statistics can be written in terms of OLS

estimators and other standard statistics (as in Examples 6-8); in such cases

the framework can be applied directlj ithout empirical characterization of

p(X). Realistically, however, general applications of the technique will

require that the density p(X) be characterized with the data (Xk, k=1,...,K).

We now discuss the econometrics of using estimated values of the functions

Ai(X) and ij(X).

Statistical results that are analogous to Theorems 4 and 8 can be

obtained when a parametric approach is adopted for estimating the density

p(X). In particular, suppose that p(X) is assumed to be in the parametric form

p(XlA), where A represents a finite vector of parameters with true value A,
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0 A
or that p(XIA )=p(X). If a iK consistent stimate A of A is available, then

estimates A ik=i(XkA) and eijk=eij(XkA) can be constructed for all

i,j=l,...,M and k=l,...,K, and utilized in place of Aik and iJ k in the test

statistics. Under the additional regularity conditions of Appendix 1, tests

are possible using estimated values, where the only proviso is that the

asymptotic variances utilized must reflect the estimated A.

More formally, with regard to Section 4, suppose that a(.) and b(.) of

(4.9a,b) are written to include the parameters A, denote ak=a(YkXk;A),

bk=b(YkXk;D,SDA) as the components evaluated at A, and define a and b as the

averages of (ak) and (bk respectively. Following Newey(1984), for the

variance matrices ab(D,) and S ab(DA ) defined in Appendix 1, we can show

Theorem 10: Under Assumptions 1-5 and A-A3, AS-A6, we have that

lim (a,b')' = (a,p')' a,s., and that the limiting distribution of

4K[(a,b')' - (a,p')'] is normal with mean 0 and variance-covariance matrix

Iab(DX)' ab(DA) is consistently estimated by Sab(DA ) .

Therefore, tests of constraints can be performed with density parameter

estimates, as long as the variance estimates reflect the variability of A.

Of natural importance is the question of whether using nonparametric

estimates of the functions Ai(X) and ei(X) in the test statistics will yield

consistent procedures, with K convergence to normality. This question is

difficult, unanswered, and beyond the scope of this paper. Here we indicate

two lines of work which may provide solutions to this problem. The first

approach is to estimate Ai(X) and ei (X) by differentiating a kernel density

estimator of p(X). The current state of the literature, as surveyed by Prakasa

Rao (1983, see especially chapter 4), does not cover the use of density

estimates in a multivariate context as required here, although this is a

promising avenue for future research.7
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A second approach is presented in Gallant and Nychka(1985), whose propose

a flexible functional form approach to estimating p(X) by postulating that

(6.1) p(X) = p(X;BK)N(X)

where N(X) is the multivariate normal distribution8 and p(X;8K) is a (Hermite)

polynomial, with parameters K, whose degree is increased with the sample size

K. Gallant and Nychka indicate that when the parameters 8K are estimated via

maximum likelihood, p(X) provides a consistent nonparametric estimate of p(X).

Moreover, they show that differentiating n p(X) gives consistent estimates of

li(X), and that the sample covariances between the data values k and the

estimated ik consistently estimate the population covariances. Thus, Gallant

and Nychka provide a theoretical solution to the problem of consistently

estimating a of Section 3 with nonparametric density estimates, and it is a

natural conjecture that a and of Section 4 can lt'keiise be consistently

estimated. The remaining open question is whether Ri consistent nonparametric

estimators are available.

7. Concluding Remarks

This paper has proposed a new nonparametric technique for testing

derivative constraints. The technique utilizes information of the density of

the independent variables, which is related mathematically to the unknown

derivatives by integration-by-parts. Tests statistics are constructed for

constraints in the general form (H), with extensions outlined for higher-order

derivative constraints, multi-equation constraints and constraints involving

derivatives of several unknown behavioral functions.

There are several advantages of the test statistics. First, the

statistics are based on a statistical characterization of the departures from

the constraint exhibited in the data. This means that if a constraint is
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rejected, one can study the estimates of a and to learn how the data departs

from the constraint. In particular, a nonzero value of a indicates a nonzero

average departure from the tested constraint, and nonzero values of the

components of indicate how departures from the constraint vary with the

components of the chosen regressor vector D(X). When D(X) includes an M-

subvector which is an invertible function of X, a=O and =O implies that

departures display at most second-order aggregate effects.

The second advantage is the computational simplicity of the test

statistics, after the density of independent variables has been characterized.

Given (parametric) estimates of the log-density derivative functions Ai(X) and

eij(X), all estimators are constructed from sample averages, involving no

sophisticated nonlinear programming or other complicated maximization

techniques. This feature computationally facilitates the study of many

derivative constraints for a given data set. Moreover, certain density

assumptions, such as multivariate normality, imply that the tests statistics

are naturally related to familiar statistics, such as OLS regression

coefficients.

The main limitation of the technique arises from the lack of results on

the use of nonparametric estimates of the log-density derivatives. While

consistency of such test statistics has been established, the question of

whether -iK consistent tests can be performed with nonparametric estimates of

p(X) remains open. This question may be resolved in the near future, because

of the currently very active pursuit of related questions of nonparametric

density estimation.

The second limitation of the testing technique is due to the intrinsic

linearity of all of the constraints considered. We have not established tests

for constraints involving products of derivatives of unknown functions (e.g.

terms of the form (aF/axi)(aF/8X)) or products of derivatives and levels of
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unknown functions (e.g. terms of the form FI(x)(aF /ax)). This eliminates

some economic hypotheses of interest, such as the traditional form of the

Slutsky equations in demand analysis (which contains products of quantities of

goods and the income derivatives of other goods). Further research is

warranted to see whether an analogous testing technique can be applied to

nonlinear derivative constraints.
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APPENDIX 1: FURTHER ASSUMPTIONS

We begin by assuming that the expectations of individual terms in the

derivative constraints (H ), (H), and (H I). Since a primitive condition

assuring existence is not of further use here, we assume the existence

directly via

Assumption Al: The expectations in the following formulae exist and are finite

1. (3.4) (Theorems 1, 2)

2. (3.14) (Theorems 3, 4)

3. (4.3a,b), (4.4a,b), yGO(X), C(X) (Theorems 7, 8)

4. (5.la,b) (Theorem 9)

The results listed in parentheses indicate where the condition is required.

Many of the results utilize integration-by-parts to write expectations of

derivatives as the sum of a covariance term and boundary terms. For unbounded

carrier sets, we require an assumption that implies that (limits of) the

boundary terms vanish. A generic condition which is sufficient for this

property is given as follows. Define a single component sequence (X ERM) via

Xn=(X... Xn X... X) for some component i; so that (Xn ) is a set of points

that differ with respect to only a single component. A function G(X) obeys

condition A if

Condition A: If ({XnXneQ) is any single component sequence such that IXnl" II as

n-w, then G(Xn)p(Xn)_O.

We require that condition A is obeyed by several functions, as in

Assumption A2: The following functions obey condition A, for all i,j=l,...,M,

q=1, .. ,Q.

1. F(X) (Theorems 1, 2)

2. F(X)D (X) (Theorems 3, 4)

3. F(X)Gi(X) (Theorems 7, 8)

4. [aF/aXi]Hij(X) (Theorems 7, 8)

5. F(X)[aHtj/aXj-Hij 1 j] (Theorems 7, 8)

6. F(X)Gi(X)Dq(X) (Theorems 7, 8)
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7. [aF/aXi]Hij(X)Dq(X) (Theorems 7, 8)

8. F(X)(Dq(X)[aHij/aXjD-HiLj]j+HiJaDq/Xj)

(Theorems 7, 8)

9. G(X)[an-lF/aX .. ax X 1] (n to n-1 Step of Theorem 9)

10.Dq(X)G(X)[a F/aXjl ... aXjnl]] (n to n-1 Step of Theorem 9)

All of the estimators discussed in Sections 3 and 4 are sample averages,

and the asymptotic properties are established by appealing to the Strong Law

of Large Numbers and the Central Limit Theorem. To apply these theorems, we

require that the means and variance-covariance matrices of the components of

the sample averages exist. Al provides the existence of the means. For the

variance-covariance matrices we assume

Assumption A3: The variance-covariance matrices of the following functions

exist under the density p(X) and are positive definite:

1. d(y,X) (Theorem 2)

2. D(X) (Theorems 4, 5)
3 * 0

3. a (y,X), b (y,X;PDD) (Theorem 4)

4. a(y,X), b(y,X;pDD) (Theorem 8)

For utilizing completeness of the exponential family (3.20), we assume

*

Assumption A4: The expectation E(A (X)in) defined using p(Xln) of (3.20)

exists for all nEn, where n is a convex subset of RQ containing an open

neighborhood of w=0.

The closing remarks of Section 4 require the analogous assumption for (X).

For the parametric characterization p(XIA), we assume the existence of a

CUAN estimator A obeying

Assumption A5: The estimator can be written in the form

Ek (Xk;A O )
0h 'K 8 +°p (l/i )

where E((X;A 0))-O and Var(k(X;A ))-Xkk exists. The covariance between any two

components of (.), a(.), b(.) and D(.) exists.
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For establishing the consistency and asymptotic normality of a and b, we

require

Assumption A6: a(.) and b(.) are differentiable with respect to the components

of A, and the derivatives have finite expectations. For each of the terms

IX(.)Xj(.)I la(.), Ib q(.)I, a(.)X (.)I b q(.) I(.)bq(.)( , [aa/8A]k(.) and

l[abq/aA]Xi(.)l, there exists a function T (y,X) which is an upper bound for

all A in an open neighborhood of A0 , such that the +T moment of T exists.

Finally, denote A=E[aa/aA J, B=E[ab/aA ] , ab(D, ) as the covariance matrix of

(a(.)+AX(.),(b(.)-aD(X)+Bk(.))')' and Sak(D,A ) as the sample covariance matrix

of (ak+Akk.(bk-aD(Xk)+BXk)')', where A, B and X are equal to the corresponding

functions evaluated at A.
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APPENDIX 2: OMITTED PROOFS

Proof of Theorem 3: The proof parallels that of Theorem 1, where we utilize

the representation Cov(aF/aXi,Dq(X))=E(aF/aXi)(Dq(X)-Dq)]. We begin by

applying Fubini's Theorem for i=1 as

(A.1) IaF(X) [Dq(X)P 0 p](X)dv

= rI r 8F(X) [D (X)-
I X 1[DJ a() D (X)-Dqjp(X)dvI(XI) dvo ( 0)

(XO)

where, as in the proof of Theorem 1, X=(X1,Xo), with X0 denoting the other

components of X. Suppose first that w(X )=[a,b], a bounded interval, and

integrate the inside integral of (A.1) by parts as in

(A.2) aF(X) [Dq (X) Dqv(X)dv!(X1)

W(X o )

= - I F(X) aX [Dq(X)-jDq + pax p(X)dv1 (X!)
1 1

W(Xo )

+ F(b,Xo)t[D(bXo)-0 ]p(bXo) - F(a,X )[Dq(a,Xo)- q]p(a,Xo)o q o Dq o o o Dq o

0 aD
F(X) [ L(X)Dq (X)-Mp] - a p(X)dvl(X1)

w(Xo )

where the latter equality holds by Assumption 5. (A.2) is also valid when

w(X o ) is an unbounded interval by Assumption A2. Now, substitute (A.2) back

into (A.1) to get

(A.3) E( a- [Dq (X)- ( F(X) (X)Dq (X)-iDq a1 ] p(X)dv

= E(F(X)52iq(Yx;D ) )

The covariance representation for 1=1 follows from
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(A.4) J 1(X)[Dq(X)jjDq ]p(X)dv = x-- p(X)dv

which again follows from integration-by-parts. The cases for i=2,...,M are

identical. QED

Proof of Theorem 4: Consistency and asymptotic normality follow directly from

the Strong Law of Large Numbers and the Central Limit Theorem. For the

expression of the variance-covariance matrix, it is easy to see that

'K(b - p ) can be written as

(A.5) F -K(bI = Eb (Yk'X k;pD'D) b]

-1 * 
- ED a Ci(D - D) + Op(1)

~~* ~~~~~~~~^ ^*
so that a is the limiting covariance matrix of (a ,b ')'. Consistency of

ab(D)

Sab(D) follows as in Theorem 2, noting the standard properties of continuous

functions of consistent estimators. QED

Proof Sketch of Theorem 7: All of the results are shown by applications of

integration-by-parts, where all boundary terms vanish by Assumptions 4 and A2.

Here we sketch the verification of (4.4a), as follows

2 2
a2F a2F

(A.6) E[HiJ XIXj ] = Hij aia p(X) dv

aF gL UH p(X) dv
ax Ha8Hd

I XiX - xi lj ax i + HiJ[-eij + iA ] p(X)dv

= E(F(X) ij(X))

where the second equality follows from integration-by-parts with respect to Xj

and the third equality follows by integration-by-parts with respect to Xi. The

covariance representation follows from E(r 1 1j(X))=O , which is also verified by
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integration-by-parts. QED

The proof of Theorem 8 is analogous to the proof of Theorem 4.

Proof of Theorem 9: Theorem 7 shows the result for n=1,2. (5.la) is shown by

induction, where we first assume the result for n-l, and show its validity for

n. In particular, we have

anF(X)
(A.7) J G(X) ax ' .x p(X)dv

n-I~j ... a~j [- a-+ G p(X)dv
aX .... X aX

I n-1 j

where the boundary terms vanish from Assumptions 5 and A2 as before. The

latter integral represents an expectation in the form (5.1) for derivatives of

order n-l, for which the result is assumed. Consequently, by induction, the

result is true for all positive n. (5.lb) can easily be verified, given

(5.1a). WhD

Proof of Theorem 10: Consistency follows froti the consistency of A, by

standard arguments (among many others, see Stoker(1985), Theorem 7).

Asymptotic normality follows from Assumptions A5-A6 in accordance with the

expansions

(A.8) a - a) . ( ))E(a(yk.X;A 8 
(A.) 4i(a )kk + E )4i?(A-A + (l)

o 0
(b(YkXk; D,zD,h )- ) o

(A.9) 4K(b - X) - - a -K(D-uD)

+ [El )4-(A-A0 ) + op(1)

Iab(DA) is the variance-covariance matrix of the RHS terms above, and

Sab(DA) is the sample covariance matrix of the components of the RHS terms

above. Consistency of Sab(DX) follows from the regularity conditions of

Assumption A. QED
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Notes

1. These examples, as well as many others, are described in many economics

textbooks in current use; c.f. Varian(1984a), among many others.

2. Note that by defining u=y-F(X) we have that y=F(X)+u, so this

interpretation holds in an artificial way for all models. The important point

about E is that it coincides with the specific modeling of individual

differences, with the derivative af/aX defined holding constant. This issue

arises in the correct understanding of the results of Zellner(1969), for

example, where y is a linear function of X, with representing varying slope

coefficients.

3. A(X) is the score vector of translation family p(Xl8)_p(X-8) evaluated at

6=0; see Stoker(1984b) for details.

4. d is the "scaled coefficient" estimator proposed by Stoker(1984b); namely

if E(yIX)=F (X'p), then d1 consistently estimates Y, where Y is a scalar.

This can be seen by applying Theorem 1 here to F

5. This connection between average derivatives and OLS coefficients when X is

normally distributed is noted by Ruud(1984).

6. See Stoker(1984a) for the application of completeness to the study of

aggregation problems in macroeconomic equations.

7. Whether functionals of kernel density estimates can provide a consistent

estimators of the true functional value is an open question of substantial

interest. While the K consistency results of Ahmad(1976) do not obviously

extend to multivariate situations, the modification of the results of

Stock(1984,1985) on multivariate regression functions may provide multivariate

score function results as required here.
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8. N(X) can be taken to be a multivariate normal density, with any mean and

covariance matrix value, such as mean 0 and covariance I. Notice that if N(X)

has mean X and covariance EX, then d of section 3 computed using p(X) of

(6.1) is equivalent to the vector of OLS coefficients of y regressed on X plus

the covariance between y and -aln p/aX, so that the nonnormality of the

distribution of X is directly represented in d by its departure from the OLS

coefficients.
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