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1. INTRODUCTION

The concept of the product life cycle, which has been much

discussed and debated (e.g., Bass, 1969; Dhalla and Yuspeh, 1976;

Wasson, 1978), describes a time-dependent sequence of stages that

products go through from the time of initial production and sales to

the time of the retirement of the product due to obsolescence. The

concept of the process life cycle, introduced by Abernathy and

Townsend (1975) and Abernathy and Utterback (1975), describes an

analogous sequence of stages that manufacturing processes go through,

as the product being manufactered matures. Hayes and Wheelwright

(1979a, 1979b) suggest using a two-dimensional map to describe a

firm's location in product-process life cycle space. (See Figure 1.)

They then develop a theory of technology choice over the product life

cycle and discuss the hypothesis that most firms should compete "on

the diagonal" of their diagram. That is, as a product evolves from a

one-of-a-kind prototype to a high-volume, highly standardized item,

the manufacturing process should evolve from a flexible, manual job

shop-like process with general purpose tools and broadly skilled

workers to a rigid, highly automated, assembly line-like process with

special-purpose machines and narrowly trained workers.

In addition, Hayes and Wheelwright (1979b) describe three

potentially desirable entrance-exit strategies that may be used over

the product life cycle. These are:
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A: enter early and get out early, when profit margins first

begin to drop;

B: enter early and remain in the market throughout the

product life cycle by adapting process technologies

as needed; and

C: enter only after the market has matured, and product

and process have stabilized to some degree.

Note that strategies A and C may require only one type of process

technology, where strategy B is likely to entail a significant

technological shift at some point.

The informal theory building of Hayes and Wheelwright has been

very useful in helping some analysts and managers develop better

intuition concerning strategies for entry, exit, and technology choice

over the product life cycle. However, their qualitative mode of

analysis limits significantly one's ability to analyze the sensitivity

of their descriptions and prescriptions to specific industry

circumstances. One purpose of this paper is to build on the Hayes-

Wheelwright work by developing a formal model that captures their

basic analysis but allows additional exploration and insight into

the issues they raise.

Some observers (e.g., Goldhar [1986), Noori [1986]) have

suggested that the existence of flexible, automated manufacturing

technologies necessitates a reexamination of the Hayes-Wheelwright

theory. To wit, manufacturing automation gives rise to the

possibility that a firm could use a flexible manufacturing system to

simultaneously manufacture several different products, each in a

different stage in its life cycle. Under this regime, each product

I



-3-

would be manufactured by the system over its entire life cycle; only

the mix of products would change as the different products progressed

through their life cycles. This line of reasoning suggests that

flexible automation decouples the product and process life cycles,

because a factory with this technology can economically manufacture a

range of products in all stages of their life cycles.

In our model, holding flexible capacity is motivated by the

economies of using one technology to manufacture different products

whose demand patterns are known but possibly asynchronous. This

contrasts with the model of Fine and Freund (1987) where flexible

capacity is held as a hedge against uncertainty of the future product

demand mix.

The models most closely related to ours are those of Cohen and

Halperin (1986) and Hutchinson and Holland (1982). These papers

relate, respectively, to sections two and three of our paper. Cohen

and Halperin analyze a single-product dynamic, stochastic model of

technology choice, where a technology is characterized by three

parameters: the purchase cost, the fixed per period operating cost,

and the variable, per unit production cost. Their principal result,

which is consistent with our analysis of section two, gives conditions

sufficient to guarantee that an optimal technology sequence exhibits

nonincreasing variable costs.

The Hutchinson and Holland analysis, although quite different

from ours in its approach, is quite similar to our section three in

spirit. Both pieces of work seek to understand what factors affect

the relative profitability of flexible and dedicated technologies in

an environment where there are multiple products with different life

� ·- _··
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cycles. Hutchinson and Holland address this question by simulating

manufacturing system performance for a stochastic product stream,

first assuming all technologies are transfer lines (inflexible), and

again, assuming all technologies are flexible manufacturing systems

(FMS's). They assume that FMS's have higher variable production

costs, but exhibit two types of flexibility: capacity can be added

incrementally, rather than all at once, and capacity can be converted

to produce more than one product. The authors' 192 simulation runs

suggest that the value of flexible systems relative to transfer lines

increases in the rate of new product introductions and the maximum

capacity of FMS's increase, and decreases in the interest rate and the

average volume per part produced.

In section two we formulate a one-product deterministic model of

optimal entry, exit, and technology choice over the product life

cycle. This model is meant to capture the basic intuition of the

Hayes-Wheelwright analysis and permits additional investigation of the

issues raised in their work. For this model we solve for the optimal

technology choice policies and show how these policies change as a

function of certain key parameters. Section three presents a model of

technology choice with flexible technologies for two products with

overlapping product life cycles. Under the taxonomy of Piore (1986),

we focus on technologies for flexible mass production (as was also

done in Fine and Freund (1987)) as opposed to technologies for

flexible specialization. Our model allows us to address the above-

mentioned extension of the Hayes-Wheelwright analysis. One result of

this analysis is that optimal deployment of product-flexible

manufacturing capacity may dictate devoting flexible capacity to a

I
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narrow range of products at the peak of some product life cycles. In

Section four we discuss how our results provide insight into the life

cycle of a flexible manufacturing system and how they add perspective

to the presumption by Jaikumar (1986) that optimal deployment of

flexible manufacturing systems will exhibit broad product ranges at

all times. Section five contains a discussion of how competition will

affect our results and some concluding remarks.

2. THE SINGLE-PRODUCT TECHNOLOGY CHOICE MODEL

We formulate the single product technology choice problem as a

discrete-time dynamic program with discount factor 6. Demand for the

firm's product is indexed by at. To model the time path of demand

over the product life cycle, we assume ao=o and that at increases

(weakly) monotonically and deterministically to a point T where it

peaks, and then decreases monotonically and deterministically until

the market is no longer profitable. We assume that there exists a

finite time t such that t inf {t: a t > 0)} and a finite time t** >

T > to such that at**= 0 and a t < 0 for all t > t**.

The firm has two manufacturing processes available to it: a

labor-intensive process (indexed by L) that has high variable

costs per unit, but a low initial investment and startup cost (IL);

and a capital-intensive process (indexed by K) that has low variable

costs per unit, but a high initial investment and startup cost

(IK > IL). We think of the labor-intensive process as being analogous

to the job shop process of Hayes and Wheelwright (1979a) and the

capital-intensive process as being like their assembly line process.

However, in the single-product case of this section, one ought to

I I I I I~~~~~~~~~I
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think of process L as being a labor-intensive assembly or batch flow

line, because the product flexibility provided by a job shop is not

relevant.

If the firm operates technology T (= L or K) in period t, then it

earns period t profits of n(at,T). (For example, suppose a firm pays

a fixed cost per period F T and a per unit production cost of CT when

it uses technology T, and faces a linear inverse demand curve pt(qt) =

at-bqt, where pt(qt) is the market price when qt is produced; then

1(at,T) = max qt(at-bqt-CT)-FT.) We use to denote the null technology;

qt
that is, the firm is not participating in the market. We assume

r(at,$) = 0 for all a t. For T = L or K, we assume that (at,T) < 0

for a t < 0 and (at,T) is continuous and nondecreasing in at for all

a t. We use 1 (at,T) to denote the first derivative of the profit

function with respect to the demand index a t. Because the capital-

intensive process has lower variable costs than the labor-intensive

process, we also assume that for at > O, Tl(at,L) < nl(at,K), the

profit function for the labor-intensive process is less steep than the

profit function for the capital-intensive process.

In each period, the firm can either be in the market or out of

the market. If not in the market at period t, the firm observes at

and decides whether or not to enter the market. If it stays out, it

earns zero profits ( (at,%) = 0). If it chooses to enter, it must

first purchase one of the two types of manufacturing technologies (at

cost IL or IK) before earning operating profits of (at,T) for the

period. If the firm is already in the market at time t, it may

__
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choose to produce with the technology it already owns or purchase the

other technology. Disposal costs for either technology are zero.

That is, we assume that the net effect of exit costs and salvage value

is zero. This assumption is also made by Meyer (1971), Kamien and

Schwartz (1972), Hutchinson and Holland (1982), Burstein and Talbi

(1985), and others. (We discuss the relaxation of this assumption

towards the end of Section Three.) We also assume that a firm cannot

maintain a technology that is not being used. That is, after

abandoning the use of one technology for another, if the firm ever

wants to produce again with the abandoned process, it must pay again

the startup/investment cost IL or IK.

This problem can be formulated as a dynamic program, as follows.

Let Tt be the decision variable that denotes the technology used at

time t, so that Tt c {,K,L}, where

means out of the market;

Tt = K means capital-intensive process;

L means labor-intensive process.

Also, let (Tt-1,Tt) denote the technology switching cost, i.e.,

0 if Tt_ 1 = Tt or Tt =

P(Tt-1,Tt) = IK if Tt-1 Tt = K

IL if Tt-1 Tt = L.

Then, the technology choice problem can be stated as

-,I-
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max t**

(Tt) E &t-1 [(at,Tt) - P(Tt-l,Tt)], (2.1)
1<t<t** t=l

where T = T**+ = . Note that without loss of generality, we can

optimize over an infinite horizon because the firm will optimally

choose Tt = for t > t**, and periods t = t**+l, t**+2,..., will

contribute zero to profits. As in Hutchinson and Holland (1982), Fine

and Freund (1987), Gaimon (1987), and most of Cohen and Halperin

(1986), we assume no interperiod inventories. This is somewhat

restrictive, but holds in many circumstances. For example, most

service companies are characterized by the fact that services are

produced and sold at the same time; their products are not in-

ventoriable. This is also true for perishable-goods producers. In

addition, in some style goods industries, e.g., automobiles, producers

vary their products each year and choose to manipulate prices and

buyer incentives to assure that no interperiod inventories are held.

To analyze this dynamic programming problem, we first define for

T = K or L, a T to be the smallest value of at that gives the firm non-

0
negative profits when it owns technology T, i.e., aT = inf {a:n(a,T) > O}.

We define a* such that n(a,K) > (a,L) if and only if a > a*. (The

conditions on (a,L) and (a,K) assure that a* exists and is unique.)

For the analyses that follow, we assume a > max (aL,a*). This

assumption assures that both technologies can be economically viable.

Otherwise the problem has only one economically feasible technology,

the problem studied in Fine and Li (1986) in a stochastic, duopolistic

setting. We define t* and t* to be (respectively) the first and last

_II� _
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times that (a,K) > n(a,L). Therefore a t = a* = at, and t < t < t*.

These times should be thought of as candidate times for switching from

the labor-intensive process to the capital intensive process (t*) and

from the capital-intensive process to the labor-intensive process

(t*). As it turns out, these are the optimal switching times only if

6 = 1, but they are useful for understanding the analysis of the

optimal switching times for the case when 6 < 1.

For analogous reasons, we define for T = K,L, tT and tT as

(respectively) the first and last times that the technology T is

profitable. That is, for T = K,L, tT = inf{t: (at,T) > O} and tT =

sup{t: (atT) > }.

We proceed with the analysis by dividing the parameter space to

look at two cases: aK < aL and aK > aL These cases correspond to

whether the capital-intensive process has a lower breakeven point than

0 0
the labor-intensive process (aK aL) or vice versa. Either of

these assumptions may be reasonable, depending on the cost structure

associated with the technologies. For example, if the capital-

intensive technology requires a large cadre of support labor

(maintenance, engineers, etc.) to keep it running, then it will

require high levels of output to cover the fixed costs of keeping

0 0
the plant operating, so aK > aL would be reasonable. On the other

hand, if the highly automated plant can be kept up and running with a

small staff, then, because of its low variable costs, the capital-

intensive technology may have a lower breakeven point than the labor-

intensive one.

I
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0 0
In the former case (Figure 2) we have a* < aK < aL < a. In

this case, the firm will never switch technologies. To see this,

first note that n(a,K) > (a,L) for all values of a that yield

positive profits with either technology. If the firm invests in

technology K, then it will never switch to technology L because

T(a,K) > n(a,L) over the entire range where technology L yields

positive profits. On the other hand, if the firm invests in the

labor-intensive technology (because its investment cost is

significantly lower), it will be because the capital-intensive

technology was too costly to invest in at all. Thus, there are only

three strategies a firm would follow in this case: invest only in the

capital-intensive process, invest only in the labor-intensive process,

or stay out of the market.

To determine which of these policies is optimal, we first let

rr(at,T) = max ((at,T), 0) and let UT(s) denote the discounted

profit stream to the firm if it invests in technology T (= K or L) at

time se (tT, tT) and uses it until time tT. (Our assumption of a zero

net effect on profits of exit costs and salvage benefits guarantees

that tT is the optimal exit time.) Therefore, we have

t +
UT(S) = 6 t(as+t'T)+.

t=O

If the firm invests in technology T at time s, its profit net of

investment (calculated at time s) is UT(s) - IT. Consider postponing

the investment one period from time s to time s + 1. The benefit of

this postponement is [UT(s+1) - IT] - [UT(S) - IT], so that the firm

will find it beneficial to postpone the investment in technology T

__

I~~~~~~~~~~~~~~~~~--I M
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from s to s+1 if (1-6) IT > (as,T) . This observation yields three

conclusions, stated as

Proposition 1. Assume technology T is the only technology available.

If (1 -6)IT > (aT,T), then the firm will never enter with technology

T. If (1-6 )IT < (a ,T), then ST, defined as the smallest integer

that satisfies tT < ST < T and T(aST ,T) < (1-6)IT (a STT),

is the candidate entry time for technology T. If UT(ST) -IT < 0,

then the firm will never use technology T and we set ST = ; otherwise

the firm will enter at time ST < .

Proposition 1 suggests a two-stage calculation for the

determination of the optimal entry time when only one technology,

technology T, is to be considered. First the entry time (ST) that

maximizes the present value of profits net of investment is

calculated. The identified time is the optimal entry time if

discounted profits from entry at that time are positive. That is,

if UT(ST)-IT > 0.

Note that if 6 < 1 then ST will always be larger than tT and if

6=1 then ST = tT. That is, with a positive interest rate the optimal

time to invest will always be no earlier than the first time that the

technology generates a positive profit. The investment

decision is postponed beyond tT because the firm must earn a strictly

positive profit from the technology before foregoing the opportunity

cost of the capital it must invest for the acquisition.

O O
To find the optimal policy for the case aK < aLt we first

calculate SK SL' UK(SK)-IK' and UL(SL)-IL. If UK(SK)-I K and UL(SL)-IL

I
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are both negative, then the firm will never enter. If only one of

these terms is positive, then the firm will enter with the corre-

sponding technology at the candidate entry time for that technology

and exit at the corresponding tT. If both are positive, the firm

will enter at SK with technology K and exit at tK if UK(SK)-IK

> 6SL-SKUL(SL)-IL and will enter at SL with technology L and exit

at tL if this inequality is reversed.

0 0
In the second case, where aL < aK < a* < a (Figure 3), there

are six possible optimal technology strategies, depending on the

parameters of the model. These are: (1) use only the labor-intensive

technology, over the entire course of the product life cycle; (2) use

only the capital-intensive technology; (3) enter with the labor-

intensive technology and switch to the capital-intensive technology

when demand becomes sufficiently large; (4) enter with the capital-

intensive technology and switch to the labor-intensive process in the

twilight of the product's life cycle; (5) enter with the labor-

intensive process, switch to the capital-intensive process when demand

is high, and then switch back to the labor-intensive process toward

the end of the life cycle; and (6) do not enter the market. We will

sometimes denote these stragetiges, respectively, by the following

shorthand notation: L, K, L-K, K-L, L-K-L, and . Our usage of this

shorthand will be clear from the context. The analysis below

identifies the parameter conditions that support each of these six

strategies.

To begin the analysis, we first note that since we assume that

the net effect on profits of exit costs and salvage benefits is zero,

deriving optimal exit times is straightforward: If the firm holds

I - -
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technology L at t* or later, then it will never switch to K after that

point (because n(at,L) > (at,K) for all t > t*) and it will exit at

time tL. If the firm holds technology K at t*, then it may choose to

switch to technology L some time after t*, but if it does not switch,

it will exit at tK.

The next results characterize the optimal times to switch

technologies - either from the capital-intensive to the labor-

intensive or vice versa. Since we assume that the net effect of exit

costs and salvage benefits from abandoning a technology is zero, the

tradeoff involves comparing the investment cost of purchasing the new

technology with the relative differences in discounted cash flows from

the different technologies. As in the preceding analyses, the optimal

switching times are adjusted from t* and t* to reflect the requirement

that the differential profits from the new technology exceed the

opportunity cost of the money to be invested.

Suppose the firm is already operating the capital-intensive

technology at time s and is considering a switch to the labor-

intensive process. If the firm switches at time s (and never switches

back) then the profits from s onward will be

E r(a + t, L) - IL'
t=O

whereas if it switches at time s+l, profits will be

+ t +
1T(a ,K) + E 6 n ,(a L) - I

5 t=1 s+tL

The benefit to postponement from time s to time s+1 of the switch

from K to L is the difference:

BKL(s) = TT(as,K) - n(as,L) + (1-6)IL.KL ~~S 5 
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The graph of this function is shown in Figure 4. Since r(a ,K) += 0

0
for a aK and (as,K) > l(as,L), BKL(s) is minimized at tK andfor a aK s _K

K 0
tK , where at = aK' This observation leads to the conclusion that if

0 0
BKL(tK)= T(aK,K) - (aK,L) + (1-)I L > O, then the firm will never

switch from K to L.

From Figure 4, we observe that BKL(t) < 0 can occur in two

regions: one in the interior of (tL, t*) and the other in the

interior of (t*,tL). Clearly, the firm would never switch from K to L

in the first of these, since it would not have even acquired

technology K prior to SK > tK. On the other hand, in the latter

region, as demand is declining, the firm might find it profitable to

switch back to the labor-intensive technology, with its lower

breakeven point. We denote by SKL the candidate time for switching

from process K to process L.

Proposition 2. If BKL(t ) > 0 then the firm will never switch from the

capital-intensive technology to the labor-intensive technology. If

BKL(tK ) < O, then S defined by t* < SKL < tK and BKL(SKL-1) >

BKL(SKL), is the candidate time to switch from the capital-intensive

technology to the labor-intensive technology.

Similarly, to analyze a potential switch from the labor-intensive

to the capital-intensive process, we can define the benefit from

postponing such a switch from time s to time s+1, by

BLK(s) = (as,L) - n(as,K) + (1-6)I K.LK s s K

Note that BLK(s) is minimized at s=T (Figure 5).

I -
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Proposition 3. If BLK(T) > 0, then the firm will never switch from L to

K. If BLK(T) < O, then there exists a unique SLK, satisfying t* SLK

< and BLK(SLK-1) > > BLK(SLK), which is the candidate switching

time.

Together, the three propositions on the candidate adoption times

(SL, SK) and candidate switching times (SKL, SLK) yield the following

characterization (illustrated with a decision tree in Figure 6) of the

technology-choice dynamic program stated in (2.1):

Theorem 1. There are six possible optimal technology policies for this

model. These policies are:

1. Never enter the market (Tt = 4 for all t>O). This policy is

optimal whenever

UL(SL) < IL, and

UK(SK) < IK

2. Only use the labor-intensive technology (Tt = L for SL t < tL,

Tt = 4 otherwise). This policy is optimal whenever

UL(SL)-IL > max (0, 6SK-SL(UK(SK)-IK)

+ max (0, (ULS KL- SK(UL(SKL)-UK( (S KL)-IL)), and

UL(SLK) > UK(SLK)-IK + max (0, SKL-SLK(-UK(S KL) + UL(SKL)-I L))

3. Only use the capital-intensive technology (Tt = K for SK t t

Tt = * otherwise). This policy is optimal whenever

UK(SK)-IK > max (0, SLSK(UL(SL)-IL) + max (0, SLK-SK(UK( LK -

UL(SLK)-IK)), and

-
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UK(SKL) > UL ( S K L)- I L

4. Enter the market with the labor-intensive technology and later

switch to the capital-intensive technology (Tt = L for S L < t <

SLK, Tt = K for SLK < t < t, and Tt = 4 otherwise). This policy

is optimal whenever

UL(SL)-IL + 6SLK - S L (UK(SLK)-UL(SLK)-IK) > max (0, S K- SL (UK(SK)-IK)),

UL(SLK) < UK(SLK)-IK, and

UL(SKL)-IL < UK(SKL)

5. Enter the market with the capital-intensive technology and later

switch to the labor-intensive technology (Tt = K for SK < t < SKL,

L
Tt = L for SKL < t < t , and Tt = 4 otherwise). This policy is

optimal whenever

UK(SK)-IK > max (0, 6
S L - S K (UL(SL)-IL)) + 6SLK-SK max (0, UK(SLK)-

UL(SLK)- IK)), and

UL(SKL)-IL > UK(SKL).

6. Enter with technology L, switch to technology K in the high-demand

part of the life cycle, then switch back to technology L in the

decline phase of the life cycle (Tt = L for SL < t < SLK and

SK < t < t, T t = K for S < t < SKL and Tt = otherwise).
KL t LK <

This policy is optimal whenever

UL(SL)-IL + 6SLK- S L (UK(SLK)-UL(SLK)-IK > max (0, 6S K - S L (UK(SK)-IK)),

UL(SKL)-IL > UK(SKL ) , and

UK(SLK)-I + SKL-SLK (-UK(SKL) + UL(SKL)-I L) > UL(SLK).

M 
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Figure 7, which is divided into six regions, illustrates how the

startup/investment costs, IL and IK, determine which of the six

policies is optimal. The region labels are abbreviations for the

policies that are optimal in those regions. For example, L-K-L means

use technology L from time SL to SLK, use K from SLK to SKL and use L

from SKL to tL. The graph illustrates that the six policies are

mutually exclusive and collectively exhaustive. (Note that since IK >

IL by assumption, we are only concerned with the area of the graph

below the 450 line.) For IK and IL sufficiently large (region in

the figure), the optimal policy is to stay out of the market

completely. This region consists of (IL, IK) pairs such that UL(SL) -

IL < 0 and UK(SK) - IK < 0, as in Theorem 1. The other regions are

defined analogously, following the characterization in Theorem 1.

We can contrast this analysis with the Hayes-Wheelwright

proposition that firms stay on the diagonal of the product-process

life cycle matrix. Presumably the diagonal of their matrix

corresponds to the L-K strategy. That is, enter with the labor-

intensive technology and then switch permanently to the capital-

intensive technology when industry demand has grown sufficiently.

Clearly, our model admits a wider range of potentially optimal

strategies than this.

Observe that strategy B of Hayes-Wheelwright, enter early and

stay throughout the product life cycle, corresponds to our strategy

L-K (or perhaps L-K-L), and their strategy C, enter late in the growth

stages or early in the maturity stage, corresponds to our strategy K.

However, our model never uses entry-exit strategy A of Hayes-

Wheelwright which dictates early entry and early exit in a product

market. Strategy A would be more reasonable in a multiproduct, multi-

- M 0 M M
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firm world. A firm could specialize in supplying product markets

early in their life cycles. For each product, the firm would enter

early, but then depart to supply the next new product once the

competition in the old product became severe. We discuss multiproduct

models in sections 3 and 4 and competition in section 5.

The contrasts between the Hayes-Wheelwright analysis and ours

suggest several lines of inquiry, both empirical and theoretical. On

the empirical side, one might try to estimate the parameter values

for our model in a number of industries and see whether industries

that exhibit parameters that yield optimality of, for example, the L-K

(stay on the diagonal) strategy, exhibit behavior consistent with the

model's predictions. On the theoretical side, we could extend the

model in several ways, to increase realism. In the two sections, we

extend our model to include multiple products and focus our analysis

on asynchronous product life cycles. One could also extend the model

to include multiple-firm competitive interaction. We discuss this

subject in Section 5.

3. THE TWO-PRODUCT TECHNOLOGY CHOICE MODEL

There are a number of issues that arise in the manufacturing

technology choice problem for a multiproduct firm that cannot be

captured by the single-product model of the previous section. For

example, if a firm chooses to produce several products with

asynchronous life cycles, then it may employ strategy A of Hayes and

Wheelwright, commencing manufacture of the first product early in its

life cycle and dropping that product during the maturity phase, while

switching to the next product early in its life cycle, etc. In

L~~~~~~~~~
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addition, the study of multiple products permits explicit considera-

tion of the use of product-flexible manufacturing technologies.

For ease of analysis and exposition, we limit ourselves in this

section to studying a two-product or two-product-family model. Most

of the important intuition can be illustrated with this case. We

label the two products (or product families) by A and B, respectively.

We assume there are three types of technologies: a labor-intensive,

job shop technology (indexed by L) that can produce both products; a

capital-intensive, dedicated technology (indexed by KA or KB) that can

produce only one product; and a capital-intensive, flexible

(automated) technology (indexed by KAB) that can produce both

products. As in the previous section, we assume that the labor

intensive technology has a low investment and startup cost and a high

variable cost per unit produced, relative to the capital-intensive

technologies. Extending in the obvious way the notation for

investment costs used in the previous section, we assume

IL < IK < I IL <IK < I ,and I < I + IK. The

A AB B AB AB A B

inequalities for the capital-intensive technology investment costs

parallel the assumptions in Fine and Freund (1987), that the flexible

automated technology is more costly to acquire and install than either

of the nonflexible technologies (otherwise one or both of the non-

flexible technologies would be economically dominated by the flexible

automated technology) and that acquiring and installing the flexible

automated technology is less costly than acquiring and installing both

nonflexible capital-intensive technologies (otherwise the flexible

automated technology is dominated by the joint acquisition of the two

nonflexible technologies).



-20-

We let a t and bt, respectively, be the demand indices for products

A B B
A and B. Then A(at,Tt ) and T B(btTt ) represent the period t profits

from products A and B, respectively, given that the firm uses technology

A B
Tt for producing product A and Tt for product B. Extending thet t

notation of the previous section, we also define t = inf t:at>O} and

to = inf {t:bt>0}. As in the previous section we assume that theB t

firm earns zero profits from markets in which it is not a participant.

That is, A(at,0) = B(bt,) = 0 for all values of a t and b t. We also

A A B
assume that for all at and bt, A(at,KA) = iA(at,KAB) and nB(btKB)

= n (btKAB). That is, operating profits from a given market are the

same for each type of capital-intensive technology. (This assumption

allows us to simply use K to represent KA or KAB as the argument of the

profit functions.) This assumption -- of no economies of scope in

operating profits -- is justified on the grounds that, for highly

automated, capital-intensive technologies, the variable operating costs,

which are essentially the materials costs plus a small amount of labor

costs, will not depend significantly on whether the capital-intensive

technology is dedicated or flexible. We discuss the relaxation of this

assumption later.

We do assume that the operating cost structure of the labor-

intensive technology differs from that of the capital-intensive

technologies. As in the previous section, we model these differences

through assumptions on the first derivative of the profit function with

respect to the demand index. In particular, we assume 1! (at,L) <

1r (at K) for a > 0 and T1 (bt L) < TT (btK) for bt > O. Also, the

profit functions are negative for negative levels of the demand index

·I_�_ ·_�I� _ __ ·___ j

IL
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and nondecreasing in the respective demand indices. As in the previous

section, we assume that the net effect of exit costs and salvage value

for each technology is zero and that a firm cannot maintain a technology

that is not being used.

With respect to the life cycles of the two products, we assume that

each product has a life cycle path that satisfies the assumptions of the

previous section. We examine two cases: synchronous life cycles and

asynchronous life cycles. (See Figures 8a and 8b respectively.) The

former case occurs when the life cycle stages of the two products

coincide roughly in time. Formally, we say that products A and B have

synchronous life cycles if for T = L or KAB, A(at,T) + B(bt,T) is

quasiconcave in t. That is, A(at,T) + B(at,T) is unimodal in t.

We let T A and TB represent the times when at and bt, respectively,

reach their peaks. For T = L, KA, KB, and KAB, in the manner of

Proposition 1 in the previous section, we define ST to be the candidate

entry time for each technology. Without loss of generality, we assume

SK < SK that is, product A precedes product B. We define the product

life cycles of products A and B to be asynchronous when inf {t: bt >

O} > A, i.e., when product B's life cycle does not start until after

product A's life cycle has peaked. By our definitions, synchronicity

and asynchronicity of life cycles are not collectively exhaustive, but

these definitions are useful for analyzing the qualitative properties

we wish to study.

In calculating S and UK (SK ) in the asynchronous life
AB AB AB

cycles case (figure 8b), the firm earns profits from product family A

right up until time tA** and earns profits from product family B
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beginning at t In contrast, when both KA and KB are used,

operating profits from product family A will cease at exit time

tKA and operating profits from product family B will not begin

until entry time SK . Thus, when flexible automation is acquired, its

optimal use can generate more total operating profits than using

separate, dedicated, automated processes for each product. (This will

also depend on the magnitude of the difference between SK and SK
AB A

the times when operating profits begin to flow from product family A

under the two respective strategies.) When a longer sequence of

products is considered (figure 9), this advantage of the flexible

technology becomes even more pronounced: firms can be more aggressive

in both their entry and exit times because all the fixed costs do not

have to be carried by one product; products very early or late in

their life cycles can "free ride" or at least share-the-ride with

other products.

Given this formulation of technology types and product life

cycles, we wish to explore what types of technology investment

policies are optimal in certain situations. To focus on insights

related to the existence of the flexible, capital-intensive

technology, we limit our analysis primarily to two simplified cases:

(1) only the L and KAB technologies are available, (2) only the KA,

KB, and KAB technologies are available. The formal analysis that

supports the results of this section is virtually identical to that of

section 2, so we suppress formal arguments in what follows and rely on

the readers' understanding of the previous section.

L
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We first examine case (1), where only the labor-intensive

flexible technology (L) and capital-intensive flexible technology

(KAB) are available. In the synchronous life cycle case, the analysis

parallels that of Section 2 exactly. Because each technology can

manufacture both products, we need only be concerned with the two-

product profit function, AB(at,bt,T) T A(atIT) + (bt,T), for T = L

or KAB. Let TAB(T) be the smallest time at which AB (at,bt,T)

achieves its maximum. (The time TAB(T) is unique if n AB(at,bt) is

strictly quasiconcave in t.) As in Section 2, we can define the break-

AB T AB
even times tT = inf (t: (at,bt) > 0) and t = sup (t: n (at,bt) >

0) for T = L, KAB. As in the previous section, in the case where the

capital-intensive technology has the lower breakeven time, i.e.,

tK < tL, the firm will never switch technologies, so there are onlyAB
three possible optimal strategies: never enter, use technology L from

SL to tL, or use technology KAB from SK to tKAB If, on the other

hand, the labor-intensive technology has the earlier breakeven time,

i.e., tL < tK then there are six possible strategies, analogous to
AB

those in Theorem 1, which we denote by , L, KAB, L-KAB, KAB-L, and

L-KAB-L, extending the notation of Section 2 in the obvious way.

For the asynchronous life cycles case, there are four additional

strategies that may be optimal. Each of these involves using the

flexible automated technology during the mature stage of product A,

switching to the labor-intensive technology for a period of time while

product A demand declines and product B demand is early in its growth

stage, and then switching back to KAB during the high-demand period of

product B's life cycle. We denote the four strategies that have this



-24-

characteristic by L-KAB-L-KAB, KAB-L-KAB-L, L-K AB-L-KAB KAB'AB

depending, respectively, upon whether technology L is used early in

product A's life cycle, late in product B's life cycle, in both these

periods, or in neither.

One effect of the existence of the flexible, capital-intensive

technology, relative to a situation where only dedicated, capital-

intensive technologies exist as an alternative to the labor-intensive job

shop, is that the technology acquisition problem is easier to analyze.

For example, in the two-product, synchronous-life-cycle technology choice

problem, where the available technologies are L, KA, and KB, the analysis

is quite complex. One source of complexity in this regime is that two

different technologies may be used at the same time, one for each

product: whereas for the problem above, at any given point in time, both

products are produced either with the flexible labor-intensive or the

flexible capital-intensive technology. For this three-technology, two-

product problem, there are fourteen different technology acquisition

timing sequences that can be optimal, compared with only six possible

strategies for the case analyzed above. Using the shorthand notation

developed above, these fourteen are: , L, K A, K B, KA-KB, L-KA-KB, KA-KB-

L, L-KA-KB-L L-KA' L-KB, KA-L, KB-L, L-KA-L, and L-KB-L.

We next examine case (2), where only the nonflexible capital-

intensive (KA, KB) and flexible capital-intensive (KAB) technologies are

available. Several observations about this case are of interest. First,

it can never be optimal to switch from KAB to either KA or KB. This

result arises because of our assumptions that the technologies do not

have capacity constraints and that both (flexible and nonflexible)

- -

L_
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capital-intensive technologies yield the same profit streams in each

market. If capacity constraints were imposed, optimal policies could

involve a portfolio of flexible and nonflexible automated technologies,

as is the case in Fine and Freund (1987).

A second observation is that if the firm acquired technology KA to

enter market A, then it will never switch from technology KA to KAB when

it is ready to enter market B. This result arises from the assumption

that technology KA has zero net salvage value plus exit cost, and the

assumption that IK > IKB. Once the K A technology has already been
AB BA

purchased, the least expensive way to enter the market B is with KB.

A third observation relates to the discount factor, 6. When 6 is

large (i.e., close to one), the optimal policy may specify purchase of

KAB for use over both product life cycles, whereas a smaller value of 6

(with all other parameters unchanged) may dictate purchase of KA for

product A and then KB after product B's life cycle has begun. A higher

interest rate (smaller 6) discourages investment in the flexible capacity

because it requires the entire outlay up front. Sequential investment in

the dedicated technologies avoids acquiring any capabilities before they

are needed. If different companies use different hurdle rates for

technology investments, those with the higher rates will find the

flexible capacity less attractive.

Whether the life cycles are synchronous or asynchronous, the above

observations imply that there are only five technology policies that can

be optimal. These are: never enter either market (), use KA in market A

and KB in market B (KA-KB), use KA in market A and do not enter market B

(KA), use KB in market B and do not enter market A (KB), and use KAB for
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both markets (KAB). For a given set of parameter values, one can solve

explicitly for the optimal technology policy, as follows: For T = KA,

KB, KAB, calculate the candidate entry times ST, the exit times tT, and

the discounted cash flows UT(ST)-IT, as was done in the previous section.

(Note that UK (SK ) includes profits for two markets.) If UT(ST)-IT
AB AB

< 0 for T = KA, KB, and KAB, then the optimal policy is to never enter

either market. If only one of these say T', is positive, then it is

optimal to enter at ST, with technology T' and remain in the

T'
corresponding market(s) until t . If UT(ST)-IT is positive for

T = KA and for T = KB, but negative for T = KAB, then the optimal policy

is, for T = KA and KB: enter with technology T at ST and exit at tT,

from the respective markets.

The other possibilities all have UT(ST)-IT > 0 for T = KAB and one or

both of T = KA or T = KB. If both of the latter are positive, then

the firm should use the KAB only policy if UKAB (SKAB )-IKAB UKA (SKA
AB AB AB A A

IKA + UKB (SK ) IK and use the KA-K B strategy otherwise. If UT(ST) -
A B B B

IT > 0 for only one of T = KA or KB, then the firm should use KAB only

policy if it gives higher net profits, and the KA-only or KB-only

strategy otherwise.

One interesting outcome of this model is that a firm will never

acquire the flexible technology after already owning a dedicated

technology. This result, which suggests the adage, "once an

inflexible mass producer, always an inflexible mass producer,"

provides an interesting juxtaposition with the numerous exhortations

by the promoters of flexible manufacturing systems that firms should

abandon their inflexible, mass production technologies in favor of

flexible, automated technologies.

I
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There are (at least) three ways that we could extend our model

to reverse the result that an inflexible mass producer should never

invest in flexible automation. First, we could assume that technology

KA has a positive net salvage value minus exit costs, denoted by S(A).

If S(A) is sufficiently large, that is, if the net cost (after selling

KA) of purchasing KAB to produce products A and B is less than the

cost of adding KB to produce product B, then we could obtain the

result that the firm switches from inflexible mass production to

flexible automation. (The exact conditions for this move to be

optimal depend on the salvage values of the other two technologies

as a function of time and on the optimal entry and exit times.)

Although an assumption of positive net salvage values can achieve

the result that firms switch to flexible automation, we think it does so

for the wrong reasons. We are not aware of any advocates of flexible

automation who promote the technology based on the cash flow benefits of

selling the equipment it replaces. Rather, flexible automation is touted

for operational efficiencies; superior manufacturing performance in cost,

delivery, and flexibility; and a wide range of strategic benefits.

A second extension of our model, one to include operational

efficiences of flexible automation, i.e., economies of scope in

operation, could also be constructed to reverse the result that

inflexible mass producers should not switch over to flexible automation.

Suppose the operating costs of producing product families A and B on the

flexible technology were assumed to be lower than the operating costs of

producing both families on the two inflexible technologies. In that

case, the operating profits from the two-types of technologies would

satisfy
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AB A B
Tr (at bt'KAB) > T (at,KA ) + T (bt,KB). (*)

Then, provided that the difference between these two quantities is

sufficiently large, the optimal technology policy could involve switching

from the inflexible technology to flexible automation.

The question of when (if ever) inequality (*) actually holds in

practice is one that urgently needs further research. Theoretically,

using the single flexible technology rather than two inflexible

technologies could eliminate some duplication line and/or overhead

functions and provide some economies of scope. However, the added

complexity of the system may decrease manufacturing focus and increase

coordination costs. We know of no empirical work that has addressed

these issues.

A third extension of our model, one that admits a larger sequence of

different product families and uncertainty in the technology investment

costs, could also reverse the result that an inflexible mass producer

never switches to flexible automation. Consider a sequence of product

families, 1, 2,...,n, that have overlapping product life cycles as in

Figure 9. Suppose there is a flexible, capital-intensive technology,

denoted by KF that can produce all of these product families and there

are n dedicated, nonflexible technologies K1, K2,...,Kn, each of which

can manufacture only one product family. For j = 1, 2,...,n, let

I denote the investment/startup cost associated with acquiringK.

dedicated technology Kj. Let IK (t) denote the (stochastic) cost of

acquiring the flexible capacity. We assume that the flexible capacity

is subject to stochastic technological innovation that can decrease the

effective cost of acquiring it. Then, if IK (O ) is high, the firm may
KF

M M__ __
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acquire K1 and perhaps K2 and K, for the early products. If, for some

t, I (t) has declined sufficiently, then it will be optimal for the

firm to switch to the flexible technology, and use it thereafter. Thus,

a richer model with multiple products and a nonstationary investment cost

can yield a result such that a mass producer converts to a flexible

technology.

4. THE LIFE CYCLE OF A FLEXIBLE MANUFACTURING SYSTEM

Of particular interest to us is the asynchronous life cycles case

when the optimal strategy is to only purchase the flexible capacity and

use it for all of the product families. In the two product case (Figure

8b), this strategy requires acquiring the flexible KAB technology at

SK for the mature and late stages of product-family A's life cycle and
AB K

continuing its use until tAB, through most of product-family B's life-

cycle. A property of the optimal policy is that during the time period

[S t ) the product-flexible technology is used only to
AB

manufacture product-family A; during the period (tB, tA**) the flexible

capacity is used to manufacture both product families; and during the

period (tA**,tKAB) the flexible capacity only works on product-family B.

This characteristic of the optimal policy lends an interesting

perspective to Jaikumar's (1986) observation that, for the data he

collected, a typical flexible manufacturing system (FMS) in the U.S.

manfuactures significantly fewer machined parts than a typical FMS in

Japan. Jaikumar suggests that this observation lends credence to a

conclusion that FMS managers in the U.S. are less competent than their

Japanese counterparts. Because this conclusion is based on numerous
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other points, we are not in a position, in this paper, to either discuss

it further or to dispute it. However, we do wish to illustrate how our

model may help to illuminate the discussion.

Jaikumar's data, although it was collected over a period of several

years, essentially represents a snapshot in time of FMS usage in the U.S.

and Japan. He makes no claims to having attempted to develop a time

series of observations. If the Japanese began investing in FMS

technology in earnest earlier than their U.S. competitors (a premise

consistent with Jaikumar's report that the Japanese outspent the U.S. in

FMS by a factor of two from 1982 to 1987) then they may have progressed

further along the life cycle of the FMS technology as compared with their

U.S. competitors. Therefore, a snapshot in time of FMS development in

the U.S. and Japan could capture the FMS's in two countries in different

stages of their life cycles.

Figure 8b, considered in the light of our characterization of the

KAB-only technology policy, is suggestive of the product pattern produced

over the life cycle of a flexible manufacturing system for the two-

product case. Figure 9 is suggestive of the n-product case. In either

case, early in the FMS's life cycle, while the production team is

learning how to use the technology, few products (perhaps all from one

product family) may be manufactured on the FMS.

This stage in the FMS life cycle corresponds to the period (SK ,tB) in
AB

Figure 8b. Once the FMS technology is mature (that is, once the

production team has signficant experience in its use), a larger number of

products (perhaps from several product families) may be manufactured on

the FMS. This stage corresponds to the period (tB,tA**) in Figure 8b.

I ·
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Late in the FMS life cycle, no new products will be allocated to the FMS,

and it will finish off the products already allocated to it, as in the

period (tA**, tKAB) in Figure 8b.

The observations, that compared with the Japanese, U.S. firms

manufacture fewer parts on their FMS's and have invested less in the FMS

technology, are consistent with a hypothesis that, at the time of

Jaikumar's data collection, most U.S. FMS's were in an early stage of the

FMS life cycle. In this light, observed product allocations on U.S.

flexible manufacturing systems may not be suboptimal given their progress

to date on the FMS life cycle. In this case, one could interpret

Jaikumar's recommendations to management as instruction on how to speed

the progress into the maturity phase for the use of this technology. The

data on Japan's experience with the FMS technology could then be

interpreted as reflecting the potential returns to accelerating the life

cycle process. We make this point primarily to illustrate how our model

can provide additional perspective to Jaikumar's data; we do not claim to

have proven that our interpretation is unassailable.

5. CONCLUDING DISCUSSION

As was pointed out by Hayes and Wheelwright, product and process

life cycle considerations can be quite important in the evaluation of

technology choices. Our model of Section 2 formalizes the Hayes-

Wheelwright analysis and illustrates how the cost structures of different

technologies also factor into the technology choice problem.

To analyze a single firm's technology choice problem for flexible

technologies, we extended our formalization of the Hayes-Wheelwright

analysis to include multiple products. Our analysis focuses on the

- I I r
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ability of flexible technology to produce a portfolio of products that

are in different stages of their life cycles. We observe that optimal

use of flexible technology can dictate that a narrow range of products be

produced during the early and late stages of the life cycle of the

technology and during the peak demand stages of the life cycles of some

at the products. This observation provides an alternative inter-

pretation of the data collected by Jaikumar (1986). More data, collected

with the intent of performing a time series analysis, would be useful to

help resolve these questions.

An important topic that the above models do not treat is how

competition affects the technology policies we describe. One way to

analyze this issue is with a game-theoretic model of technology and

market competition. In our models, we assume that firm profits in each

period are a function of only the level of industry demand in that period

and the technology in use. A more realistic model would presume that

industry growth would attract competition which would dampen (or even

reverse) the effect that higher industry demand generates higher firm

profits. Adding this effect could change our results in several ways.

First, pre-emption incentives could cause entry into the industry to

occur earlier in a multifirm game than in the single-firm model. By pre-

empting its rivals with early entry, a firm might discourage later entry

by others and close out some potential competition. In addition, firms

would tend to enter earlier to avoid being pre-empted themselves.

Second, competitive pressures might alter a firm's technology choices.

Since low variable costs might allow a firm to be a "tougher" competitor,

holding the capital-intensive technology might become attractive in a

competitive environment. Buying the capital-intensive technology

_1__�_1_



-33-

represents a commitment to stay in the industry and fight it out when

competition becomes intense.

All of these ideas have been explored to some degree in the

economics literature. (See Fudenberg and Tirole, 1986, for a survey.)

In our view, a fruitful area for further research is to link the game-

theoretic models in the economics literature to the problem of technology

choice over the product life cycle and to the problem of choosing

flexible versus dedicated technology.

We have begun to work towards this objective in several papers.

In Fine and Li (1986), we analyze one-firm and two-firm models of optimal

exit behavior with stochastic product life cycles but only one type of

technology. (See also Huang and Li (1986) for a continuous-time version

of the same problem.)

Fine and Pappu (1987) use the methodology of repeated games to

analyze competition in a dynamic setting with both flexible and

nonflexible technology. That work explores a two-firm, dynamic,

stationary (no life cycles) version of the model presented in Section

three. In contrast to the work here and in Fine and Freund (1987), where

the absence of competition allows the existence of a flexible technology

to make a firm unequivocally better off, Fine and Pappu show how the

existence of a flexible technology in a competitive environment can

actually make firms worse off by intensifying the competition between

the firms. They also show that it can be optimal to acquire flexible

technology but use it inflexibly; the flexible capability serves only

as a threat to competitors to deter them from invading an incumbent's

market. Further work will be required to add the product life cycle

phenomenon to that model

I - I- I I
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Product structure
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Process structure
Process life cycle stage
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Figure 1: Product-Process Life Cycle Matrix

Source: Haves, R.H. and S.C. Whalwright, "Link Manufacturing Process and Product Life Cycles," Harvard Business
Review, January - February 1979.
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Figure 6: The Decision Tree representing the six possible optimal technology

policies.
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UL (SKL) - UK (SKL) = IL

L-K-L

UL(SL) -I L

+ SLK - SL [max (0, UK (SLK) - UL (SLK)- IK)]

= 8SK - SL (U K (SK) - IK )

Figure 7: Determination of the optimal technology choice
by the investment costs IL and I .
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Figure 8a: Demand paths for products with synchronous life cycles.
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Figure 8b: Demand paths for products with asynchronous life cycles.
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Figure 9: A Sequence of Products with Overlapping Product.Life Cycles
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