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ABSTRACT

This paper proposes nonparametric tests of additive constraints on the first

and second derivatives of a model E(ylx)=g(x), where the true function g is

unknown. Such constraints are illustrated by the economic restrictions of

homogeneity and symmetry, and the functional form restrictions of additivity

and linearity. The proposed tests are based on estimates of regression

coefficients, that statistically characterize the departures from the

constraint exhibited by the data. The coefficients are based on weighted

average derivatives, that are reformulated in terms of derivatives of the

density of x. Coefficient estimators are proposed that use nonparametric

kernel estimators of the density and its derivatives. These statistics are

shown to be F consistent and asymptotically normal, and thus are comparable

to estimators based on a (correctly specified) parametric model of g(x).



TESTS OF ADDITIVE DERIVATIVE CONSTRAINTS

1. Introduction

Derivative constraints play an important role in the empirical study

of economic behavior. One source of derivative constraints is the standard

implications of economic theory for marginal responses. For instance, economic

theory implies that production costs are homogeneous in input prices and that

demand functions are zero-degree homogeneous in prices and income, which are

restrictions on the derivatives of cost and demand functions respectively. The

symmetry conditions of optimization provide other examples; for instance, cost

minimization implies equality constraints on the derivatives of input

quantities with respect to input prices.

Derivative constraints also arise from restrictions used to simplify

econometric models. These include include constant returns-to-scale

restrictions on production functions and exclusion restrictions on demand or

production systems. Such restrictions are valuable for increasing precision in

estimation or facilitating applications of econometric models.

Associated with the use of derivative constraints is the necessity of

testing their statistical validity. Rejection of a constraint representing a

basic implication of economic theory suggests either a revision of model

specification, or a reconsideration of the applicability of the theory to the

empirical problem at hand. The use of restrictions to simplify empirical

models is justified only when the restrictions are not in conflict with the

data evidence.

In current practice, derivative constraints are typically tested using a

parametric approach. Here a specific functional form of behavioral equations

is postulated, and the constraints on behavioral derivatives are related to

restrictions on the parameters to be estimated. Tests of the derivative

constraints then coincide with standard hypothesis tests of the parametric
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restrictions. This approach is limited by the initial specification of the

parametric model, which must be held as a maintained assumption which the

restrictions are tested against. If the maintained assumption is in conflict

with the process generating the observed data, the results are

uninterpretable. 1

The purpose of this paper is to propose a nonparametric approach to

testing derivative constraints. To fix ideas, suppose that a behavioral model

is represented by g(x)=E(ylx), where y denotes a dependent variable, x 

(xl ...,xM)' a vector of continuous variables, and the form of g is unknown. A

"derivative constraint" refers to a restriction on the derivatives of g that

holds for all values of x. In particular, we consider tests of additive

constraints of the form

ag(x) g2(x
GO0 (x)g(x) + Gj(x) + Hk(x) ) D(x) (H)j ax. ( H ) x~j i ax j jk axjaxk

where Go(x), Gj (x) and Hjk(X), j5k, j,k=l,...,M and D(x) are known,

prespecified functions of x. The constraint (H) is intrinsically linear in

g(x) and its derivatives, but is otherwise unrestricted.

One obvious idea is to use a nonparametric smoothing technique to

characterize g(x) and its derivatives, and study the adherence of the

estimated derivatives of g to (H) over the whole data sample. But such

pointwise characterizations are notoriously imprecise, converging to the true

derivatives at very slow rates as sample size increases, especially when x has

2
more than two or three components.

Instead, this paper proposes a method for testing derivative constraints

based on a regression analysis of the departures from (H). Suppose that the

departure from (H) was observed for each observation, and one performed an

ordinary least squares (OLS) regression analysis of the departures on the

components of x and the squares and cross-products of the components of x. If
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(H) is valid, then all such regression coefficients must be zero. This paper

gives estimators of the OLS coefficients from such a regression, and test

statistics of the hypothesis that the coefficients vanish.

There are several attractive features of the proposed tests. First, the

tests are nonparametric; they do not require a specification of the functional

form of g(x). Second, the tests are interpretable; when rejection occurs, the

source of rejection will be indicated by the regression coefficients on which

the tests are based. Third, the tests are computationally simple; they are

based on kernel density estimators that are computed directly from the data.

Fourth, the tests have precision properties comparable to tests based on

parametric models; the regression coefficients converge at rate af (where N is

sample size), or the same rate of convergence displayed by parametric

estimators. Consequently, the tests have non-zero efficiency relative to those

based on a (correctly specified) parametric model.

Section 2 begins with several examples of constraints of the form (H).

Section 3 introduces the regression approach to testing, and discusses its

statistical power. Section 4 presents the estimators, test statistics, their

interpretation and immediate extensions, and Section 5 gives some further

remarks. Section 6 lists and briefly discusses the formal assumptions; as

such, Section 6 can be read concurrently with the results, separately, or

skipped depending upon the reader's interest in the technical requirements.3

2. Examples of Additive Derivative Constraints

The basic framework we consider is where the data (yi,xi), i=l,...,N

represents random drawings from an underlying (joint) distribution of y and x.

The relevant economic structure of the model is captured in the conditional

expectation E(ylx) - g(x), so that the constraints of interest are

4
restrictions on the derivatives of g. The marginal density of x is denoted

f(x), which is taken to vanish on the boundary of x values.
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As a notational convention, the subscript i=l,...,N always denotes an

observation, and the subscripts j,k=l,...,M denote components of the vector x.

For instance, ag/ax. is the jth partial derivative of g, x is the th

th
observation on x, and x.. is the jh component of x..

ji 1

We begin the examples with two cases of derivative constraints familiar

from economic theory, namely homogeneity (of some degree) and symmetry.

Example 1: Homogeneity Restrictions. For concreteness, suppose that g(x)

represents the logarithm of production and x represents the vector of

log-input values: input levels are Ie and quantity produced is P(I)=eg ( ).

0~~~~dP(I) is homogeneous of degree do in I if P(xI)=rd P(I) for any positive

scalar , which obtains if and only if the log-form Euler equation is valid:

ag(x) = do (2.1)
ax. 

j J

where g/8x. is the jth output elasticity and Zj ag/ax. is the "scale"

elasticity. Constant returns-to-scale occur when d =l. (2.1) is clearly in the
0~~~~

form (H) where D(x)=d0, G(x)=0 and G(x)=l, Hjk(x)=O for all j,k. Note also

that zero degree homogeneity restrictions, such as those applicable to cost

and demand functions, take the form (2.1) with d =0.0

Example 2: Symmetry Restrictions of Cost Minimization. Now suppose g (x),

j=l,...,M-l, represent the demands for M-1 inputs, where x., j=l,...,M-l, are

input prices and xM is the output of the firm. Cost minimization implies that

k
x + ag (X) = 0, j,k = 1,...,M-1 (2.2)axk ax

J

This set of restrictions involves several behavioral equations, as discussed

in Section 4.5.

The following examples treat simplifying restrictions on the structure of

g(x): exclusion restrictions and additive and linear functional forms.

4
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Example 3: "xi has no effect on y. x can be omitted from g(x) if and only if

ag(x) 0 (2.3)
ax.
3

Example 4: Additivity and Linearity. g(x) is additive if g(x) =

jgj(xj), which is equivalent to

a8g(x) = 0, jok, j,k=l,...,M (2.4)

J k

Moreover, g(x) is linear if g(x) = i0+Zjjix, which requires (2.4) for all

j,k=l,...,M. Each restriction of (2.4) is in the form (H); joint tests of all

the restrictions are discussed in Section 4.5.

Many other examples of additive derivative constraints can be derived. As

with (2.1-4), specific constraints will typically involve zero restrictions on

many of the functions G Gj, Hjk and D of (H), which impart analogous

simplications to the test statistics presented below.

3. The Approach to Testing Derivative Constraints

3.1 Regression Analysis of Departures

Our approach for testing (H) is based on the departure function

ag(x) g2(X
A(x) = GO(x)g(x) + Gj(x) ag() + Hjk) x - D(x), (3.1)

0 j ax. jk axjaxk
~~~~jkj~~ j ~k

so that (H) is summarized as A(x)=O for all x.

Suppose for the moment, that we observed the departure value at each data

point; A(xi), i=l,...,N; say up to random error. A natural method of assessing

whether A(x)=O would be to carry out an ordinary least squares (OLS)

regression analysis of A(xi)), to check whether A(x) has a nonzero mean or

varies linearly or nonlinearly with x. In particular, we could estimate the

coefficients of the quadratic equation

5



A(xi) 7c + rljxji + X sjkXjiXki + u. (3.2)
j jsk

+ xi 71 + s.'- + u. i=l,...,N

2 2
where si=(Xli ,Xlix2i, ... xMi )' denotes the M(M+1)/2 vector of squared and

cross product terms: 7c 71 and denote large sample (limits of) OLS

coefficient values, and E(u)=0, Cov(x,u)=O and Cov(s,u)=O by the definition of

least squares. If any of the estimates of the regression parameters of (3.2)

are significantly different from zero, then there is sufficient evidence to

reject the constraint (H) that A(x)=O for all x.

The proposal of this paper is to impliment this procedure using

nonparametric estimators of the coefficients 7 C, 71 and . Using additivity of

the constraint (H), Section 4 derives the estimators and a consistent

estimator of their covariance matrix. The test statistic proposed is the Wald

statistic of the joint hypothesis that 7c=O, 1=0 and =0.

For later reference, the nonparametric estimators can be used to estimate

the coefficients of the lower order regression equations

A(xi) = a + Uli (3.3)

i=l,...,N

A(xi) = Pc + xi P' + u2i (3.4)

where a=E[A(x)] and =(x )-ZA, c=E[A(x)]-E(x)' denote large sample OLSwhee =EA~)]an P(Zxx ZxA' C

7
values. Tests of (H) based on a=O, Pc =0 and =0 can be formulated, but these

tests would be redundant, in view of the regression identities

a= c + E(x)'71 + E(s)'

/c = c - E(x)'Z x Zxs + E(s)'-y (3.5)

P 71 x+ Zxs7

But while redundant, such tests may be useful when x has many components,

where estimating all of the coefficients of (3.2) is impractical.
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3.2 Interpretation and Power

The motivation of the procedure is that it is well founded and

interpretable. The large sample coefficients y c 71 and exist under weak

regularity conditions, so that the procedure is not based on a maintained

functional form. Moreover, when a constraint is rejected, the estimated

coefficient values give an empirical depiction of how the constraint is

violated in the data. Instead of just a yes" or no" answer, the regression

test can provide useful information for revising the modeling approach or

9
reconsidering the theory at issue.

A

We could also compute and graph the "fitted values" of (3.2), say A(xi),

i=l,...,N, using the estimated coefficients. However, it should be noted that
A

A(xi) is not a consistent nonparametric estimator of A(xi), but rather a

quadratic least squares approximation in the sense of White(1980). Testing
A

A(xi)=0 amounts to testing 7c=0, 1=0 and =0 as above, which is not a

complete (pointwise) test of A(x)=0. Consequently, it is of interest to

establish a precise characterization as to how departures of A(x) from 0 are

reflected in the large sample regression parameters.

One such characterization arises from considering the mean departure

when the data set is reweighted. Suppose that the marginal density of x were

altered from f(x) to f(xlp) by (exponential family) reweighting as

f(xl) = f(x) C[w(p)]e(A)x (3.6)

where refers to the reweighted mean of x. This reweighting is locally

unique: C[(p)]={ff(x)e ( 0) 'x dx) 1 is the normalizing constant determined by

r(p), and ir(p) is determined uniquely in a neighborhood of =E(x) by the
equaton ~ E(xjp) = x f (x)()e()'x 10

equation = fxf(x)C[i(p)]e ()dx. By construction, p=E(x)

corresponds to no reweighting; r[E(x)]=0, C(0)=1 and f[xlE(x)] = f(x). The

mean departure under the reweighted sample is

7



(p) - E[A(x)p] - f A(x) f(xlp) dx (3.7)

The function (p) obeys [E(x)]-E[A(x)] and is analytic in in an open

neighborhood of =E(x) (c.f. Lehmann(1959)).

The structure of A(x) bears an intimate relationship to (p) and its

derivatives, as follows. If A(x)=0 a.s., then obviously (p)=0 for all . The

converse is implied by completeness of the exponential family (Lehmann and

Scheffe(1950-1955)), namely if (p)=0 for in a neighborhood of p=E(x), then

A(x)-O a.s. Since is analytic, (,p)-O in a neighborhood of p=E(x) if and

only if the derivatives of (of all orders) vanish at p=E(x); hence the

derivatives of vanish if and only if A(x)=0 a.s.

It is the low order derivatives of at p=E(x) that the regression

coefficients of (3.2-4) measure. Clearly a=E[A(x)]=O[E(x)], so that a

coincides with (the zero order derivative of) 4 at p=E(x). From

Stoker(1982,1986a), the linear coefficients equal the first derivative 8a/ 8pa

evaluated at p=E(x). Finally, the quadratic coefficients are uniquely

connected to the matrix of second derivatives a 2/aap as

Theorem 3.1: Under Assumptions A and B, is a linear, homogeneous, invertible

function of a 2/aap' evaluated at p=E(x), and so -=0 if and only if

a2/ap8pa'=O at =E(x).

Thus a=0, P=0, 7=0 coincides uniquely with O[E(x)]=0, a0/ap=0 and

2O/aay,'=o, which from (3.5), coincides uniquely with =0, -Y 1=0, 7=0.

Consequently, the failure to reject cy-0, 71-0, 7-O of the quadratic

regression (3.2) implies that departures of A(x) from 0 induce at most

third-order changes in the mean departure under reweighting. This is the

precise characterization we were after, indicating what the coefficients

measure and how they might fail to detect departures from the constraint (H).
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4. Estimation of the Regression Coefficients

We now turn to the procedure for estimating the regression coefficients

and testing that they vanish. The procedure is constructive but somewhat

complicated and so we take it up in steps: reduce the problem to that of

estimating weighted first and second average derivatives of g(x) (Section

4.1), reformulate the average derivatives for estimation (Section 4.2) and

propose nonparametric estimators (Section 4.3).

4.1 Reduction to Average Derivatives

Write the quadratic regression (3.2) compactly as

(xi = Xi r + ui i=l,. .,N (4.1)
1 1''''

where X (l,xi',si')' and =(c 71' -y')'. is written explicitly as
1 1 i c'1''

-r = H C (4.2)

where xL,=E(XX') and C=E[XA(x)].
A A

Suppose that we had an estimator C such that N(C - C) had a limiting

normal distribution with mean 0 and covariance matrix VC, and also a
A

consistent estimator VC of V . Then is estimated consistently by
A -l A

Pr P 1 C . (4.3)

where PX=iXiXi'/N, since PXX is a consistent estimator of XX. Moreover, it
A

is a standard exercise to verify that a( - ) has a limiting normal

-1 -1
distribution with mean 0 and covariance matrix IxVcHI. For testing, under

the null hypothesis that r=o, the Wald statistic

A A- 1 A^ ^ ,?XX
W - Nr'PXXVC PXXr (4.4)

2
has a limiting distribution with +M+[M(M+1)/2] degrees of freedom.

Therefore, the difficulty lies in the estimation of C=E[XA(x)]. It is

easy to see that C is the sum of terms that can be estimated with sample

averages and weighted average derivative estimators, although some awkward

notation is required to express this formally. In particular, partition C as

9



C=(COCj},Cjk )) ', and write the components as

j ' j'k'C O = E[A(x)] c c + c + c + cj

0

c . ~ ~ ~~ c' cj 'k 'C - = E[x A(x)] = c. + ci + cj[x~~~~~~~~j ·~k+ + J ·

Cjk = j[XXkA(X)] Cjk+XCjk+ xj
j, j 'k'

the c's are individual components defined as

(4.5)

j<k=l, . ,M

follows. The zero order

are

0
cO

0
c.
J

0
cjk

the first or

ci'

0
cij

i

citc.J jk

and the seco

= E[GO0(x)g(x)-D(x)]

= E[xj (G0 (x)g(x)-D(x))]

= E[xjxk (G0 (x)g(x)-D(x))]

:der terms are

= EEG ,(x) ag(x)]

= E[ j,(X) axj,]
Lxi l Gi x) ax,]

':E x jx ' (
i~~~~x kjj

(4.6)

j<k=l,... ,M,

j '=1, ... ,M

j ,j '=1, . .. ,M

jk, j'=l, . . . M

nd order terms are

j =k Ea~x 2g (x) 1 c0 = E 'k'(X) axj,Xk, j'<k'=l, ...,M

.cj = E xj Hfk(x) ax ,ai, ] j ,'j k'=l,... ,M (4.8)

= E k' (~x) a~(x
cj'k' r E x '(x) a g(X)_ j~k, j 'k'=l,...,,M
jk [ i jk axj, Xk'

The zero order terms (4.6) can be estimated with sample averages and the first

order (4.7) and second order terms (4.8) can be estimated with weighted

average first and second derivative estimators.

The next sections derive estimators for the (4.7) and (4.8) terms, as

10
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A

well as their (joint) covariance matrix. The procedure is to construct C and
A~~~~~~~~~~ A

VC with these estimators, and then construct r and W via (4.3,4).

4.2 The Reformulation of Average Derivatives

We now turn to how weighted average derivative expressions can be

reformulated to depend on density derivatives. This formulation motivates

estimators whose properties follow from minor alterations of the statistical

theory given in Powell, Stock and Stoker(1987) and Hardle and Stoker(1988).

While other procedures can be proposed for estimation,1 1 it is useful to note

that recent work by Robinson(1987) has established the properties of such

"density based" average estimators when the individual data points follow a

general dependent stochastic process, an important practical situation not

addressed here.

The reformulation is accomplished by integrating the weighted average

derivative by parts, as

Theorem 4.1: Given Assumptions A, B and C, suppose that G(x) is a

differentiable function, then

= raGI G(x) 8 
E G(x) j = E - + f(x) x (4.9)

and if G(x) is twice differentiable, then

E[G('-ax 2Gl aG 1 af + G 1 f G(x) a jxk y (4.1)E (x) =E~ + (4.10)axx k ax. f(x) axk axk f(x) ax. f(x) a i-x

th
Moreover, suppose that G(x) is an n order differentiable function, then an

th
n order weighted average derivative can be expressed as

ng
E G(x) ax. ... ax E[T(x) y] (4.11)

Ol n

where (x) is determined by G(x) and the density f(x).

Each of the terms of (4.7), (4.8) can be written in the forms (4.9),

(4.10) respectively. Moreover, estimators of these terms can be constructed

11



from general estimators of the two functionals

6lj E[f(x) (4.12)

and

(G(x) 8 2 f
6 E ~~~~~~~~~~~~(4.13)

2jk [If(x) ax axkJY (4.13)

(where G is a known function), to which we now turn.

4.3 Kernel Estimation of Average Derivatives

The estimators of (4.12) and (4.13) are sample analogues, where the

density f(x) and its derivatives are replaced by a nonparametric estimators.

In particular, define the (Rosenblatt-Parzen) kernel density estimator 1 2 as

N
A -l 14 X.

f(x) = N lh M K(4.14)

i=l h
A

f(x) is a local average estimator, where h is the bandwidth parameter

controlling the area (window) over which averaging is performed, and K(.) is a

kernel function giving the weights for local averaging. K(.) must be a "higher

order" kernel, as discussed in Section 6. To facilitate nonparametric
A

approximation, the asymptotic theory for f(x) requires smaller averaging

windows for larger samples; h as N.

The derivatives of f(x) are estimated by the corresponding derivatives of

A

f(x) (see Appendix 1). In addition, because (4.12) and (4.13) each involve

division by f(x), we do not include terms with estimated density smaller than

a bound b; a technical requirement that avoids inducing erratic behavior into

13 A A

the estimators. For this define a trimming indicator I = I[f(xi)>b], where

I[.] is the indicator function. For larger samples, the criterion for trimming

is weakened; b as N.

With this setup, the functionals (4.12) and (4.13) are estimated by

12
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A

A - N (x ) af(x.) A i

N1 X1 IJ Yfx xi (4.15)
6ij N~~~~~~~~~i=l [If(xi) ax. 

and

N 2A
A -1 (xi) 8 f(xi) A

v I A' J (4. 16)
2jk N i= L[f(x) ax.a i(

1 Xk

The statistical properties of these estimators are given as

Theorem 4.2: Given Assumptions A, B, C and D, (where p is cited in D),-if

(i) N--, h, bO, b lh0,

(ii) For some >O, b4Nl-E h2M + 4-,

(iii) Nh2p-40,

then a)

N
A

lj 3 ~~~~~~. 1 ~~~(4.17)l(61j - j) a E N Rj(Yi xi) + op (4.17)
i=l

where R(y,x) is a function with mean 0 given in Appendix 1. As a
3

A

consequence, a(6lj - 6 lj) has a limiting normal distribution with

mean 0 and variance aj=Var(Rj). a is consistently estimated by the
3 3 3

A

sample variance of R(G,yi,xi) given in Appendix 1,

and b)

N
A

a(62jk- 62jk) R k(YiXi) + op (1) (4.18)J~~~
i=l

where Rk(y,x) is a function with mean 0 given in Appendix 1. As a
A

consequence, (6S2jk - 6 2jk ) has a limiting normal distribution with

mean 0 and variance ajk=Var(Rjk). ajk is consistently estimated by the
A

sample variance of Rjk(G,yixi) given in Appendix 1.

The proof follows Hrdle and Stoker(1988).1 4

This completes all of the ingredients of the procedure for estimating

13



C=E[XA(x)], which is summarized as follows. First estimate the density f(x)

and its derivatives at each point xi, i,...,N. For each of the c's in (4.6),

form the sample analogue estimator. For each of the c's in (4.7) and (4.8),

reformulate the average derivative expressions as in (4.9) and (4.10), and

form the sample analogue estimator using the estimated density. Sum the
A A

averages according to (4.5) to form C. For the covariance matrix of C, sum the
A A

individual components (R's) to form a grand variance component S for each i,
1

A A

and denote the sample covariance matrix of S. as VC. The formulae
1 C

corresponding to these instructions are presented in Appendix 1. We then have

A

Corollary 4.1: Under the conditions of Theorem 4.2, a (C - C) has a limiting

normal distribution with mean 0 and covariance matrix V VC is consistently
A

estimated by V.

A

The regression coefficients are then estimated by of (4.3), with their

-1^ -l
asymptotic covariance matrix consistently estimated by PVcP . To test

ro0, the value of the Wald statistic W of (4.4) is compared to the critical

2
values of a X distribution with +M+[M(M+1)/2] degrees of freedom. This is

the regression test of the derivative constraint (H).

4.4 Interpretation via Constant Returns-to-Scale

With the conceptual framework of the technique in hand, it is useful to

consider some of its features relative to a concrete example. For this, we

return to Example 1 specialized to testing constant returns-to-scale. The

departure (3.1) takes the form

A(x) = E ag(x) _ 1 (4.19)
ax.
J 

so that the regression (3.2) is a quadratic approximation to the "scale"

elasticity less 1. 15The mean departure E[A(x)] iselasticity less 1. The mean departure E[A(x)] is

14
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E[A(x)] E 1 - E [f(x) y - 1 (4.20)

J J
where the latter expression is the reformulation according to Theorem 4.1.

For testing constant returns-to-scale, one considers the experiment of

increasing all input levels by a factor d (adding d to each x), and
3

comparing the log-output response [j ag/8xj]dO to dO. Examining the mean

departure corresponds to the experiment of increasing the input levels of all

firms by d, and comparing the mean response j[E(8g/8xj)]d# to d.

The reformulation arises by recasting the last experiment as a

reconfiguration of the population. After expansion of all input levels, firms

at initial log-input level x will move to x+dO, so that the density of firms

at x+dO is f(x). Equivalently, this experiment can be regarded as an

adjustment of the density of firms at log-input level x by [-xj af/axj]dO. The

mean log-output response from the readjustment is ( [ -sj af/8xj]g(x)dx)dO

= Xj E(-[l/f(x)][8f/8xj]g(x)}dO, or the reformulation above.1 6

In addition, this example illustrates how the form of the estimators will

typically be simpler than they would appear by the formulae of Sections 4.2
A A A A A

and 4.3. From the estimated density f, define L.= [j f/8xj]Ii/f(xi). The
A A A A

estimator C = (C0,(Cj},ICjk))' of C = (E[A(x)],[E[xjA(x)]),JE[xjxkA(X)])) is

N
A -1 ^

C = N (-LiYi) - 1

i=l

N
A A

C. N [-(1 + x.jiL)y - xji] jk- l,...,M (4.21)
3 ~ ~ ~ ~ ~ 1 

i=l

N
A - A

Cjk = N [-(xji + xki + xjixkiLi)Yi - xjixki]

i=l

which is easily verified.

Theorem 4.2 and Corollary 4.2 point out that the nonparametric estimators
A A

C and r have comparable efficiency properties to sample averages, and hence to

15



parameter estimators from a correctly specified model. In particular, if the

true production function were in Cobb-Douglas form g(x)=O+xj jxj, then for
A

larger sample sizes the precision of r improves at the same rate () as that
A

of the estimated parametric scale elasticity xjij. In this sense the cost of

our nonparametric approach to testing is not infinite, whereas if the
A

Cobb-Douglas specification were incorrect, testing based on Zj.j yields

uninterpretable results.

Alternatively, if A(x) were estimated nonparametrically using pointwise

estimators of the output elasticities (8g/8xj), the precision of the pointwise
A

estimates necessarily improve at a lower rate than that of r (c.f.

Stone(1982)). This problem is exascerbated when the number of inputs M is

larger than two or three, owing to the (practical and theoretical) problem of

obtaining enough data points for adequate local approximation in higher

dimensions; for every observed level of inputs, one must find firms whose

input levels are close enough to reasonably measure all the output

elasticities. Theorem 4.2 states that these problems are avoided by averaging
A A

the nonparametric components as in C and r.

4.5 Extensions

The regression formulation facilitates natural methods of application for

various extensions of the framework. For instance, if there are important

differences in the observations (typically modeled with discrete predictor

variables) then the regression estimators can be constructed for each

homogeneous segment, and pooled for the constraint test. Formally, suppose
A

that ul,... ,U denotes segments, where segment u has N observations and C
u u

A A

denotes the estimator of C. If we define C = I (Nu/N)Cu, then (4.3) gives the

pooled estimator, and the variance is estimated by an analogous combination.

Tests of constraints involving several regression functions (such as in

Example 2) are obviously possible, by estimating average derivatives using the

16



corresponding dependent variable. For instance, in (2.2), estimators of

average derivatives of g(x) use observed input , and those of gk(x) use y.

Simultaneous tests of several constraints (as in Examples 2, 3 and 4) are

formulated by stacking the regressions. Let (H(q)), q=l,...,Q denote (linearly
A

independent) constraints with departure functions (A(q)(x)), and let C(q )

denote the associated estimator of (q)E[XA(q)(x)]. Testing (H(q))) amounts

to testing r0, where rQ (r( ) ...,r(Q ) ) is the stacked vector of

regression coefficients r (q )
1 C(q). If CQ - )' .,c(Q) )', then Q is

estimated as

rQ = (IQP Q)C (4.22)

where IQ is the identity matrix. The (joint) covariance matrix is estimated as
A

before, using the sample covariance of the (stacked) variance component of CQ .

The resulting Wald statistic for testing rQ O has Ql+M+[M(M+l)/2]} degrees of

freedom.

5. Further Remarks

We have established a nonparametric regression test of additive

derivative constraints. The nonparametric statistics have precision properties

comparable to those based on (correctly specified) parametric models, as their

relative efficiency is finite. Practical advantages arise from the familiar

regression format; easy interpretability and natural extensions to situations

such as simultaneous tests of many constraints.

Several open research questions surround the practical application of the

estimators. Are there automatic (sample based) rules for choosing bandwidths

and/or kernel functions, that assure good small sample performance of the

tests? Are there estimation methods applicable to circumstances where our

assumptions fail, for instance when a significant number of observations lie

on the boundary of x values? Can similar nonparametric techniques be proposed

17



for testing nonlinear derivative constraints, such as the Slutsky equation of

demand analysis.

This work is part of the rapidly growing literature on semiparametric and

nonparametric estimation in statistics and econometrics. It is especially

econometric" in the sense that derivative constraints have played an

essential role in modeling economic behavior, both historically and

practically. As such, it is the hope of the author that this work becomes

regarded as an early argument for flexible approaches to questions directly

motivated by economic concerns.

6. Assumptions and Technical Discusssion

The assumptions are grouped into categories as they are used in the

exposition. We begin with

A. Basic Regularity Conditions: (y,x) is distributed with distribution T that

is absolutely continuous with respect to a a-finite measure v, with density

F(y,x)=q(ylx)f(x). The support of f(x) is a convex subset of RM with

nonempty interior. The measure v can be written as v=v x v , where v is
y x 

Lebesgue measure. The third moments of (y,x) exist and the fourth moments of x

exist. g(x)=E(ylx) is twice continuously differentiable in the components of

x. E[XA(x)] exists, and XX is nonsingular.

These assumptions comprise the basic set-up for the constraint (H) and

the quadratic regression (3.2). The vector x is continuously distributed in

accordance with taking derivatives, although the side presence of discrete

variables can be accomodated as discussed in Section 4.5.

B. Reweighted Mean Departure: The expectation E[A(x)l] of (3.7) exists for

all p in a neighborhood of =E(x).

While apparently quite minimal, this assumption underlies all the

18
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properties discussed in Section 3.2.

C. Reformulation of Average Derivatives (Theorem 4.1): f(x), Gj(x)f(x),

Hjk(x)f(x), jk=l,...,M, (and for (4.11), G(x)f(x)) vanish on the boundaries

of their supports. G(x), j=l,... ,M are continously differentiable, and f(x),

,~~~~~
H.k(x), jk=l,...,M are twice continuously differentiable. As applied to the

terms of (4.7,8), the RHS expectations of (4.9,10) exist, as do the

expectations comprising (***) in the inductive step of Theorem 4.1.

These conditions eliminate boundary terms in the applications of

integration by parts. The existence of expectations is assumed directly,

because a more primitive condition assuring their existence is not used.

D. Kernel Estimation (Theorem 4.2): Let p be an integer, p > M+4. These
A A

assumptions are used to establish the statistical properties of 6j and 62jk

for given j,k, and are taken to hold for each functional involved in the

estimation of C=[XA(x)]. For simplicity, let (') denote differentiation with

respect to x, and (") denote differentiation with respect to x and xk: for
J j

instance f'=8f/8xj, f"=82f/8xjaxk. We assume

f(P) any thD1. All derivatives of f(x) of order p exist. If f(P) denotes any p order

derivative of f, f(P) is H61older continuous: there exists r and c such that

If(P)(X+V)-f(P)(x)l<cl v r .

D2. The kernel function has support ul ull), is symmetric, has p+r moments

and K(u)-0, aK/8u=0 for all uuI lul-1). K(u) is of order p:

fK(u)du=l

1 1 1
fu u ...u K(u)du - 0, 1+l2+...+1p<p

11 1
fu u ...u K(u)du 0, 11+12+...+1 =p

12 ~ P

19



D3. E[(Gg)'2], E[(Gg)"2], E[(f'Gy/f) 2 ] and E[(f"Gy/f)2] exist, and E[(Gy) x]

is continuous in x.

D4. The following local Lipschitz conditions obtain

i[Gg]'(x+v)-[Gg]'(x) < gl(x) lvl 1[Gg]"(x+v)-[Gg]"(x) < wg2(X) 1v1

I[f'g/f](x+v)-[f'g/f](x) < 1l(x) vl I1[f"g/f](x+v)-[f"g/f](x) < W12(x) lvl

[f(x+v)-f(x) < (fl(X) lV] If'(x+v)-f'(x) < f2(X)!v]

|f"(x+v)-f"(x) < f3 (x)|v|

2 2 2 2 22
where E[wg l ], E[wg 2 ], E[ 1 1 ], E[w 12 ], E[(Gyf'wfl/f) ], E[(Gyf"f 1/f)

2 ]

E[(Gywf2)2] and E[(Gywf 3) ] exist.

D5. Let AN={xlf(x)>b} and BN{xIf(x)<b). The following conditions hold

I G g f' dx = o(N-1 /2) g f" g dx = o(N'1 /2 )

BN BN

and for f(P) any pth order partial derivative of f, and as N- the following

integrals are bounded

f G g f(P) dx; hr G g dx; h2f G g (f'/f) f(P) dx;

AN AN AN

h +2f G g (f'/f) dx; h2 G g (f"/f) f(P) dx; h +2f G g (f'/f) dx

These assumptions are sufficient for Theorem 4.2 as follows. D and D4

are smoothness conditions facilitating nonparametric approximation of the

density f(x) and D3 assures that the limiting variance of the estimators

exists. Assumption D2 implies that positive and negative local weights are

used in averaging, which is a sufficient condition used to demonstrate that

the estimators have no asymptotic bias (as, for instance, in Robinson(1988)).

The value p is set so that conditions (ii) and (iii) of Theorem 4.2 hold

simultaneously; if (ii) were relaxed (say by an alternative method of proof),

17
then p could be set lower. 17 Also used in the analysis of asymptotic bias is

Assumption D5, which governs the structure of the data in the tails, for

20
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instance ruling out explosive behavior. While more primitive assumptions

18
guaranteeing these conditions are of interest,8 as a practical matter D5 only

structures the area of data that is not used (trimmed out) in the estimators.

Thus, if the low density areas of the data fail these conditions, asymptotic

bias can arise in the limiting theory of the estimators.
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Appendix 1: Estimator Formulae

With the kernel density estimator as in (4.14), denote the partial

derivatives of the kernel function K(u) as K(j)-aK/auj, K(jk)-a2K/aujauk. The

partial derivatives of f are then estimated as

A N h K
af(x) - -M1-1 N xi
ax. iNl h
3 i=l h 

2A N X.1
a f(x) N 1 1-h-M-2 (jk)[ x i

axkaxj N hK
i=l 

where h is the bandwidth value as above.

By defining components, the estimators for 6 1j,
A A

6 and all the2jk

ingredients of C and VC are easily stated. Begin by defining

C ~ 

~ 

~ 

i

Tj (G,Yi,Xi)

Tjk(G,y i,xi)

{G(x i )

f(xi)

IG(x i )
=,^

f(xi)1

A

af(xi )

1
ax.

2A
a f(xi)

axjaxk

II .1J

IAIi yi.1

so that

6lj

6 2jk

= N 1 X T(G,yi,xi )

- N jk
=N - 1 . Tjk(G,Yi,Xi)

3-

The variance components R and Rk cited in Theorem 4.2 are
j3k jk

x)= (x) afOx-[[gl
Rj(y,x) f(x) ax [y-g(x) + [Gg] +E[Ox. ax.

i ~ ~ ~ ~ L ax 

G(x) a2f a2[Gg]
jk ' f(x) ax axk [-g(x)] + axjax

The "estimated variance components" are

-a2[

-Ej ax. a

22
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(yiiA A

Rj(G,y,x i) = T(G,yi,xi ) - 61j

N
-1 1

i' =1

A

'., ., 1 r- _v rfrt.~ N/

I .-r LT I __ II

L h J [ h Jt xj J

A A

Rjk(G'Yi'Xi) = Tjk(G,yixi) - 2jk

N -.

+ N- 1 . -M-2K(jk) ' + h-MK xi-xi '
+' l~hM 2 K(Jk)[11J h ax'axk
i1=l 

A

so that the sample variance of R(G,yi,xi) is a consistent estimator of a. -
J 11 ~~~~~~~J

A

Var[Rj(y,x)], and that the sample variance of Rjk(G,yi,xi) is a consistent

estimator of Var[Rjk(y,x)].

We can now state the estimators of the c's of (4.6-8), together with
A

their estimated variance components, denoted as s's (the true variance

components are omitted for simplicity). The estimators of the zero order

terms of (4.6) take the form

AO 1 AO

c [t(y,x)) = N 1 t(yi,x i); si t(yi xi).

AO AO A0 AO

In particular, co, sO0 i set t(y,x) = G0(x)y-D(x), cj, sj i set t(y,x) -

x.[G and ~AO AO Dx]
x.[G (x)y-D(x)], and ck sjki set t(y,x) = xjxk[Go(x)yD(x)].[00 Sjk, ije t, 

The estimators of the first order terms of (4.7) take the form

Aj N aG(x.i) 
c (G) = N -1 y i T (G y i x i )

i 3'~~~

^., ^ G(x.) A

s. () y=- - R,(G,yi,xi)
I~ . axA., A.

Aj3 Aj Aj Aj , Aj j

In particular, c o setGG, cJ s, i set G =xG and cjk , 3 ~~~3,1 j j' jk'
A.,

sjk,i set G = xxkGj,

The estimators of the second order terms of (4.8) take the form

23
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^A k'
c ' (G) 

-a2 (x)

^ 'k'
s (G) =
0

a G(xi)
axjxk iaxi ax Y

In particular, c0

and jk

A fac

+ .f'iX

Aj 'k'
, SOi set G H k',i ~~j'k

Aj 'k'
Sk,i set G = xjXkHj 'k' 

,yixi]

Aj 'k'
C, cj

j 'k'
S., ij ,i

A

+ Rj'k' (G'YiX)

set G = xjHjk'j3j'k

A A A A

The vector C = E[XA(x)] is then estimated by C = (Co,(Cj),{Cjk})' where

0o = O^ ^ 0 ^ ' 

iA.

- C i + Cj'j'-- c. +X¢co
J J

AO
^j

= Cjk + cI

j,

j 'k'

+ X
j '<k'

+ X

j '<k'

^j'k'

CJ

c.
3

c .
jk

jk=l,.. .,M

A A A A

The overall estimated variance component Si = (So i

by analogous summation of individual components

A

S0,i

S. 
3,1

A

Sjk, i

= sO i + X sJO i

^O
= Sj ,i

AO

= Sjk, i

i'I
.

+ s5.

iA

^ j,

S jki

i'

,{Sj, i),(Sjk, i)'

A^'k'

S0,i

^'k'
Sji j=l,...,.M

^j'k'
Sjk,i

+ 
j '<k'

+ X

j '<k'

+ X
j '<k'

A

and VC is the sample covariance matrix of S.
C~~~~~~~~~
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Appendix 2: Proofs of Theorems

Proof of Theorem 3.1: Define the large sample residual functions

-
= A(x) - c x'fi and - s - E(s) - [x - E(x)]

sx xx

so that ~, ~ are the large sample residuals of A(x), s regressed on x and a

constant. By the definition of OLS coefficients, the quadratic coefficients 

-1
arise from regressing on ~; namely I = Z ~. But since =zs by

construction, we have

Esf sf -l (*)
s~~~~~~~-

From Theorem 7 of Stoker(1982), the matrix of second derivatives of

E[A(x)IA] = (p) can be written as

a26 Z-1Z .Z 1 _Ia'pa~7 7- z - EE [MZ zga sa=' xx xxA xx xx xxx xx xA xx

where ExxA is the M x M matrix with j,k element E[(x.-E(xj )(x-E(xk))(A-E(A))]
xxe Ej (k K

and is the xM x M matrix [lxxl I Mxx] with Zxx
xxx xxx lxx

with j,k element E[(xl-E(xl))(xj-E(xj))(xk-E(xk))]. Simplifying,, we have

a2_ _ -l -l -l -

apa=' xxxx xx xx xxx (PiM)] xx

=-1 _ (PeI) -1
xx xxA - xxx (IM xx

Z-1 -1
-1[E ]E-
xx xx~ xx

where xx( is the M x M matrix with j,k element E[(xj-E(xj))(xk-E(xk))(] =

Cov(xjxk,(), the latter equality from E(xj()=O for all j. Thus

2

xx aa' zxx = zxx (**)

The result follows from the correspondence between (*) and (**). By (*), - is

a linear, homogeneous, nonsingular transformation of Zs .Exx6 is the M x M

matrix uniquely constructed from the elements of the [M(M+1)/2] x 1 matrix

Z. Finally, a /aa' is a linear, homogeneous, nonsingular transformation

of EZ by (**). Obviously a2/8~a8'=O if and only if 7-0=O. QED
xx~
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Proof of Theorem 4.1: (4.9) follows from integration by parts as in

Stoker(1986b), using the boundary conditions of C. (4.10) follows in the same

fashion from integration by parts applied twice. For (4.11), assume the result

for n-l, and note that by integration by parts implies

an x - ang(x) af a
aGxE[G(x) gx ] G(x) f

Ex. i in- =xE ax. ax. f(x) ax. ... (x.
31 j 3r in in 31 3 n 1

The result follows by induction, by applying the assumed result for n-l to the

latter term. QED

Notes on the Proof of Theorem 4.2: The proof structure mirrors that of Theorem

3.1 of Hardle and Stoker(1987), and so is not repeated. The key feature for
A

6j is that it can be approximated by the "statistic"

N (G(x.) af(xi) N -1 N N

N-l1 f x i) x (Y + 2 l Plj [ )(xi, ,Yi, ) ]N l i I + i i=l i=i+l

where

____ (j), Cxi, 1G(xi)i Ii x1
2Plj[(xi,Yi),(xi,,Yi,)] = h-M- K()[i K h l'

+ h- h0 i~ i('x).I)y.I f i(xi,)G(xi,)yi,Ii,
+ h-MK x ii fJ (x ~iY~+ 

A A%

where I=I[f(xi)>b]. Asymptotic normality of j-E(6j) follows from analysis

62jk-E(62jk) can be approximated by the statistic

lN1 [G(xi) a2 [f(x) N N(x) N- 1 X 1 IY. + N X1 1( ,xifi)

fx) xii 2 jI P2jk i'Yi
we i=l (2axk 1 1 

where
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A A

G(x i, )yi,Ii,
2P2jk[(xi'Yi)'(xi''Yi')

] - hM 2K(Jk) i l [ f(xi) +
h ~ - f (x i) f(xi, ) J

hMK -xi f(jk) (x)G(xi)YiIi f (xi,) i ii

h [ f(xi)2 f(xi) 2 J
1. i~~1 

The variance components R. and R arise from averaging Plj and P2jk over
j jk j i

i', for each i.

27



Notes

1 One reaction to this problem has been the development of "flexible"

functional forms, as pioneered by Diewert(1971,1973a), Christensen, Jorgenson

and Lau(1971,1973) and Sargan(1971); for more recent work, see the citations

in Barnett and Lee(1985). Another reaction has been the development of

nonlinear programming techniques to verify the inequality contraints implied

by consistency of choice; see Afriat(1967,1972a,1972b,1973), Diewert(1973b)

and Varian(1982,1983,1984b), among others.

2This "curse of dimensionality" of pointwise nonparametric estimators is well

studied in the statistics literature (see Stone(1982) for instance), and is

discussed vis-a-vis econometric applications by McFadden(1985).

3Proofs of results are given in Appendix 2.

4 (H) is often implied by an analogous constraint on the underlying stochastic

model. If y=g(x,e) is the stochastic model, then if is additive or

independent of x, it can be shown that E[ag/ax.lx]=ag/ax. and
2- 2

E[a g/ax8x klx]=a g/axjaxk. Consequently, (H) is implied by the same

constraint on the derivatives of g.

5Homogeneity restrictions can alternatively be studied in level form: namely

P(I) is homogeneous of degree d if and only if IP/aIj = dOP(I),

which is of the form (H) (here with g set to P and x to I).

6Symmetry restrictions cannot always be written in the additive form (H); for

instance the traditional Slutsky conditions for demand functions have products

of demand functions and derivatives of demands with respect to income.

7As notation, Z denotes the covariance matrix E[(w-E(w))(z-E(z))'].
wz

8For instance, if M=3, (3.4) has 4 coefficients and (3.2) has 10, but if M=10,

then (3.4) has 11 coefficients and (3.2) has 66.

9This can extend to the appropriateness of specific functional forms: see note

15 of Section 4.4.

10This follows directly from standard properties of the exponential family

(c.f. Stoker(1982) for references). In particular, d = [Var(xlp)] d and

Var(xlp) is nonsingular in a neighborhood of =E(x), so that the inverse

function theorem gives the result.
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A

1For instance, one could form a nonparametric estimator g(x) of g(x) and then
A

form the sample analogues of (4.6) and (4.7) using g(xi), i=l,...,N. While

there is no general established theory for this procedure, certain results

suggest that there is nothing to gain relative to the methods proposed here.

In particular, Stoker(1988) shows that for estimating unweighted average

derivatives, a "regression based" estimator is asymptotically equivalent to

the "density based" estimator discussed here.

1 2For a survey of nonparametric estimators, see Prakasa Rao(1983), among

others.

1 3Trimming is used for analogous reasons in Bickel(1981), Manski(1984) and

Robinson(1988).

14See this reference for related statistical discussion. The result that af

convergence can be achieved when nonparametric estimators are combined has

been shown for other semiparametric and nonparametric estimation problems; for

instance, see the references for partially linear models and linear

heteroscedastic models in Robinson(1988).

1 5As a further point on interpretating the regression coefficients, note how

they may be useful for guiding choice of functional form. If g(x) were

Cobb-Douglas, g(x)=q + j jxj, then -
= j 1, 71=0 and =0, and if g(x)

were translog, g(x)=P + j jxj + (1/2)jkljkxjxk, then ,c=Zj - 1, 71k=Xjjk

and 7=0. While noting that testing 7c=O, 1=0, -0 checks similar features as

tests based on these functional forms (when the forms are correct), a nonzero

estimate of suggests the use of at least a third-order polynomial to model

g(x).

1 6This argument could break down if there were a significant number of firms on

the boundary of log-input values; this is why it is assumed that f(x) vanishes

on the boundary of its support.

1 7This would be valuable for practical applications because larger p requires

more positive-negative oscillation in the kernel K. However, the simulation

results of Powell, Stock and Stoker(1987) suggest that better small sample

performance for the estimators may be obtained when K is a standard positive

kernel (i.e. a density function).
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1 8For certain estimation problems using trimmed estimators, such tail

conditions are not necessary; for instance, see Bickel's(1981) analysis of

adaptive estimators and Robinson's(1988) estimator of coefficients in

partially linear models.
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