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Abstract 

Many types of acoustic-phonetic constraints can be applied in speech recog- 
nition. Shipman and Zue pro osed an isolated word recognition model in which E sequential constraints are app ed at a braad honetic level to hypothesize word E candidates. Detailed acoustlc constraints are t en applied on a subsequent phone 
representation to determine the best word from the remaining word candidates. 
This thesis examines how their model can be extended to continuous speech. We 
used the recognition of continuously spoken digits as a case study. 

We first conducted a feasibility study in which words and word boundaries were 
hypothesized from an ideal broad phonetic representation of a digit string. We 
found that strong sequential constraints exist in continuous digit strings and used 
these results to extend the Shipman and Zue isolated word recognition model to 
continuous speech. 

The continuous speech model consists of three components: broad phonetic clas- 
sifier, lexical component, and verifier. These components have been implemented 
for the digit vocabulary for the urpose of explorin how acoustic-phonetic con- 2 straints can be applied to naturdi speech. The broa phonetic classifier produces 
a string of broad honetic labels from a set of parameters describing the speech 
signal. The lexic8 component uses knowled e about statistical characteristics of 
the output produced by the broad phonetic c ? assifier to score each of the word h - 
pothesis. Evaluation of this part of the system suggests that it can prune unlike y 
word candidates effectively. 

r 
Nine acoustic features were defined to characterize phones for verifying each 

of the word candidates. Evaluation of the verifier on the digit vocabulary demon- 
strates the power of a hone-based representation and of using a few well-motivated 
acoustic features for d' escribing phones in an acoustic-phonetic approach. In addi- 
tion to examining the application of speech constraints, evaluation of each of the 
components indicates that an acoustic-phonetic approach is potentially speaker- 
independent. 

Thesis Supervisor: Victor W. Zue 
Title: Associate Professor of Electrical Engineering and Computer Science 
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Chapter 1 

Introduction 

This thesis examines an acoustic-phonetic approach to continuous speech recog- 

nition. The approach relies heavily upon low-level speech knowledge--knowledge 

about phonotactics, the lexicon, allophonic variation, and the duration of different 

speech units. In this thesis, the constraints provided by each type of low-level speech 

knowledge were studied and characterized. The constraint information was used to 

develop components of a speaker-independent, continuous digit recobition system 

as a research tool. Implementation of the system components allowed a better 

understanding of how speech constraints could be used in a recognition system. 

Speech recognition by computers has possible applications in many areas, rang- 

ing from assembly line inspection to airline reservations to aids for the handicapped. 

Computer recognition of speech could simplify the interaction between humans and 

computers; one would only need to be able to talk in order to enter information into 

a computer. We would like speech recognition systems to be speaker-independent, 

so that a new user is not required to train a system before using it. Furthermore, we 

would like speech recognition systems to recognize continuous speech, as opposed 

to isolated words. We use continuous speech, not isolated words, when we speak; 

therefore, a continuous speech recognition system is more user-friendly. Continuous 

speech recognition systems have the added advantage that users could enter infor- 



mation into a computer more quickly, since the speaking rate is higher in continuous 

speech. 

In the past, researchers have expended much effort developing and refining recog- 

nition systems based chiefly on engineering techniques. This is primarily a reflection 

of relatively primitive and incomplete knowledge about acoustic, phonetic, and other 

low-level characteristics of speech. However, we now understand these characteris- 

tics more fully than we did a decade ago. By exploiting what knowledge we have 

about speech and then pushing our knowledge further, better and more advanced 

speech recognition systems may be developed. 

1.1 Speech and Speech Knowledge 

Speech sounds are produced as air flows through and resonates in the vocal 

tract. Different speech sounds are due to different configurations of the vocal tract, 

each of which is associated with a set of resonant frequencies. In addition, different 

sounds are produced depending on the excitation source. The excitation may be 

at the glottis and/or at a constriction(s) in the vocal tract. When the excitation 

is at the glottis, the vocal folds can remain open to produce aspiration, as in /h/, 

or the vocal folds may vibrate rhythmically to produce voiced, periodic sounds, 

such as vowels and nasals. The peaks in the spectrum of a voiced sound are called 

formants and are labeled as Fi for the ith formant. Thus, for example, the formant 

with the lowest frequency is called the 'first formantn and is labeled F1. When the 

excitation is at a constriction in the vocal tract, noisy aperiodic sounds (e.g., Is/, 
/g/) are produced. More than one source may be present during production of a 

sound. When both a noise and voicing source are present, voiced consonants (e.g., 

/v/, / e l )  are produced. Many speech scientists (e.g., Chomsky and Halle, .1968; 

Jakobson, Fant, and Halle, 1952) have described speech sounds in terms of these 

characteristics, that is, voiced or unvoiced characteristics, and other characteristics 



such as frontness of a vowel. 

Because the rate the vocal tract articulators can move is limited, the articulators 

are not instantaneously positioned to produce each sound. Consequently, each 

sound is affected by its neighbors, or context; this is called coarticulation (see for 

example, Heffner, 1950). As an example, there are at least two kinds of /k/; each 

is illustrated in the spectrograms of Figure 1.1. The particular realization of a /k/ 

depends on the adjacent vowel: The /k/ on the left is followed by a front vowel and 

is called a "front /k/," and the /k/ on the right is followed by a back vowel and is 

called a "back /k/." Note the higher burst frequency of the front /k/; this is due to 

the constriction formed with the hump of the tongue against the roof of the mouth 

being positioned farther forward in a front /k/ than in a back /k/. 

Due to differences in rate of articulatory movement, some sounds are relatively 

stable in time compared to others. For example, an /n/ is much more stable than 

an /r/ (compare the /n/ and /r/ in Figure 1.2). The transition from vowel to nasal, 

primarily due to the velum lowering to couple the oral and nasal cavities, is rapid 

because the velum can be quickly lowered. Once the transition is made, the nasal 

is stable for its duration. In contrast, an /r/, produced by retroflexing the tongue, 

usually shows movement throughout its duration. Since the tongue cannot move as 

quickly as the velum, the time it takes to retroflex the tongue to produce an /r/ 

can be observed in a spectrogram as gradual lowering of F3. 

In many languages, only limited sequences of sounds are allowed (Sigurd, 1970; 

Shipman and Zue, 1982). For example, in an English syllable beginning with three 

consonants, the first consonant must be an Is/, the second either /p/, /t/,  or /k/, 

and the third either /I/, /w/, or /r/. Furthermore, not all combinations of these 

sounds are allowed. Thus given a sequence of sounds, one can deduce whether or 

not it could be a word in a specified language. 

The examples in this section have briefly introduced some low-level speech 

characteristics. These characteristics can be organized as low-level speech knowl- 
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edge: knowledge about acoustic characteristics of sounds, coarticulation, duration of 

sounds, and phonotactics. The formulation of this knowledge into speech constraints 

and the use of these constraints in recognition of natural speech were explored in 

this thesis. 

1.2 Speech Recognition Systems 

The speech recognition systems developed during the past 15 years have used 

varying amounts and types of speech knowledge. Somesystems, such as those based 

on template-matching, use little, if any, speech knowledge. In contrast, the explicit 

use of speech knowledge forms the basis of the FEATURE system developed at 

Carnagie Mellon University. In this section, some benchmark recognition systems 

are described. (Many excellent reviews of major recognition systems have been 

written, such as by Lea, 1980 and Klatt, 1977.) Systems which use little explicit 

low-level speech knowledge are described first, followed by descriptions of systems 

which progressively use more speech knowledge in an explicit manner. At the end 

of this section, the use of speech knowledge by each of the described systems is 

compared. 

1.2.1 Template Matching 

Most speech recognition systems presently on the market are based on a math- 

ematical approach which combines template matching with a time-alignment pro- 

cedure known as dynamic time warping. These systems perform with over 95% 

accuracy on speaker-trained isolated-word and limited-vocabulary connected-word 

tasks (Kaplan, 1980; Doddington and Schalk, 1981). In template matching, each 

recognition unit, for example, a word, is represented by at least one template, cre- 

ated from a set of training utterances (Rabiner, 1978). Each template is composed 

of a sequence of patterns in time and each pattern, in turn, is some parametric 



representation of speech. For example, a template could be composed of the se- 

quence of linear prediction coefficients sampled every 5 msec throughout a training 

utterance. 

Dynamic time warping is a method based on dynam-ic programming for non- 

linearly aligning two sequences. Some systems constrain the amount of time com- 

pression and expansion allowed; for example, Myers and Rabiner (1981a) limited 

time normalization to a ratio of 2:l between the reference and test templates. 

To recognize a word, an isolated word recognizer compares the input signal 

against each of the stored word templates using dynamic time warping and a prede- 

fined distance metric (e.g., Itakura's distance metric, see Itakura, 1975). The best 

alignment between the input signal and each template is found. The input word 

is classified as the word corresponding to the best matching template, that is, the 

word with the smallest distance. 

Many constraints on isolated words are not present in continuous speech, and, as 

a result, extension of isolated word techniques to continuous speech is not straight- 

forward. In isolated word recognition, the word endpoints are 'known." In contrast, 

in continuous speech recognition, the word endpoints are unknown and coarticu- 

lation occurs between words. Because handling unknown endpoints requires extra 

computation, systems developed to extend template matching to continuous speech 

(e.g., Sakoe, 1979; Kato, 1980; Myers and Rabiner, 1981a; Myers and Rabiner, 

1981b) have used very small vocabularies. Defining templates which differentiate 

among similar words is not an easy task using conventional template representa- 

tions, such as linear prediction coefficients, because such representations do not 

adequately emphasize fine differences. Defining templates for continuous speech is 

an even more difficult task because one must have a framework to describe coar- 

ticulation across word boundaries. Conventional template representations do not 

lend themselves to descriptions of coarticulation because they represent an acoustic 

event and not an acoustic manifestation of a phonetic event. For reasons such as 



these, extending template matching from isolated word recognition to less restricted 

speech recognition tasks has proven to be difficult. 

The HARPY system (Lowerre, 1977; Lowerre, 1980) demonstrated the best 

performance of all the continuous speech recognition systems developed under the 

ARPA project1, with less than 5% semantic error on sentences from a highly con- 

strained grammar. Quasi-st ationary segments derived from simple paramet ers, 

called "zapdash" parameters, were 'mapped to the network states based on the 

probability of match ... by use of phonetic templates" (Lowerre 1977). Along with 

juncture rules, 98 templates were used to represent all possible allophones and 

speaker variations. A score was assigned to each node in the network based upon 

how well the zapdash parameter values in a segment of speech matched the tem- 

plates. Finally, the finite state graph was searched using a heuristic but efficient 

search algorithm, called a beam search, to find the best path (subject to constraints 

used in the algorithm) through the network and the corresponding best sentence. 

The developmental effort in Harpy concentrated on using high-level knowledge. 

As a result, the Harpy system relies heavily on higher level language constraints, 

such as its constrained grammar. Inhovations introduced in the system include 

higher level processing of the input signal, a precompiled network embodying many 

forms of higher level knowledge, and the beam search algorithm. In contrast 

to its well-developed high level processing, Harpy's relatively primitive front end 

performed only rough segmentation based upon zero crossing rates and peaks in 

smoothed and differenced waveform parameters (the 'zapdash" parameters). 

The success of the Harpy system demonstrates that higher level constraints are 

'During the early seventies, the Advanced Research Project Agency (ARPA) sponsored a five year 

project, involving approximately ten research groups, to study the feasibility of building systems 

for speaker-independent, continuous speech understanding. 



useful in speech recognition. In addition, it illustrated how constraining a task 

can be used to reduce a problem to manageable proportions. However, using only 

higher level constraints can reduce the task too much to be of general use. In 

fact, a general criticism of Harpy is that its grammar is so constrained that it is 

not habitable. Even so, the Harpy system exemplified how higher level language 

constraints can be applied to the recognition problem. 

IBM has developed two benchmark systems: a speaker-trained continuous speech 

recognition system and a speaker- t rained isolated word recognit ion system. The 

IBM continuous speech recognition system (Jelinek, 1975; Jelinek, 1976; Jelinek, 

1981) has a recognition accuracy of 91% correct (Jelinek, 1980) on words contained 

in sentences in the 1000 word vocabulary of the Laser Patent Ted. The isolated 

word recognition system has a recognition accuracy of 95% on a 5000 word office 

correspondence vocabulary (Bahl et al., 1983). 

Both systems are based upon Hidden Markov Modeling, a statistical technique 

which IBM has applied to model specified speech units. In both systems, each word 

in the lexicon is represented as a sequence of phonemes in a finite state graph. The 

phonemes, in turn, are represented as a sequence of templates which attempt to 

capture variations of all phonemes (allophones) in the language. In the continu- 

ous speech recognition system, the templates are computed from DFT (D' iscrete 

Fourier Transform) coefficients, which evenly weight the spectrum even though the 

information content in the spectrum is not uniform. In contrast, in the isolated 

word recognition system, principal component values derived from the DFT repre- 

sentation are used as input from the front end, weighting the DFT coefficients in 

accordance with characteristics of speech sounds. 

Hidden Markov Modeling characterizes the speech signal by statistical methods; 

thus, the system can be trained without human input. However, Hidden Markov 



Model systems require large amounts of speech data and computation for training. 

In particular, training a continuous speech recognition system to one speaker may 

require many hours of speech and many hours of computer time, making it unac- 

ceptable for general use. In contrast, the isolated word recognition system requires 

much less training than the continuous recognition system, although it still does 

require hours of computer time on IBM's largest computer. By constraining the 

task to isolated word recognition, IBM made the training and computational costs 

for a Hidden Markov Model recognition system manageable. 

1.2.4 Hearsay I1 

The research effort of CMU's Hearsay 11 system (Erman and Lesser, 1980; Lesser 

et al., 1975), developed under the ARPA project to recognize continuous speech 

from several speakers, was directed at developing and studying the interactions of 

knowledge sources. Each knowledge source contained "knowledge," such as speech 

descriptions, needed by the recognition system to solve a particular recognition task. 

The knowledge sources were modular, which allowed easy modification of knowl- 

edge, but the cost was slower recognition and a more complex control structure. In 

the resulting system configuration, independent, parallel, knowledge sources com- 

municated through a multilayer global blackboard. The 'layers" of the blackboard 

included: segment labels, syllables, proposed lexical items, accepted words, and 

partial phrase theories. A knowledge source was activated when new information 

on the blackboard caused its preconditions to be met. An activated knowledge 

source would attempt to provide information to a higher level (bottom-up analysis) 

or lower level (top-down analysis). 

Much less emphasis was placed on development of low-level knowledge sources 

concerned with .acoustic-phonetics relative to higher level knowledge sources con- 

cerned with syntax and semantics. For example, the Hearsay I1 segmentation com- 

ponent simply used template matching and a well-developed algorithm (Itakura's 



distance metric) to assign to each segment a label corresponding to one of 98 pos- 

sible templates. The performance of the low-level knowledge sources was poor: the 

segmentation component assigned the correct label as its first choice only 42% of 

the time, and the word hypothesizer hypothesized the correct word to be within the 

top 50 candidates out of a possible 1000 words only 70% of the time (Klatt, 1977). 

But higher level syntactic and semantic knowledge soukces allowed recovery from 

these errors by top-down word hypothesization. Thus, Hearsay 11 demonstrated the 

utility of knowledge to drive a recognition system, especially the use of higher level 

knowledge sources. 

1.2.5 HWIM 

The HWIM system (Hear What I Mean), developed under the ARPA project 

at Bolt, Beranek, and Newman, had fixed components in a roughly hierarchical 

structure. The system initially segmented and labeled the speech signal as a set of 

phonetic transcription alternatives arranged in a 'segment lattice." The purpose of 

the lattice was to avoid fatal segmentation errors by allowing ambiguity. The first 

choice accuracy of assigning the correct phonetic label (out of 71 possible labels) 

was only 56% (Schwartz and Zue, 1976). 

The designers of HWIM introduced several interesting ideas for speech recogni- 

tion. These included word verification at the parametric level, phonological rules 

for building a lexical decoding network, and top-down verification using the context 

and position of a word (Cook and Schwartz, 1977). HWIM's parametric word ver- 

ifier scored word candidates at the parametric level by matching frames of a word 

candidate with frames of the corresponding synthesized word. Speech knowledge 

was used in developing the front end descriptors for each of the phonetic labels and 

in developing phonological rules. Language knowledge was used to find the best 

path through the word lattice and in top-down verification. However, the methods 

used to incorporate speech knowledge into the system were not fully explored. For 



example, 'intuitive human guesses, not statistically measured estimatesn of likeli- 

hoods for word pronunciations were used to evaluate the system due to lack of time 

(Wolf and Woods, 1980). This was done because obtaining sufficient statistics to 

produce meaningful pronunciation likelihoods is difficult. 

1.2.6 FEATURE 

The FEATURE system (Cole et al., 1982), which recognized the letters of the al- 

phabet, used acoustic features of speech for discriminating among speech sounds. To 

recognize a word, the system extracted acoustic features from parameters between 

four temporal anchor points. These anchor points were chosen to take advantage 

of the monosyllabic structure of most of the lexical items. The parameters used in 

the system, motivated by acoustic-phonetic knowledge of speech, include formant 

frequencies, fundamental frequency of voicing, zero crossing rate, total energy, low 

frequency energy, mid-frequency energy, and high frequency energy. 

FEATURE'S average recognition rate was 89.5% correct when tested on 10 male 

and 10 female speakers. In light of the difficult vocabulary (many of the letters of 

the alphabet sound similar), FEATURE'S performance demonstrates that acoustic- 

phonetic knowledge can be useful in speech recognition. However, extensibility 

of the FEATURE algorithm to continuous speech is uncertain. The recognition 

algorithm took advantage of the monosyllabic nature of the vocabulary words and 

the analysis was done from four anchor points. In addition, many hours of a speech 

scientist's time were required to develop features for identification in the limited 

vocabulary; many more hours would be needed to develop features for all contexts. 

1.2.7 Speech Knowledge in Recognition Systems 

We have seen several approaches to speech recognition, each using varying 

amounts of speech knowledge. Template matching techniques use constraints to 

define a manageable task (e.g., speaker-trained and isolated word tasks) and are 



relatively easy to develop because they are mathematically well defined. In tem- 

plate matching systems, only a very small amount of speech knowledge is used 

relative to the potential amount of knowledge that could be used. In these systems, 

speech knowledge is usually incorporated by limiting the amount of time compres- 

sion/expansion, reflecting some knowledge about limits on speech rate variation. 

Speech knowledge has also been incorporated through choice of recognition unit; 

for example, Rosenburg et al. (1983) developed a system which uses the demisylla- 

ble as the recognition unit. 

The Harpy system used more speech knowledge than template matching sys- 

tems. Some speech knowledge was needed to develop the "zapdash" parameters, 

and template selection required some speech knowledge. However, most of the 

knowledge used was higher level language knowledge, such as grammar and syntax. 

The IBM systems showed how some speech knowledge combined with well de- 

fined mathematical techniques can successfully be used for recognition. Speech 

knowledge was explicitly used in defining the sequence of templates representing a 

word and in defining allowable word pronunciations due to coarticulation. Statis- 

tical characterization of the speech signal provided much strength to the systems. 

However, this characterization was performed without explicit use of knowledge 

about speech and also required a lot of training data. 

The importance of language constraints in speech recognition and how such con- 

straints can be used to recover from low-level errors was demonstrated by Hearsay It. 

HWIM and FEATURE illustrated that low-level speech constraints may be im- 

portant in speech recognition. In particular, HWIM exemplified how constraints 

on phonological variations may be important, and FEATURE exemplified how 

acoustic-phonetic constraints may be important. 

Each of these systems has contributed to our understanding of how to use speech 

knowledge in speech recognition. However, we still need to understand better the 

constraints provided by different types of speech knowledge, especially low-level 



speech knowledge, and how to cohesively use the constraints in the speech signal 

for recognition. 

1.3 Problem Statement and Overview 

This thesis studies the application of low-level constraints in the speech signal 

to continuous speech recognition, particularly the task of recognizing continuous 

digits. Lexical, durational, acoustic, phonetic and allophonic speech constraints 

are examined and the utility of these constraints is tested on natural speech. In 

contrast, high level knowledge about the language, such as grammar, syntax, and 

semantics, is not addressed. The investigation was divided into three parts: 

1. develop a continuous speech recognition model based upon constraints in the 

speech signal 

2. implement components of the model, making the required modifications to 

accommodate variabilities in the speech signal 

3. explore the use of detailed acoustic analysis of phones for verification of word 

hypotheses 

Chapter 2 develops a continuous speech recognition model which relies heavily 

upon speech knowledge and is based on sequential constraints, as used by Shipman 

and Zue (1982). Shipman and Zue's work in sequential constraints for isolated 

word recognition is described first. A feasibility study which was conducted to 

show that strong sequential constraints exist at the broad phonetic level in digit 

strings is described next. The results of the study indicate that for a continuous 

speech recognition task such as the digits, a recognition system can initially process 

continuous speech at the more robust broad class level, rather than at the detailed 

level of the benchmark systems. This philosophy was used in the development of 

the recognition model. 



Other low-level speech constraints which may be useful in a recognition system 

are described next. The use of additional constraints provided by the low-level prop- 

erties of the speech signal performs two functions. First, the additional constraints 

"counteract" the loss of word endpoint constraint in continuous speech. Second, the 

additional constraint may allow "higher" level language constraints to be relaxed. 

For example, the grammatical constraints in Harpy may be relaxed to form a more 

habitable grammar. 

In the last section of Chapter 2, the Shipman and Zue model is extended to 

continuous speech. The general organization of the model is presented, and the 

incorporation of constraints in the speech signal into the model is discussed. 

The next two chapters describe the implementation of the components in the 

recognition model. Chapter 3 considers how speech constraints can be applied in 

the broad phonetic classifier and lexical component. Chapter 4 explores an acoustic- 

phonetic approach to verification of word hypotheses in a word lattice. 

In Chapter 3, refinements to the continuous speech recognition model to handle 

the variations which occur in natural speech due to interspeaker and intraspeaker 

variations are described. These variations can lead to recognition errors unless 

the recognition algorithm is developed to explicitly deal with them. In addition, 

contextual and coarticulatory variations occur in natural speech and must be in- 

corporated into the algorithm. For example, a person may pronounce "five" with 

or without a /v/, as in [farve'tl] ("five eight") and [fabarn] ("five nine*), respec- 

tively. A method for segmentation and labeling by characterizing speech in terms 

of acoustic features by the broad phonetic claaaifier is described. Then an algorithm 

for applying sequential constraints to natural speech using knowledge of front end 

characteristics is developed. Finally, an investigation of the application of path, 

allophonic, and durational constraints is presented. 

Chapter 4 describes how the knowledge gained from low-level constraint8 is 

used when performing detailed acoustic analysis. In particular, verification of word 



hypotheses using a phone-based representation was explored. A set of acoustic 

features for characterizing and identifying the phones in the digit vocabulary are 

described. A method for using information from the features to score each phone 

hypothesis is presented and then the method is evaluated. 

Each of the implemented components was evaluated. The broad phonetic classi- 

fier was evaluated by comparing its output to a hand-labeled phonetic transcription. 

The lexical component was evaluated using output from the broad phonetic classi- 

fier, since the main contribution of the lexical component is in using the characteris- 

tics of the broad phonetic classifier in evaluating word hypotheses. The verification 

component was evaluated through incremental simulation, so that errors due to the 

verifier could be separated from errors due to other components. 

Chapter 5 justifies the assumptions made in the thesis and outlines the con- 

tributions of the thesis. This chapter discusses the most prominent assumption, 

that an acoustic-phonetic approach has many advantages over other approaches. 

Additionally, the characteristics of the digit vocabulary and how the choice of vo- 

cabulary affects the study are described. The utility of a preprocessor, especially 

an acoust ic-phonetic preprocessor, the use of segments and sequential constraints 

in recognition, and computational considerations are also discussed. Finally, the 

contributions of the thesis are outlined and suggestions are made regarding ways 

the research can be refined and extended. 



Chapter 2 

A Speech-Knowledge Based 

Recognit ion Model 

This chapter discusses a continuous speech recognition model which uses speech 

knowledge to constrain the recognition task during each processing step. The phi- 

losophy of the model is general enough to serve as a basis for developing large 

vocabulary continuous speech recognition systems using low-level speech knowl- 

edge. Since the model was implemented on alimited task, the digits, some of the 

background work is based on analysis of only the limited vocabulary. Suggestions 

on how the model may be relevant to larger vocabularies are discussed in Chapter 5. 

The model follows the work of Shipman and Zue, described in Section 2.1, on 

sequential constraints in isolated words. The feasibility of a sequential constraint 

based approach for continuous speech was analyzed with a modeling experiment, 

described in Section 2.2. This study showed that strong sequential constraints on 

a broad class representation of continuous speech can be used to specify word hy- 

potheses and corresponding word boundaries for the limited case of digit strings. 

However, sequential constraints in continuous speech do not provide as much con- 

straint in identification of the utterance as sequential constraints in isolated words, 

because definite word endpoints are unknown; consequently, other constraints were 



used in recognition. In Section 2.3, different types of speech knowledge and how 

each can be used as a recognition constraint are discussed. I .  Section 2.4, a recog- 

nition model which is based upon conclusions from the feasibility study and which 

uses constraint information is described. The general structure of the model is de- 

scribed first, followed by a discussion of how speech constraints should be used in 

each component of the model. 

The model performs initial analysis at the broad phonetic level. Sequential 

constraints are applied to produce word candidates and then each word candidate 

is scored using more detailed phonetic analysis. The best sentence is recognized as 

the best scoring sequence of word candidates. The proposed model for continuous 

speech recognition incorporates the speech constraints described in Section 2.3 (in 

addition to sequential constraints) to further specify the use of speech knowledge 

in the Shipman and Zue model and to extend the model to continuous speech. 

2.1 Sequential Constraints in Isolated Words 

House and Neuburg (1977) introduced the idea of representing an utterance as 

a sequence of broad phonetic classes. They introduced this idea with the belief that 

gross linguistic categories could be identified more easily than a detailed phonetic 

representation. In 1982, Shipman and Zue conducted a study on sound patterns 

in isolated words. The results of the study demonstrated that the sound patterns 

of English impose strong sequential constraints on the words in the language. For 

example, they found that the only word in Webster's 20,000-word pocket dictionary 

satisfying the template: 

[consonant] [consonant] [I] [vowel] [nasal] [stop] 

is "splint," illustrating that sequential constraints exist even when some phonemes 

are represented as a broad phonetic class (relaxing the constraints). Shipman and 

Zue performed an experiment in which each sound was represented as one of six 



broad phonetic classes: strong fricative, weak fricative, vowel or syllabic consonant, 

stop, nasal, and liquid or glide. The average number of words matching a particular 

sequence, normalized by frequency of occurrence in the Brown Corpus, was reduced 

to approximately 0.2% of the lexicon when this representation, was used, and the 

maximum cohort size was about 1% of the lexicon. 

These results show that strong sequential constraints exist in broad phonetic 

representations of words. Furthermore, since more detailed distinctions must be 

made to produce a detailed phonetic representation than a broad phonetic repre- 

sentation, a broad phonetic representation is more robust than a detailed phonetic 

representation. Therefore, sequential constraints at the broad phonetic level also 

should be more robust. Thus, Shipman and Zue proposed the following approach 

to isolated word recognition. The sound units are first classified into several broad 

categories which can be determined with little error. Then, indexing into the lexi- 

con, a subset of the lexicon is found aa word candidates. Finally, a detailed analysis 

of acoustic differences is used to recognize the word. 

Sequential Constraints in Continuous Speech 

The Shipman and Zue study demonstrated that strong sequential constraints 

exist on words in the English language. If strong sequential constraints were shown 

to exist in continuous speech, then the recognition approach outlined by Shipman 

and Zue could be extended to continuous speech. To test this hypothesis, a feasibil- 

ity study of sequential constraints in continuous speech was conducted on a limited 

vocabulary, the digits from 'zero" through "nine," with the idea that the task may 

later be expanded if the initial approach proved viable. In this section, the results 

of this study are outlined. 

In the isolated digit vocabulary, there are two unique consonant clusters, /8r/ 

and /ks/, but in connected speech the word endpoints are not obvious. Thus, 



consonant "clusters" can be formed from combinations of word-final consonants with 

word-initial consonants. In the digit vocabulary, there are 32 (ignoring gemination) 

unique sequences of a word- final consonant followed by a word-initial consonant. 

However, none of these consonant sequences are allowable within a digit. Since 

the set of consonant sequences at word boundaries and within a digit are mutually 

exclusive, all word boundary locations between two consonants in an ideal phonetic 

transcription can be determined by examining phoneme sequence pairs and using 

constraints on allowable consonant sequences. 

In a broad phonetic representation, there is only one non-unique phoneme class 

sequence in the digit vocabulary: [stop] [strong-fricative], as in 'six" and 'eight 

seven." Thus, sequential constraints in digit strings should still exist at the broad 

phonetic level. This result is important because a broad phonetic represent ation 

is more easily and robustly derived automatically from the speech signal than a 

phonetic transcription where inter-speaker variations may be of the same magnitude 

as phonetic differences. In addition, such a representation may be more robust 

against environmental variability. 

The application of detailed phonetic and broad phonetic sequential constraints 

were examined more qualitatively. Sequential constraints in the digit vocabulary 

were found to be strong enough to uniquely parse a detailed phonetic transcription 

of a digit string to recover the original digits. In contrast, broad phonetic sequen- 

tial constraints are not as strong. An experiment was conducted to examine the 

application of broad sequential constraints to an ideal broad phonetic representa- 

tion of digit strings for identifying individual digit boundaries from a string. The 

representation was ideal because word boundary effects were ignored and the broad 

phonetic transcription was correct. The constraints were expressed as sequences 

of broad phonetic classes which could represent a digit. In this study sequential 

constraints were used to propose words and corresponding word boundaries in digit 

strings; in contrast, in the Shipman and Zue study, sequential constraints were used 
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Figure 2.1: Example of Application of Sequential Constraints to an Ideal Broad 

Phonetic Represent ation 

to reduce the number of cohorts associated with a word. 

Ten thousand digit strings containing 34,947 word boundaries were used in the 

study. The digit strings were of random length and were composed of digits in ran- 

dom order. A phonetic representation of each string was produced by concatenating 

a phonetic transcription of each digit in the string. The phonetic transcription of 

each digit was randomly selected each time from the set of transcriptions observed 

for the digit in a transcribed set of training utterances, thus allowing for multi- 

ple pronunciations of a digit. The phones in the phonetic transcription were then 

mapped into six broad phonetic categories (strong fricative, weak fricative, silence, 

vowel, sonorant', or short voiced obstruent) to produce a broad phonetic transcrip- 

tion. 

An example of the mapping procedure is shown in Figure 2.1. The digit string 

U8436401" Figure 2.la is mapped into a phonetic string (b), and then mapped into 

a broad phonetic string (c). All the words with a broad phonetic representation 

which matches a portion of the segmentation string are shown in (d). The word 

boundaries marked by the vertical arrows can be identified with certainty because 

'In this thesis nonorant refers to a consonant class, rather than a distinctive feature. 



all word hypotheses in the region either begin or end at the segment boundary. 

Two word boundaries cannot definitely be identified. For example, the boundary 

between the first Your'' and the ('three" cannot be definitely identified because 

the word [fayf] spans the boundary. Using this representation, 66% of the word 

boundaries were found. Thus strong sequential constraints exist in digit strings 

even at the ideal broad phonetic level. 

The ability to identify 66% of the word boundaries in ideal data implies that 

sequential constraints can be useful in hypothesizing word candidates from a broad 

phonetic representation. However, these results are not directiy applicable to real 

data. In real systems, the lexical access component must tolerate phonetic variabil- 

ity in the signal and front end errors. This reduces the strength of the sequential 

constraints and may increase the number of word candidates. To help reduce the 

number of word candidates, other speech constraints can be used. 

Speech Knowledge for Speech Recognition 

Speech can be characterized in many ways-acoustically, phonetically, by se- 

quential ordering of sounds, and by duration of sounds. Knowledge about these 

speech characteristics can be used as constraints in recognition. Sequential con- 

straints examined by Shipman and Zue were expressed using several representa- 

tions, including detailed phonetic and broad phonetic representations. Similarly, 

other types of speech constraints can be expressed at both the phonetic and broad 

phonetic levels. These constraints can be used in many areas of recognition, such 

as segmentation and labeling the speech signal to produce a sequence of broad 

class labels. Different types of speech information which can be used as constraints 

in speech recognition at the phonetic and broad phonetic level of description are 

described in the following sections. 

Appropriate points in the recognition process for applying each constraint are 



also discussed. A constraint should be applied when it is most effective and when 

the system has enough knowledge to check if the criteria for the constraint to be 

applied are present. Before applying a constraint, the amount by which a particular 

constraint reduces a task should be considered. For example, when both phonetic 

and broad phonetic constraints provide sufficient constraint to be used, broad pho- 

netic constraints are applied first. Constraints defined at the broad phonetic level 

require less detailed knowledge and are dependent upon more robust information. 

Furthermore, the additional information gleaned by using these constraints may 

allow better use of detailed phonetic knowledge. 

2.3.1 Acoustic and Phonetic Knowledge 

Speech scientists have developed a set of distinctive features for characterizing 

speech sounds (e.g., Jakobson et al., 1952). Some of these features (such as whether 

a vowel is high or low) have well defined acoustic correlates. Other features (such as 

whether a consonant is distributed) do not have obvious acoustic correlates (Fant, 

1969) and therefore do not lend themselves well for use in recognition systems. 

Speech can also be described by a set of acoustic characteristics. Spectrograms2 

are one representation in which acoustic-phonetic information can be observed. In 

Figure 2.2, vowel regions are indicated by the bars underneath the spectrogram. 

Note the striations in the signal and presence of energy below 800 Hz in these 

regions. Properties of speech sounds which can be described acoustically will be 

defined to be acoustic features in this thesis. For example, a 'large amountw of 

energy below 800 Hz satisfies this definition of an acoustic feature. 

Properties of large sound classes can be described using acoustic features. For 

example, one property of vowels and voiced sonorants is that they are strongly 

voiced, and this can be described by acoustic features such as a 'large amountw of 

aA spectrogram is a frequency versus time representation of a signal where amplitude is represented 

by print darkness. 
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Figure 2.2: Sample Spectrogram. Bars indicate vowel regions 

energy below 800 Hz. Acoustic features can also describe more detailed acoustic 

events, such as a rising second formant or a sharp onset. These detailed acoustic 

features are useful in making fine phonetic distinctions, as between a /0/ and the 

release in It / .  

An acoustic feature is defined using acoustic constraints to describe a charac- 

teristic of speech. The combination of acoustic features describing a class of speech 

sounds define a phonetic constraint. For example, a strong fricative is characterized 

by a non-periodic energy source and a large amount of high frequency energy (an 

acoustic feature). The aperiodic signal, in turn, is characterized by a high zero 

crossing rate. Very low frequency energy may also be present in voiced strong frica- 

tives, especially during the initial portion. The acoustic features of a large amount 

of high frequency energy, a high zero crossing rate, and maybe low frequency en- 

ergy at the beginning of a region form one description of the strong fricative class 

of speech sounds and define a phonetic constraint for the strong fricative class. 

Since phonetic constraints are defined by acoustic features, acoustic constraints 

are applied before phonetic constraints. Coarse acoustic and broad phonetic con- 



straints, defining broad classes should be applied early in the recognition process 

because these robust descriptors provide strong constraints in narrowing down the 

word candidates. In addition, these constraints require little computation and no 

contextual knowledge. Detailed acoustic and phonetic constraints defining phones 

should be applied later in the recognition process. The realization of a phone is 

context dependent, thus how 'goodn a phone candidate is can be more accurately 

accessed given the context. Since the context is not available until at least one 

pass is made over the portion of the signal being considered, a recognition system 

does not have enough knowledge to apply detailed acoustic and phonetic constraints 

early in the recognition process. 

2.3.2 Lexical Knowledge 

Lexical information is another type of speech knowledge which can be used to 

constrain the recognition problem. In the English language, many patterns exist 

in any subset of words. As the Shipman and Zue results showed, only a small 

percentage of words can be represented as a particular sequence of broad phonetic 

classes. Thus the limit on the number of words associated with a particular sequence 

is one expression of lexical constraint in isolated words. 

Lexical constraints are expressed in continuous speech a couple of ways. Each 

word in the lexicon can be represented as a sequence of broad classes or phonemes. 

Based on these sequential constraints, word boundaries can occur only in positions 

where a sequence matches a portion of the segmentation string. Once words are 

proposed, the correct word sequence should form a path through the lattice of pro- 

posed words. Path constraints, which are another expression of lexical constraints, 

can be used to prune words when at least one of the following conditions is not 

satisfied: 1) a preceding adjacent word exists or the word is sentence initial; 2) a 

following adjacent word exists or the word is sentence final. Paths which traverse 

these word candidates form an incomplete path in the word lattice. Pruning these 



candidates reduces the computation needed in further processing. 

In a recognition system, sequential constraints can be applied at the broad 

phonetic or detailed phonetic level to propose word candidates. Shipman and Zue's 

work and the results of the feasibility study discussed in Section 2.2 indicate that 

much constraint is available at the broad phonetic level. Since an accurate broad 

phonetic segmentation is more easily computed than an accurate detailed phonetic 

segmentation, word candidates should initially be proposed from a broad phonetic 

represent at ion. Application of path constraints follows naturally, using know ledge 

of the endpoint locations of proposed words in the word lattice to prune word 

candidates which lead to a "dead end" path. 

2.3.3 Knowledge of Duration 

Durational constraints may be expressed in segment, word, and other represen- 

tations. These constraints are derived from knowledge that the duration of a given 

speech unit is limited to a particular range. Durational constraints can be used to 

rule out a hypothesized unit which has a duration outside the obsex-ved range of the 

unit. For instance, a segment may represent one or more phones. In the digit string 

"one seven," a strong fricative segment is used to represent one phone, the /a/ in 
U seven." But in the phrase, "six seven," the /s/ in "sevenn can share the same 

strong fricative segment as the final /s/ in "sixn; this strong fricative segment rep- 

resents two phones. In this example, durational constraints may be used to rule out 

the possibility that only one phone is represented by the strong fricative segment 

or the possibility that two phones are represented by the strong fricative segment. 

Figure 2.3 shows the distribution of the duration of a model segment representing 

one phone versus the distribution of the duration of the same model segment when 

it represents two phones. In region (a), only one phone is possible so a model seg- 

ment with a duration in region (a) would not be allowed to represent two phones; 

similarly, in region (c), only two phones are possible and a model segment with a 



Figure 2.3: Schematized Histogram of Segment Duration for: (a) one phone (b) one 

or two phones (c) two phones 

duration in region (c) would not be allowed to represent one phone; and in region 

(b), one or two phones are possible so neither can be ruled out. 

Durations of words may also be used as a constraint. However, durations must 

be used with care. Speaking rate varies from sentence. to sentence and also within 

a sentence. Consequently, unreasonable word durations must be determined using 

durational information from at most the sentence being recognized. 

Preconditions for applying durational constraints depend only upon the presence 

of the unit being considered. Since durational constraints are used to rule out units 

for which the duration is unreasonable, these constraints should be applied soon 

after the unit is hypothesized and before further processing. For example, durational 

constraints on the number of phones represented by a segment can rule out some 

phone combinations with little computation. Detailed acoustic analysis may also be 

used to determine whether a segment better represents a single phone candidate or 

a pair of phone candidates. Since this is more computationally expensive, reducing 

the number of candidates by early application of durational constraints is preferred. 

2.3.4 Knowledge of Allophonic Variation 

Depending upon the context of a phoneme, many different realizations of that 
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Spectrogram of /u/ in: (a) the word "poop" (labial context) 

'toot" (alveolar context) 

and (b) 

phoneme are possible. For example, the second formant in /u/ is much lower in 

frequency when surrounded by labial consonants than when surrounded by alveolar 

consonants, as illustrated in the spectrograms of Figure 2.4. Allophonic constraints 

are based upon this type of knowledge. Allophonic constraints would specify that a 

hypothesized /u/ with a low F2 in the context of alveolar consonants be ruled out 

as a candidate phoneme, but that a hypothesized /u/ with a high F2 in the context 

of alveolar consonants is alright. Thus, if an /u/ is hypothesized, but F2 is high 

and labial consonants are known to surround the vowel, then /u/ can be ruled out 

as a candidate phoneme. 

Allophonic constraints can also be specified at the broad phonetic level. Different 

allophones of / t /  are used in pronunciations of the word "eight." Three different 

pronunciations of "eight" and the context, if required, for each pronunciation are 

shown in the first two columns of Table 2.1. Note that "eight" may be pronounced 

with a released or unreleased / t /  in any environment; but "eight" is pronounced 

with a flapped / t /  only when the following word begins with a vowel. Thus an 



Table 2.1: Pronunciations of / t /  

"eightn pronounced with a released or unreleased /t/ has no contextual constraint, 

but an "eightn with a flapped /t/ can only be followed by a word which begins 

with a vowel; if none of the following words begins with a vowel, then the ueightn 

should be removed as a word candidate. The rightmost column of Table 2.1 shows 

how the three different pronunciations can also be represented using broad phonetic 

classes. We see that the allophonic variations which occur in /t/ can be expressed at 

the broad phonetic level; broad phonetic allophonic variation can also be expressed 

for some other consonants. Hence, allophonic knowledge at the broad phonetic 

Broad Class Represent at ion 

vowel silence fricatives 

vowel silence 

vowel short-voiced-obstruent 

Transcription 

[eltit] 

[eYti] 

ley f l  

level can be used to rule out word candidates when some consonant contexts are 

Context 

v o w e l  

incompatible. Allophonic knowledge at the phonetic level can be used to rule out 

word candidates based upon more subtle differences, such as the vowel realizations 

illustrated by the earlier /u/ example. 

As previously stated, broad phonetic constraints should be used before phonetic 

constraints when both types of constraints are used. Thus, allophonic knowledge 

at the broad phonetic level is used first to prune the word lattice when a broad 

phonetic representation of each word candidate is available. Allophonic constraints 

at a detailed phonetic level are used later to discriminate between word candidates 

based upon fine differences in similar speech sounds. 

$The release of a /t/  actually consists of a burst followed by aspiration. In this thesis, the broad 

class of "fricativen was generalized to include aspiration in addition to fricative sounds. 
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Figure 2.5: Phonetically- based continuous digit recognition system 

Recognition Model 

In this section, an acoustic-phonetic continuous speech recognition model is 

developed. The model's particular configuration was motivated by the results of 

the feasibility study described in Section 2.2 and the philosophy of using speech 

knowledge to constrain the recognition task. 

In Shipman and Zue's proposed model for isolated word recognition, the speech 

signal is represented as a sequence of broad classes from which word candidates are 

hypothesized. Each word candidate is then analyzed in more detail and the word 

is verified or rejected. This same idea can be used for continuous speech. From a 

broad class represent ation of a sentence, word candidates and also the corresponding 

endpoints are hypothesized, producing a lattice of words. Each word candidate in 

the lattice is analyzed in more detail and then scored. Finally, the best sequence of 

words spanning the lattice is found. 

The main components of this system, shown in Figure 2.5, are a broad phonetic 

classifier, lexical component, and verifier. The broad phonetic classifier produces 

a broad class segmentation of the incoming signal based on coarse characteristics 

of the parameterized signal. The use of coarse characteristics by this component 

makes its output potentially robust with regard to speaker variability. The broad 

class segmentation is then input into the lexical component where the phonetic tran- 



scription of each word in the lexicon is matched against the segmentation produced 

by the system. This yields a lattice of word candidates; the lattice is further re- 

duced using lexical, allophonic, durational, and contextual constraints. When more 

than one word candidate exists over a portion of the reduced lattice, the verifier 

will rank order the candidates based on detailed acoustic analysis and knowledge 

about feature characteristics of the phones in each word candidate. 

Speech constraints are applied at appropriate points in processing of the sys- 

tem. The most general constraints are applied first, with each new constraint being 

more specific. The constraints used by the broad phonetic classifier to produce a 

broad phonetic representation are: coarse acoustic features of speech sounds, broad 

phonetic characteristics, and durational constraints on broad phonetic classes. The 

broad phonetic classifier first derives coarse acoustic features from the speech signal. 

Broad phonetic classes are hypothesized based upon the coarse acoustic features 

present and broad phonetic constraints. Once broad phonetic classes are hypoth- 

esized, durational constraints are applied to check that the duration of a segment 

is reasonable. For example, a short voiced obstruent, such aa an intervocalic /v/, 

should be of shorter duration than most of the other segments. 

The constraints relevant to producing a lattice of word hypotheses are sequen- 

tial constraints, durational constraints, path constraints, and broad allophonic con- 

straints. The lexical access component first applies sequential constraints to produce 

word hypotheses with associated time endpoints. Because many word candidates 

are hypothesized, other constraints are useful in reducing the number of candidates 

to a manageable number for verification. Durational constraints dictate whether a 

segment must represent one or two phones. For example, when duration constraints 

dictate that a segment represents only one phone, then all paths which require the 

segment to represent two phones can be removed. Path constraints, which do not 

require any extra processing before they can be used, are applied next to rule out 

word candidates which would form an incomplete path. Broad allophonic con- 



straints are used to remove words from the lattice with context requirements which 

are incompatible with all the previous or following words. 

Verification uses knowledge about detailed acoustic features of speech and de- 

tailed phonetic characteristics. Each phone is scored based on how well the acoustic 

features of the unknown segment match the expected acoustic feature values dic- 

tated by the phonetic characteristics of the hypothesized phone. 

Thus the model uses knowledge which can be derived robustly to constrain 

the task at each stage of processing. Broad phonetic constraints are applied first, 

followed by more directed use of detailed constraints. Although use of only low-level 

speech knowledge is addressed, higher level knowledge can be incorporated into the 

model in the verification component. 

2.5 Chapter Summary 

In this chapter, the background leading to a model for continuous speech recog- 

nition was developed. The main issues discussed were: 

Shipman and Zue showed that strong sequential constraints exist on the words 

in English at the broad phonetic level. Based on this result, they proposed 

an isolated word recognition model. 

Strong sequential constraints also exist in continuous digits; therefore, the 

Shipman and Zue model can be extended to continuous digits. 

e Many different types of low-level speech knowledge may be applied to the 

recognition task. 

A model for continuous speech recognition based upon the use of broad pho- 

netic sequential constraints was proposed. Other types of speech knowledge 

were also incorporated into the model. 



Chapter 3 

Broad Phonetic Classification and 

Lexical Access 

Speech from the same speaker saying the same phrase is never identical, and 

speech from different speakers contains even greater differences. These interspeaker 

and intraspeaker differences in speech occur because natural speech is not a sequence 

of discrete units; it is a continuum of sounds. Speech sounds are a function of the 

jaw and tongue position, and the continuous movements cf the articulators modify 

the vocal tract configuration to produce a time varying signal. Depending upon the 

speaking rate and the current configuration of the articulators, the "target" for the 

next sound is reached with different degrees of accuracy before movement begins 

toward the configuration of the following sound. 

Utterances of the same sentence vary in rate, pronunciation of each word, and 

degree of coarticulation. Speaking rate is affected by factors such as a speaker's 

mood and to whom the speaker is talking (e.g., child or adult). As the speech rate 

varies, the durations of different speech sounds vary nonlinearly; for example, as the 

speech rate becomes slower, vowel duration increases much more than stop burst 

duration. A speaker may pronounce the same phoneme using different realizations 

because of phonetic context, as in the example with /u/ in alveolar and labial 



contexts, or for other reasons. For example, a person may sometimes say 'eight" 

with a released /t /  and sometimes with an unreleased It/. A speaker may even 

delete sounds, such as pronouncing 'eight six" as [e%~k'ks], where the /t/ in 'eight" 

is deleted, or insert sounds, such as pronouncing "three" as /0ari/ where a /a/ has 

been inserted. In addition, different acoustic realizations of a phoneme may be used 

by different speakers. For example, speakers may pronounce an intervocalic /v/ as 

a canonical voiced weak fricative, an unvoiced weak fricative, or the /v/ may be so 

weak that it approaches silence. 

A speech recognition system must handle these variables. The system must know 

about common factors for each sound and/or know about the causes of variation 

and use this knowledge in recognition. In our implementation of the continuous 

speech recognition model, variability in natural speech was handled at two levels. 

The broad phonetic classifier dealt with variability within a class of sounds, and the 

lexical access component dealt with segmentation errors due to variability in the 

broad class represent ation of a sound. 

A broad phonetic representation must be at least as accurate as a detailed pho- 

netic representation because a broad phonetic representation is a description that 

is embedded within a detailed phonetic description. Thus, less detailed distinctions 

need to be made to produce a broad phonetic representation .than a detailed pho- 

netic transcription. In a broad phonetic representation, many speech variabilities, 

such as whether an /u/ is fronted are of no significance. The phonetic classifier 

labels an /u/ as a vowel whether or not it is fronted. Thus by knowing what char- 

acterizes different broad classes of speech sounds, the broad phonetic classifier labels 

speech at a broad phonetic level much more accurately than it could label speech 

at a detailed phonetic level. 

However, segmentation errors can still happen at the broad phonetic level and 

unanticipated acoustic realizations can st ill occur. For instance, incomplete closure 

may occur in a stop gap, resulting in a 'noisy" stop gap (see Figure 3.1) which 



Figure 3.1: Noisy stop gap in 'six" in digit string '733658" 

may be labeled as a weak fricative. The lexical access component handles these 

segmentation errors due to speech variability using two types of knowledge: 1) how 

often a phoneme is mislabeled as another class and 2) how often a phoneme is labeled 

as a particrl.lar class given its context. An example of the first type of knowledge 

is how often a /k/ closure is labeled a 'weak-fricative" instead of 'silence" by the 

broad phonetic classifier. The second type of knowledge includes knowledge about 

when insertion or deletion errors occur. Examples of this type of knowledge include 

how frequently the /n/ and /s/ in the sequence /ns/ are both labeled as "strong- 

fricative" (a deletion) and how frequently an /n/ is labeled as a 'sonorant" when 

preceded by an /s/ which was labeled a 'strong-fricative" (a match). Together 

the broad phonetic classifier and lexical components take into account many of the 



variabilities in speech to produce viable word candidates. 

Broad Phonetic Classification 

The broad phonetic classifier segments the speech signal and labels each segment 

as either silence or a broad phonetic class: strong fricative, weak fricative, short 

voiced obstruent, sonorant, or vowel. These classes were chosen because they could 

be robustly identified and correspond to different manners of articulation. 

Classification is done by parameterizing the speech signal, extracting acoustic 

features from the parameters, and labeling segments based upon the acoustic fea- 

tures present. In an effort to minimize labeling errors, robust information as well 

as delayed binding was used in the classification approach. By allowing multiple 

segment labels until the final stage in processing, the classifier can use all the infor- 

mation learned from earlier stages in processing to make a final decision on labeling 

the segments. 

3.1.1 Parameterization 

Parameters were computed from speech digitized at 16 kHz and lowpass filtered 

at 6.4 kHz. The sampling rate was chosen to include the frequencies contaihing 

most of the speech information. Disagreement exists about the frequency range of 

speech: Hyde (1972) stated that speech 'covers a frequency range of about 10 kHzn; 

in contrast, telephone speech has a passband of 300 Hz to 3300 Hz and is acceptably 

intelligible-however, this may be due to use of higher level constraints by listeners. 

In this study, the overriding consideration in choosing a sampling rate is the fact 

that Zue and his students can read spectrograms computed from speech sampled 

at 16 kHz and filtered at 6.4 kHz, indicating that enough information is preseat 

in the speech signal to be recognized when processed in this way. The information 

in the higher frequency range is important in identifying phonemes with energy 



concentrations in the higher frequencies (e.g., Is/). This is especially true in the 

analysis of female speech, which has higher natural frequencies due to the shorter 

average vocal tract length of females. 

Acoustic parameters were defined for representing the speech signal in a compact 

format. Based on spectrographic examination of digit strings, candidate parame- 

ters which appeared to capture robustly the occurrence of significant events in a 

spectrogram were designed. The parameters in the final set were chosen for their 

usefulness in identifying and differentiating among different classes and for their 

robustness. The chosen parameters are energy in various frequency bands and zero 

crossing rate. 

In most of the parameter computations, pre-emphasized speech was used since 

pre-emphasis compensates for the spectral tilt of the speech spectral envelope. This 

gives the higher frequencies, which are predominant in sounds such as /a/ and /8/, 

approximately equal weight to the lower frequencies. The speech waveform was 

normalized before any computations so that the maximum of the sample values in 

each utterance is the same. The energies were calculated as log energy to minimize 

sensitivity to small variations when the energy values are large. To avoid rapid 

changes in value as a formant moved in or out of an energy band, tapered frequency 

windows were used to compute the energy within a frequency band from the DFT. 

The DFT's were computed every 5 msec using a 25.6 msec Hamming window. 

A sample tapered frequency window is shown Figure 3.2 and the corresponding 

frequency points used in the energy calculations are shown in Table 3.1. 

A spectrogram of the digit string "6861994" is shown in Figure 3.3b, and cor- 

responding parameters used in coarse acoustic analysis are shown in Figure 3.3a. 

Note that the low-frequency energy (energy 125-750 Hz) is highest in vowel and 

sonorant regions. This is because Fr ,  (and possibly a nasal formant) is present 

during the production of vowels and voiced sonorants. Thus low-frequency energy 

is a good indicator of voiced regions. 
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Figure 3.2: Sample Tapered Frequency Window 

Table 3.1: Tapered Energies Used in Coarse Acoustic Analysis 

Parameter 

energy 125-750 Hz 

energy 1000-2000 Ha 

energy 1000-3000 Ha 

energy 4500-7800 Hz 

lower 
frequency 

0 

800 

800 

4300 

lower 
cut off 

125 

1000 

1000 

4500 

upper 
cut off 

750 

2000 

3000 

7800 

upper 
frequency 

900 

2200 

3200 

8000 - 



Figure 3.3: The Digit String '6861994" (a) Sample Parameters and (b) Spectrogram 



Intervocalic /n/'s have been observed to dip rapidly in the lower-mid-frequency 

energy (energy 1000-2000 Hz). The dip is due to a nasal zero in that frequency 

region and the abruptness of the dip is due to the output quickly switching from 

the oral to nasal cavity. Note in Figure 3.3 the dip in lower-mid-frequency energy 

during the intervocalic /n/ of the 'one ninen and 'nine ninen sequences at around 

1.25 and 1.55 sec, respectively. Other energy parameters show a slight dip dur- 

ing production of the intervocalic In/,  but the lower-mid-frequency energy dip is 

much more robust. This example stresses the importance in selecting appropriate 

parameters to characterize an acoustic feature. 

Total energy is lowest during pauses and stop gaps (e.g., at 1.0 and .24 sec in 

Figure 3.3); it is usually lower in weak fricatives than strong fricatives (compare 

total energy in the /s/ at 0.10 and the /f/ at 1.92 sec). Thus total energy can be 

useful in indicating silence and in discriminating between weak and strong fricatives. 

High-frequency energy (energy 4500-7800 Hz) is largest in the presence of strong 

fricatives. The figures show that fricatives, especially /s/ and /z/, generally have 

more energy in the higher frequencies than vowels. This is because vowels have 

formants beginning at about 300 Hz, and each formant "tilts" the spectrum above 

it down by 12 dB/octave (Fant, 1970). In contrast, the lower frequency poles in 

fricatives are canceled by zeros; consequently the energy in fricatives is concentrated 

in the higher frequencies. 

Strong vowel formants are usually obsemed in a spectrogram up to at least 

3000 Hz, and even higher for front vowels. In many nonsonorants, like /v/, there 

is little energy in this region. The mid-frequency energy parameter (energy 1000- 

3000 Hz) tries to capture the contrasting presence of mid-frequency energy in vowels 

and lack of it in consonants. In some consonants there is significant energy in the 

mid-frequency range, such as a rounded /t /  in 'two," but in these cases, low- 

frequency energy, which is usually weak during voiceless consonants like I t / ,  may 

be used as a secondary cue to rule out the candidate as a vowel. 



The zero crossing rate is usually high during the production of fricatives (time 

0.10 sec) and aspiration, because of the turbulence associated with the production 

of these sounds. The zero crossing rate is generally much lower in vowels, although 

the amount depends primarily upon the amount of high-frequency energy present 

in the speech of a speaker. 

3.1.2 Acoustic Feature Extraction 

During an utterance, parameters, such as the ones described above, exhibit 

salient features corresponding to speech sounds. For example, the zero crossing rate 

is high during voiceless fricatives. Algorithms for extracting a set of these acoustic 

features, as defined in Chapter 2, were designed. The feature set was composed 

of the descriptors high, low, dip, and rapid transition High and low (high-low 

features) indicate the value of parameter in a region relative to values over the 

whole utterance and a set of standard value ranges. Dip indicates a region of lower 

value within a region classified as high. Rapid transition indicates that aregion or 

dip has a rapid onset or offset. Not all parameter descriptors were computed for 

each parameter; instead only those descriptors which are robust indicators of a class 

or several classes of speech sounds were computed. 
' 

Broad classes of speech sounds have relatively stable characteristics during the 

middle portion of a segment. For example, vowels exhibit voicing. In contrast, the 

characteristics may change at different times during transitions between two broad 

classes of sounds. For example, in the transition from a vowel to a fricative, energy 

in the higher formants may weaken sooner than energy in the first formant. To 

avoid forcing a decision at each sample, which would result in less certain decisions 

in transition regions, the high-low descriptors label only robust regions where a 

parameter is relatively stable, and other regions are left unlabeled. 

The high-low regions were found using an algorithm which depends on two 

thresholds, T1  and T2, to locate a region and then define the edges of a region. By 
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Figure 3.4: Flowchart for Finding "high" Regions 

using two thresholds, robust regions, islands of reliability (Woods, 1981), can first 

be identified, and then anchoring from each robust region, the edges of the region 

can be extended. The high-low acoustic features were defined for each parameter 

by choosing different values of T1 and T2. 

A flowchart for finding peaks using the high-low algorithm is shown in Figure 3.4. 

To locate high regions, points where a parameter value is greater than T1 are found 

first. T1 is dependent upon the minimum and maximum values observed in the 

utterance to be recognized and a 'standard" set of values derived from a set of 

training utterances. T1 was defined as: 

2'1 = cl(maz, - min,) + min, 



where the max for the utterance, maz, is: 

~ ~ X O ~ # W W ~ I  mazObraocd > mazgrobol - r(mazgloba1 - minglobal) 
maz, = 

maXglobol otherwise 

and the min for the utterance, min,, is: 

minobrcrscd minobrcrwed < minglobol 4- ~(ma~global - minglobal) 
man, = 

ming~o~or otherwise 

Max, and man, provide adjustment of threshold values for each utterance, allowing 

some adaptation to different speakers and/or environment. The constant r was 

chosen empirically to be .3 and is used to specify the range of values of maz,b,,,d 

for which maz, is set to mazob,,,d. 

The condition on maz0b,,,d and minob,,,d insures that maz, and min, are set 

to observed values for the utterance only if reasonable maxd,,,d and mind,,,d 

values were computed. When the maximum(minimum) value of a parameter in 

the input utterance was within r of the astandardm maximum(minimum), the ob- 

served maximum(minimum) was considered reasonable and the sentence was as- 

sumed to contain at least one phone for which the parameter usually reaches the 

max.imum(minimum) value. Conditionally adjusting the threshold in this way pre- 

vents errors such as lowering the threshold which defines regions of high zero crossing 
I 

rate when no fricatives or stops are present in the utterance. 

Once a region has been located, its edges are found using T2. The parame- 

ter is smoothed locally from the peak using a running average to minimize local 

perturbations: 

s[i] = c22[i] + (1 - c2)s[i - 11 

where s[i] is the value of the smoothed parameter i samples away from the peak 

(call the peak value mazrma1), x[i] is the original parameter and c2 is a constant 

chosen to be .25. The endpoints of a high region are defined to be the time when 

the value of the smoothed parameter has fallen to a predefined fraction (c3) of the 



difference in value between the peak in the region and min,. Thus T2 is defined as: 

2'2 = ~ ~ ( m a x ~ ~ ~ ~ l  - min,) + min, 

The use of T2 allows the endpoints of a region to be set relative to the peak value 

of the region and independently of TI.  Additionally, if the parameter is noisy and 

several alternating samples dip below TI ,  one region is found, rather than separate 

regions. Low regions are found using the same algorithm, but with complementary 

thresholds and comparators. 

Dips for a parameter are found only in high regions using a simple dip detector. 

The slope is computed on the median smoothed parameter, and candidate dips are 

hypothesized at the point that the slope changes from negative to positive (call it 

PI) .  From this point a local max in the smoothed parameter is found on each side. 

If the minimum dip depth, defined to be the minimum of the difference between the 

parameter value at each local max and PI, is greater than 5 dB in the smoothed 

parameter, then the region between the two local maxima is defined to be a dip. 

Dips were computed on a 3-point median smoothed parameter and 7-point median 

smoothed parameter. The two different smoothers were used to capture short dips 

(3-point) and longer dips (7-point). The dips found on the &point and 7-point 

smoothed parameters were combined to form the list of dips for the parameter. 

The t r a n ~ i t i o ~  rate is checked at edges of regions or dips associated with the 

energy from 1000 to 2000 Hz. For each edge, the maximum slope within 20 msec 

of the edge is found. If the maximum slope is greater than 1 dB/msec, then the 

transition is labeled "rapid." 

To help moderate the effect of noise, redundant features can be used to indicate 

the presence of a phonetic class. Redundant features were in the same spirit in which 

Otten (1971) hypothesized that man utilizes redundancies in noisy situations. 

A second algorithm for finding when the low-frequency energy is high was used. 

Rather than looking for regions where the parameter values are large, the second 

algorithm looks for edges using the fact that onsets in voiced sonorant regions 
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(a) 

(b) 

Figure 3.5: Low-Frequency Energy Characterizations of the Digit String "6861994" 

(a) low-frequency energy contour (b) first difference of the low-frequency energy 

contour (c) piecewise linear approximation to the low-frequency energy contour (d) 

first difference of piecewise linear approximation to the low-frequency energy con- 

tour (e) regions where low-frequency energy was found to be 'highn using thresh- 

olding method 'Ln and edge detection method "vn 

are generally characterized by a sharp rise in low-frequency energy and offsets are 

characterized by a more gradual decline in low-frequency energy. .Thus onsets are 

detected first, and then an offset is found between each pair of onsets. 

Figure 3.5 depicts parameters used in edge detection. The edge detector method 

locates onsets and offsets (edges) in the low-frequency energy contour (Figure 3.5a) 

based upon the first difference of a piecewise linear approximation to low-frequency 

energy (Figure 3.5d). A piecewise linear approximation (Pavlidis, 1974) was chosen 

for smoothing because it preserves the edges of the contour while smoothing small 

irregularities (compare (a) and (c)), resulting in a cleaner first difference of the 

linearized parameter (d). Because onsets in the low-frequency energy contour are 

sharper and can be more robustly detected than offsets, they are located where the 



first difference of the linearized signal is large and the energy is above a minimal 

threshold. The energy threshold prevents false or early triggering, which happens 

when the spectral distribution of the energy in fricatives dips low. Between each 

pair of onsets, there must be an offset; the offset is found where the linearized first 

difference is most negative. 

The output of the edge detector is shown in Figure 3.5e and regions between 

an onset and offset are indicated by a "v." Horizontal lines indicate the times 

the detector found the low-frequency energy to be high. The leftmost edge of a 

horizontal line marks the left endpoint and a vertical bar marks the right endpoint of 

the detected feature. The output of a threshold detector is also shown in Figure 3.5e; 

the regions in which the low-frequency energy was above a threshold are marked by 

an "L." Comparison of the two methods show close agreement in most cases. 

When both detectors indicate that the low-frequency energy in a a region is 

high, then there is strong evidence that this is a voiced region. When there is 

disagreement between the two detectors, the low-frequency energy is not obviously 

high, but some acoustic event has occurred which causes the low-frequency energy 

to not be low. For example, this may be a stop with a release which extends into 

the low-frequency range. Thus by combining the output from both detectors, better 

decisions may be made. 

Output from the feature detectors (rate information is not shown) for the utter- 

ance '6861994" is shown in Figure 3.6. The key to the symbols used in Figure 3.6 

is given in Table 3.2. Note that most feature detectors turn on in a consistent 

manner: "h" is on during strong fricatives, =L", and 9" are on during voicing, and 

"D" is on during intervocalic nasals. 

3.1.3 Broad Phonetic Labeling 

Broad phonetic labeling uses a set of production rules to deduce possible broad 

classes from the chosen set of acoustic features. The hypothesized broad classes 



1 sec 2 sec 

VIEWPORT-3: (PWFE NflRfll4) n i n :  -115.62 nax: -58.125 

VIEWPORT-4: (PHFE flRRfl14) n in :  -187.35 nax: -48.703 

Figure 3.6: Feature Detectors for the Digit String "6861994" (a) energy 125-750 Hz 

is high using threshold "L" or edge detector method 9" (b) energy 1000-2000 Hz 

is high "m" or a dip occurs "d" (c) energy 1000-3000 Hz is high "V" or a dip occurs 

"D" (d) energy 4500-7800 Hz is high "h" ( e )  zero crossing rate is high "a" ( f )  total 

energy is low "s" 



Table 3.2: Key to Figure 3.6 

form a segment lattice. When the production rules have deduced all candidate 

labels for each s e p e n t  in the segment lattice, the computed values of the acoustic 

features are used to find the best label for each segment, thus producing a unique 

segmentation string. By first finding all possible labels, more directed analysis 

may be performed to reduce the segment lattice to a segmentation string by using 

knowledge of each competitor. 

The production rules are applied in levels to produce the segment lattice. (See 

Appendix B for sample production rules.) By using multiple levels of rules, the 

knowledge gained by applying rules at lower levels can be used by higher level rules. 

Thus a rule can use contextual constraints requiring the presence of a preceding 

vowel if rules hypothesizing vowel-like segments have previously been applied. 

The first set of 12 production rules hypothesizes each segment to be zero or 

more phone-like classes, based upon the presence or absence of combinations of 

non-conflicting robust acoustic features characterizing each segment. The acoustic 

features used are shown in the top of Table 3.3, and the phone-like classes used are 

Symbol 

h 

z 

s 

m 

d 

V 

D 

1 

v 
b 

Feature 

high energy 4500-7800 Hz 

high zero crossing rate 

low total energy 

high energy 1000-2000 Hz 

dip in high energy 1000-2000 

high energy 1000-3000 Hz 

dip in high energy 1000-3000 

high energy 125-750 Hz 

high energy 125-750 Hz (edge-method) 



shown in the center of Table 3.3. 

The second set of 16 production rules hypothesizes phone classes from the phone- 

like classes using durational and contextual constraints to rule out some of the hy- 

pothesized phone-like classes. The duration of acoustic features is useful in classifi- 

cation; for example, an intervocalic, short, voiced obstruent is allowed a maximum 

duration of 55 msec and must be preceded and followed by a vowel. Contextual con- 

straints are used to check that the context of a given label is correct. For example, 

an intervocalic, short voiced obstruent must be preceded and followed by a vowel. 

In addition, some speech sounds have slightly different realizations depending upon 

context. Intervocalic nasals are characterized by a sharp dip in lower-mid-frequency 

energy, but in non-intenrocalic nasals, lower-mid-frequency energy may ''fade out." 

To capture these differences within a class, a separate rule is used to describe each 

realization and its context. The phone classes used are shown in the lower portion 

of Table 3.3. 

Figures 3.7a and b show the segment lattice produced by the classifier after the 

first and second sets of production rules are applied. The key to the symbols used 

in Figure 3.7 is given in Table 3.3. The segment from 0.23 to 0.26 sec is labeled as 

silence. It can be observed that silence segments are characterized by a low amount 

of total energy. Similarly, strong fricatives are characterized by a high zero crossing 

rate and a large amount of high-frequency energy, as in the segment from 0.82 to 

0.92 sec, which is labeled as a strong fricative. 

Each segment is not necessarily labeled as  a broad phonetic class after the first 

two levels of production rules are applied. If there is conflicting information such 

that the cues are not robust enough to make a good decision (as in a transition), 

the segment is left unlabeled. Short unlabeled segments less than 40 msec in dura- 

tion are handled first by arbitrarily splitting each evenly between the two adjacent 

segments on the assumption that they represent transitional regions. This pro- 

duces a segment lattice without transitions and frees the lexical component from 



Table 3.3: Key to Symbols Used in Figure 3.7 

Description 

high energy 4500-7800 Hz 

high zero crossing rate 

low total energy 

rapid transition in energy 1000-2000 Hz 

dip in high energy 1000-2000 Hz 

high energy 1000-2000 Hz 

dip in high energy 1000-3000 Hz 

high energy 1000-3000 Hz 

high energy 125-750 Hz 

high energy 125-750 Hz (edge-method) 

strong fricative like 

weak fricative like 

silence like 

short voiced obstment like 

sonorant like 

vowellike 

strong fricative 

weak fricative aspiration 

silence 

short voiced obstment 

sonorant 

voiced sonorant, vowel 

: 

acoustic 

features 

phone-like 

classes 

phone 

classes 

Symbol 
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Figure 3.7: Steps in Broad Phonetic Labeling from Acoustic Features for the Digit 

String '6861994" 

containing a subroutine for handling transition regions. In lexical access, boundary 

locations are irrelevant, only the order and approximate duration of the segments 

are important. In verification, the transition regions (boundaries) may be used to 

help identify a segment, but the central portion of the segment also contains much 

information which can be used for segment identification. Thus the philosophy was 

adopted that only the approximate location of boundaries need to be identified for 

recognit ion. 

Unlabeled segments potentially match all broad classes and reflect no informa- 

tion. In these segments a consistent set of features waa not present. A new feature 

set, called not-features are defined by relaxing the constraints on the high and low 

definitions. The not-features delimit regions where parameter values are anot highn 

or 'not low-nd are computed using the ahigh-lown algorithm. The set of features 

together with durational constraints are used to hypothesize possible label candi- 

dates and rule out definitely incorrect labels in the segments. In Figure 3 . 7 ~  there 



is an unlabeled segment beginning at time 0.92 sec. A corresponding segment lat- 

tice illustrating all labels after rules using 'not-feature" values are applied is shown 

in Figure 3.7d; we can observe that the unlabeled segment beginning at time 0.92 

sec was labeled as silence since all other possibilities have been ruled out by the 

not-features. 

Once all broad'phonetic labels are hypothesized for each segment, the segment 

lattice is reduced to a unique segmentation. Any segment which has been assigned 

more than one label is examined in more detail to determine the best label. Six 

acoustic features derived from the initial parameter set are used to capture param- 

eter characteristics similar to the acoustic features used for initial segmentation. 

Since segment regions have been defined at this point in processing, computation 

can be performed over a specified region. Thus, rather than looking for a "highn 

region in an acoustic parameter, the maximum value of an acoustic parameter 

within a specified region is computed. The six acoustic features are: maximum 

pre-emphasized total energy in the center region, maximum pre-emphasized low- 

frequency energy in the center region, minimum total energy in the center region, 

minimum pre-emphasized lower-mid-frequency energy, maximum pre-emphasized 

mid-frequency energy, and maximum zero crossing rate. The center region, defined 

as the region from the quarter point to three-quarter point of the segment, was used 

to minimize transition effects on the computed values. 

The label for each segment is chosen to be the label which is Qmost likely"; the 

likelihood of the label is computed based upon the distribution of the six acoustic 

features observed for each label and. the value of each acoustic feature over the 

segment. In particular, the likelihood of label i, Li, is computed as the product of 

the likelihood of label i versus label j, Lij, over all j competitor labels: 

The likelihood ratio of labels i and j is defined to be the product of the likelihood 



ratio of label i versus label j based on feature f ,  Lijj, over the six acoustic features: 

Thus the more likely each feature indicates that the label is label i ,  the more likely 

the segment is label t (rather than label j). Note from Equation 3.1, that the more 

likely a label is relative to each competitor label, the more likely it is that the 

segment is that particular label. 

For each pair of competitor labels, i and j, Lijj is computed from the value of 

the feature in the segment. The probability of a label given the observed feature 

value is estimated using k-nearest-neighbor estimation (Duda and Hart, 1973). The 

probability estimate for label I and feature f ,  PI!, is used to compute the likelihood 

ratio between the labels i and j for feature f: 

Since a label is more likely the larger Plj is, label I is more likely the larger Liij is. 

This algorithm was applied to the segment lattice to produce the final segmentation 

string shown in Figure 3.7e. 

3.1.4 Evaluation 

The output of the broad phonetic component was evaluated for insertions, dele- 

tions, substitutions, and matches when compared to a hand-labeled phonetic tran- 

scription (see Appendix A for a description of the phonetic labeling procedure). The 

broad class transcription of each utterance was derived by mapping each phone in 

the hand transcription to a broad class. The broad class hand transcription and au- 

tomatic broad class transcription were aligned using a simple 50% overlap criterion: 

if segment Ai in string A covered over half the duration of segment Bj in string 

B, then segment A; was mapped with segment Bj. An overlap criterion, rather 

than a string alignment was chosen because the time boundaries associated with 



tkz segment regions are used later in verification. Since correct time boundaries are 

relevant, a string alignment is a less stringent criteria because matches are allowed 

even though the boundaries are shifted. 

Insertions were defined aa two adjacent segments from the automatic transcrip 

tion mappihg into one segment of the hand transcription. Deletions were defined as 

two or more adjacent segmente of the hand transcription mapping into one segment 

of the automatic transcription. (See Appendix C for insertion and deletion errors.) 

Substitutions were defined to occur any time the hand and automatic labela did. - 
U ,.r .?.. 

not agree, based on the 50% overlap criterion, independent of whether or not an 

insertion or 'deletion occurred. This definition was used because the match statistic8 

used by lexical accees were computed thb way. The confusion matrices of Figure 3.8 

show the substitution errore and correct labels. Some errora were due to the limited 

set of labels used in hand transcription. For example, the stop gap for /k/ in the 

word was always transcribed as [k'] if a demarcation was observed between 

the vowel and /s/, regardless of how noisy the closure was. Substituting aweallr- 

fricativem for 8silencem in this case is a reaoonable error. Note that the hulk of %he 

errors are reasonable, such as labeling /f/ (a weak fricative) as silence. Although 

/8/ is also a weak ficative, in the digit lexicon /8/ is always followed by an /r/. 

Since /r/ usually strengthens a preceding fricative, substituting strong fricative 

for weak fricative when a weak fricative is followed by an /r/ is also a reasonable 

-L ,A~rr~r : , .  A number of /n/'s were identified as a vowel. However, prevocrPlic /n/% - 
which may be a couple pitch periods in duration and therefore are not ars gaben% 

as intervocalic /n/'s, are included in the statistics. Comparison of the performance 

for combinations of utterances and speakers reveals the performance to be similar. 

In cases where the labels differ, there are usually few samples, aince these phones 

do not normally occur in digits. For example, voiced /h/ was sometimes used $0 

mark aspiration at the end of sentence. 



Gllenee Gonorant Gtrong F r i c  GVO Voucl Ueak F r i c  Gllence Gonorant 6trcng F r l c  E M  Vovel Ueak F r l c  

611encc Sonorant Strong F r t c  GUO Uouel Uesk F r  l c  SI1ence 6onorent Strong F r i e  6 W  
7 

Vouel Ueak Frle ,--.- I. 
k. 
C 
0 

In addition to IPA symbols, additional symbols were used in the transcriptions: 0 for silence 

within a word; o for silence between words; + for noise; and - for voicebar. 

Figure 3.8: Broad Phonetic Labeling Confusion Matrices for: (a) training utterance 
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3.2 Lexical Access 

Based upon the continuous speech recognition model, the lexical access compo- 

nent produces viable word hypotheses using its knowledge of the words in the lexi- 

con, path constraints, how allophonic realizations of a phone are context-dependent , 
and reasonable durations for speech units. The component was implemented in two 

parts. First the word hypothesizer used sequential constraints to propose word can- 

didates. Second, the word candidate pruner used durational, allophonic and path 

constraints to reduce the number of viable word candidates. The lexical access 

component could have been implemented so that checks on some of the pruning 

conditions are made as words are hypothesized. But by performing hypothesizing 

and pruning separately, the source of any errors may be more easily found. Since the 

purpose of developing the component was to study how speech knowledge could be 

applied to real speech for continuous speech recognition, the ability to quickly un- 

derstand the source of error was important; consequently each constraint is applied 

as a separate step. 

Lexical access produces a lattice of word candidates for the verifier. The appli- 

cation of speech constraints to prune the lattice produced by the word hypothesizer 

is important because the verifier can focus on reasonable candidates without per- 

forming computations on unreasonable word hypotheses, thus resulting in a more 

directed search. 

3.2.1 Dictionary Representation 

A word may be pronounced in multiple ways. The lexicon contains knowledge 

about allowable pronunciations of each word and the context in which each word 

can occur. An average of two pronunciations per word was used. Sentence-initial 

pronunciations allowing for a voice bar in 'zero", a very weak initid /f/ in 'five", 

and no initial closure in "two," were used. In addition, sentence-final pronunciations 



allowing for aspiration following the final /r/ in "four" and for deletion of the final 

closure in "eight" were used. Each phonetic pronunciation of a word is stored 

in an association list which is keyed by phonetic transcription. Associated with 

each pronunciation is a structure containing broad contextual information. This 

information is divided into four parts: 

1. broad classes which must follow or cannot follow the current pronunciation. 

For example, [evr] requires a following vowel. 

2. broad classes which must precede or cannot precede the current pronunci- 

ation. This information was not used because it was not applicable to the 

pronunciations used. 

3. whether the first phone can geminate. The first phone in the pronunciation is 

not allowed to geminate when the first phone in the canonical pronunciation 

is deleted. For example, when the nasal murmur in the initial /n/ in 'ninew 

is deleted, the /ar/ is not allowed to geminate with a preceding vowel, since 

intervocalic /n/'s are usually robust and should be found by the classifier. 

4. whether the last phone can geminate. For example, a flap, as in [err] is not 

allowed to geminate. 

When a word is hypothesized, this information is kept with the word and accessed 

at the appropriate point in processing. 

3.2.2 Hypothesizing Words 

The word hypothesizer produces viable word candidates given the broad pho- 

netic segment ation produced by the broad phonetic classifier and knowledge about 

the words which form the lexicon. In the ideal case where interspeaker and in- 

traspeaker variations are minimal and the broad class segmentation is accurate, 

sequential constraints can be applied directly to the segmentation string. That is, 



Figure 3.9: Spectrogram of the digit string '031579" with silence in If/ in "five" 

for each pronunciation of a word in the lexicon, which is represented by its pho- 

netic and corresponding broad phonetic transcriptions, matches are found between 

a portion of the segmentation string and the broad phonetic representation of the 

pronunciation of a word. 

Use of a segment lattice in place of the segmentation string can reduce the pos- 

sibility of incorrect segmentation of real speech; however, a lattice handles speaker 

variations by enumeration. Different pronunciations produced by different speakers, 

must be included as alternate pronunciations, resulting in a very large lexicon. Fur- 

thermore, given an unanticipated realization of a word, the system will be unable 

to correctly propose the word. For example, a short period of silence in the middle 

of the /f/ in 'five" may have been observed (see Figure 3.9), but the /f/ in 'four" 

may have never been observed to be pronounced this way. If a speaker then says 

the /f/ in "four" with a short period of silence in the middle, the system should 

use the knowledge that it has seen /f/'s in other words pronounced this way. Thus 

the system should give the /f/ a good score, rather than commit a fatal error by 



assuming that the /f/ in "four" could never have some silence in the middle. 

The use of a lattice was examined by performing lexical access on' the segment 

lattice produced by the broad phonetic classifier immediately before the lattice is 

reduced to a segmentation string. The performance was evaluated on five new 

speakers by measuring how often the correct word was not among the word candi- 

dates. A word is considered a candidate when it overlaps in time with the spoken 

word by more than 50%. The correct digit was not one of the lexical candidates 

only 1% of the time. However, this measure did not insure that path constraints 

would be satisfied. For example, /8ri/ is represented as &weak-fricative vowel" at 

the broad phonetic level. If the underlying /0/ is classified as 'weak-fricative silence 

weak-fricative" by the broad phonetic classifier, and this representation was not in 

the lexicon, then &threes would be a lexical candidate, but the &weak-fricative si- 

lence" portion of the segment lattice would not be associated with the three. Thus 

an alternate pronunciation of /800ri/ would have to be added to the lexicon. It was 

found that a segment lattice did not provide enough flexibility and that the size of 

the lexicon had to be increased to accommodate new pronunciations. 

Thus the word hypothesizer used knowledge about the characteristics of the seg- 

mentation strings produced by the front end. A scoring algorithm was developed 

to allow for some acoustic variations in a phone. Many alternate pronunciations 

needed with the straight matching method are unnecessary with this method be- 

cause the system knows the types of errors that the broad phonetic classifier tends 

to make and uses that knowledge in scoring each word. For instance, the broad 

phonetic classifier may call /8/ a weak fricative 60% of the time and a strong frica- 

tive 40% of the time. The system knows this and therefore when a /0/ is called a 

strong fricative, the score is not reduced much. In contrast, if a /8/ is never called 

a vowel, then the match of /8/ to the broad class label "vowel" would be assigned a 

poor score. In addition to substitution errors, the algorithm also handles insertion 

and deletion errors by using transition probabilities. If the broad phonetic classifier 



Figure 3.10: Paths Used in Dynamic Programming Algorithm 

consistently misses prevocalic nasals, as in the word 'nine," then the system will 

know that very often the /n/ as well as the /ar/ is labeled as a vowel. This is re- 

flected by high transition probability of matching /n/ to ?roweln and then matching 

/ay/ to "vowel." 

The general idea of the matching algorithm is to use knowledge about the char- 

acteristics of the broad phonetic classifier's output to assign a score reflecting how 

well a phonetic pronunciation matches a portion of the segmentation string. Each 

segment of the segmentation string is used as a beginning segment for matching 

each pronunciation. One or more end segments are associated with a beginning 

segment. Each end segment is chosen based on the length of the pronunciation's 

phonetic transcription; the end segments are iteratively chosen to be all segments 

within the range: Sb + fixr(.5 * L) and Sb + fixr(2 * L) where Sb is the beginning 

segment, L is the number of elements in the phonetic transcription, and f ix r  is the 

operation of rounding to the nearest whole number. 

A forward dynamic programming algorithm (Winston, 1984) was used to find 

the best match between the two sequences. The allowed paths from each node are 

illustrated in Figure 3.10. Simple 1:l slope constraints are used, requiring the path 

to be monotonically non-decreasing in each direction. In contrast to the constraints 



used in dynamic time warping of the speech signal, many phonetic segments may 

map into a single label, as the /I/, /r/ and /ow/ in 'zero" maps into the label 

%owel," because the broad phonetic classifier has no knowledge for differentiating 

among these sounds. Figure 3.10 shows that three paths or transitions (to nodes B, 

C, and D) exit from a typical node A. The total accumulated score or adistance" 

to node D, dD is computed as: 

dA is the total accumulated score to node A, Pr(pD, ID) represents the probability 

of the phone at node D, p ~ ,  being labeled as the broad class label ID. WD is the 

probability of making a transition from node A to D, given that node A is the 

current state and nodes B,C, and D are states which may be entered from node A. 

WD is computed as: 

Thus WD represents the probability of deleting a segment such that p~ and p~ map 

to IA, which is the same as ID. Similarly, WB represents the probability of deleting 

a segment. The use of these weighting functions incorporates information about 

insertion and deletion probabilities into the score. 

Figure 3.11 illustrates the alignment between the phonetic string /z1roW/ and 

the broad phonetic represent ation 'strong-fricative vowel." Probability scores used 

in the computation are shown on the right. The alignment score between each 

phone and broad phonetic class is shown under 'match." The transition score from 

the previous node to the current node is shown under 'weight." A weight is not 

shown for the first phone and broad class pair because a transition was not made. 

Not that an insertion or deletion occurs 1% of the time in the first transition only. 

The total accumulated score to a phone and label pair is shown under 'total." The 

score assigned to a phonetic string is the total score of the best path. This score is 

normalized by the number of transitions and is shown as the final score in the figure. 
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Figure 3.11: Alignment of /z1roW/ with 'strong-fricative vowel" 

By allowing each pronunciation of a word to begin at each segment with possible 

multiple end segments, many words can occur in a word lattice. For example, in 

a lattice represented by 20 broad phonetic segments, a word represented by four 

phones would be hypothesized 112 times. Although the number of candidates is 

large, this number is much smaller than the possible number of candidates in a 

frame-by-frame approach, such as dynamic time warping, where each word can 

begin at every frame. Furthermore, many of these hypotheses are poor matches, 

and some type of pruning can be applied to remove these poor matches. 

Two word score distributions, on a log, scale, are shown in each part of Fig- 

ure 3.12. The distribution of correct word scores is indicated by the dashed line, 

and the distribution of the scores of all word hypotheses for a sample utterance 

are indicated by a solid line. Comparing the two distributions in each figure, we 

note that the log probability scores of the correct words are much closer to 0, or a 

probability of 1, than the bulk of the scores of all possible words. Note also that the 

distributions are similar for the new utterances spoken by training speakers and by 

new speakers, indicating the potential speaker independence of the approach. 

A word score threshold can then be set such that all words with a score below 

the threshold are ruled out as a viable candidate. If a word is pruned as goon as 
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Figure 3.12: Histograms of Correct Word Scores vs All Word Candidate Scores: (a) 

training utterances by training speakers (b) new utterances by training speakers (c) 

training utterances by new speakers (d) new utterances by new speakers 



the cumulative cost computed by the alignment algorithm passes the threshold, the 

amount of computation required for finding word candidates can be significantly 

reduced (by about an order of magnitude as measured from run times when the 

threshold is set at -1.5). Thus by setting the threshold at different values, the 

system can be biased towards less computation with more errors, or towards less 

errors and more computation, as desired. 

Figure 3.13 illustrates the relationship between the amount of pruning achieved 

compared to the percentage of correct words pruned. We can observe the similarity 

of the curves and how the reduction of all word candidates is much more than the 

reduction of the correct word candidates for a given pruning threshold. 

Figure 3.14 illustrates the relationship between the number of word candidates 

in the word lattice per word in the digit string as a function of the pruning thresh- 

old used in application of sequential constraints. Note that the number of word 

candidates increases sharply as the threshold is initially relaxed. The large number 

of word candidates when the threshold is very weak is due to the combinatorics of 

allowing words to begin and end at multiple segments, as explained earlier in this 

section. 

3.2.3 Pruning the Word Lattice 

Simple constraints based upon speech knowledge can be used to rule out very 

unlikely candidates. For example, if [err] ("eight" pronounced with a flapped /t/) 

is hypothesized, then the following word must begin with a vowel, since a / t /  is 

flapped only in the context of vowels. If none of the following hypothesized words 

begins with a vowel, then [err] can be ruled out as a viable word candidate. 

Three types of constraints were applied following word hypothesis: path con- 

straints, durat ional constraints, and allophonic constraints. The block diagram in 

Figure 3.15 illustrates when each constraint is applied. For example, durational 

constraints are applied first to rule out word candidates which depend on a seg- 
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Figure 3.15: Application of Pruning Constraints 
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Figure 3.16: Distribution of sonorant duration for segments containing 1 or 2 phones 

ment representing 1 phones when the durational training data indicates that 2 

phones are represented by the segment. After duration constraints are applied, 

path constraints and broad allophonic constraints are applied iteratively until nei- 

ther constraint prunes any word from the word lattice. Path and broad allophonic 

constraints are applied iteratively because removal of a word by one constraint may 

cause the conditions for the other constraint to remove a word(s) to be satisfied. 

As an example, Figure 3.16 shows the distribution of sonorant segment durations 

in the training set (see Appendix A for a description of the training set). Table 3.4 

shows the cutoff points for regions where only 1 phone, 1 or 2 phones, and only 2 

phones occurred for the broad phonetic classes: "sonorant," %oweln and "strong 

fricative." 

Path constraints, as described in Section 2.3.2, require that each word in the 

lattice form part of-a complete path. Words which do not have a legal "next word" 

and "previous word" are pruned from the lattice. The "next word" can be either a 

word which begins where the current word ends, the end of the sentence, or a word 

that has an initial phone which could acoustically geminate with the final phone of 



Table 3.4: Cutoff Points of Segment Duration 

the current word; "previous word" is defined similarly. Acoustic gemination is the 

merging of two phones such that they are acoustically realized as one phone. This 

occurs when two adjacent phones are similar, such as the final /s/ in "six" and the 

initial /z/ in "zero." These two phones may merge such that they appear as one 

strong fricative. 

Broad allophonic constraints, as described in Section 2.3.4, require that the 

context of a word be compatible at the broad phonetic level. The flapped /t/ in 

"eight" is an example of broad allophonic constraints. When none of the word 

hypotheses satisfy the contextual constraints of a word, the word can be removed 

as a viable word hypothesis. 

Figure 3.17 illustrates the primary steps in lexical access. Each "box" in the 

figure represents the relative position of a label and does not convey any infoma- 

tion about duration or rank order. The broad segmentation is shown in (a). Below 

in (b), all word candidates with scores better than the pruning threshold (chosen 

to be -0.75 for this example) are displayed in the word lattice. Application of du- 

ration constraints did not remove any word candidates in this example. The first 

application of path constraints removed the words marked with a sharp sign in (b), 

producing the word lattice shown in (c). All the words ending at the last vowel 

segment which could not geminate with a word beginning in the vowelsegment, de- 

noted by a "#" in (b) were removed because no word in the vocabulary is composed 

only of a sonorant. The first application of broad allophonic constraints removed 
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Figure 3.17: Pruning Word Candidates in Lexical Access 

78 



the /fa%/ marked with an asterisk in (d), producing the word lattice shown in (e). 

The /favv/ was removed because in the context where a strong fricative follows 

/v/, the /v/ may be realized only as a vowelor fricative. Thus the pronunciation of 

"five" with the /v/ was removed, but the pronunciation with the /v/ deleted was 

kept. The final pruned lattice is shown in (f). 

The pruning constraints were evaluated on the utterances in the training set by 

comparing the number of word candidates immediately after aJl words are hypothe- 

sized with the number of wcrd candidates after pruning. Two sequential constraint 

thresholds were tested. The ratio of word candidates after pruning to word can- 

didates before pruning was 0.69 at a sequential constraint threshold of -0.75 and 

the ratio was 0.76 at a sequential constraint threshold of -1.75. Thus application 

of durational, path, and allophonic constraints can reduce the number of word can- 

didates even further. However, the constraint is not as strong when the sequential 

threshold is more lenient. With a weaker threshold (more negative), additional 

word candidates are allowed which can prevent the pruning constraints from being 

satisfied. Therefore, the pruning constraints need some prior reduction of word 

candidates before they can be applied effectively. 

3.3 Chapter Summary 

The main points addressed in this chapter are: 

e Speech is highly variable. However, this variability is less evident in a broad 

phonetic representation. Thus many of the variabilities can be handled by 

representing speech at a broad phonetic level. 

The broad phonetic classifier segments and labels speech into broad phonetic 

classes using a set of production rules applied to coarse acoustic features. 

The broad acoustic features characterizing the speech signal are defined by 

identifying robust regions and then extending outward. 



A delayed binding approach is used to produce the final segmentation string; 

that is, the segment string is determined after all czndidate labels are found. 

Even with a segment lattice, the lexicon becomes very large due to speech 

variations 

By using the characteristics of the broad phonetic classifier, sequential con- 

straints can be effectively applied to real speech. 

Path constraints and broad allophonic constraints can be applied to reduce 

the number of candidates even further. 



Chapter 4 

Feature-Based Verification of 

Word Hypotheses 

This chapter explores the use of detailed acoustic features for verification of word 

hypotheses. In our model, the input to the verifier is a lattice of word candidates 

produced by the lexical component. In this lattice, the most unlikely candidates 

have been removed. The task of the verifier is to select the best word or string of 

words from among the competing word candidates using a set of detailed acoustic 

features. 

To verify the word candidates, each word hypothesis is represented as a sequence 

of phones, and each phone is characterized by a set of detailed acoustic features. The 

features were chosen to capture salient acoustic characteristics of speech sounds and 

to provide good discrimination among easily confused sounds in the digits. Two 

simple scoring algorithms were then used to demonstrate the feasibility of using 

these acoustic features for verification. 

4.1 Characterization of Phones 

Although many different recognition units could be used to score word hypothe- 
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ses, phones were chosen as the basic recognition unit because they are suitable for 

defining many types of phonetic features and because of potential extendability to 

other recognition tasks. By representing each of the word hypotheses as a sequence 

of phones, features can be developed to characterize phones rather than whole 

words. Since the number of phones in a language is limited, a phone representation 

is potentially extendable. 

Many of the defined features take advantage of the fact that a phone represen- 

tation is used. A phone representation allows features to be defined over specific 

regions of time. In the middle of a phone region, characteristics of only one type 

of sound are present, while at the edges of the region, transitional information is 

available. Thus features can be defined to be minimally influenced by coarticulation 

or to specifically capture coarticulation effects. For example, the features for char- 

acterizing F1 and F2 were defined such that coarticulation effects on the computed 

values are minimal. 

A phone representation also allows a wider variety of acoustic-phonetic con- 

straints to be exploited more easily than a frame-by-frame representation. A phone 

can be characterized over its entire duration, such as by the maximum or average 

values of a set of parameters, rather than checking values on a frame-by-frame ba- 

sis. In addition, many characteristics of speech sounds which are difficult to capture 

in a frame-by-frame approach are easily captured in a phone representation. For 

example, onset rate characterizes a phonetic event, such as a rapid stop release. 

This acoustic event may occur in one or two frames in a frame-by-frame approach 

and influences the overall score only in the one or two frames. In a phone represen- 

tation, such speech events can be captured explicitly, and in an acoustic-phonetic 

approach, the information can be given equal weight with other feature information. 

Thus the onset rate can be given more import in the decision process in a phone 

representation than in a frame-by-frame approach. 

A small set of acoustic features was carefully designed to capture salient char- 



acteristics of phones and detailed differences between similar phones. The large 

amount of information needed to represent a spectrogram can be reduced by defin- 

ing and identifying acoustic features which robustly capture the occurrence of sig- 

nificant events in the spectrogram. Observations of phone characteristics in a spec- 

trogram were used to select the initial parameters and features. The parameters 

were chosen to characterize important regions or events in the speech signal, and 

the features were chosen to quantify the parameters within a phone region. 

4.1.1 Parameters 

Three types of parameters, the energy within a frequency band, a measure of the 

location of spectral concentration, and the location of the offset of the first major 

peak in smoothed spectra, were used to characterize the speech signal. All param- 

eters, except for the peak offset, were computed at a fixed rate. The information 

each parameter captures and how each parameter is computed are described below. 

Energy 

The energy in a frequency band, E, is computed by applying a frequency window, 

@(e jw  ), to the short-time spectra, Z(dw ): 

Trapezoidal shaped frequency windows were used to minimize sharp changes in 

energy as a formant moved in or out of the frequency band. The energy was 

computed as log energy to minimize the sensitivity to small variations in value 

when the value is large. 

A Hamming window, h[n], waa used to calculate the short-time spectra: 



Unless stated otherwise, the duration of the Hamming window was 25.6 msec. Bj. 

varying the width of the Hamming window and the default update rate of 5 msec, the 

sensitivity of the parameter to energy changes in the speech signal can be modified. 

Spectral Concentration 

One of the primary characteristics of voiced phones is the presence of formants; 

and associated with each formant is a concentration of energy. When two formants 

are close in frequency, these energy concentrations may merge go that accurate 

tracking of formant frequencies is difficult. However, in the identification of phones, 

particularly the limited number of phones in the digit vocabulary, gross character- 

istics of energy location may be sufficient. 

Spectral weighting windows were used to characterize the location of energy 

concentrations associated with the formants of speech. The location of spectral 

concentration, S, was computed by applying a weighting window to the spectrum: 

where the magnitude-squared spectrum, %, and weighting window, W ,  represent 

vectors normalized by the mean value of the vector elements. The vectors are nor- 

malized by the mean value of the vector elements to remove bias in the computed 

value. Additional normalization by the magnitude of each pair of vector elements 

was motivated by the idea that when and w; are similar, they will add construc- 

tively as Iziwil, but when z; and wi are different, they will add destructively relative 

to lziwil. Thus if 3 and F? are very similar, S will be close to 1; if 3 and ~ are 

very dissimilar, S will be close to -1. 

The weighting window can be any real function over the frequency range; it may 

be thought of as a generalized form of the center of mass or first moment, in which 

the weighting function is linear with frequency. By specifying the sensitivity of the 

window to different regions of the spectrum, the weighting function can be tailored 
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Figure 4.1: Weighting Windows: (a) High/Low (b) F'ront/Back (c) /r/ 

to capture particular spectral features. The weighting windows were tailored to be 

least sensitive near the edges of the frequency region in order to minimize the effect 

of formant motion at the edge of the windowed region. This was accomplished by 

defining weighting windows with a slope of zero at the outer edges. 

Figure 4.1 illustrates the three weighting windows used. These window posi- 

tively weight the higher frequencies and negatively weight the lower frequencies. 

Thus the lower in frequency the energy is concentrated within the band, the lower 

the value of the spectral concentration. The first weighting window captures the 

position of energy concentration in the frequency range below 900 Hz. In vowels, 

this "high/low-spectral-concentration" parameter1 roughly corresponds to the po- 

sition of the first formant; and in nasal consonants, the value of this parameter is a 

function of the position of the nasal formant, nasal zero, and the first formant. The 

second weighting window provides information on the location of energy concentra- 

tion in the frequency range from 900 Hz to 2800 Hz. This 'front/back-spectral- 

concentrationn parameter roughly corresponds to the position of the second formant 

in vowels and glides. The third weighting window attempts to capture when the 

'Some of the names given the parameters, features, and terms used in this chapter were chosen for 

conciseness at the sacrifice of accuracy. For example, the highllow-spectral-concentration does not 

always correspond with whether or not the vowel is high since this parameter may be influenced 

by F2 when it is low in frequency. 



third formant lowers in frequency for an /r/. During the production of an /r/, the 

third formant characteristically drops to approximately 2000 Hz. The exact fre- 

quency depends upon a number of factors, including the speaker and speaking rate. 

The amount of lowering also depends on whether the /r/ is prevocalic, postvocalic, 

or intervocalic; all three types of /r/ occur in the digit vocabulary. The "/r/- 

spectral-concentration" parameter looks for the presence of energy around 2000 Hz. 

Since the exact frequency to which F3 dips is speaker-dependent, a 'null'' region 

was designed into the window, giving less import to exactly how low F3 dips. 

The highllow-, frontlback-, and /r/-spectral-concentration parameters were de- 

signed to provide information about F1 and F2 and information about when F3 

lowers for an /r/. Sample output for the three weighting windows are shown in 

Figure 4.2. The /r/-spectral-concentration parameter approaches -1 when an /r/ 

is present. The values of the highllow- and frontlback-spectral-concentration pa- 

rameter usually correspond with Fl and F2, although the parameter values appear 

to change sharply. This is due to the shape of the window, which is more sensitive 

in the transition. regions. In addition, note that the value of the high/low-spectral- 

concentration parameter at the end of the /w/ is larger than expected because of 

influence by F2. 

Offset of First Peak in Smoothed Spectra 

The location of the offset of the first major peak in the shape of the spectrum 

was computed by finding the upper edge of the first peak in a cepstrally smoothed 

spectrum. Cepstrally smoothed spectra (Oppenheim and Schafer, 1968) were com- 

puted by applying a quefrency lifter which is constant the first 0.7 msec and cosine 

tapered the next 1.0 msec to the cepstrum of a 1024-point DFT. The DFT spectra 

were computed for the frequency range from 0 to 8 kHz. The extreme smoothing 

of the low-pass window produces a spectrum in which pitch harmonics are removed 

and only gross characteristics are evident. This type of spectral represent ation 



Figure 4.2: Sample Spectral Concentration Output for the Digit String '85031" 

(a) /r/-spectral-concentration (b) frontlback-spectral-concentration (c) highllow- 

spectral-concentration 



simplifies characterization of general spectral shape. 

To locate the offset of the first major spectral peak, the smoothed spectrum was 

searched upward in frequency from the first peak until a value 12 dB down from the 

peak value was found. If a larger peak was encountered during the search, the peak 

value was set to the value of the larger peak. This parameter was computed for only 

one point per phone, partially because of the large amount of computation required 

to produce the smoothed spectrum. But unlike DFT spectra, this representation is 

relatively stable from sample to sample so that a high update rate appeared to be 

unnecessary. 

4.1.2 Features 

The values of a parameter within a phone region were converted to one feature 

value which characterizes some aspect of the parameter within the region. Nine 

acoustic features were defined for discriminating the digit phones. The nine features 

roughly describe the first three formants, the presence of a low frequency nasal pole, 

the onset rate of phones, the upper frequency of the first major concentration of 

energy, and changes in the noise source energy over the duration of a phone. A 

short name by which the feature will be referred to in later sections is given below 

for each feature. A more precise name and a description of the computation of each 

feature then follow. The nine features are: 

1. PI-Normalized-Position: This feature is the average value of the high/low- 

spectral-concentration over the middle 50% of the phone region: 

where SFl ( t )  is the high/low-spectral-concentration at time t, = .25dp + tb ,  

t,75 = .75dp + t6,  d p  is the duration of the phone in number of samples, and 

tb is the sample at the time the phone begins. This feature is most useful 

for identifying vocalic phones and usually indicates whether a phone is more 
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Figure 4.3: Distribution of Fl-Normalized-Position for /i/ and /3/ 

like a high or low vowel. Figure 4.3 shows the distribution of F1-Normalized- 

Position training values for /i/ and /3/. The values2 for /i/ are generally 

lower than for /3/ since /i/ generally has a lower F1 than /3/. 

2. PI-Movement: The movement of energy in the Fl region is approximated 

by the slope of the best linear fit to the high/low-spectral-concentration over 

the middle 80% of the phone region: 

where N is the number of samples from ta1 to t.9. This feature indicates how 

the energy below 1 kHz has shifted in frequency over the duration of a phone 

and is useful in discriminating between phones in which the average formant 

values are similar, but the amount of formant motion is different. Figure 4.4 

shows the distribution of F1-Movement training values for /ar/ and / 3 / .  The 

slope of /a#/ is more negative than the slope of / 3 /  since F1 falls in /ay/, but 

is approximately constant in /3/. 

2There are no units because spectral concentration parameters are normalized. 
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(Histogram Bin Width = 0.01) 

Figure 4.4: Distribution of F1-Movement for lay/ and /3/ 

3. F2 Normalized Position: This feature is the averagevalue of the front/back- 

spectral-concentration parameter over the middle 50% of the phone region: 

where SFa (t) is the front/back-spectral-concentration at time t. This feature is 

most useful for identification of vocalic phones and indicates whether a phone 

is more like a front vowel or a back vowel. Figure 4.5 shows the distribution 

of F2-Normalized-Position training values for /i/ and / 3 / .  The values for /i/ 

are generally higher than for /3/ since /i/ has a higher F2 than 131. 

4. P2-Movement: The movement of energy in the F2 region is approximated by 

the slope of the best linear fit to the frontlback-spectral-concentration over 

the middle 80% of the phone region: 

This feature indicates how the energy in the range of F2 has shifted in fre- 

quency over the duration of a phone. As with F1-Movement, this feature is 
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(Histogram Bin Width = 0.1) 

Figure 4.5: Distribution of F2-Normalized-Position for /i/ and /3/ 

useful in discriminating between phone pairs like /a*/ and / 3 / .  Figure 4.Ci 

shows the distribution of F2-Movement training values for /ar/ and /3/. The 

slope of lag/ is more positive than the slope of /3/ since F2 rises for /a#/ but 

is relatively constant for /3/. 

5. /r/-Possibility: This feature, which is useful in detecting /r/'s, is computed 

as the average value of the /r/-spectral-concentration over the middle 50% of 

the phone region: 
C::;,, S R ( ~ )  

t.75 - t.25 

where SR(t)  is the /r/-spectral-concentration at time t. This feature indicates 

how much energy in the region of F3 is below 2200 Hz, relative to energy 

above 2200 Hz. Figure 4.7 shows the distribution of /r/-Possibility training 

values for /r /  and lev/. The values for /r/ are much lower than for /er/ due 

to the lowering of FJ. The distribution includes pre-, post-, and intervocalic 

/r/'s. Better results should be obtained by computing the average value of 

/r/-spectral-concentration over different regions for the different allophones of 

/r/. That is, the feature for prevocalic /r/'s should be computed during the 
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Figure 4.6: Distribution of F2-Movement for /ar/ and /3/ 

beginning portion of the phone, and the feature for postvocalic /r/'s should 

be computed during the final portion of the phone. 

6. Nasal-Possibility: This feature is the average value of the difference in (log) 

energy computed with a passband of 100 to 350 Hz and (log) energy computed 

with a passband of 350 to 850 Hz: 

In each energy computation, 50 Hz tapers on the trapezoidal frequency win- 

dow were used. This feature captures the presence of the low resonance around 

300 Hz which is characteristic of nasal murmurs (Fujimura, 1962). Figure 4.8 

shows the distribution of Nasal-Possibility training values for /n/ and /3/. 

The values for nasal consonants are generally larger than for non-nasals due 

to the presence of energy from the low resonance in the lower band. 

7. Onset-Rate: This feature measures the maximum change in energy from 

1000 Hz to 7000 Hz within 20 msec of the beginning of a phone: 
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Figure 4.7: Distribution of /r/-Possibility for /r/ and /er/ 

(Histogram Bin Width = 4.0) 

Figure 4.8: Distribution of Nasal-Possibility for /n/ and / 3 /  



(Histogram Bin Width - 5.0) 
Figure 4.9: Distribution of Onset-Rate for [t] and [f] 

where i is the sample number, t b  is the sample at the time the phone be- 

gins, and d is the number of samples in 20 msec. In order to capture rapid 

transitions, Elooo-7000 was computed every msec from the short time Fourier 

transform using a Hamming window width of 2 msec. This feature is partic- 

ularly useful for discriminating stops from fricatives because stop onsets are 

generally much more rapid than fricative onsets. Figure 4.9 shows the distri- 

bution of Onset-Rate training values for [t] and [f]. The Onset-Rate is larger 

for the release of [t] than for [f] as expected. 

8. Spectral-Offset-Location: This feature indicates the location of the first 

major spectral dip in the cepstrally smoothed spectrum 30% through the du- 

ration of the phone. The time at which this feature is computed was chosen 

empirically and was motivated by the task for which the feature was designed. 

This feature was initially designed to discriminate between the /a#/ in "five" 

and /3/ in "four." The spectrogram in Figure 4.10 contains the word se- 

quence "five four," and the location of the /a#/ and /3/ are indicated below. 

Comparing the / 3 /  in "four" with the /a#/ in "five," we note that the strik- 



Figure 4.10: Spectrogram of 'five four" 

ing differences are in the location of F2 and lack of energy between F2 and 

F3. This feature tries to capture the location of the upper edge of F2 to 

differentiate between the two sounds. Figure 4.11 shows the distribution of 

Spectral-Offset-Location training values for lay/ and 131. 

9. High-Preqnency-Energy-Change: The change in high frequency energy is 

computed as the slope of the best linear fit to the energy in the 4500-7800 Hz 

band over the middle 80% of the phone region: 

where H(t) is the value of high frequency energy at time t. This parameter is 

intended to help differentiate between fricatives and stop releases. Fricatives 

are relatively stable over their duration; in contrast, unvoiced stop releases 

generally have a strong onset followed by aspiration which weakens over the 

duration of the phone. Thus the slope is expected to be more negative for 

a stop release, such as [t], than for a fricative such as [s]. Figure 4.12 shows 
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Figure 4.11: Distribution of Spectral-Offset-Location for /aY/ and / 3 /  

the distribution of High-Frequency-Energy-Change training values for [s] and 

the release of [t]. The values for [s] center around 0, since fricatives generally 

do not weaken; the values for [t] are generally negative since high frequency 

energy usually decreases after the release in a stop. 

4.2 Scoring Word Hypotheses 

The task of assigning a score to each phone in a word lattice may be approached 

as a discrimination and/or identification problem. When viewed as a discrimination 

task, a binary discrimination is performed between each pair of competitor phones. 

The results are then used to assign a score to each phone indicating how good the 

hypothesized phone is relative to its competitors. When viewed as an identification 

task, each phone is assigned a score of how good it is, independent of the values of 

the other phones. 

Since the lexical component has already reduced the competitors to a small sub- 

set of words, discrimination between the remaining competitors should give better 

performance than trying to identify a phone from all possible phones. In general, 
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Figure 4.12: Distribution of High-Frequency-Energy-Change for [t] and [s] 

it is easier to identify an object from a small group of objects by comparing it to 

each of the possible alternatives (discrimination) using knowledge about how they 

previously compared than it is to identify an object based only on knowledge of the 

characteristics of each object (identification). However, defining competitor phones 

in a meaningful way is difficult because phone boundaries are not always aligned. In 

contrast, identification does not require competitors to be defined. So although we 

expected discrimination to perform better, we explored both met hods for verifica- 

tion. The same algorithm was used to compute word scores from the identification 

or discrimination scores, and the results from the two methods were compared. The 

identification and discrimination scores represent the score of a phone based upon 

information from particular detailed feature. These conditional phone scores were 

combined in this algorithm to produce phone scores, and the phone scores were 

combined to produce word scores. 

Each approach required a priori knowledge of the distribution of the features 

used. This knowledge was provided from values computed on a set of training 

utterances described in Appendix A. 



4.2.1 Phone Scores Based on Identification 

In the identification task, observed values of the feature vector for a hypothesized 

phone and training values for the features are used to compute phone scores. The 

scores reflect the probability of a phone occurring given the observed feature values. 

In particular, the unnormalized score of phone i based on information from feature k, 

S,(pil fk) ,  was computed as: 

where phone i is represented as p; and feature k is represented as fk. Assuming 

that each phone is equally likely, Pr(pi) is a constant and can be ignored. Similarly, 

Pr(fk) is the same for all phones being evaluated in the region and can also be 

ignored. Therefore, the score of phone i based upon information from feature k is 

proportional to Pr( fk  Ipi). 

A k-nearest-neighbor estimate was used to compute Pr( fklpi). Since the k- 

nearest-neighbor estimate is a function of the window width required to capture 

k samples surrounding a point, the estimate is a function of the range of each of 

the features. To permit information from different features to be combined, each 

estimate was normalized by the range, R, of the observed values for the feature over 

all phones. The normalized score of phone i based on information from feature k, 

S(pil fk) ,  Was thus computed as: 

4.2.2 Phone Scores Based on Discrimination 

In the discrimination task, the score for each phone based upon a particular 

feature is a function of how well the phone compares to each of the competitor 

phones according to that feature. Discrimination of the phones in the word lattice 

produced by the lexical access component was expected to give better results than 



Figure 4.13: Alignment of /ri/ compared to /3r/ 

identification. This is because the recognition model used sequential constraints 

to remove unlikely word candidates from further consideration. The remaining 

word candidates are a small subset of all possible word candidates which can be 

discriminated using explicit knowledge of the limited number of competitors. Since 

each remaining phone candidate within a broad class segment matches the segment 

well and the phone candidates also match the initial features characterizing the 

broad class segment well, the remaining phones are similar to each other. Thus fine 

discriminations must be made in order to accurately score how well each phone is 

realized relative to the other phone candidates. 

To compute a discrimination score, the phone being scored was first compared 

to each of its competitors. However, competitors can be defined in many ways. 

Ideally, competitors should cover the same region of an utterance. Since lexical 

access is performed at a broad phonetic level, one or more phones may map into 

one broad class, depending upon the hypothesized word. For example, /3r/ and /ri/ 

may both map to the broad class %owel." Since /r/ in intrinsically shorter than 

the adjacent vowel, the boundary between /3/ and /r/ will be after the boundary 

between /r/ and /i/, as illustrated in Figure 4.13 

As seen in the previous example, the phones will not always line up, and a 

choice must be made as to whether or not all competitor phones should be forced to 

have the same endpoints. By requiring all competitors to have the same endpoints, 

either the boundaries of a phone will not be accurate, or the recognition unit will be 

composed of a variable number of phones. Consequently, separate acoustic features 

have to be developed which look for characteristics of a phone within a region. For 



example, the vowel portion of the broad phonetic sequence 'weak-fricative vowel 

silencen may map to /ri/, /riev/, or /x/. A separate feature for / r j  would then 

be required for each sequence. A problem that results from this approach is that 

ns the vocabulary grows, the number of possible sequences grows. That is, a new 

word-initial(final) phone sequence may form new sequences with word-final(initial) 

phone sequences in the vocabulary when adjacent phones can geminate. In contrast, 

choosing the phone as the unit to be scored eliminates the need for separate feature 

detectors; only detectors for the phones in the vocabulary are needed. 

Competitors were defined as any phone which overlaps in time with the phone 

being scored. The probability of phone i relative to each competitor phone j was 

computed using Bayes' Rule under the assumption that each phone is equally likely: 

As in identification, Pr(fklpj) was computed using a k-nearest-neighbor estimate. 

Normalization by the feature value range was not performed since the score is 

computed as a ratio. 

The score for phone i based on information from feature k, S(pil fk),  was then 

computed as the average of how likely it is that phone i is the underlying phone 

relative to each competitor phone: 

where J is the number of competitor phones. Thus the discrimination score is based 

on how phone i compares only to the competitor phones. This can be contrasted 

to the identification task where phone i is scored based upon how well it matches 

previous observations of the phone. 

4.2.3 Computation of Phone and Word Scores 

The score of a phone is a function of the set of scores for that phone condition- 

alized on different features. We can think of these scores as reflecting how strongly 
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Figure 4.14: Percentage Histogram of /i/ and /D/ Divided into 10 Bins 

each feature indicates that the underlying phone is the hypothesized phone. Each 

feature provides input to the decision process, weighted by the quality of that fea- 

ture in identifying the phone. 

The weights for each phone were computed by measuring how well each feature 

identifies the phone from possible competitor phones. The next few paragraphs 

describe how the quality of a feature for identifying a phone from its competitors is 

computed. 

The range of a feature, as observed over all phones was first divided into N bins. 

In this study, N was empirically chosen to be 10 after examining the number of 

training tokens per phone. With too few bins, the quantized counts would show 

little variation. With too many bins, most of the bins would contain either 0 or 1 

samples, and the counts would again be meaningless. The percentage of samples 

which fall into each bin was then computed for each phone. Figure 4.14 illustrates 

the binning of the Fl-Normalized-Position feature for /i/ and / 3 / .  

For phone pairs with very dissimilar distributions, as in Figure 4.14, many of 

the bins contain samples primarily from one type of phone. To determine the 



dissimilarity of a pair of phones, the percentage of samples in each bin was compared. 

The dissimilarity, df ( b ) ,  was measured as: 

where s h  is the percentage of phone i samples in bin b and Sbj is the percentage of 

phone j samples in bin 6 .  From this equation, we note that when only one type of 

phone is present in a bin, the maximum bin dissimilarity score of 1 was assigned. If 

the values in a bin for the two phones being compared are equal, then the minimum 

bin dissimilarity score of 0 was assigned. 

The quality, qf, of feature k for discriminating between a pair of phones, phone i 

and phone j, is the average of the bin dissimilarities: 

Bins in which no phones are present were ignored. B thus is equal to the number of 

bins with at least one sample. The quality of a feature for identifying a phone, qi, 

is the average quality of the feature for discriminating between each possible phone 

pair: 

where J is the number of phones against which phone i may be compared. 

The quality of a feature is used to weight the input of each feature geometrically: 

This weighting was used because we wanted to emphasize the features which are 

good in identifying a phone and minimize the effect of measurement noise that 

nonrobust features add. That is, if only a few features are useful in the identification 

of a phone, input from the features which are not meaningful should be minimized. 

The score for each word was computed as a function of the score of each of the 

component phones. Each phone was weighted by its duration in order to normalize 



for a varying number of phones in each path in the word lattice. For example, /8ari/ 

and /fay/ may both be word candidates over the same region of speech. Since the 

number of phones in the two words is different, the score for each phone cannot 

simply be added; the path scores must be normalized to remove the effect that one 

path contains twice as many phones. 

There are several alternatives for computing normalized word or path scores. 

The phone scores could be summed and then normalized by the number of phones. 

This method has the advantage that long phones are not given undue weight relative 

to short phones. It also has a disadvantage which is illustrated by the /8ari/-/far/ 

example. If /0ari/ is normalized by the four phones composing it, then the weak 

fricative /8/ receives a weight of .25. However, in /fay/, the weak fricative /f/ 
receives a weight of .5. Thus the weight given a phone is dependent on the number 

of other phones in a word or sentence. Furthermore, when alternate pronunciations 

of the same word are compared, for example, /8ari/ and /Bri/, then the /8/ in 

both pronunciations should be given equal weight. By normalizing by the number 

of phones, the /0/ in /8ri/ receives more weight. Therefore, normalization by the 

number of phones has the undesirable effect that depending upon the word being 

verified, a phone may have a variable amount of input into the decision process. 

The chosen method of normalization, weighting by duration, avoids this problem, 

although it does have the disadvantage that short segments are given less weight. 

Normalizing the segments by duration, the word scores were computed as: 

Scoremmr = Score(pi)D(pi) 
I 

where D(pi) is the duration of phone i. 

The simplifying assumption that each feature is independent was used in the 

scoring algorithm. This assumption was made to help insure that enough training 

samples were available to get good estimates since the number of samples required 

increases exponentially with the number of features (Duda and Hart, 1973). This 

technique ignores potential multivariate information, and correlations between de- 



pendent features cannot be used. For example, two sets of data may be well sepa- 

rated in a two-dimensional feature space, but when the data is collapsed to a one 

dimensional feature space, the two sets of data may overlap and cannot be sepa- 

rated as well. Thus results obtained using this simple technique provide a bottom 

line on results which can be expected if a more sophisticated verification algorithm 

is used. 

4.3 Computation of the Ideal Word Lattice and 

Phone Boundaries 

The task of evaluating the feature set and scoring algorithm was structured 

such that the performance of the verifier could be evaluated independently from 

the performance of the earlier components. An 'idealn word lattice, free from 

segmentation errors, served as input to the verifier. By using error-free input, 

methods for handling earlier segmentation errors, such as verification or definition 

of each boundary were unnecessary. Instead, the study focused on the selection of 

features for discrimination between similar phones and on the utility of a phone 

representation for evaluating word hypotheses. The results of this study serve to 

indicate the viability of using acoustic-phonetic features for verification. 

To compute phone scores, as outlined in the previous section, the phonetic tran- 

scription of each word hypothesis and the location of phone boundaries must be 

known. A word lattice contains information about the word endpoints and segment 

'boundaries. A simple procedure was used to locate the phone boundaries from the 

information in the word lattice. In this section, the procedures for computing th5 

ideal word lattice and locating phone boundaries are outlined. 

4.3.1 Computation of the Ideal Word Lattice 

The ideal word lattice was derived by mapping the hand labeled phonetic tran- 



scription into a broad phonetic segmentation and then hypothesizing words by 

matching the words in the lexicon to sections of the broad segmentation. Rules 

were used in the mapping procedure to adjust boundaries and account for tran- 

scription labels which did not map directly into a broad phonetic class. To simulate 

the segmentation which would be produced by the broad phonetic classifier within a 

word, adjacent phones belonging to the same broad class were represented by a sin- 

gle broad phonetic label. For example, the /z/ in 'zero" maps to 'strong-fricative" 

and the /I / ,  /r/, and /ow/ all map to "vowel." Thus in the broad phonetic repre- 

sentation of "zero," /I / ,  /r/, and /ow/ are represented by one vowel segment and 

"zero" is represented as 'strong-fricative vowel." Acoustic gemination was not ac- 

counted for in this mapping since adjacent phones which belong to the same broad 

class but occur in successive words are represented by two separate segments. 

The mapping procedure modified the endpoints of the derived broad phonetic 

transcription to be different than the endpoints in the phonetic segmentation when 

sounds did not directly map into a broad phonetic class. This occurred when noise, 

glottalization, voicebar, aspiration, or epenthetic silence were encountered. In these 

cases, the segment was arbitrarily divided evenly between the adjacent labels. This 

procedure produced an idealized segmentation for matching with the words in the 

lexicon. 

In continuous speech, the location of word endpoints are unknown a priori. 

Words and their corresponding endpoints were hypothesized by matching each word 

in the lexicon against sections of the broad phonetic segmentation. All words match- 

ing a section of the broad phonetic transcription were collected to produce an "idealn 

word lattice. Each of the words in the lattice contained the phonetic transcription 

of the word and the sequence of broad phonetic labels with associated endpoints. 

The depth of the ided word lattice, that is, the number of words in the lattice 

divided by the number of digits in the digit string, is statistically characterized in 

Figure 4.15. The average depth, which was computed before path and allophonic 
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Figure 4.15: Number of Word Candidates in the Ideal Word Lattice per Word in 

Digit String (a) training utterances by training speakers (b) new utterances by 

training speakers (c) training utterances by new speakers (d) new utterances by 

new speakers 

constraints were applied, is about 6 words/digit. This depth corresponds to a 

sequential constraint pruning threshold of approximately -0.5. Thus, there is much 

room for improvement in the performance of the broad phonetic classifier and lexical 

component before it approximates the ideal case. 

4.3.2 Computation of Phone Boundarieg 

From the information contained in each hypothesized word, the verification com- 

ponent determined any phone boundaries not specified by the broad phonetic seg- 

mentation. It is necessary to find boundaries within a phonetic segment when 

multiple phones have been mapped to one segment. When the phonetic transcrip- 

tion of a hypothesized word contained an intervocalic /r/,  an r-detector was used 

to locate the boundaries of /r/. The intervocalic /r/ detector first located the 

time, timi,, a t  which the median smoothed /r/-spectral-concentration parameter is 



a minimum. Anchoring from this point, the /r/-spectral-concentration parameter 

was searched outward in both directions, as in broad phonetic classification, un- 

til the parameter rose to 30% of the difference between the value at tmin and the 

minimum of the local maxima on each side. The frontlback-spectral-concentration 

parameter was also used to locate the /r/ boundary when in a front vowel context. 

This is because the /r/-spectral-concentration parameter tends to remain low for 

a longer time due to the higher frequency location of F2. The frontlback-spectral- 

concentration parameter was searched from tmin until it rose to 30% of the difference 

between its value at tmin and the minimum of the local maxima on each side. The 

minimum distance from tmin to the computed edge for the /r/- and frontlback- 

spectral-concentration parameters were defined as the /r/ boundaries. When more 

than one phone mapped to a broad phonetic segment and an intervocalic /r/ was 

not present, a default weighting, which assigns /w/ and /r/ half the duration of 

the other phones, was used to divide the time among the phones mapping to the 

segment. 

4.4 Evaluation 

The performance of the verifier was evaluated in terms of the word error rate 

and the rank of each phone in the correct path. Because the task is continuous 

speech, the words were evaluated subject to path constraints. That is, the 'best" 

words were the string of words which formed the best scoring path through the word 

lattice. Separate evaluation of each word relative to a hand labeled orthographic 

transcription was not used because the meaning of comparing competitor words 

which have different endpoints is unclear. 

The word error rate was computed by observing how often the words comprising 

the best word string did not match the words comprising the correct word string. 

With this method, a word could be the best scoring word over a region but may 



not be in the best path. Insertions, deletions, substitutions acd matches were 

computed using a 50% overlap criteria similar to that used to evaluate the broad 

phonetic classifier. Thus, if at least 50% of each of two words in the best word 

string is covered by one correct word, then an insertion is said to have occurred. 

Pauses between words were not included in the computation of word errors. 

The best-scoring path through the word network was found using a depth-first 

search (Winston, 1984) without any constraints on the number of words in the digit 

string. The use of an exhaustive search algorithm insures that the system finds the 

best answer from the information it is given. Thus the effectiveness of the set of 

detailed features combined with the scoring algorithm was evaluated independently 

of any heuristics which could be used to reduce the search time. 

4.4.1 Discrimination vs Identification 

The discrimination and identification scoring methods were compared on a sub- 

set of the training data. The word error rate using the identification method was . 

3.6% and the word error rate using the discrimination method waa 2.0%. As dis- 

cussed earlier, the discrimination scoring method was expected to give better re- 

sults because the word candidates had been reduced to a set where fine differences 

between competitor phones existed; thus a discrimination paradigm was more ap- 

propriate. Since the results bear out this expectation, the rest of the evaluations 

were performed using the discrimination scoring method. 

4.4.2 Word Errors 

Table 4.1 shows the word error rates for different testing conditions. Each in- 

sertion, deletion, or substitution was counted as an error. The error rate of 1.5% 

on the training utterances by training speakers illustrates the power of using a few 

carefully selected acoustic features combined with statistical measures to estimate 

the goodness of a phone. The error rate for training speakers on new utterances is 



Table 4.1: Word Error Rates 

approximately the same as the error rate for new speakers on new utterances; this 

indicates that an acoustic-phonetic approach is potentially speaker-independent. 

The error rate for training utterances and new utterances spoken by new speakers 

is approximately 5%. This shows that for new speakers, the system can handle new 

utterances about as well as the utterances it was trained on. 

A more detailed analysis of the errors in all corpora reveals that many of the 

errors were due to male/female differences. Some of these errors are listed in Ta- 

ble 4.2. The most striking and consistent error is the confusions of 'You?' and 

"five". All 16 cases in which "five" was mistakenly labeled as Your" occurred in 

speech by males. Eighteen of the 1Q.cases in which Your" was confused as 'fivew 

occurred in speech spoken by females. 

Considering the acoustic differences between Your" and 'five," and the differ- 

ences between male and female speech, these errors can be attributed to selecting 

features which are not independent of male/female differences. The first phone in 

both Your" and "five" is If/. Since both /o/ and the initial portion of /awl are low 

back vowels, the coarticulation effects on /f/ due to the following vowel are approx- 

. imately the same. Hence, the /f/ is similar in both words, and the main difference 

between the two words lies in the vocalic portion. In the vocalic portion, F2 rises 

in both Your" and "five": in Your" it rises for the production of /r/, and in "five" 

Word 
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5.3% 
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Table 4.2: Sample Male and Female Word Errors 

it rises during the latter portion of the /as/. One of the primary differences is the 

higher initial location of Fa in /as/ than in 131. However, for the same vowel, the 

iocation of F2 varies among speakers. It is generally higher in frequency for female 

speech than male speech (Peterson and Barney, 1952), since females have a shorter 

vocal tract length. The Spectral-Offset-Location was designed to be sensitive to 

differences in the initial location of F2 in /ar/ and /3/. Considering this sensitivity, 

the errors of labeling the /3/ in "four" as an /as/ in female speech, and the /as/ 

in "five" as an /3/ in male speech, are reasonable. A better, speaker-independent 

feature may be to compare the Spectral-Offset-Location relative to the location of 

FJ, since a larger dip in the spectrum is observed in /3/ than in /as/. 

To obtain an idea of the robustness of the verification scores, the score of the 

correct word relative to the score of the other word candidates was examined. In 

particular, the score of the top candidate was compared to the score of the second 

best candidate when the top candidate was correct. When the top candidate was 

incorrect, its score was compared to the score of the correct word. Figure 4.16 

# Females 

18 

0 

7 

9 

13 

illustrates this for each of the test sets. Note that the difference in word scores 

is generally small when an incorrect word is the best scoring word, and that the 

difference has a large range when the correct word is the best scoring word. In 

a recognition system, this information could be used to reject the ut teraxe when 
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Table 4.3: Phone Rank in Correct Words 

the difference in word scores is small, and the speaker could be asked to repeat the 

utterance. Alternatively, this information could be used to identify words which do 

not score much better than their competitors, and finer discriminations could be 

performed on these words. 

4.4.3 Phone Errors 

Speakers 

Training 

Training 

New 

New 

The rank of each phone in the correct word was also used to evaluate the ver- 

ifier. These results are shown in Table 4.3 for the test sets. Note that for new 

sentences by both the training speakers and the new speakers, the correct phone 

is in the top position at least 86% of the time and within the top two candidates 

at least 98% of the time. This similarity in rank indicates the potential speaker- 

independence of using acoustic features for, verification. As expected, the largest 

percentage of phones were in the top position when the syotem was tested on the 

test set composed of training utterances by training speakers. However, the top 

two ranking candidates include the correct phone at least 98% of the time on all 

corpora. These results indicate the viability of performing verification at the phone 

level using acoustic-phonetic features. 
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Figure 4.16: Difference in Word Scores between Correct Word and Next Best Word 

(solid line) and Best Word and Correct Word (dashed line) for: (a) training ut- 

terances by training speakers (b) new utterances by training speakers (c) training 

utterances by new speakers and (d) new utterances by new speakers 



4.6 Chapter Summary 

The main points of this chapter are: 

Words were scored based upon the value of phone features, demonstrating a 

potentially extendable scoring method. 

Use of a phone representation allows features to be defined ower regions which 

are minimally affected by coarticulation and also allows a wider variety of 

characterizations of speech to be exploited. 

Better performance was achieved using discrimination between phone com- 

petitors than identification bzed  purely on feature values. 

Verification using acoustic features is potentially speaker-independent . 

A small set of well chosen acoustic features is adequate for verification of 

phones in the digit vocabulary. 



Chapter 5 

Discussion 

This chapter discusses the underlying assumptions and contributions of this 

thesis research, which was focused on examining how low-level acoustic-phonetic 

speech knowledge can be used in continuous speech recognition. Several underlying 

assumptions were made in this research. One of the basic assumptions was that an 

acoustic-phonetic approach is worth exploring. It was also assumed that speech can 

be represented as a sequence of sounds associated with regions of the speech signal, 

and that a phone is a good unit for representing speech. The following sections 

attempt to clarify the reasoning behind these assumptions and the choice of the 

digit vocabulary as a case study. Additionally, the merit of each component in the 

acoustic-phonetic recognition model is considered. The use of a preprocessor, in 

particular, a preprocessor based on acoustic-phonetics, in a recognition system is 

discussed. The reasons behind the choice of a simple control strategy for studying 

how detailed acoustic features can be used in verification is addressed. Computa- 

tional requirements of a segment-based approach are also considered. Finally, the 

contributions of this thesis towards a better understanding of the use of acoustic- 

phonetic knowledge in speech recognition is outlined, and suggestions for future 

work are made. 



5.1 Why an Acoustic-Phonetic Approach? 

An acoustic-phonetic approach is appealing both intuitively and in its potential 

extendability to less restrictive recognition tasks. It is intuitively appealing because 

it provides a framework for describing speech sounds and coarticulation and also for 

applying such knowledge in a recognition system. Since the knowledge used by the 

system is specified using human knowledge, its application is often under explicit 

human control. 

By incorporating speech knowledge-knowledge about the problem domain-the 

errors which the system produces are usually reasonable. That is, one can usually 

understand why the errors occurred. Therefore, the errors may be corrected by 

extending the knowledge. For example, when computing phone scores based on 

how likely the feature values indicate that a phone is the hypothesized phone, many 

of the errors appeared to resclt from differences between male and female speech. By 

choosing features which are less dependent on these differences, or by normalizing 

the values based upon speaker characteristics, these differences may be more readily 

handled. 

In contrast, other approaches do not provide a way to explicitly handle such er- 

rors. These approaches incorporate speech knowledge only implicitly in the training 

data or by folding the information into the recognition algorithm. Thus the system 

must either be retrained or the recognition algorithm must be modified to Ucorrect" 

errors which occur only in a subset of phones. In template matching, researchers 

have the option to increase the amount of training data and the number of reference 

templates used. However, this has the undesirable consequence that attempts to 

correct errors which occur with only one type of speech sound increase the number 

of templates for all recognition units. In addition, researchers must explicitly collect 

data containing the variation or else the new templates may be based upon only a 

few outliers, resulting in non-robust templates. 

An acoustic-phonetic approach is also appealing in its potential extendability to 



larger vocabularies and more complex task domains. The extendability results from 

the use of a phone based representation. The number of phones in any language is 

limited. English uses about only 40 phones; hence, the maximum possible number 

of diphones, or phone pairs, is limited to about 402. Furthermore, the number of 

consonant phone sequences within a syllable is finite. Studies have been conducted 

on the number of unique consonant phone sequences in a subset of commonly oc- 

curring English words. These studies show that as new words are added, new phone 

sequences occur, as expected. More importantly, these studies show that the pos- 

sible number of allowable sequences within a syllable is limited. In particular, only 

about 70 syllable-initial and 130 syllable-final consonant sequences exist in English 

(e.g., Shipman and Zue, 1982). Consequently, the maximum number of contexts in 

which a phone can occur is much lesa than the number of words in English. Since 

each word can be represented as a phone sequence in an acoustic-phonetic approach, 

and since the number of recognition units ia independent of the number of words in 

such a representation, an acoustic-phonetic approach is potentially extendable. 

A considerable investment is required to develop the knowledge needed to char- 

acterize phones in different environments for a phonetically based system. However, 

once this investment has been made, the vocabulary should be extendable simply 

by adding one or more phonetic representations for each new word. In contrast, a 

word-based system must train each new word, possibly in each envHonment in which 

it could occur. Thus, we believe that the investment needed to gather knowledge for 

the development of acoustic-phonet ically based systems has large potential payoffs 

by providing a framework for exploiting speech knowledge and for developing less 

restrictive speech recognition systems. 

5.2 Why the Use of Digits as a Case Study? 

Selection of the digits as a case study for exploring constraints in continuous 
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speech recognition is the result of our attempt to demonstrate the model, and at 

the same time to keep the problem manageable. Admittedly, the digit vocabulary 

is limited in many ways. For example, syntax and semantics are not applicable 

to random-length digit strings. In addition, stress is not of primary importance 

because the amount of stress given each word in a digit string is approximately the 

same: there are no function words in a digit string, each word is of equal importance, 

and most words are monosyllabic. Furthermore, the digits do not demonstrate the 

phonetic richness found in American English. 

However, the digits form a suitable vocabulary for studying how each component 

in our model could be implemented to handle the variations which occur in speech. 

Although the digit vocabulary does not include all the phones in English, it contains 

examples of allophonic variations and many low-level phonological effects, such as 

acoustic gemination and flapping. The phonological effect of acoustic gemination, 

that is when two similar phonemes merge into one and appear acoustically as one 

segment, is observed in both consonants and vowels in digit strings. For example, 

the final /s/ is "six" geminates with the initial /s/ in "seven," such that the two /s/'s 

appear acoustically as one /s/. The final /s/ in "six" also geminates with the /a/ 

in "zero." The low-level phonological rule for flapping of /t/'s in an intervocalic 

position is also illustrated in the digit vocabulary. In the digit strings, the /t/ 

in "eightn is in intervocalic position when followed by another 'eight," and this 

intervocalic / t /  can be flapped. 

Some allophonic variations are observed in digit strings. For example, three 

realizations of It/-released, unreleased, and flapped---occur. The released /t/ is 

usually observed word initially, as in the word atwo," or word finally when the word 

is the last word in a phrase, as in the word "eight" at the end of a sentence. A / t /  

in word final but not phrase final position, as in the word "eight" in the middle of 

a digit string, is frequently unreleased. And a /t/ may be flapped when it occurs 

in intervocalic position, as in the string =eight eight." At least two realizations of 



/v/ are also observed. A strongly fricated /v/ often occurs before a fricative, and 

a strongly voiced /v/, in which the frication rides on the voicing, occurs primarily 

in intervocalic positions. In addition, the nasal /n/ occurs in both intervocalic 

and non-inter-vocalic position. Thus both robust intervocalic nasals and generally 

weaker non-intervocalic nasals are illustrated in the digit vocabulary. 

The digit vocabulary also illustrates many coarticulation effects, both within 

words and across word boundaries. The second formant in "two" is raised initially 

due to the preceding /t/,  which is a dental consonant, and it may remain raised 

if followed by another dental, such as /s/, or it may drop very low in frequency if 

followed by /w/. Similarly, the formant values of the word final /ow/ in "zeron are 

strongly affected by the following phonetic environment. Thus the digit vocabulary 

illustrates a wide variety of phonological variations and coarticulation effects which 

must be handled by a recognition system. 

The digit vocabulary is suitable for demonstrating the utility of the acoustic- 

phonetic model components. A vocabulary which illustrates the full power of se- 

quential constraints in word candidate reduction leaves little work for the verifier. 

Consequently, the role of the verifier cannot be studied. For example, the sequential 

constraints in a small polysyllabic vocabulary may be so strong that most of the 

word boundaries and most of the words can be specified without ambiguity. Since 

most of the words are specified, the verifier is not needed except in a few cases. In 

contrast, the digit vocabulary is primarily monosyllabic and most of the pronuncia- 

tions of each word contain very few broad phonetic segments. Since some sequential 

constraints apply, the utility of sequential constraints in recognition can be studied 

using the digit vocabulary. And since the digit vocabulary does not illustrate the 

full power of sequential constraints, the role of the verifier can be studied. 

In summary, many examples of phonological variation occur in the digit vo- 

cabulary, even though it is limited in many ways. Furthermore, the digits form a 

manageable task for demonstrating how acoustic-phonetic knowledge can be applied 



to speech. 

5.3 Why a UPreprocessor" Based on Acoustic- 

Phonetics? 

In our recognition model, the broad phonetic classifier and word hypothesizer can 

be view as a "preprocessor." The purpose of the preprocessor is to rule out unlikely 

word candidates based upon information that is easy to compute. A preprocessor 

has been used in other recognition systems as well. For example, an isolated word 

recognizer developed by Pan et al. (1985) used a preprocessor based on vector 

quantization (VQ) (see for example, Buzo et al., 1980) to screen word candidates 

for recognition using dynamic time warping. The primary purpose in their use of a 

preprocessor was to reduce computational costs while maintaining the performance 

rate of current DTW systems. 

However, an acoustic-phonetic preprocessor has many advantages in addition to 

possible reduction of computational costs. By using an acoustic-phonetic prepro- 

cessor to apply speech constraints to remove poor word candidates, more directed 

detailed acoustic analysis can be performed. Additionally, an acoustic-phonetic pre- 

processor segments the speech so the benefits associated with a phonetically-based 

segment representation can be exploited. These advantages are discussed in more 

detail in Section 5.4 and Section 5.5. 

In our model, an acoustic-phonetic preprocessor screens word candidates based 

upon broad phonetic information, and the word candidates are evaluated based 

upon robust informat ion. In contrast, a non-acoustic-phonetically based preproces- 

sor attempts to screen word candidates primarily on detailed spectral information. 

The purpose of the preprocessor is to rule out unlikely word candidates; attention 

to fine phonetic differences at an early point in processing is not only unnecessary 

but is also not as robust. Fine phonetic differences are not as robust because fine 



phonetic differences are more sensitive to allophonic variation than differences be- 

tween a broad phonetic class. This contrast is important because the preprocessor 

removes word candidates, and the recognizer may not provide for recovery of word 

candidates which should not have been removed. Thus the decision threshold for re- 

moval of a word candidate should be lenient to avoid irrecoverable errors. However, 

if the information given the preprocessor is not very robust, then the preprocessor 

can not be efficient in word candidate reduction. 

An acoustic-phonetic preprocessor is applicable to continuous speech, as demon- 

strated in this thesis. In contrast, other preprocessors, such as the VQ-based pre- 

processor are word based. Therefore, extension of these preprocessors to continuous 

speech is uncertain because unknown word endpoints must be dealt with. 

An acoustic-phonetic preprocessor allows different types of speech information to 

be incorporated in the identification of broad phonetic classes. Pan et al. found that 

a VQ preprocessor performed much better when temporal and energy information 

were also used. However, the information was incorporated into the existing time- 

frame structure, which is not conducive to using such information. 

Most recognition models which do not use an acoustic-phonetic preprocessor 

recognize an utterance by matching a set of templates to the input signal. Three 

difficulties that are associated with this recognition method, but are minimized by 

using an acoustic-phonetic preprocessor are: (1) speaker independence is not easily 

incorporated, (2) context cannot be explicitly used, and (3) the speech signal is 

quantized to the template values used in a template representation. 

Models which perform spectral matches are inherently speaker-dependent be- 

cause the spectral representation has not been abstracted to capture the speaker- 

independent information. DTW and VQ attempt to handle speaker-independence 

with use of multiple templates. In a network model, multiple paths may be needed 

to represent different types of speakers. Thus each approach attempts to achieve 

speaker-independence by capturing variations in sounds, rather than abstracting 



the speaker-independent features of sounds, as is possible in an acoustic-phonetic 

approach. By capturing variations in sounds, measurements made in these ap- 

proaches are inherently noisy. This is because in addition to information relevant 

to the speech sounds being identified, information irrelevant to the speech sounds 

being identified is incorporated into the measurement. 

By not using a preprocessor to find a speech motivated recognition unit, these 

models must use a regularly sampled representation of the input signal. However, a 

uniformly sampled representation has the undesirable quality that context is diffi- 

cult, if not impossible, to specify. This is because context is a speech based concept 

and not a time-frame based concept. In contrast, an acoustic-phonetic preprocessor 

allows context to be explicitly specified. 

Representation of a rising F2 by a network model with a fixed number of states 

per phone illustrates the quantization problem. A network model, if it has a suf- 

ficient number of states (e.g. Harpy), would try to capture rise in F2 through a 

sequence of states. However, the quality of match as the speech signal passes from 

one state to the next in the sampled representation varies. This variation is not 

due to variations in the quality of the rising F2; it is due to quantization in the 

match. Thus measurements made in network models without a preprocessor do 

not accurately reflect the events occurring in the speech signal. In contrast, the 

segments defined by an acoustic preprocessor allow the movement of a formant to 

be explicitly captured. 

In summary, an acoustic-phonetic preprocessor is a valuable part of a recogni- 

tion system. The preprocessor uses robust information, is applicable to continuous 

speech tasks, and allows different types of speech knowledge to be easily incorpo- 

rated into the recognition process. It also provides a basis for performing speaker- 

independent recognition, allows context to be specified, and allows a more accurate 

representation of events in the speech signal. 



Why Segments? 

An assumption made in this work, and an integral part of the approach is that 

a sequence of labels may be attached to the speech signal. Furthermore, it was 

assumed that speech is produced as a sequence of sounds of varying duration which 

can be represented as a sequence of labels. The sequence of labels, or recogni- 

tion units, correspond with important phonetic events. As a result, the phonetic 

recognition units will be irregularly spaced. A phonetic unit can be associated to 

a (perhaps fuzzy) time in the speech signal or to a (perhaps fuzzy) region of the 

signal. 

This thesis uses phonetic units which were associated with regions of the speech 

signal, and each region is referred to as a phone segment. This section addresses 

two issues. First, a segment representation is argued to be superior to a time- 

frame representation. Second, the advantages of a phonetic segment representation 

over other segmental representations, such as the diphone and demisyllable, are 

described. 

A segment represent at ion has many a d v a t  ages over a time-frame represent a- 

tion. For example, a segment which spans a region of speech can be characterized 

over time. This is an important attribute because many strong cues to speech 

sounds are distributed across time. For example; systems based on segments or a 

sequence of phonetic units can explicitly characterize formant motion during the 

first 30 msec of a vowel to capture transition information. In a frame-by-frame 

analysis, this information is included, along with other information, only implicitly 

in the training data. 

The use of segments rather than individual spectral analysis frames allows a 

wider variety of acoustic-phonetic constraints to be exploited. That is, in addition 

to the ability to characterize transition and relatively stable regions of the speech 

signal, characterizations over the entire region, such as the maximum, minimum, or 

average value of a parameter, are available. With the segment formulation, onset 



rate can be used to influence the decision on the identity of the whole segment. In 

contrast, features such as onset rate do not make sense in a frame formulation and 

would only influence the score in one frame of a spectral distance metric, if at  all. 

Thus a segment framework allows important information to be taken into account 

explicitly. 

As a consequence of the variety of characterizations available with segment-based 

representations, a system which uses a segment representation can avoid many of 

the errors produced by systems which simply try to match the spectrum. This is 

because there is much more information in the speech signal than spectral shape. 

For example, one striking difference between a strong alveolar fricative and weak 

dental fricative, given the same context, is the strength of the fricative. Distance 

metrics such as Itakura's (1975) do not use energy information. Instead, such in- 

formation must be explicitly incorporated if it is to be used in recognizers based on 

spectral distance formulations. Researchers are now recognizing the importance of 

using such information and are devising methods for incorporating such knowledge 

into existing algorithms, such as vector quantization (Pan et al., 1985; and Bush 

and Kopec, 1985) and Hidden Markov Modeling (Schwartz et al., 1985). The use 

of features in an acoustic-phonetic approach provides a unified method for using 

this knowledge. In an acoustic-phonetic approach, features may be selected based 

upon human knowledge of what is important, supplemented by statistics to ver- 

ify that the knowledge has been adequately captured by computer. Many speech 

motivated segment representations, such as the phone (e.g. Woods et al., 1976), 

diphone (e.g. Scagliola and Marmi, 1982), syllable (F'ujimura, 1975; Mermelstein, 

1975), and demisyllable (Rosenburg et al., 1983), have been proposed. We believe 

that a phonetic representation is better than either the diphone or demisyllable 

representation. It is more flexible because it can be transformed into a diphone or 

demisyllable representation. Therefore, all the information which is available from 

a diphone or demisyllable representation is also available from a phone representa- 



tion. Furthermore, many characteristics which are easily computed from a phonetic 

segment representation are more difficult to extract in a diphone or demisyllable 

based representation. For example, measurement of duration, such as the duration 

of a fricative, is straight-forward in a phone representation. In contrast, in a di- 

phone representation, each phone has been split into two parts to form diphones; 

as a result, information about phone boundaries and phone durations are not easily 

obtainable. 

Acoustic-phonetic knowledge, such as contextual information, can be easily 

and explicitly expressed using a phone representation. A phone representation is 

amenable to using information during the relatively stable central portion of the 

phone and also to using transitional information. This is possible because the phone 

unit defines regions of the signal which should be stable and also points of transition 

(the edges of the region). Since acoustic features may be defined over any region of a 

phone, features characterizing transition regions and features characterizing st able 

regions can be defined. For example, the feature characterizing the average value 

of F1 was computed over the middle 50% of a phone. Since most of the contextual 

information is contained in the transitions at the beginning and end of a phone, 

this estimate of F1 is minimally influenced by context. 

By making judgments about sounds based on characteristics over a region of the 

signal which is generally stationary, such as within a phone, the effect of local vari- 

ations in the signal can be reduced by techniques such as averaging. Furthermore, 

estimates of values characterizing the region should be more accurate than the en- 

semble of single estimates for each point, since the value characterizing a segment 

is based on examining the data in the region as a whole. Thus the judgments made 

over a region should be more reliable. 

In summary, the use of segments allows a wide variety of acoustic-phonetic con- 

straints to be exploited and a wide variety of characterizations of the speech signal. 

The flexibility in specifying the importance of information in the signal, available 



when the signal is represented by segments, eliminates many erron encountered 

in spectral matching systems. A phonetic segment representation is superior to 

other representations because it allows characterization of information available in 

a diphone or demisyllable representation; furthermore, it allows characterization of 

other information derived from phonetic units. 

In this section we have argued the advantages of a segment representation. How- 

ever, we should note that we are imposing a segment representation on the speech 

signal and that a segment representation is a convenience which we use to describe 

the speech signal. 

6.5 W h y  Use Sequential Constraints in Lexical 

Access? 

Lexical access is the point in the recognition process where information about 

the speech signal is combined with knowledge about the vocabulary to propose 

word candidates. Sequential constraints provide a mechanism for removing unlikely 

word candidates from consideration before the fine discrimination necessary for 

identification of a phone is performed. The remaining word candidates are relatively 

similar since each candidate is composed of a string of .phones which match the 

string of broad classes well and therefore match the initial features characterizing a 

broad class well. As a result, features used initially to identify broad classes are not 

needed in verification, allowing the verification component to perform more directed 

analyses. 

If sequential constraint application is skipped so that all words are hypothesized 

at each possible position, then the verifier is burdened with additional phones and 

words to score. Additional features may be needed since fine as well as gross dif- 

ferences between sounds must be measured, increasing the amount of computation. 

The contrast between two similar competitors also is reduced; noise may be added 



Figure 5.1: Real competitors a and b and outlier c 

to the measurements because many other unlikely competitors, such as c in Fig- 

ure 5.1, are also compared to ured" candidates, a and b, thus adding an "offset" to 

the scores. 

The use of sequential constraints in lexical access thus allows the verifier to focus 

on the differences between two similar competitors, rather than measuring that a 

and b are similar relative to c, and also measuring how much better a is to b. As 

an analogy, if one is trying to measure the peak-to-peak amplitude of an ac signal 

which is offset by a large dc bias, one would measure on a scale covering only the 

ac region to get an accurate measurement; one would not include the dc component 

in the measurement. 

In the application of sequential constraints, a risk is associated with ruling out 

correct word candidates. However, recognition systems based on network models 

also implicitly use constraints in the search strategy. In continuous speech, the 

possible paths in a network model based on frame-by-frame analysis can be so large 

that searching the entire network is intractable. These search strategies generally 

employ some type of heuristics for pruning, such as the beam search used by the 

Harpy system. To make a contrast, pruning is applied while searching in a net- 

work model, but pruning is applied before creation of a network to be searched 

in an acoustic-phonetic model. The use of speech constraints, such as sequential 



constraints, is advantageous over heuristic search techniques because the risks asso- 

ciated with using speech based constraints can be quantified. However, unless the 

speech constraints are applied simultaneously, the use of speech constraints cannot 

be guaranteed to rule out only words which can never achieve a better score. 

A network is used to represent the phones in the verification component. The 

phones in a word are associated with the transitions, and the cost of making a 

transition is a score which reflects the "goodness" of a hypothesized phone, based 

upon feature information. The word scores from lexical access may be used in 

this network representation in several ways. Based directly on the results for using 

sequential constraints, a pruning threshold can be set to limit the number of word 

candidates considered. A network can then be constructed from the remaining 

word candidates. Alternatively, if a heuristic search strategy is used where nodes 

are expanded as needed, the words candidates could be stored in an ordered queue 

based on their lexical access score. Nodes could then be expanded using words 

from the ordered queue. The disadvantage of this method is that the set of phone 

competitors can change as nodes are expanded. Consequently a phone caqnot be 

scored using discrimination between a phone and its competitors; instead, scores 

must be assigned based purely on identification information. 

In summary, the use of sequential constraints allows the verification compo- 

nent to perform a more detailed and directed evaluation of the phone and word 

candidates. The risks associated with using speech constraints can be quantified, 

something which is not as easily achieved using heuristic search algorithms. When 

constraints are applied to reduce the word candidates at once, competitor phones 

are known and discrimination between phones can be performed. 

5.6 Why a Simple Control Strategy? 

The verification component used a simple control strategy: find the best se- 
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quence of digits by maximizing the score of each phone, where the phone scores are 

a function of the probability of a hypothesized phone occurring, given the observed 

feature values. This simple strategy was found to be sufficient for verification of 

phones in the digit vocabulary. 

In a complicated recognition task, a control strategy may be needed which inte- 

grates cues in a logical manner and hypothesizes new phones if conflicting cues in- 

dicate that more than one phone is present in a region which originally was thought 

to represent only one phone. An example of a situation in which a new phone 

should be hypothesized is when clear labial formant transitions are apparent in the 

left context of a closure, followed by a compact double burst located slightly above 

F2 (strong indication of a velar release). Instead of a single stop, two consonants 

should be hypothesized as occurring over the region: a labial consonant, such as 

/pi/, /bl/, or /v/, followed by a velar stop. 

Rather than developing a complex control strategy as outlined above, the simple 

control strategy was chosen because our underst anding of the use and integration 

of acoustic cues is still very primitive. Furthermore, we are still trying to devise 

algorithms for effectively capturing the acoustic cues needed by a more complex 

control strategy. 

Thus the emphasis in implementing the verifier was placed on assigning identi- 

fication scores. Although the earlier example (where two different consonants were 

hypothesized) is not applicable to the digits, potential conflicts can occur in the digit 

vocabulary. For example, when acoustic gemination occurs, only one broad pho- 

netic segment is found, but two phones should be hypothesized. Potential conflicts 

which require additional segments to be hypothesized were avoided by initially hy- 

pothesizing all viable candidates. Durational and sequential constraints were used 

to determine whether a candidate was viable. An identification score for each hy- 

pothesized phone was then computed based on the value of well-motivated features 

and statistics. 



The feature values were weighted based upon how well each feature identified 

the phone in question. Thus a feature which is not relevant to the identification of 

a phone will be given little weight and minimally affect the score. When a feature 

indicated the possibility of a hypothesized phone to be contrary to what the other 

features indicated, this was reflected in the computed score. For example, all fea- 

tures may indicate the possibility of an /s/ to be high, except for one which strongly 

indicates that an /s/ is very unlikely. The resulting score of the hypothesized /s/ 

is reduced by an amount which depends on how heavily the conflicting feature is 

weighed. 

The assignment of feature weights assumed that the value of each feature varies 

over a range, rather than being a conditional value. For example, the value of the 

feature F1-Normalized-Position ranged from -1.0 to 1 .O. A conditional feature such 

as whether or not a double burst is observed does not satisfy this assumption. A 

double burst in the region of F2 is a strong indicator of a velar release (Cole, et al., 

1980). Thus one would like to weight this information conditionally such that when 

a double burst is observed, the feature capturing this phenomena would be given 

a very heavy weight. When a double burst is not observed, the feature would be 

given no weight, and the stop would be identified using other features, such as burst 

location. The current approach can be extended to handle this type of phenomena. 

A sophisticated control strategy would use information about coarticulation in 

making decisions. The strategy used instead was to select features which are least 

affected by coarticulation, such as making measurements in the middle 50% of a 

phone. This strategy was shown to be sufficient for handling coarticulation in the 

digits. 

5.7 Computational Considerations 

Recognition systems are currently limited in part by the amount of computa- 
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tion required, and future recognition systems will have even larger computational re- 

quirements if current technologies are simply extended. We believe that an acoustic- 

phonetic approach has the potential to be used in less restricted tasks because of 

the types of ccnstraints which are available by using this approach. 

Computational requirements can be reduced in an acoustic-phonetic approach 

by applying speech knowledge to rule out unlikely word candidates. It was shown 

in this thesis how a particular speech constraint, sequential constraints, can be 

effectively applied. Even when given input from a front end which produced a non- 

ideal segmentation, sequential constraints were found to provide a reduction in the 

number of word hypotheses when the input error characteristics of the front end 

are known and used. Furthermore, this candidate reduction was achieved with new 

(broad phonetic) pronunciations of words. 

With a phone segment representation, the maximum number of recognition units 

is limited, and more importantly, the maximum number is independent of the num- 

ber of words in the vocabulary. Thus the use of a phone representation in an 

acoustic-phonetic approach gives the approach the potential to be computationally 

tractable in more unrestricted recognition tasks. 

The current implementation used a word spotting approach which is not com- 

putationally efficient. This is because the focus of the study was quantification 

of the constraint provided by knowledge of the lexicon, without interaction from 

heuristic search techniques, in contrast to the development of a recognition system. 

However, in implementing a verifier as part of a recognition system, the required 

computation could be restricted by use of sequentid constraints in conjunction with 

efficient search techniques which expand nodes as needed. 

In an acoustic-phonetic approach to continuous speech recognition, the phone 

endpoints are located before the computation of recognition scores. Thus recog- 

nition scores are computed for only one set of endpoints. This approach can be 

contrasted with template-based approaches which try to find the best set of end- 



points by computing a recognition score for each possible endpoint pair. As the 

vocabulary size increases, the number of possible endpoints which must be consid- 

ered in a template matching approach increases. Therefore, since recognition scores 

need not be computed multiple times for different sets of endpoints, the computa- 

tion required by an acoustic-phonetic approach is more tractable than a template 

matching approach. We believe that through the use of speech constraints and a seg- 

ment representation, an acoustic-phonetic approach is a computationally tractable 

approach for the development of less restrictive speech recognition systems. 

Summary 

The previous sections have addressed the following issues: 

An acoust ic-phonet ic approach is appealing intuitively and in its extendability 

to less restrictive tasks. 

e Digits were chosen for the case study because many phonological variations 

in speech occur in digit strings. Thus the digit task allowed the utility of the 

model to be demonstrated, yet the constraints on the vocabulary kept the 

problem manageable. 

An acoustic-phonetic preprocessor is a valuable part of a recognition system 

because it allows a phone-based segment representation, explicit specification 

of context, and a more accurate representation of events in the speech signal. 

Segments allow a wider variety of characterizations of the speech signal, elim- 

inating many of the errors encountered in spectral matching systems. 

a Sequential constraints reduce the burden on the verifier and allow verifica- 

tion to be more directed and detailed. In addition, the risks associated with 

application of sequential constraints can be quantified so that they are known. 



A simple control strategy using acoustic-phonetic features based on speech 

knowledge is sufficient for the digit vocabulary. 

Because of the types of constraints available in an acoustic-phonetic approach, 

we believe that this approach has the potential to be used in less restricted 

recognition tasks. 

Contributions of the Thesis 

This thesis illustrates that an acoustic-phonetic approach is a viable alterna- 

tive for building continuous speech recognition systems. This was demonstrated by 

extending the acoustic-phonetic recognition model for isolated words proposed by 

Shipman and Zue to continuous speech and by implementing the components in 

the model for the digit vocabulary case study. Implementation of the components 

demonstrated how speech knowledge could be used in each component. More im- 

port antly, implement ation of the components allowed study of the issues involved 

with handling speech variability when applying speech constraints, a better under- 

standing of how speech constraints can be applied, and a better understanding of 

how speech constraints and an acoustic-phonetic approach can be used to reduce 

some of the primary difficulties in developing a speaker-independent , continuous 

speech recognition system. Although this research used the digit vocabulary as a 

case study, the observations and issues addressed should be of value in the design 

of continuous speech recognition systems using other vocabularies. 

5.8.1 Extending the Theoretical Model 

In this thesis, it was demonstrated that it is feasible to extend the Shipman and 

Zue model to continuous speech for a limited vocabulary such as the digits. Ship- 

man and Zue's model proposed that sequential constraints applied to broad clms 

information from the speech signal provides a significant reduction in the number of 



word hypotheses. To extend the model to continuous speech, broad class sequential 

constraints are used to hypothesize words and also to hypothesize corresponding 

word boundaries. Performing word hypothesis from a broad phonetic segmentation 

is in contrast to earlier continuous speech recognition systems, such as  HWIM and 

Hearsay 11, which hypothesized words from a phonetic input string. The feasibility 

study demonstrated that in the digit vocabulary with multiple pronunciations of a 

word allowed, 66% of the word boundaries could be identified given an error-free 

input. Furthermore, using path constraints and sequential constraints, an average 

of 2.8 digits were proposed for every digit in the string. These results show that 

a significant reduction in word candidates can be achieved using sequential con- 

straints, and, as a result, a recognition model baaed on sequential constraints can 

be used for continuous speech. 

5.8.2 Contributions from Component Implementation 

We explored an acoustic-phonetic model of continuous speech recognition by 

implementing the model components. By taking the step from a proposed model to 

implementation of the components of the model, issues important to the application 

of speech constraints in a recognition system were studied. A method which used 

front end characteristics for applying sequential constraints to non-ideal data was 

developed and shown to provide effective candidate reduction. In addition, imple- 

mentation of the verifier demonstrated the power of an acoustic-phonetic approach 

which allows a few well-motivated acoustic features to be selected for identification 

of phones. 

Broad Phonetic Classifier 

Implementation of the broad phonetic classifier demonstrated several concepts. 

It illustrated that a set of acoustic features describing robust characteristics of broad 

classes of speech could be identified. Furthermore, these features could be combined 



using a set of production rules to produce a broad phonetic segmentation. Im- 

plementation also demonstrated an alternative to earlier segmentation algorithms. 

Rather than assigning labels to each frame and then grouping the labels to form 

segments, robust regions, similar to islands of reliability, were identified and then 

extended outward. 

Word Hypothesizer 

Implementation of the word hypothesizer illustrated how sequential constraints 

can be effectively applied to speech. In conjunction, two issues were addressed: (1) 

Is a segment lattice or a segmentation string a better representation for input to 

the word hypothesizer? and (2) Can knowledge about front end characteristics and 

segmentation of speech be combined to produce a score indicating the viability of 

each word hypothesis? 

The variations which occur in real speech dictate that flexibility is required to 

apply sequential constraints. The segment lattice and segment ation string represent 

two approaches to handling front end characterizations of speech variations. The 

segment lattice attempts to handle variations by allowing multiple labels. However, 

the ambiguity of the lattice makes computation of a meaningful characterization of 

the broad phonetic classifier questionable. Thus when sequential constraints were 

applied to a segment lattice, knowledge about the characterization of the broad 

phonetic classifier was not used. It was found that this method of lexical access 

did not provide enough flexibility to handle new broad phonetic representations of 

words, even when a lexicon of alternative pronunciations was used. 

In contrast, the insertion, deletion, and substitution characteristics of the broad 

phonetic classifier can be defined from a segmentation string. A scoring algorithm 

which computed how well the phonetic pronunciation of a word matched a portion 

of the segmentation string was developed. The algorithm generally penalized new 

but similar pronunciations of a word only slightly. The distribution of correct word 



scores were observed to cluster near a probability of 1. In contrast, the distribution 

of the scores of all word hypotheses was very broad. It was shown that these 

results could be used to set a threshold as an effective way of removing poor word 

candidates from consideration by the verifier. At the same time, words which had 

a slightly different broad phonetic representation than the canonical representation 

derived from the phonetic transcription generally were not ruled out, allowing for 

new but similar pronunciations of words. 

It was observed that path constraints and broad allophonic constraints are not 

as effective when the number of word hypotheses is large. Thus, in addition to 

permitting the verifier to be more directed, the use of sequential constraints was 

found to permit these constraints to be more effective. 

Verifier 

Implementation of the verification component illustrated that phones are a vi- 

able and useful representation. It further illustrated how, in the digit vocabulary, a 

few (nine) well motivated acoustic features combined with statistical characteriza- 

tions can be effective in identifying phones. This success was due to the ability to 

selectively characterize portions of phone segments and also to the ability to variably 

weight acoustic events which cannot easily be given much importance in a frame-by- 

frame algorithm. These results thus illustrate the utility of an acoustic-phonetically 

based decision process. Additionally, it was found that detailed discrimination be- 

tween competitors provided better identification scores than deriving a score based 

solely on the characteristics of the phone itself. 

5.8.3 Advantages of an Acoustic-Phonetic Approach 

Implementation of the model components illustrated how an acoustic-phonetic 

approach is potentially speaker-independent. In addition, implementation illus- 

trated how an acoustic-phonetic approach can be used to reduce some of the com- 



mon difficulties in the development of large vocabulary continuous speech recogni- 

tion systems, such as coarticulation and speaker-independence. 

Speaker-independence was examined in each component by comparing the out- 

put when the component was tested on new speech by the training speakers and 

when tested on new speech by new speakers. The output of the broad phonetic 

classifier was found to be very similar for the two sets of speakers, illustrating that 

broad phonetic classes can be found independent of speaker. 

The lexical access component is affected by speakers in the broad phonetic rep- 

resentation of the speech signal. Since the output of the broad phonetic classifier 

is relatively speaker-independent, the distribution of the correct word scores, based 

upon the automatically computed broad phonetic transcription of the speech signal, 

should also be similar, unless the types of insertions, deletions, and substitutions 

which occur have changed significantly. It was found that the distribution of correct 

word scores is essentially the same for training speakers and new speakers on new 

digit strings. This demonstrates that sequential constraints, when combined with 

information about front end characteristics, can be used to score word candidates, 

independent of speaker. 

Speaker-independence in the detailed acoustic analysis component was evaluated 

based on phone and word recognition rates. Comparison of the rank of the correct 

phone in a word between training speakers and new speakers on new sentences 

shows no significant degradation. Similarly, comparison of the word error rate 

between training and new speakers on new speech is essentially the same. Thus, 

in an acoustic-phonetic approach, one can choose features which key on important 

information in the speech signal, relatively independent of speaker. 

In summary, all three components were found to perform similarly for training 

speakers and new speakers. Thus an acoustic-phonetic approach shows promise for 



speaker-independent recognition. 

Coart iculation 

Another difficulty in the development of a continuous speech recognition system 

is coarticulation between words. The use of phone segments as a verification unit 

allows the system to examine or not examine coarticulation effects. In this thesis, 

identification of phones by examining regions least affected by coarticulation was 

studied using the digit vocabulary. It was found that phones can be identified 

reasonably well using information during the region least affected by coarticulation. 

In particular, the correct phone was the top candidate at least 87% of the time, 

and within the top two candidates at least 98% of the time. These results show 

that use of a phone representation is a powerful method for reducing coarticulation 

effects to derive a baseline phone identification score. Further work to explicitly 

exploit transitional information could thus use the best ranking phone candidates 

as a starting point for verification of possible transitions between phones, based on 

the acoustic information present. 

Future Work 

We believe that the results of this research indicate the viability of an acoustic- 

phonetic approach to continuous speech recognition and that further studies should 

be pursued using this model. We also believe that the next step in this area of 

research is to use a more formalized approach to incorporate speech knowledge into 

each system component. In this section, we outline suggestions towards a more 

formalized approach and propose modifications for each of the system components 

based upon what was learned through implementation of the components. 



5.9.1 Broad Phonetic Classifier 

Before using the broad phonetic classifier in a recognition system, its perfor- 

mance should be improved. Ideally, the performance should approach a level such 

that the number of word candidates remaining after application of sequential con- 

straints is comparable to the number of candidates in the ideal word lattice (as was 

used to evaluate the verifier). The broad phonetic classifier can be improved and 

extended by using a more formalized approach and by refining the chosen set of 

broad phonetic labels. Speech knowledge waa incorporated into the broad phonetic 

classifier using heuristics. More formalized methods for defining the set of broad 

classes used in initial labeling and for identifying segment boundaries and labels are 

needed. For example, broad phonetic classes could be selected based upon how the 

phones in a labeled set cluster in a chosen feature space. In addition, a formalized 

method for identification of segments should still adapt to new utterances; that is, 

the classification algorithm should use training data as a standard which can be 

adjusted to utterance characteristics. 

The chosen set of broad phonetic classes should be examined in more detail and 

the least robust classes refined. For example, rather than trying to identify nasals in 

all contexts, only intervocalic nasal consonants (which are much more robust than 

word initial or word final nasals in the context of a voiceless consonant) could be 

included in the sonorant broad class; and non-intervocalic nasals could be included 

in the vowel broad class. The rules for finding a short voiced obstment should also 

be refined. Although a dip in energy is usually observable in higher frequencies, 

this information was not used; this information could be used by looking for a dip 

in energy in the higher frequencies and/or by looking at a wider energy band. 

The broad phonetic classifier currently segments and labels the speech signal into 

six broad phonetic classes. By simply extending the approach to larger vocabularies, 

the number of word candidates will generally increase. Inclusion of several more 

detailed, but still robust classes, such as labeling vowels as front/back, can reduce 



the number of word candidates. In addition, broad classes for glottalization and 

for aspiration, which frequently occurs at the end of a sentence, especially after a 

sentence-final /r/, would be helpful since these sounds were not strongly associated 

with any of the six broad classes. 

The boundaries assigned to segments were sometimes offset in time from the 

hand transcription, resulting in &extraw substitutions. Errors attributable to this 

offset are more evident in short broad phonetic segments, such as a short voiced 

obstruent or a word initial nasal. The offset is in part due to arbitrarily dividing the 

transition regions between the adjacent segments. By reducing the number of offset 

errors by the broad phonetic classifier, the correct word scores would be more closely 

concentrated near a probability of 1, and a larger percentage of the word hypotheses 

could be pruned. Two options for "reducing" the offset error statistics and therefore 

improving the performance are to: 1) try to find more accurate boundaries in the 

broad phonetic classifier or 2) compute performance statistics by using a string 

matching algorithm (e.g., Levenshtein distance in Sankoff and Kruskal, 1983) to 

match the sequence of broad phonetic labels produced by the system with the hand 

labeled phonetic transcription. In the second option, an aasumption is made that 

the segment boundaries will be adjusted in verification. This option is preferred 

because an offset in the location of segment boundaries would not be counted as an 

insertion or deletion. In addition, the location of more accurate segment boundaries 

is postponed until the identity of the hypothesized phone segments is known. 

5.9.2 Lexical Component 

In the lexical component, the use of durational, path, and allophonic constraints 

needs to be further investigated. The number of word candidates remaining after 

each constraint is applied should be evaluated over a variety of sequential constraint 

thresholds. Durational constraints were used to specify when a broad phonetic 

segment could represent only one or only two phones. These constraints were not 



used for individual phones because the duration of a phone can vary greatly from 

utterance to utterance. A reference duration, which could be derived, for example, 

from knowledge of the number of digits in a digit string, is needed to effectively 

apply durational constraints at the phone level. 

Methods for handling noise in the speech signal, such as lip smacks, need to be 

incorporated into the application of path constraints. One possibility is to allow 

possible noise segments to be skipped in a path at a specified cost. 

The rules describing allophonic constraints were determined empirically from 

examination of spectrograms. A more formalized method should be used for defining 

the rules. For example, the broad phonetic representation (produced by the system) 

for each pronunciation and context of a word could be statistically tabulated, and 

these statistics could be used to weight the score assigned to a word. The word 

scores could then be characterized, as was done in the application of sequential 

constraints, and a threshold set such that poorly scoring words are removed from 

further considerat ion. 

5.9.3 Verifier 

With a knowledge-based system, more knowledge can always be added. In 

addition to development of additional detailed acoustic features for verification of 

phone hypotheses, a method for optimizing the set of features should prove to be 

valuable in removing features which do not contribute much information. 

Allophones of a phoneme were sometimes grouped together in the training statis- 

tics. For example, the acoustic realizations of /r/ are different when in prevocalic, 

postvocalic, and intervocalic position. The current implementation of the verifier 

primarily used the feature of /r/-Possibility, which was computed over the middle 

50% of a phone, to estimate how well a phone is realized as an /r/. This feature 

favors intervocalic /r/'s, which are most "/r/-like" in the center of a phone, over 

prevocalic and postvocalic /r/'s. By treating each allophone of /r/ as a different 



phone, better results may be obtained. 

A weakness in the acoustic-phonetic approach as we implemented it is that the 

regions of speech used for training and testing were different. Thus, the values 

obtained in testing may be different. Hence, a method such that training and 

testing are performed on the same regions of speech should be developed. 

A measure of spectral concentration was used to provide rough information 

about formants, rather than using a formant tracker. When current formant track- 

ers fail, they may make gross errors. The development of a reliable formant tracker 

or one which indicated the reliability of the computed formant values would be 

useful in verification. The spectral concentration measure was found to be satisfac- 

tory for the limited digit vocabulary; however, a more accurate measure of formant 

location is needed for other vocabularies. 

This research used the digit vocabulary as the basis for exploring how speech 

constraints can be applied to speech recognition. Pursuing this study for other 

vocabularies will require development of a more sophisticated control strategy in 

the verifier, perhaps involving the combination of expert system techniques with 

multivariate statistics. Coarticulation was largely ignored by defining features over 

the regions of a phone least affected by coarticulation. With a larger vocabulary, 

coarticulation will be more important in the identification of phones. One way in 

which coarticulation effects could be included is by developing a more sophisticated 

control strategy which can reason about conflicting cues. A control strategy could 

also be used to handle the varying number of phones in a segment so that nor- 

malization by duration or number of segments, both of which have faults, is not 

necessary. 

The verifier was evaluated using incremental simulation. This technique iso- 

lated errors due to earlier components from errors due to the verifier, thus allowing 

the use of acoustic-phonetic features for verification of phones and words to be 

explored. Before the verifier can effectively use the word lattice produced by the 



lexical component, methods need to be developed so that the verifier can handle 

initial broad class segmentation errors. These methods could include refinement of 

the broad class boundaries using information about the phonetic transcription of 

each hypothesized word before verification is performed. 

5.9.4 Extensions to Other Tasks 

The digit vocabulary formed a well-constrained task in which the utility of speech 

constraints could be studied in each component of the recognition model. One way 

to extend this thesis is to modify the knowledge used by the system to include 

other vocabularies. To extend the system to other vocabularies, the lexicon must 

be modified to include words from the new vocabulary. In addition, the broad 

phonetic classifier statistics need to be updated to handle any new phones and 

phone pair sequences. 

A vocabulary could be chosen to illustrate a particular component of the recogni- 

tion model. For example, a vocabulary composed primarily of dissimilar polysyllabic 

words could be used to study the performance of lexical access. Ideally, most of 

the word hypotheses produced by the lexical access component for this vocabulary 

should be uniquely specified. In contrast, a vocabulary composed of similar words 

could be chosen to study the use of acoustic features in the verification component. 

In summary, this thesis has explored the viability of an acoustic-phonetic recog- 

nition model for continuous speech. Using the digits as a case study, the model was 

shown to be a viable approach to speech recognition which is potentially speaker- 

independent. We believe that further research should be pursued in order to fully 

develop this approach. 



Appendix A 

The Digit Corpus 

The digit corpus was composed of 22 seven-digit strings (Corpus A) and 100 

random-length digit strings. The random-length digit strings were divided into two 

subsets, Corpus B and Corpus C. Corpus B was included in the training set so that 

the system could be trained on random-length digit strings as well as on ?-digit 

strings. Corpus C was used for evaluating the system components. 

The ?-digit strings were defined such that each sequence pair of digits, not 

including the pair formed by the third and fourth digits, was uniformly represented. 

The pair formed by the third and fourth digits was not considered in anticipation 

of people pausing between the third and fourth digit, as when saying a telephone 

number. However, the speakers were not told to pause, but instead were instructed 

to say the digit strings as naturally as possible. In addition, the representation 

of each digit in the string and representation at sentence initial and sentence final 

position was balanced over the corpus. 

The length of the random-length strings was uniformly distributed from one to 

seven digits. The strings were generated using a random number generator to select 

the length of the string and the numbers composing the string. The numbers in the 

string were evaluated for uniform representation of pair sequences. A few strings 

were edited to insure that each sequence was represented at least once and that 



each digit was represented at least once in isolation. 

All utterances were orthographically transcribed. In addition, a subset of these 

utterances was also phonetically transcribed. These transcriptions were manually 

time-aligned to the speech waveform and with each other using the Spire facility 

available on the MIT Lisp Machine Workstations (Shipman, 1982; Cyphers, 1985). 

The position of a segment boundary was determined from observation of the speech 

spectrogram, the expanded speech waveform, the short-time spectra, and if neces- 

sary, by listening to a region of speech. 

A few rules were used for transcribing ambiguous cases: 

1. Because there usually are no clear boundaries between a voweland liquidlglide, 

these boundaries were marked by assigning a fixed proportion of the vocalic 

region to each label unless the proportion definitely looked incorrect. Non- 

intervocalic liquidlglides are assigned 3 of the vowel-liquidlglide region. In- 

tervocalic liquidlglides were assigned + of the region from the beginning of 

the preceding vowel to the midpoint of the liquidlglide, plus $ of the region 

from the midpoint of the liquidlglide to end of the following vowel. 

2. Vowel to vowel boundaries were sometimes difficult to establish when the 

formants moved smoothly and no glottalization occurred. These boundaries 

were marked at the middle of the transition between two vowels. 

3. When two phones geminate across a word boundary, as in "six sevenn or "one 

nine," the geminate segment was split evenly between the two words unless 

clear cues to a boundary were evident. 

4. When only one release was present in the sequence "eight two," then the 

closure is assigned to the "eight" and the release ia assigned to the "two". 

5. Glottalization occurring between two vowels at a word boundary was assigned 

to the second word. 



The utterances were recorded using a Sennheiser noise canceling microphone in 

a "quiet" room. Corpus A is recordings of four male and three female speakers. 

Corpus B and Corpus C are recordings of five male and five female speakers. Two 

of the males and three of the females were the same for the two corpora. 

Corpus A 

0315796 1807227 2964898 3674219 

4583510 6093882 8240103 9253394 

7620085 5471181 6327812 5043023 

6861994 7352395 4159706 2869497 

843640 1 7698316 6077153 5532742 

4615931 3214200 2468135 

Corpus B 

43039 90678 88361 56 

981357 066 574 69 

54 6394829 8846 15 

65 019 27581 24 

8517 516 733658 7 

06 85031 5 38872 

307 3 



Corpus C 

935031 1 6521325 54434 9 

595 89 37 85 1 

1496070 65298 35569 816 

5903 432678 91 374 

3 547750 0407917 6844 

2 6 9005010 61528 

57345 15 237 6 

2 0 2645 1 

4 94 006097 08 1 

4000 5 2 958399 19120 

903 7 50717 1 

32 542621 020157 559069 

598 260539 686766 40853 

305 98959 8762 5 

305 0522945 49162 8158054 

722 8 5659020 138940 

7792 18 7326 541 135 

780933 13003 66 785753 

80 69900 



The utterances in the corpus were divided into four categories: 

1. training utterances by training speakers 

2. new utterances by training speakers 

3. training utterances by new speakers 

4. new utterances by new speakers 

The numbers followed by a 'u" are orthographically but not phonetically tran- 

scribed. The utterances in category one form the training set for each of the system 

components. Thus, the components were trained on random-lengt h digit strings 

and 7-digit strings spoken by three mde and three female speakers. 

Subsets of Evaluation Corpus 

Speaker 

jrg 

maf 

sch 

ama 

cab 

chs 

rhk 

wpd 

b p  

Ifl 

b l  

male/female 

m 

m 

m 

f 

f 

f 

m 

m 

m 

f 

f 

Corpus Subset 

A 

1 

1 

1 

1 

1 

1 

3 

B 

1 

1 

1 

1 

1 

3 

3 

3u 

3 

3u 

C 

2 

2 

2 

2u 

2 

4 

4 

4u 

4 

4u 



Appendix B 

Sample Product ion Rules 

This is an example of a production rule for hypothesizing the phone-like class 

of strong-fricative-like from acoustic features: 

(defrule (strong-fric-like1 *initial-rules*) 
(if (and hi-zc 

hi-hi e 
(at-most-one-of vocalic-1 hi-lie)) 

(assert strong-f ric-like) )) 

This rule states that if (1) the zero-crossing-rate is high, and (2) the high-frequency- 

energy is high, and (3) at most one of the indicators of high low-frequency-energy 

is on, then assert that a strong fricative may be present in the region. 

This is an example of a production rule for hypothesizing the phone class of 

strong-fricative from the phone-like classes: 

(defrale (strong-frici *class-rules*) 
(context-of ( (  (anything) 

( (with-duration > 10 strong-f ric-like)) 
(anything) 
(if (and (max-greater phi e -65) 

(mu-greater pte -55) ) 
(assert strong-f ricative) 
(and (assert strong-fricative) 

(assert weak-fricative)))))) 



This rule states that if (1) a strong-fric-like segment was hypothesized which has a 

duration of at least 10 msec, (2) the segment is preceded by anything, and (3) the 

segment is followed by anything, then a strong-fricative and possibly a weak-fricative 

is asserted. If the maximum value of high-frequency-energy in the region is greater 

than -65 dB, and the maximum value of total-energy in the region is greater than 

-55 dB (the threshold values were determined from a statistical characterization of 

the phone classes), then only a strong-fricative is asserted; otherwise, both a strong- 

fricative and a weak-fricative are asserted. Note that durational and contextual 

constraints can be specified, as well as additional acoustic features. 



Appendix C 

Insert ions and Deletions 

Insertions 

The following table lists the insertion errors in the output of the broad pho- 

netic classifier which contribute at least 1% of the total number of insertion errors. 

Note that the errors are reasonable. For example, the two predominant errors are 

insertion of silence in the labeling of the weak fricatives /f/ and /8/. As another 

example, the vowels with offglides form a group in which the offglide portion of the 

vowel is labeled as a sonorant. 



count broad labels 

( SILENCE WEAK-FRIC) 
( SILENCE WERK-FRIC) 
( UOWEL SONORRNT 
(SONORANT VOWEL) 
(VOWEL SONORANT) 
(VOWEL SONORANT) 
(VOWEL SONORANT) 
(VOWEL SONORANT) 
(STRONG-FRIC WEAK-FRIC) 
(SONORANT SILENCE) 
(WEAK-FRIC SILENCE) 
(VOWEL SONORANT) 
(WEflK-FRIC STRONG-FRIC) 
(WEAK-FRIC SILENCE) 
(VOWEL SONORANT) 
(VOWEL SONORANT) 
( SILENCE STRONG-FRIC) 
( VOWEL SILENCE) 
(VOWEL SONORANT) 
(SILENCE WEAK-FRIC) 
( VOWEL SILENCE) 
(STRONG-FRIC WEflK-FRIC) 
(WEAK-FRIC SONORANT) 
( SONORANT VOWEL) 
(VOWEL U) 
( SONORANT UOWEL) 

phone label 



Deletions 

The following table lists the deletion errors in the output of the broad phonetic 

classifier which contribute at least 1% of the total number of deletion errors. Note 

that the errors are reasonable. For example, the system was not designed to identify 

/r/; /r/ was considered to be a vowel. We see that the firat four predominant errors 

are deletion of /r/ when adjacent to a vowel. In addition, the system did not try 

to locate [k] separately from its closure or the following fricative. Thus the erron 

of calling [ks] a strong fricative and [kik] silence are also reasonable errors. 

count 

129 
122 
117 
90 
6 0 
4 8 
32 
26 
25 
24 
21 
20 
18 
18 
15 
14 
14 
13 
13 
12 
12 
12 
12 

broad label 

VOWEL 
UOWEL 
UOWEL 
VOWEL 
ST  RONG-FRI  C 
S I L E N C E  
UOWEL 
VOWEL 
VOWEL 
VOWEL 
SONORRNT 
VOWEL 
VOWEL 
VOWEL 
VOWEL 

: SONORANT 
VOWEL 
WERK-FRIC 
S I L E N C E  
VOWEL 
ST RONG-FRIC 
WEAK-FRIC 

. SONORANT 

phone labels 



Glossary 

Some of the terms in this document have different meanings as used by different 

people. This Glossary is an attempt to clarify the intended meaning of some of 

these words as used in this thesis. 

broad phonetic class: A set of phones which have common acoustic character- 

istics that can be robustly identified. 

broad phonetic level: A description of the speech signal in which the signal is 

represented as a sequence of segments and each segment is labeled as a broad 

phonetic class. 

constraint: A restriction on the search space. In this thesis, speech knowledge is 

formulated into constraints which are used to identify poor word hypothesis 

and rule them out from further consideration 

fiont end: In reference to the acoustic-phonetic recognition model, this is the 

broad phonetic classifier. 

feature/cne: A representation of a region of a parameter which attempts to 

capture a salient characteristic of the parameter and which may be related to . 

one or more speech sounds. 

low lwel speech knowledge: Characteristics about speech derived from the 

acoustic signal. 



parameter: A set of values directly derived from the speech signal. These values 

can be used to characterize the speech signal on a sample by sample basis 

(forming a feature vector) or can be characterized into features. The difference 

between a parameter and a cue may sometimes be ambiguous. 

segment: A region of speech. This region may be associated with a variety of 

speech units, such as a phone or broad phonetic class. 

segmentation string: Representation of the speech signal by a sequence of dis- 

crete units, each of which is associated with a label. In the output produced by 

the broad phonetic classifier, the labels are one of six broad phonetic classes. 

sonorant: This term refers to the class of sonorant consonants, in contrast to the 

distinctive feature used by linguists. 
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