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Abstract

If the regression of a response variable y on a k-vector of predictors x is

denoted g(x)=E(yix), then the average derivative of y on x is defined as

S=E(g'), where g'-ag/ax. This paper compares the statistical properties of

four estimators of : a "direct" estimator , formed by averaging pointwise

kernel estimators of the derivative g'(x); an "indirect" estimator f

proposed by Hardle and Stoker(1987), based on averaging kernel density

estimates: and two "slope" estimators d and df, which are instrumental

variables estimators of the (linear) coefficients of y regressed on x. Each

estimator is shown to be a 'IN-consistent, asymptotically normal estimator of

S. Moreover, all the estimators are shown to be first-order equivalent. Some

relative merits of the various estimators are discussed.



EOUIVALENCE OF DIRECT. INDIRECT AND SLOPE ESTIMATORS

OF AVERAGE DERIVATIVES

by Thomas M. Stoker

1. Introduction

If the regression of a response variable v on a k-vector of predictors x

is denoted g(x)=E(yjx), then the average derivative of y on x is defined as

8=E(g'), with g'-ag/ax. The estimation of average derivatives provides a

semiparametric approach to measuring coefficients in index models - if g(x) is

structured as g(x)=F(x'B), then a is proportional to . and so an estimator of

a will measure up to scale (c.f. Stoker(1986) and Powell, Stock and

Stoker(1987)). Following this connection, Hardle and Stoker(1987 - hereafter

HS) have argued for the usefulness of average derivatives as generalized

"coefficients" of y on x for inferring smooth multivariate regression

relationships. Moreover. as detailed later. HS proposed an estimator of 

based on a two-step approach: i) nonparametrically estimate the marginal

density f(x) of x. and then ii) form a sample average using the estimated

values of the density (and its derivatives).

In this paper we study several nonparametric estimators of the average

derivative 6. which differ from the HS estimator in how the two-step approach

is implimented. First is the natural sample analogue estimator of =E(g').

namely the average of estimated values of the derivative g'(x). Second are

procedures that estimate as the (linear) slope coefficients of y regressed

on x, where nonparametric estimators are used to construct appropriate

instrumental variables. With reference to the title, a "direct" estimator is

one based on approximating the conditional expectation g(x). an "indirect"

estimator is one based on approximating the marginal density f(x), and a

"slope" estimator refers to the slope coefficients of y regressed on x,
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estimated with certain instrumental variables. Each of the estimators is

based on an observed random sample (i, xi), i=1,....N, and each procedure

uses nonparametric kernel estimators to approximate either f(x) or g(x) (and

their derivatives).

After laying out the framework. we introduce each of the average

derivative estimators. and then present the results of the paper (proofs and

technical assumptions are collected in the Appendix). In overview, we show

that each procedure gives a N consistent. asymptotically normal estimator of

S. so that each procedure has precision properties that are comparable to

parametric estimators. In addition. we show that all of the procedures are

first-order equivalent. The implications of these findings as well as some

relative practical merits of the estimators are then discussed.

2. The Framework and Nonparametric Ingredients

Formally, we assume that the observed data (yi.xi), i=1.....N is a random

sample from a distribution with density f (y,x). Denote the marginal density

of x as f(x), its derivative as f'(x)=af/ax. and (minus) the log-density

derivative as (x)=-alnf/ax=-f'/f. If G(x) denotes the function:

(2.1) G(x) = y f (y,x) dy

then the regression g(x)=E(ylx) of y on x is given as

(2.2) g(x) = f(x)

The regression derivative g'-ag/ax is then expressed as

(2.3) g'(x) = G'(x) _ G(x)f'(x)
f(x) f(x)2

Our interest is in estimating the average derivative =E(g'). where

expectation is taken with respect to x. For this. we utilize kernel estimators
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of the functions f(x), g(x). etc.. introduced as follows. Begin by defining

the kernel estimator G(x) of G(x), and the associated derivative estimator

G'(x) of G'(x):

N x - x.l

(2.4) 6(x) _ Y 
Nh j=

(25) G(x) aG(x) _ 1 K(2.5) G'(x! x Nhk+l j [h j
Nhk + l j=1 h

2
where K(u) is a kernel function. K'-=aK/au. and h=hN is a bandwidth parameter

such that h as N. Next define the (Rosenblatt-Parzen) kernel estimator

f(x) of the density f(x), and the associated estimator f'(x) of the density

3
derivative f'(x) as :

(2.6) f(x) = 1 I K
Nh j=i

(2.7) f'(x) =af(x) k
Nh J=l

and the associated estimator of the negative log-density derivative (x):

(x _ a in f(x) _ f'(x)
ax

f(x)

With these constructs. define the (Nadaraya-Watson) kernel regression

^ 4
estimator g(x) as

6(x)
(2.9) g(x) =

f(x)

The associated kernel estimator of the derivative g'(x) is
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(2.10) g (x) G'(x) _G(x)f'(x)

ax f(x) f(x)

We can now introduce the average derivative estimators to be studied.

3. Various Kernel Estimators of Average Derivatives

3.1 The Direct Estimator

In many ways the most natural technique for estimating =E(g') is to use

a sample analogue, or an average of the values of g' across the sample. In

this spirit, we define the "direct" estimator g of as the (trimmed) sample
g

average of the estimated values g'(xi), or

1 N ^, N
(3.1g N= - g (xi) i

1=1

where Ii=I[f(xi)>bl is the indicator variable that drops terms with estimated

density smaller than a bound bb N, where b0 as N. The use of trimming is

required for the technical analysis of 3g. but also may represent a sensible

practical correction. In particular, because g'(x) of involves division by

f(x), erratic behavior may be induced into g by terms involving negligible

estimated density.5

3.2 The Indirect Estimator of HS

For estimating average derivatives. the focus can be shifted from

approximating the regression g(x) to approximating the density f(x), by

applying integration by parts to =E(g'):

(3.2) 8 = g'(x)f(x)dx = g(x) - fLx f(x)dx = ELQ(x)y]

where the density f(x) is assumed to vanish on its boundary of its support. HS

propose the estimation of by the trimmed sample analogue of the RHS
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expectation. where (x) is used in place of (x). We define this indirect

estimator of as

N
(3.3) = i Q(x) I Yif N i i

i=1l

As above, trimming is necessary for our technical analysis because (x)

involves division by the estimated density f(x).

3.3 Two Slope Estimators

By a "slope estimator". we refer to the coefficients of the linear

equation

To 
(3.4) i = c + x d + vi i=i ..... N

T
which are estimated using appropriate instrumental variables. where x denotes

the transpose of the (column) vector x.6

We can define an "indirect" slope estimator. following Stoker(1986).

Since EQ(x)]=O, we can write the average derivative as the covariance g

between (x) and y:

(3.5) 3 = E[I(x)y] = ey

The connection to linear instrumental variables estimators is seem by applying

(3.2,5) to the average derivative of x . In particular. since ax /ax = Id. the

kxk identity matrix, we have

(3.6) Id = EL-X] = E[(x)xT] = Ax

where Mgx is the matrix of covariances between components of (x) and x.

Therefore. we can write as
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(3.7) a = ( x)-1izy

This expression motivates the use of (1,k(xi)) as an instrumental variable for

estimating the coefficients of (3.4). The indirect slope estimator is the

estimated analogue of this, namely the coefficient estimates that utilize

(l.(xi)Ii) as the instrumental variable, or

(3.8) df = (S x) S~y

where Sx , SAy are the sample covariance matrices between A(xi)Ii and x, y

respectively.

The "direct" slope estimator is defined using similar considerations. By

a realignment of terms. the direct estimator can be written as

g

g N N

(3.9) g -N l(x

where w(xi) takes the form

(3.10) w(x.) } = ~ [ ~ -K '
-=~ k N j '[1Nh k j=l fx) f(x.) 

h . f(xj

By following the same logic as for the indirect slope estimator, we can define

the direct slope estimator as the coefficient estimates of (3.4) that use

(l,w(xi)) as the instrumental variable, namely

(3.11) d = (S -1S
g wx wy

where S , S are the sample covariance matrices between (xi) and x. v
wx WY 

respectively.
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4. Equivalence of Direct. Indirect and Slope Estimators of Average Derivatives

The central result of the paper is Theorem 1. which characterizes the

asymptotic distribution of the direct estimator :
g

Theorem 1: Given Assumptions 1 through 6 stated in the Appendix. as

(i) N h. b-O0. h-lb-*O ;

(ii) for some >0. b4Nl-£h2k+2

(iii) Nh2p-o :

then

N
(4.1) JN (g - {r(y ) - Efr(y,x)} + o (1)

i=l

where

(4.2) r(y,x) _ g'(x) - [y - g(x)] f'(x)

so that 4I~(8l - ) has a limiting normal distribution with mean 0 and variance

F. where is the covariance matrix of r(y,x).

Comparing Theorem 1 with Theorem 3.1 of HS indicates that N(6 - d) and
g

,j(3f - 8) have a limiting normal distribution with the same variance.

Moreover. examination of the proof of HS Theorem 3.1 shows that

1 N
(4.3) 4N (f - i (r(yi,x i ) - E[r(y,x)]} + op(1)

i=1

was established. Consequently, under the conditions of both of these theorems,

we can conclude that the direct estimator g and the indirect estimator f are

first-order equivalent:
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Corollary 1: Given Assumptions through 7 stated in the Appendix and

conditions i)-iii) of Theorem 1, we have

(4.4) - i [ - 3 : (1).g f P .

This result follows from the coincidence of the conclusions of two separate

arguments. In particular. the author searched without success for reasons that

the equivalence could be obvious, but g and f approach the common limiting

distribution in significantly different ways.

The asymptotic distribution of the indirect slope estimator df arises

from examining its differences from f in two steps. First we establish that

the difference between the underlying sample moments and the sample

covariances are asymptotically inconsequential, or

Corollary 2: Given Assumptions 1 through 9 stated in the Appendix and

conditions i)-iii) of Theorem 1. we have

(4.5) N [f -- Sy op (1).

Second. we establish that Sx converges to its limit Id at a faster rate than

iiN. which allows us to conclude

8
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Corollary 3: Given Assumptions 1 through 11 stated in the Appendix and

conditions i)-iii) of Theorem 1. we have

(4.6) r [df - 3f] = op(1).

Analogous arguments apply to the relationship between the direct slope

estimator d and the direct estimator . These are summarized as
g g

Corollary 4: Given Assumptions 1 through 6 and 8 stated in the Appendix and

conditions i)-iii) of Theorem 1. we have

(4.7!) - [ - = o ().
g wy p

Corollary 5: Given Assumptions through 6, 8 and 10 stated in the Appendix

and conditions i)-iii) of Theorem 1. we have

(4.8) XiN [d - g] = o p(1).

This completes the results of the paper. In sum. Theorem 1 establishes the

asymptotic distribution of g. and Corollaries 2-5 state that the difference

between any two of ag. 4 f, dg, df (and Sy. S ) is o (1/4N), so that all of

the estimators are first-order equivalent, each estimating with the same

statistical efficiency.
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5. Remarks and Discussion

The most complicated demonstration of the paper is the proof of Theorem

1. which shows the characterization of directly. This proof follows the
g

format of HS and Powell, Stock and Stoker (1987): 3g is linearized by

appealing to uniformity properties. the linearized version is approximated by

the (asymptotically normal) sum of U-statistics with kernels that vary with N,

and the bias is analyzed on the basis of the pointwise bias of g'. The

bandwidth and trimming bound conditions are interpretable as in HS: the

trimming bound b must converge to 0 slowly, the rate of convergence of the

bandwidth h is bounded above to insure the proper bias properties. and bounded

below by the requirements of asymptotic normality and uniform pointwise

convergence. As typically necessary for iN convergence of averages of

nonparametric estimators, the approximating functions must be (asymptotically)

undersmoothed.

The fact that all of the estimators are asymptotically equivalent permits

flexibility in the choice of estimating procedure, without loss of efficiency.

The equivalence of direct and indirect procedures (of either type) gives a

statistical justification for choosing either to approximate the regression

function g(x) or approximate the density function f(x) for estimating the

average derivative . Corollaries 2 and 4 state that the same asymptotic

behavior arises from statistics computed from the basic data or data that is

written as deviations from sample means. and indicates that the same

asymptotic behavior is obtained for slope estimators whether a constant is

included in the linear equation or not. Corollaries 3 and 5 permit the use of

a instrumental variables coefficient, or "ratio of moments" type of average

derivative estimator.

Choice between the various estimators should be based on features of the

application at hand, although some indications of estimator performance can be
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learned through Monte Carlo simulation and the study of second-order

efficiency (or "deficiency") properties. The estimators are of comparable

computational simplicity: while direct estimators involve slightly more

complex formulae than indirect ones, for given values of h and b. each

estimator involves only a single computation of order at most N2

In closing, some general observations can be made on the relative merits

of the various procedures. First, on the grounds of the required technical

assumptions, the smoothness conditions required for asymptotic normality of

direct estimators are slightly stronger than those for indirect estimators;

namely G(x) and f(x) are assumed to be p order differentiable for Theorem 1,

but only f(x) for Theorem 3.1 of HS. Consequently, if one is studying a

problem where g'(x) exists a.s., but is suspected to be discontinuous for one

or more values of x, then the indirect estimators are preferable.

The other main difference in the required assumptions is the condition

that f(x) vanish on the boundary (Assumption 7), that is required for

analyzing indirect estimators but not required for direct estimators. The role

of this condition can impinge on the way each estimator measures =E(g') in

small samples. In particular, for a fixed value of the trimming constant b. f

and df measure Ey(-f'/f)I(f(x)>b)], and g and d measure E[g'I(f(x)>b)].

These two expectations differ by boundary terms, that under Assumption 7 will

vanish in the limit as b approaches zero. These differences are unlikely to be

large in typical situations. as they involve only terms in the "tail" regions

of f(x). But some related points can be made that favor the direct estimators

a and d , in cases where such "tail regions" are not negligible. When the
g g

structure of g' is relatively stable over the region of small density, g may

be subject to more limited bias. For instance, in an index model problem where

g(x) takes the form g(x)=F(x'8) for coefficients , then g'(x)=dG/d(x'A) -

Y(x) is proportional to for all values of x. where the proportionality
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constant (x) can vary with x. In this case 63 and d measure E[g'I(f(x)>b)j =
g g

E[Y(x)I(f(x)>b)] 8 = b 8 . which is still proportional to . whereas f and df

measures an expectation that differs from Y. by boundary terms. Thus, for

estimating up to scale, direct estimators avoid some small sample trimming

biases inherent to indirect estimators.

Moreover. for certain practical situations, it may be useful to estimate

the average derivative over subsets of the data. If the density f(x) does not

vanish on the boundary of the subsets, then boundary term differences can be

introduced between "subset based" direct and indirect estimators. Formally.

let IA(x)=I[xEA) be the indicator function of a convex subset A with nonempty

interior, and A=E[g'IAJ the average derivative over the subset A. In this

case. the direct estimator gA=N E g'(xi)I IA(x i ) (or its "slope" version)

can be shown to be a N consistent estimator of A' but

afA=-N E yi[f'(xi)/f(xi)]IiIA(xi ) will be a JN-consistent estimator of E[y(-

f'/f)IAJ. The difference between AA and the latter expectation will be

boundary terms of the form g(x)f(x) evaluated on the boundary of A, which may

be significant if A is restricted to a region of high density. Therefore.

direct estimators are preferable for measuring average derivatives over

certain kinds of data subsets.

Finally, the potential practical advantages of the slope estimators

derive from their "ratio" form, which may molify some small sample errors of

approximation. For instance. f is affected by the overall level of the values

q(xi), whereas df is not. Similarly, deviations due to outliers and other

small sample problems may influence slope estimators less than their "sample

moment" counterparts.
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ADoendix: AssumDtions and Proofs

AssumDtions for Theorem 1.

1. The support Q of f is a convex. possibly unbounded subset of R with

nonempty interior. The underlying measure of (y.x) can be written as v xvx.

where v is Lebesgue measure.
x

2. All derivatives of f(x) and G(x)=g(x)f(x) of order p=k+2 exist.

3. The kernel function K(u) has bounded support S={u! lulS1}. is symmetric,

K(u)=O for udS={ui !u=l)1. and is of order p:

r K(u)du = i

I u ...u.K K(u)du = O< 

f u1 ... uk K(u)du O e1+.. .+e =P

4. The components of the random vectors ag/ax and [1an f/axjy have finite

second moments. Also. f, g. satisfy the following local Lipschitz

conditions: For v in a open neighborhood of 0. there exists functions wf. w .

Wfg Wf,. Wg, and w such that.

i f(x+v) - f(x) i < Wf(X) v!

g(x+v) - g(x) I < (x) Ivl

i (gf)(x+v) - (gf)(x) < w f(x) iv
gf

t f'(x+v) - f'(x) < Wf,l() IVI

g'(x+v) - g'(x) I < 1I(x) lvi

(x+v) - (x I < (x) Iv!

with E[g'(x)w (x) <, Et{f'(x)/f(x))w g() 2<, E[wfg(x)] <, 2

E[g(x)wf,(x)] <o, E g,(x)] <, Ely wQ(x)] 2<. Finally, M2 (x)=E(y 2x) is

continuous in x.

Let AN=lxlf(x)>b) and BN={(xf(x)b.N N
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5. As N-o.

f g'(x)f(x)dx = o(N 1/2
BN

.p) (P) th6. If G f ( ) denote any p order partial derivatives of G and f
(P) (p)

respectively, then G f are locally Holder continuous: there exists
L L

Y>O and functions cG(x) and cf(x) such that for all v in an open neighborhood

of 0. G (x+-G (P)(x)!<cG(x)IVi and If (x+v)-f (P)(x)Ccf(X)JvwY The
I· f L c . The

p+Y moments of K(.) exist. Moreover

G( (x)dx M < -
L

AN

hY f cG(x) dx M < 0

AN

hf [f(x)/f(x)]G(P)(x)dx M < 0
L

AN

h r c (x) [f'(x)/f(x)ldx M <
AN

f g(x)f(P)(x)dx M <
L

AN

hY I c (x) g(x)dx 5 M < 0

AN

(p)
hf -g'(x)+g(x)(f'(x)/f(x))]f (x)dx M < 0

AN

h 5f cf(x)[-g(x)+g(x)(f'(x)/f(x))]dx M < 

AN

Note that if there exists B>O such that when f(x)O. then f(x)>B, the integral

conditions of Assumptions 5 and 6 are vacuous.
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Additional Assumption for Corollary 1 (from Theorem 3.1 of HS):

7. f(x)=O for all xdQ. where d is the boundary of . With reference to

Assumption 4, E(x)ywfl exists. There exists a function wg such that

I Q(x+v)g(x+v) - (x)g(x) I < Wg(X) IVI

such that E[wgl exists. Finally, as N,

f g(x)f'(x)dx = o(N 2 )
BN

Additional Assumptions for Corollaries 2 and 4:

8. The variance of y exists. The conditions of 4-6 are obeyed for y=g(x)=1.

9. The conditions of 7 are obeyed for y=g(x)=l.

Additional Assumption for Corollaries 3 and 5:

10. The variance of x exists. The conditions of 4-6 are obeyed for y=g(x)=xe,
th

e=...k, where xe denotes the component of x.

11. The conditions of 7 are obeyed for y=g(x)=xe, e=1.....k, where xe denotes

the e component of x.
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Proof of Theorem 1:

The proof strategy follows that of Theorem 3.1 of Hardle and Stoker(1987

- hereafter HS), although the details differ substantively. As a preliminary,

we note several results on the uniform convergence of kernel estimators, that

will be used occasionally in the main proof. As in HS. we note that condition

(iii) requires that the pointwise mean square errors of f(x), f'(x), G(x) and

G'(x) are dominated by their variances. Consequently, since the set (xlf(x)>b

is compact and b h-O. by following the arguments of Collomb and Hardle(1986)

or Silverman(1978). we can assert

(A.ia) sup f(x) - f(x)i i[f(x)>bl = 0 [(N -(/ 2 )hk) /2]
p

(A.lb) sup f'(x)- f'(x) I[f(x)>b] = 0 [(N1 /2 )hk+2 -1/2

(A.lc) sup G(x) - G(x)i I[f(x)>b] = 0 [(Nl(1 / 2 )hk)l/ 2]

1-(E/2) k+2 -1/2
(A.ld) sup G'(x) - G'(x)l I[f(x)>b] = 0 [(N1-( h2

p

for any >0. (The N / 2 term is included instead of the (In N)c term

introduced through discretization, as in Stone(1980!. This is done to avoid

further complication in the exposition by always carrying along the (ln N)

terms).

We define two (unobservable) "estimators" to be studied and then related

to 3 . First. define the estimator 3 based on trimming with respect to the
g

true density value:

N 
(A.2) = N 1. g (x.) I.

i=1

where IIf(xi)>b], i=l,...,N. Next, for the body of the analysis of

asymptotic distribution, a Taylor expansion of g' suggests defining the

"linearized" estimator :

16
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N I.
3 = N i g'(xi)I + '(xi ) - G'(xi f(xi)

f'(x )I -. (x )I1
- LG(xi) ) - f(x ) i 

f(x.)2 f(x.)

gl(x.) g(x.)f'(x.)

+ [f( i) - f(xi)] [ (x i ) + i 2 1i
1 I I

The linearized estimator can be rewritten as the sum of "average kernel

estimators" as

(A.4) a = 30 + -1 3 + 4

where

-1 N
80 N

i=l
g' (xi )I i

N I.
1 = N- 1 G'(x fx.

i=1 if

N

32 = N
i=1

N

a 4 =N I
i=1

f'(x.)I.
' 1 1

G(xi) 2
f(x.)

1

- 1 N . g(xi)I i83 = I f(x i
i=l f(x.)

1

g(xi)f'(x i)

f(xi. 1

IiJ1

With these definitions, the proof now consists of four steps. summarized as

Step 1. Linearization: TN( - ) = o (1).

Step 2. Asymptotic Normality: 4'Ni3 - E( ) has a limiting normal

distribution with mean 0 and variance .

Step 3. Bias: [E(9) - ] = o(N/2).

Step 4. Trimming: -rN(3 - 8) has the same limiting behavior

as ji(3 - ).

The combination of Steps 1-4 yields Theorem 1

17

(A.3)

(A.5)



Step 1. Linearization: First define the notation

f (x) = f(x) 1f(x) -

-
4f,(X) = f(x) f'(x)

-1 
4G(x)= f(x)- [(x) -

G,'(x) = f(x) [G'(x)

4^(x) = f(x) [f(x) -

f(x)] I[f(x)>bl

- f'(x)] If(x)>b]

G(x)] I[f(x)>bl

- G'(x)] I[f(x)>b]

f(x)] I[f(x)>b]

Some arithmetic gives the following expression. where all summations run from

i=1,...,N, and i subscripts denote evaluation at xi (i.e. ff(xi),

4fimff(x i), etc.);

(A.7)

N( ) = N 2g if i4fi - N Gif'i + N/2 E 2(fi/fi)4Gii fi fi Gi ~I i fi

-1/2 -1/2 2 -1/2 2 2- N G/2 i'fi + N £ (g - Gi f' /f )ffi - N 1/2 (Gifl/f )4fi
Gli fi I i I i f f i fi

-1/2 -1/2
+ N /2 2f/f4.i + N 2(f/f) . + 1/2 2gi Z iC

-1/2 2 -1/2_ 2 -1/2 2- N £ (fi/f )ei - N g N Gif'ifi
1 Gi fi i f fi Gi fi fi

+ N 1 2 6i 2 
+ N 2Gi fi fi fi

Examining fN(-3) term by term gives the result. In particular, by (A.la-d),

sUPI4 (I b (Nl- (E/2.)hk1/2 supl4,(x)jiO [b 1 (N1 (C/ 2 )h k+2 1/ 2 ]

supX 6(x)!=Op[b (N -(E/ 2 )hk) /2], suplG, (x)l=Op[b (N (F/2) k+2 /2 and

-1 1-(E/2.) k(1/2 2 1-(]/2)
supI(x)=0 [b- (N h ) , the latter using b N -( )h . which is

implied by condition (ii). For the first term of (A.7)

|- /2E g <-5- F supltfv(x)l suplf(x)l i i
I 2 i f i fil ' N

(b-2N -(1/ 2 )+(/ 2 ) h - (2k+2)/ 2 ) o (1)
p. p

since £Egi!Ii/N is bounded in probability by Chebyshev's inequality, and

b4N 1- 2k+2 ~ by condition (ii). The other terms are analyzed similarly,

allowing us to conclude
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fiJ - by = 0 (b-2N-(1/2)+(/2)ho-( 2kp2)/2) ? o (1)
P P

QED 1.

Step 2: Asymptotic Normality: We now show that 'jNi[ - E(J)] has a limiting

normal distribution, by showing that each of the terms of (A.4) is N

equivalent to an ordinary sample average. For 50 . we have that

-1/2 (N
(A.8) N[ 0 -rO( E([r(X)] x + o (1)

where r0(x) = g'(x).

since Var(g') exists and b and N-.

The analyses of the average kernel estimators 81' 82, 83 and 4 are

similar, and so we present the details for 61. Note that 61 can be

approximated by a U-statistic, namely

N-I N

U1= 2 ] 1 1 PlN(Zi'Zj)
i=l j=i+l

where z=(yi,xi) and

p (z z [K'PN(Zi'I) = 2 [hI h f(x i )

where K'aK/au. In particular. we have

5([ai - E()j = 'N[U1 - E(U) - N {N[U1 - E(U1) l}
1 I ' I

1 [Nhk+J K' f(, - E i iJi=1 [Nh k+1f [f'xi fx)

The second term on the RHS will converge in probability to zero provided

r-
JN[U1-E(U1)] has a limiting distribution, which we show later. In general if
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K'(O)=c, then the third term converges in probability to zero, because its

variance is bounded by cc'(1/Nh ) (h/b) E(yi2Ii)=o(1). since Nhk + 2 and

h/b-O. However, for analyzing 81, we note that the symmetry of K(.) implies

K'(O)=O, so the third term is identically zero. Consequently, we have

(A.9) 4JN[ 1 - E() = r[U 1 - E(U1)] + o p(1)

We now focus on U1.

By Lemma 3.1 of Powell, Stock and Stoker(1987), we can assert

(A.10o) 1fU1 - E(U1) = N -1 /2 rlN(Zi) - EfrN(z)]} + o (1)

where rlN(Z) = 2E[P 1N(Z,Zj)Iz

provided that E(jP1 (zz ) IJ=o(N). To verify this condition, let

2
M1(xi)=E(YiIilJi), M(xi)-E(Yi Ix.) and R(xi)=I(f(xi)>b). Then

EI!PlN(ZiZj)I 2

iN 

< 2K2k z || K' IM ( i)R(x (xj) R(xi)-2M1(x )M1(x>)]
2 2k+2

fxf(x )(x.)dx.dx.
1 j 1 j

21k+2 } K'(u)i M2(xi)R(xi+hu) + M2(x ihu)R(x

2Ml(Xi)M 1(Xi+hu)] f(xi)f(xi+hu)dxidu

= O(b- 2h - (k + 2 ) = ON(b Nh +2 = o(N)

since b Nh -
- is implied by condition (ii). Thus (A.10) is valid.

The final step in the analysis of 81 is to show that the average of

r1N(Zi)=E[2plN(zi,Zj)zi of (A.10) is equivalent to a sample average whose

components do not vary with N. For this. we write out rN(zi) as
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rlN(Zi) = 1 K ' If(x)x)d
h 1hf(x)xJ

If(xi ) - K(u (u) g(x+hu)f(xi+hu)du+ Yi I h K'(u) I[f(xi+hu)>blduI.
fI) K(u)i- (gf)'(x +hu)duf(x.) j 1

Y,~i -fi)Jh KK(u) I[f(xi+hu)bu)bdusince (y /h/)(fK'(u)du)=O. Now define r (zi) and t (Zentasf'(x i )(A.11) r (zi) = g'(xi) + g(xi) f(x.)

(A.12) tN (Zi ) rIN(i 1 i f )-r K(u) [(gf)'(xi+hu)-(gf)'(x.)du

+ (-I)r (Z) + yiJ -f - K'(u) I[f(x1+hu)Sb]du

It is easy to see that the second moment E[tlN(Z) ] vanishes as N-. By the

Lipschitz condition of Assumption 4 the second moment of the first RHS term is

bounded by (h/b)2 (f$juK(u)du)2E(Wgf(X)2 )=O(h/b)2=o(1), and the second moment

of the second RHS term vanishes because b-O and Var(rl) exists. For the final

RHS term, notice that each component of the integral

a(x) = K'(u) I[f(x+hu)5b1du

* *

will be nonzero only if there exists x such that Ix-x <h and f(x )=b.

because if f(x+hu)<b for all u. uj<1, then a(x)=fK'(u)du=O. Now, consider the

eth component a (x) of a(x), and define the "marginal density" K e=fK(u)due

and the "conditional density" K=K/K The kernel K can be chosen such that

Ke is bounded (say by choosing K as a product of univariate kernels
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K=nK (u )). Since K vanishes for u such that u!=1, applying integration by

parts absorbs h and shows that a (x) is the expected value of K (u) over u

values such that f(x+hu)=b, where expectation is taken with respect to K(e).

Consequently. each component of a(x) is bounded. so that there exists a such

* *

that a(x)i<a . Finally define b = sup {f(x+hu)lf(x)=b,iuS1)<. We then have

E[iY I h K'(u) I[f(x+hu)Sb]du 
2
] (a* )2 E[y2 If(x)<b*

* 2
since b -0 as h-O and b-O. Thus E[tlN(z) ]=o(1).

This observation suffices to show asymptotic normality of U1, because

N N
(A.12) N- 1/ 2 (rlN (z)-E[rlN()]} = N1/2 {r(z)-E[r(i)]}

i=l i=1

+ N-1 /2 tN(i)-E[tlN( i)]}

and the last term converges in probability to zero. since its variance is

bounded by EtlN(z) = o(l). Consequently, combining (A.12), (A.O0) and

(A.9), we conclude that

(A.13) E( 1)] = N -1/2 rl(zi) - E[r 1(z)J} + o (1)

where r(z) = g'(x) + g(x)[f'(x)/f(x)l

By analogous reasoning. we show the asymptotic normality of 62. 63 and

a4' Summarizing the conclusions, for 82 we have that

(A.14) 2 E( 2)] N/2 N {r 2(i) - E[r 2 (z)]D + o (1)

where r (z) = [y + g(x)][f'(x)/f(x)]

For 3 we have3
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N - Era(z)}]

i=1

where r3(z)

and for 4 we have
4

(A.16) 'Ntg4 - E(a4 )] =

= - g'(x) + g(x)[f'(x)/f(x)]

N

{r4(z i) - E[r4 (z))}
i=l

where r4(z) = -2g'(x) + 2 g(x)[f'(x)/f(x)]

Finally, from (A.8), (A.13), (A.14), (A.15) and (A.16), we conclude that

(A.4) has the representation

4N[ - E(a)] = N [
N 1
I {r(z i) - Er(z)]}

i= 1

where r(zi) is given as

4
r(zi) = r(z.) =

e=0
g' (xi) - [Yi -g(xi )]

where r(z)=r(y,x) of (4.2). Application of the Lindberg-Levy Central Limit

Theorem to (A.17) implies asymptotic normality of . QED 2.

Step 3: Bias: Using (A.3). write the bias of as

E(S) - = ON + T1N - T2N - T3N + 4N

where

TON = E[g'(x)I] -

T2N = E[[G(x)

T 1N = E[[G'(x) - G'(x)] f(x)]

- G(x)] f' (x)I
f(x) J

: T3N
f(x) I
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+ o0 (l)p

a of

(A.17)

(A.18)

+ o (1)
p.

f'(xi)
f(x

f(x.)]

RN (93, E (6 )j =(A.15)

(A.19)



T4N E[f(x) - f(x)] [- f-x) + g(x)f'2l) ]

Let AN={(xf(x)>b) and BN={xlf(x)b}. Then

rr r -1/2
TON f(x)'x - (x) f(x)dx - j g'(x) f(x)dx o(N

AN BN

by Assumption 5.

We show that T =o(N 1/), with the proofs of T N=o(N -1/2 TN=o(N )
iN 2N' 3N

and 4N=o(N - 1 / 2 ) quite similar. Let denote an index set ( ... ) where

£aj=p. For a k-vector u=(u1 ,...uk), define u =ul1 u2 uk and let G (

denote the p partial derivative of G=gf with respect to the u components

indicated by , namely G (P)=aPG/(au) . By partial integration we have

1N A I JK(u) [G'(x-hu) - G(x)] du dx
AN

-= T i K(u) hPi-G(P)()u du dx

N

where the summation is over all index sets t with Eej=p, and where t lies on

the line segment between x and x-hu. Thus

F1N = hPJA G(p )(x )
I K(u)ul du dx

AN

+ hP-1 J K(u) [(P)(g )-G(P)(x)] u' du dx = O(hp 1)

AN

by Assumption 6. Therefore. by condition (iii), we have

N1/2 1/2 p-1 -1/2
T1N=O[N (N/ h )=o(N ), as required. By analogous arguments, T2N. T3N

and T4N are each shown to be o(N- 1/2). Consequently E(3)-S=o(N- 1/2.

QED 3.

Step 4: Trimming: Steps 1--3 have shown that JN(3-3)=rN R +o (1), where
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R=N Efr(yi,xi)-E(r)]. We now show the same property for g.

Let c N=c (N h/2)h ) - / where c is an upper bound consistent with
N f f

(A.la). Define two new trimming bounds as b =b+c N and be=b-cN and the

associated trimmed kernel estimators:

N 
.3 = N i c'(x i ) I[f(xi)>bu 

i=l

N
de = N i g'(xi) I[f(xi)>b¢]

1 -_
Since b cN+O by condition (ii), u and e each obey the tenets of steps 1-3,

u ee

then by construction we have that

Prob{N43 u-$ -Rb<. If(xi)-f(xi)sc N, i=l ..... N)

Prob {4Nj - - R$i. f(xi)-f(xi)!ScN. i=l.... N)

5 ProbJ4-N -6 -Rl<. f(xi)-f(xil)Ic N, i=1,....N)

By (A.la). as N-*. Prob{suplfhi(xi)-f(xi)i>cN} - O. Weak consistency is thenhi mi N

immediate: as N. we have lim Prob{4NlSg- -R!s}q) = 1 for all >0. Strong

consistency also follows by construction. because the above inequalities hold

for all sample sizes greater than N.

QED 4. QED Theorem 1.

Corollary 1 follows as decribed in the text. For Corollaries 2 and 3. the

following Lemma is used:

Lemma Al: Under Assumptions 1 through 11 and conditions i)-iii) of Theorem 1.

we have
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N 
(A.20) N i ( i i P (1)

(A.21) 4N j k(xi) Ii (1)

Proof of Lemma Al: (A.20) and (A.21) follow directly from Theorem 1 and

Corollary 1. For (A.20), apply (4.1) for yi=l, noting that r(l,x)=0. For

(A.21). let x denote the th component of x. Set y=xg and apply (4.1), noting
e~ lth

that r(xe.x)=ee. the vector with i in the eth position and O's elsewhere.

Collect the answers for e=l.....k. QED Lemma Al.

Proof of Corollary 2: Note that

(A.22) Si [ f - Sy)= (E x Qi) I i

where y = EYi/N. Since y is bounded in probability (for instance by

Chebyshev's inequality), the result follows from (A.20) of Lemma Al.

QED Corollary 2.

Proof of Corollary 3: By the delta method, iN(df - ) can be shown to be a

weighted sum of the departures N(SQy - ) and N(SQx - Id). But from (A.21),

and Corollary 2 applied with y set to each component xe of x. we have that

JTN(SAx - Id) = op(1). Consequently, we have that

(A.23) FiN[df - ] = (Id) - 1 N(SAy - 3) + o (1)

so that Corollary 2 gives the result. QED Corollary 3.
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Corollaries 4 and 5 follow in the same fashion as Corollaries 2 and 3. where

Lemma A2 plays the same role as Lemma A1.

Lemma A2: Under Assumptions 1 through 6, 8 and 10 and conditions i)-iii) of

Theorem 1. we have

N 
(A.24) 1 w(xi) = o p(l)

(A.25) 'N w(x) x d()

Proof of Lemma A2: (A.24) and (A.25) follow directly from Theorem 1. For

(A.24), apply (4.1) for yi=l, noting that r(l,x)=O. For (A.25), let x denote

the e component of x. Set y=x e and apply (4.1), noting that r(xe,x)=e e, the

vector with 1 in the eth position and O's elsewhere. Collect the answers for

e=l .....k. QED Lemma A2.
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Notes

1. These terms are intended to suggest the estimation approach (as opposed

to being a tight mathematical characterization), as it may be possible to

write certain sample average estimators as "slope" estimators, etc.).

2. K(.) is assumed to be a kernel of order p=k+2 (see Assumption 3).

involving positive and negative local weighting: see Powell, Stock and

Stoker(1987) and HS among many others.

3. Nonparametric density estimators are surveyed by Prakasa-Rao(1983) and

Silverman(1986).

4. Nonparametric regression and derivative estimators are surveyed by

Prakasa-Rao(1983) and ;a"rdle(1987).

5. The simulation results of HS on the indirect estimator f below

indicate that while some trimming is useful. estimated values are not

sensitive to trimming in the range of 1%-5% of the sample values (for k=4

predictor variables and N=100 observations).

6. We have defined "slope" coefficients by including a constant term in

(3.4), but as shown later, this makes no difference to the asymptotic

distribution of the estimators (c.f. Corollaries 2 and 4 below).
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