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1. Introduction

A critical problem in the management of many businesses; manufacturing,

distributing, and retailing; is the management of inventory that is

slow-moving or obsolete. For many reasons, businesses will find themselves

in an overstock situation. Favorable buying opportunities followed by a

reduction in activity is a typical cause. In other situations, the

management of large numbers of items, coupled with inadequate information

and forecasting systems, may lead to overestimates of demand that are not

reviewed at proper intervals. Finally, substitution of products or parts

can significantly and instantaneously reduce demand for specific items.

Unfortunately, there are no real guidelines for the disposal of excess

inventory. While items have value in that they may ultimately sell, albeit

far in the future, they can incur space and other holding costs in the

interim. Furthermore they may have some salvage value, and, before they

sell, the items could perish or become completely obsolete. While the space

costs and holding costs are not as substantial as the usual capital costs of

inventory (which should not be considered in the analysis of slow-moving

inventory, as this capital is sunk), they can amount to several percent of

item value.

While the problem of salvaging of excess inventory has been a problem,

of interest for many years, [2], [3], [51, no previous treatment addressed

the probablistic nature of demand. In fact, the slow-moving stock is

subject to uncertain demand and the expected value of potential sales needs

to be considered. Typically, when demand events are infrequent, a Poisson

distribution for demand, and hence exponential times between sales, may be

appropriate. We assume a Poisson distribution of demand in this paper. We

also assume, without loss of generality, a batch size (number of units per
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sale event) of one. With a larger batch size the average sale and salvage

values increase proportionally.

The real question in the treatment of excess inventory is not

necessarily whether to salvage the lot, but what number of units (or

batches) to keep. When items are ordered, each successive item is worth

less, since it is expected to sell at a later time. Hence higher numbered

items should be salvaged. An item is worth saving if its salvage value

exceeds its expected discounted sales value less expected space and holding

costs up until the time of sale. There is also a question of perishability

or complete obsolescence. When this is likely, the future sales value is

further reduced. In any case, there will be an item number above which

salvage (e.g. disposal) is optimal, and this paper presents a derivation of

the threshold number of items worth saving.

The next section presents the basic formula and derivation for the

correct number of items to save and an expression for the savings obtained

from following the optimal salvaging policy. Section 3 presents the effects

of perishability, which can manifest itself in different ways. Section 4

presents an example based on an actual case study for a distributor faced

with substantial excess inventory.

2. The Basic Problem

To solve the problem we make the following definitions:

X = Number of demands per item per unit time

T = Expected time until next demand (T 1/X if demand is Poisson)

A = Average ultimate sale or disposal value as a percentage of

current value

III
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r = Cost of space and other non-captial holding costs as a percent

of current value

i = discount rate

S = Salvage value at present time as a percent of current value

We assume that demand is Poisson, and the issue is to determine how many

units (or sets of units if ordered in fixed batches) to dispose and what the

resulting savings will be.

Suppose a specific item sells at time W. Then the total value is the

selling value less storage costs:

-iW W -iWValue = Ae - f re dt
0

= e iW(A + r/i) - r/i (1)

Now assume there are m units in stock. Each one is sold in turn at

times T1, T2, ..., T . The issue is the expected value of

e iT If the time of each successive sale is exponential, then the

jth unit is gamma with parameters X and j.

Hence

-iT. 1 -XT. -iT.
E(e J) = r) XJ(T j(Tj -iTJ

0

-(X+i)T
X C j - 1ef T e J dT.r(j) 0 J J

Xj r() ( X )j

-( + ij + i )J
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Thus the value of the jth unit is

x jX ) (A + r/i) - r/i

Note that this is monotonic in j, and hence by equating it to the salvage

value S. we obtain that the optimal number of units to be maintained is

S + r/i
log ( + r/i

m = greatest integer less thanlog ((
log (X/(X + i))

Alternatively, if T = mean time until usage = 1/X

A + r/i
log ( + r/i

m = greatest integer less than log (+ i)
log (1 + iT)

The next issue becomes the potential discounted savings in salvaging units

in excess of the level m Let A = number of units disposed so the

direct savings (in percentage of unit value is)

SA

By (1) the cumulative value "lost" is

m*+A -iT. m*+A -iT.
E e J(A + i) - /i = (A + r/i)( e ) _ Ar

j=m*+l j=m*+l

and the expected value of this is

m*+A I m*+l m*+A+l

x I Ar (X + 1) ( + Ar
(A+n/i)( (A+r/i) X+l X+i j rm*+l + i i 1- (X/(X+i))

Hence, the net savings is the difference between SA and this, which reduces to

AS + Ar/i - (A + r/i)(l - (1 + iT) -A)/(iT(l + iT)m * )

11
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3. The Case of Perishability

The decision problem becomes somewhat more complex if stocks can perish

or become obsolescent. There are actually a number of different assumptions

about perishability that can be made:

(a) All items perish or become obsolete together at a random time.

(b) All items perish or become obsolete together at a known time.

(c) Each item can perish at a random time.

Cases (a) and (b) might represent situations where items become obsolete due

to product substitution. Case (c) might represent real perishing.

Substitution might affect all products and perishing affects each one

separately.

Note that these approaches cover the situations where all items can be

treated identically. If, for example, there are known perishing dates that

vary, then it makes sense that the salvage values will vary as well. When

products have different ages, the optimum depletion problem is a separate

problem area by itself (eg. [1])

a) If all items perish together at a random time then an items value,

analogous to relationship (1), is

T
-4T

Ae J(1 - F(T.)) -
j 0

j
-it (re (1 - F(t))dt

where T now represents the items hypothetical sell date (when it sells if

it hasn't perished) and where F(t) - distribution function of perishing

time. For a constant hazard rate, F(t) is exponential, and we obtain a

value of

(2)

���__9�_1__�__1__11__----_1.___ _ -
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-iT. -hT. Tj
Ae J e - f

0

-it -htre e dt

-(i+h)T.
= Ae j_ r (1 -(i+h)tAe i+h

-(i+h)T.
e reA

i +h i+h

where h = hazard rate (i.e. F(t) = 1 - e-ht). T. is still a
3

jth-order gamma. The identical relationships hold with i replaced by i + h.

Hence

A + r/(i + h)

m = greatest integer less than + + h)
log (1 + (i + h)T)

with an analogous relationship for savings.

b) If all items perish at a known date p, then the items value, given a

sale date T, is
3

-iT. 3 . -it.
Ae J - f re dt = e J(A + r/i) - r/i

0
if Tj < p

3

and

P -it i if T>p
- fre dt - (1 - e-p) if T

0 i 3.1O~~~~~~~~~~-

which is monotonic in Tj and hence j.

Hence the expected value of the jth item is

P 1 j j-1 -(X+i)T r
(A+r/i) z r.-i) (T 1e aT. + r Prob

0 1
(Tj p)e -ip r

= /-)j IP -(X+i)T.= (A+r/i)( fP 1 (X+i) T-le i dT.
30 ( 3i 

+ r Prob (T > p)e- iP _ r1 3 

The integral is the proability that a gamma function with parameters j and

X+i will be less than or equal to p. This is the same as a poisson

(3)
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variate with parameter (X+i)p will be at least j. Similarly Prob (T > p)
j-

is the probability that a gamma with parameters j and X will be greater than

p, or equivalently, the probability that a poisson variate with parameter

(Xp) is less than j. So the value of the jth item is

k j -(X+i)p J > , -Xp
(A r/i)( X [(X+i)p]k e r i r p J e PA - + - e k.'

j 0

Since the marginal value is monotonic in j, m* is determined by equating

this marginal value to S. So m* - max j such that

co pi+ p/T~k -(pi+p/T)
S < (A + r/i)(l + iT)- j (pi + p/T) ek'

k'j

- r/i + r/i I (p/T)k e-p/T

k-0 

c) The most complex case is when each item can perish randomly. Again

we assume constant hazard rates. In addition each item can perish

separately. Suppose we keep m* items and we order them so that we try to

sell item j+l only after item j sells or perishes.

Lemma: Each successive item has a decreasing marginal value.

Proof: The time that an item j sells or is disposed Tj is the minimum

of its perishing time P. or sale date S.. (We define sales date as the

time a units "turn" comes plus an exponential variate with parameter ).

Also note that Pj is independent of Sj. If j > k then Sj > Sk

and since P. has the same distribution as Pk. T. stochastically
J J

dominates Tk. (In particular Prob(T. < Y) Prob ((S. < Y)u(P.

< Y)) 1 - Prob (Sj > Y)Prob(Pj > Y) < 1 - Prob(S k >

Y)Prob(Pk > Y) = Prob(Tk < Y)). Since marginal value is a monotonic

function of
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Tj (storage costs increase and sales value decreases as Tj increases),

and the expected value of a monotonic function G(x) is

co co

f G(x)f(x)dx = G(O) + f G'(x)[l-F(x)]dx
0 0

by the definition of stochastic dominance, marginal value decreases. 

The last item (which is tagged or specified as such) gets its turn when all

of the other items have been sold or have perished. Suppose this occurs at

time T. Then the value of the last item is

-iT T* -iT -iT
Ae m- I re it dt = Ae (1-e m

o 

-iT
= (A + r)e - r/i

if it sells at a future time T. It is

m* . -iT
- f re tdt = (l-e m

0 i

if it perishes at a future time T*. Finally it is

T _
-it r _e-iT

- f re dt = - (-e )
0 1

if perished at a prior time T.

-hT 0

The likelihood that it already perished is (l-e ) and the

-hT
conditional distribution of T is he /(l-e ). The conditional

distribution of the time interval after T that the item sells or perishes

is (X+h)e- (X+h)t and the likelihood that it sells before it perishes given

that it perishes or sells in the future is

X+ h

III
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The latter relationships follow since the minimum of two exponentials is

exponential with parameter equal to the sum of parameters. Furthermore, the

conditional likelihoods of the respective parts being the minimum are

proportional to the parameters. Putting this together, the value of the

last item is

T.

r he hT(- (-e ))
0

-hT0 h o

0+h
0

r
- (l-e

1

-i(T0+t))(X+h) -(X+h)t)(X+h)e dt

-hT0

0

-i(T0+t)((A + )e r ) -(+h)t d- .) (Xhdt
1

r r h -(i+h)T
= - + r h (1-e )

1 i h+i

-(i+h)T0
r h e
i X+h+i

-(i+h)
+ (A + ) +h+ii ~~

r -(i+h)To Xr AX
i+h e (h+i)(X+h+i) X+h+i

� �1__________�11_____·1__·_11_1___1_�_11_ -_---
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So then the issue is the distribution of T. This is the expected sum of

m*-l independent exponential variates xi in succession. (We now are

essentially reordering the first m*-l events). The first variate is the

minimum of an exponential sale and m*-l exponential perish events. This

random variable is exponential with parameter X+(m*-l)h since again the

minimum of a set of exponentials is exponential with parameter equal to the

sum of parameters. The second is exponential with parameter X+(m*-2)h,

and so forth. It follows inductively that

m*-l

-(i+h)To -(i+h) x
E(e ) = E(e

m*-l X+kh
=II

Ik X+i+(k+l)hk=It follows that m* is

It follows that m* is

m* = max j such that
j-l 1/T+kh S+r/(i+h)

1/T+i+(k+l)h r/T
k=l [(h+i)(h+i+l/T)

or equivalently,

m* = max j such that

To show the left side

that

J l/T+(k-l)h S+r/(i+h)
II ( ) <
k=1 1/T+i+kh A+r/(i+h)

indeed goes to zero and that m* is defined, we note

i 1/T+(k-l)h
1 l/T+i+khk=l

1 1/T+h 1/T+(j-l)h 1

T l/T+i+h 1/T+i+(j-l)h l 1/T+i+jh

< /T+i+jh which goes to zero as j -+ .
- 1/T+i+jh

+ A/T
(h+i+l/T)

11
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4. Applications

The relative simplicity of the basic problem and the simultaneous

perishing case enables relatively direct determination of optimal salvaging

values. The author was recently involved in a study for a distributor of

durable goods. Based on the sales activities for a large number of items,

there was a significant amount of excess stocks. In fact, 30% of the

inventory did not move in the previous nine months and items for which there

was only one transaction accounted for an additional 10% of inventory.

Using time since last sale as a proxy for expected time until sale, no

perishing, a capital charge of .12, a space cost r of .025 and three

different salvage values (0, .25, and .50 percent), the excess stocks were

carefully reviewed for a sample of 1000 items. This sample had known

previous sales dates between 6 and 12 months prior. (This stock moved

faster than stock that did not move at all, but for the latter, there were

no known sales dates to analyse.)

We discovered, for example, that hundreds of years of supply existed for

some items. The aggregate results obtained by applying the formula to each

item were as follows:

Salvage Value

0 75% 50%

Percentage of Investment Retained 51% 43% 36%

Savings as a Percentage of 1% 15% 33%

Inventory Investment
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The company was able to substantially reduce its inventory investment

through the application of these methods.
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