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Abstract

We provide sufficient conditions for a dynamic consumption-portfolio problem in continuous time
to have a solution for a class of utility functions, when the price system follows a diffusion process
and when the space of admissible policies is a linear space. Besides a regularity condition, it suffices
to check whether a uniform growth and a local Lipschitz condition are satisfied by the parameters
of a system of stochastic differential equations, which is completely derived from the price system.
The class of utility functions includes concave functions that are, roughly, either bounded from
below or strictly concave, and whose coefficients of relative risk aversion have nonzero limit infima
as consumption/wealth goes to infinity.
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1 Introduction

1 Introduction

Optimal intertemporal consumption and portfolio policies in continuous time under uncertainty are

traditionally characterized by stochastic dynamic programming; cf. Merton (1971). To show the

existence of a solution to the consumption-portfolio problem using dynamic programming, there are

two approaches. The first is through some existence theorems in the theory of stochastic control. Those

existence theorems, however, often require an admissible control to take its values in a compact set.

This is unsatisfactory. If we are modeling a frictionless market, any compactness assumption on the

values of controls is arbitrary. Moreover, many existence theorems allow controls to affect only the

drift term of the controlled process (see Fleming and Rishel (1975)). This, unfortunately, rules out the

portfolio problem under consideration.

The second approach is through construction: construct a control and then use the verification

theorem in dynamic programming to verify that it indeed is a solution. Merton's paper uses this

second approach. It is very difficult, however, to construct a solution in general.

Recently, a martingale representation technology has been used in place of dynamic programming:

notably, Cox and Huang (1987) and Pliska (1986) in portfolio theory (purely microeconomics), and

Chamberlain (1987) and Huang (1987) in characterizing equilibrium portfolio rules. This technology

allows the space of admissible policies to be a linear space and is made available by the connection

between an arbitrage free price system and martingales demonstrated by Harrison and Kreps (1979)

and developed further by Harrison and Pliska (1981). The possibility of this new technology is first

vaguely foreshadowed in Kreps (1979).

Pliska (1986) provides joint conditions on an agent's utility function and on a price system that

are sufficient for the optimal policies to exist in a very general stochastic environment where asset

prices are semimartingales1 and when consumption and final wealth are allowed to become strictly

negative. Those conditions, however, are restrictive and usually hard to verify. Cox and Huang (1987)

is a companion paper of this one and is concerned with computation of optimal policies when they exist

and verification of candidate policies to be optimal. They show, among others things that, a linear

partial differential equation need be solved to construct optimal policies. They also solve, in closed

form, the optimal consumption and portfolio policies for the HARA class utility functions, when asset

prices follow a geometric Brownian motion and when a nonnegativity constraint on consumption is

present.

The purpose of this paper is to provide a set of easily verifiable sufficient conditions for existence

when asset prices follow a diffusion process, when the space of admissible controls or policies is a linear
1A semimartingale is a continuous time stochastic process that can be decomposed into the sum of a process of bounded

variation and a local martingale; see Dellacherie and Meyer (1982).
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2 The Dynamic Consumption-Portfolio Problem 2

space, and when there is a nonnegativity constraint on consumption as well as on final wealth. We

restrict our attention to a class of concave utility functions that are either bounded from below or

strictly concave, and whose whose coefficients of relative risk aversion have nonzero limit infima as the

consumption/wealth goes to infinity. For this class of utility functions, for the existence of an optimal

policy, it is sufficient to check whether a uniform growth condition and a local Lipschitz condition are

satisfied by the parameters of a system of stochastic differential equations completely derived from the

price system itself.

The rest of this paper is organized as follows: Section 2 formulates the dynamic consumption-

portfolio problem when asset prices follow a diffusion process. It is shown there that, under certain

conditions, there exists a correspondence between the dynamic problem and an Arrow-Debreu type

static problem in that the solution to the static problem is a solution to the dynamic problem. The

Arrow-Debreu prices in the static problem are derived from the price processes in the dynamic problem

and will be termed the implicit Arrow-Debreu prices. It follows that the existence of a solution to the

dynamic problem can be ensured if there exists a solution to the static problem. We then turn our

attention in Section 3 to study a class of Arrow-Debreu style static maximization problems. For the

class of utility functions mentioned in the above paragraph, for existence, it suffices to check whether

the the "inverse" of the implicit Arrow-Debreu price system, per unit of probability, has a certain finite

moment.

We come back in Section 4 to the dynamic problem formulated in Section 2. From Section 3, we

know that for the existence of a solution to the dynamic problem for a class of utility functions, it

suffices to check whether the inverse of the implicit Arrow-Debreu prices has a finite certain moment.

It turns out that this condition is ensured if parameters of a system of stochastic differential equations

completely derived from the price processes satisfy a local Lipschitz and a uniform growth condition.

In Section 5 we demonstrate the technique developed in earlier sections by showing that there exists

an optimal consumption-portfolio policy in the geometric Brownian motion model originally considered

by Merton (1971) except that now we impose a nonnegativity constraint on consumption and on final

wealth. Section 6 contains some generalizations and concluding remarks.

2 The Dynamic Consumption-Portfolio Problem

In this section, we will formulate a consumption-portfolio problem for an individual in continuous

time. Our final purpose is to provide sufficient conditions for the existence of an optimal consumption-

portfolio policy for a class of utility functions. This, however, will come much later in Section 4. We

will focus our attention here on characterizing certain properties of an optimal policy when one exists.
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2 The Dynamic Consumption-Portfolio Problem

The essential idea to be elaborated is the observation that there exists a correspondence between

the dynamic problem under study and a particular static problem of the Arrow-Debreu type where

elementary time-state contingent securities are traded. This observation is not new and can be found

in many places in the literature; see, for example, Harrison and Kreps (1979) and Huang (1985). We

shall, however, pay special attention to the characterization of the budget feasible set for the class of

trading strategies allowed here, which includes as a subset those considered by Harrison and Kreps

(1979) and Huang (1985).

2.1 Formulation

We fix a complete probability space (, 7, P) and a time span [0, T], where T is a strictly positive real

number.2 An element of 2, denoted by w, is a state of nature, which is a complete description of the

exogenous uncertain environment from time 0 to time T. The sigma-field 7 is the collection of events

distinguishable at time T and P is a probability measure representing an individual's beliefs about the

likelihood of distinguishable events.

There is defined on the probability space an N-dimensional standard Brownian motion denoted

by w = {w,(t);t E [0,T],n = 1,2,...,N}. Let 7t be the smallest sigma-field containing all the P-

measure zero sets with respect to which {w(s);O < s < t} is measurable, or simply the completed

sigma-field generated by {w(s);O < s < t). Since the Brownian motion w is defined on (, 7, P), 7 t is

a sub-sigma-field of 7. The increasing family of sub-sigma-fields F = 7t; t E [0, T]}) is usually termed

the filtration generated by w. A filtration is an abstract way of representing information arrival over

time. We assume that T = 7, that is, the true state of nature will be revealed at time T by observing

w from time 0 to time T. Since a standard Brownian motion starts at zero P - a.s., 70 contains only

sets of probability zero or one.

A process X = {X(t); t E [0, T]} is said to be adapted to F if X(t) is measurable with respect to t

Vt E [0, T], that is, the value of X at time t cannot depend on the realizations of the Brownian motion

strictly after time t.

Consider a frictionless security market with N + 1 long-lived traded securities indexed by n =

0,1,2, ... , N. A long-lived security is a security available for trading all the time from time 0 to time T.

Security n # 0 is risky and, at time t, pays dividend at rate f(t) and sells for S,(t). We will henceforth

denote (Sl(t),...,SN(t))T and (fl(t),...,fN(t))T by S(t) and f(t), respectively, where T denotes

"transpose." Assume that f(t) can be written as f,,(S(t),t) with fn(z,t) : N X [0,T] -4 R continuous

in z and t. Security 0 is locally riskless, pays no dividends, and sells for B(t) = B(0) exp({f r(s)ds} at

time t, where B(O) is a strictly positive real number and where r(t) is the instantaneous riskless rate at

2 A probability space (, 7, P) is said to be complete if A E 7 and P(A) = 0 imply A' E for any A' C A.
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2 The Dynamic Consumption-Portfolio Problem

time t. We assume that r(t) is nonnegative and can be written as r(S(t),t), with r(z,t): RN x [O, T] 

R+ continuous in x and t. Henceforth the O-th security will be termed the bond.

Assume that S is an It6 process adapted to F satisfying

S(t) + f(S(s),s)ds = S(O) + f(S(s),s)ds + (S(s),s)dw(s) t [O, T], P- a.s., (1)

where (z,t) : RN x [, T] N and a(z, t): RN x [0, T] . RNxN are continuous in z and t and a(z, t)

is nonsingular for all z and t.

An individual's objects of choice are pairs of consumption rate process and final wealth, denoted

generically by (c, W), where c(t) denotes the consumption rate at time t. We require that a consumption

rate process be adapted to F and a final wealth be a random variable defined on (, , P). These are

natural informational constraints. For tractability, we will now further impose some conditions on

(c,W). Before proceeding, a definition is needed.

Note that a process can always be viewed as a mapping from f1 x [0, T] to the real line, R. The

smallest sigma-field of subsets of fl x [0, T] with respect to which all the processes adapted to F having

right-continuous sample paths are measurable as mappings from t x [0, T] to R is termed the optional-

sigma field, denoted by 0. It is known that any process measurable with respect to 0 is adapted to

F; see Chung and Williams (1983, p.56).

We will say that a consumption-final wealth pair (c,W) is admissible if

(c,W) E L+(v) x L+(P) = L +(f x [O,T], O,v) x L(nF,P),

where v is the product measure generated by P and Lebesgue measure, where 1 < p < oo, and where

L (v) and L(P) are positive orthants of LP(J) LP(l x [0,T],O,v) and LP(P) - LP(f, ,P),

respectively. In the terminology of general equilibrium theory, we have taken the commodity space of

the economy to be LP(v) x LP(P) and the consumption set of an individual to be L () x L (P). Note

that our choice of the commodity space makes easy the representation of a consumption rate process

(adapted to F) - it is simply a measurable function defined on the measurable space ( x [0, T], 0).

The reader will find out later that this representation allows us to solve the consumption-portfolio

problem in a manner different from and much simpler than the stochastic control theory.

Remark 2.1 Our results do not hold for p = 1, since Lemma 2.4 fails and thus Proposition 2.3 does

not hold for this case.

We will use the following notation: If g is a matrix, 1912 denotes tr(ggT) and Igl denotes /tr(ggT),

where "tr" denotes trace.
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2 The Dynamic Consumption-Portfolio Problem 5

Henceforth, all the processes will be adapted to F unless otherwise specified.

A trading strategy is an (N + 1)-vector of processes, denoted generically by

{a(t), (t) (0 1(t), ... ,ON(t));t e [O, T]},

where a(t) and An(t) are the number of shares of the 0-th and the n-th security held at time t,

respectively. We will specify the set of admissible trading strategies more fully later. For now, an

admissible trading strategy must satisfy the following conditions:

1.

jT Ia(t)B(t)r(t) (t) + t)T(t)dt < oo P - a.s., (2)

2.

fj I0(t)TU(t) 2 dt < oo P - a.s., (3)

3. there exists consumption-final wealth pair (c,W) E L+(v) x L+(P) such that, P-a.s.,

a(t)B(t) + 0(t)T S(t) + ft c(s)ds

= a(O)B(O)+ (0)TS(O) + lo(a(s)B(s)r (s) + T(s))ds + 0 e(s)Ta(s)dw(s) Vt E [0, T],
(4)

4. and

a(T)B(T) + ( T)T )TS(T) = W a.s.. (5)

Relations (2) and (3) ensure that the integrals of (4) are well-defined; see Liptser and Shiryayev

(1977, Chapter 4). The left-hand side of (4) is the value of the portfolio at time t plus the accumulated

withdrawals for consumption from time 0 to time t; while the right-hand side is equal to the initial

value of the portfolio plus accumulated capital gains (losses) and dividends from time 0 to time t. That

the left-hand side is equal to the right-hand side is a natural budget constraint. Relation (5) simply

says that the final wealth is equal to the final value of the portfolio. Note that since W E L+ (P) and

thus W > 0 P-a.s., (5) also ensures that borrowing to consume without paying back is not admissible.

The consumption-final wealth pair (c,W) of (4) and (5) will be said to be financed by the trading

strategy (a, ).

Remark 2.2 Trading strategies satisfying (2)-(S) include all the simple trading strategies, those that

change portfolio compositions only at finitely many predetermined nonstochastic time points. Simple

trading strategies satisfying (4) and (5) are among the strategies that can actually be implemented in real

world. Their inclusion in the set of admissible strategies is a necessity for our model to be reasonable.



2 The Dynamic Consumption-Portfolio Problem 6

Now we will turn our attention momentarily to the price processes before completing our speci-

fication of the set of admissible trading strategies. Thus far, we have not put any restriction on the

price processes other than certain continuity and nonsingularity conditions on their parameters. For

our consumption-portfolio problem to be well-posed, we certainly do not want the price processes to

allow something to be created from nothing, when reasonable strategies are employed. Formally, a free

lunch is a consumption-final wealth pair (c, W) E L (v) x LP (P) financed by an admissible trading

strategy (a, 8) such that c(O)B(O) + 0(O)TS(O) = 0 and either c > 0 with a strictly positive v-measure

or W > 0 with a strictly positive P-measure. In other words, a free lunch is a consumption-final

wealth pair that is nonnegative and nonzero and is financed by an admissible trading strategy with

zero initial cost. Harrison and Kreps (1979) and Huang (1985) have shown that for free lunches not to

be available for simple strategies it suffices that S is related to martingales after a change of unit and

a change of probability, or equivalently, there exists an equivalent martingale measure. An equivalent

martingale measure Q is a probability measure on (, 7) equivalent to P so that the Radon-Nikodym

derivative dQ/dP lies in Lq(fl, 7, P) with 1/p + 1/q = 1 and

G*(t) S(t)/B(t) - S(O)/B(O) + f f(s)/B(s)ds,

the accumulated capital gains plus accumulated dividends, in units of the bond, is a martingale under

Q. The existence of an equivalent martingale measure can be ensured by some regularity conditions

on the parameters of the price processes. This is the subject to which we now turn.

Remark 2.3 Probability measure Q is said to be equivalent to P if they have the same measure zero

sets. This definition is symmetric and thus we say P and Q are equivalent to each other. A necessary

and sufficient condition for this is that the Radon-Nikodym derivative dQ/dP is strictly positive. If

dQ/dP is merely positive, we say that Q is absolutely continuously with respect to P.

Remark 2.4 Harrison and Kreps (1979) and Kreps (1981) show that the existence of an equivalent

martingale measure is not only a sufficient but also a necessary condition for free lunches not to be

available for simple strategies in the limit. Interested readers should consult their work for details. We

should also note that, in the setup of Harrison and Kreps (1979), securities do not pay dividends and

an individual maximizes his preferences only for final wealth. Our model here is more general and uses

results of Huang (1985).

II



2 The Dynamic Consumption-Portfolio Problem

It6's lemma implies that

oB(s) 1o B(s), dw(s).GC() = |-- [(S(),) -B( S()s)S(s)] d+ X ( )
Now put

r(S(t), t) -(S(t), t)-l (S(t), t) - r(S(t), t)S(t))

and

r(t) -exp {f i(S(s),s)T dw(s) - 2 f I(S(s),s)l2ds}* (6)

Note that a(z, t) - 1 is continuous in z and t, since a(z,t) is. Then we have

r I(S(t),tt)12dt < oo a.s., (7)

by the continuity of g(z,t) and r(z,t). It follows that the integrals on the right-hand side of (6) are

well-defined; see Liptser and Shiryayev (1977, Chapter 4).

We will assume throughout this paper that E[t7(T)] = 1, where E[.] is the expectation under P.

(A well-known sufficient condition for E[t7(T)] = 1 is that

E exp f (S(s),s) ds}] < oo; (8)

see Liptser and Shiryayev (1977, Theorem 6.1).) One can verify that {t7(t)} is a martingale under P.

We will now use tr(T) to define a probability Q and show in Proposition 2.1 that Q is an equivalent

martingale measure under certain conditions. Putting

Q(A) -A Y7(T)P(dw) VA e 7, (9)

one can easily check that Q is a probability measure on (, 7) absolutely continuous with respect to

P since E[rt(T)] = 1 and since qt(T) > 0 P - a.s.

Proposition 2.1 Suppose that E[lrl(T)[q] < oo with lip + 1/q = 1 and

E* [(f o(S(t),t)l 2dt)] < , (10)

where E*[-] is the expectation under Q. Then Q is the unique equivalent martingale measure. Moreover,

w*(t) w(t) - r(s)ds t [,T]

is a standard Brownian motion under Q and we can write

G*(t) = |-(S)dw*(s) t [0,T]P- a-s.
G'(t =i'B(s)s

7
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2 The Dynamic Consumption-Portfolio Problem 8

PROOF. See Appendix. I

We henceforth assume that the conditions of Proposition 2.1 are valid until further notice and use v*

to denote the product measure generated by the unique martingale measure, Q, and Lebesgue measure.

The meaning of LP(v*) and L+(v*) should be evident. In addition, since P and Q are equivalent and

thus have the same probability zero sets, we shall use a.s. to denote almost surely with respect to both

from now on.

The existence of an equivalent martingale measure ensures that there be no free lunches for simple

strategies. However, free lunches financed by trading strategies satisfying (2)-(5) still exist. For

example, a doubling strategy, named after the strategy of doubling one's bet each time one loses at a

roulette, produces a free lunch, as was pointed out by Harrison and Kreps (1979). Therefore, either

we allow only simple strategies or we impose conditions in addition to (2)-(5) to rule out free lunches

for non-simple strategies. The former solution proves to be mathematically intractable since the set

of consumption-final wealth pairs financed by simple strategies is not closed in LP(v) x LP(P) and

optimization problems in this case are not well-posed. Moreover, the set of simple strategies is not

"rich enough" in that it does not include strategies of practical interest such as those that produce call

options on securities.

The latter solution can be implemented in two ways. Both are motivated by the observation that

for a doubling strategy to be implementable, it is necessary that an individual can borrow without

bound and that there is no limit on the number of shares of risky securities held over time. The first

approach is to put a nonnegative wealth constraint on trading strategies. Such a constraint certainly

rules out doubling strategies, since it limits the amount of borrowing that one can make. Harrison and

Kreps (1979) conjectured that this constraint would also rule out all the free lunches. This conjecture

was verified by Dybvig (1980) in the model of Black and Scholes (1973) and by Dybvig and Huang

(1987) in a model like ours. The second approach is to put a constraint on the . Note that a bound

on also constrains a through the budget constraint (5). It turns out that a bound across states of

nature is too strong - 8 can be allowed to grow unbounded on sets of small Q-probability. Formally,

the appropriate constraint is the following integrability condition on 8:

E* [( 0(t)To(t)/B(t)2dt) ] < oo. (11)

Duffie and Huang (1985) used this kind of integrability constraint in their general equilibrium model.

These two approaches are, however, shown to be equivalent for individuals with strictly increasing

preferences by Dybvig and Huang (1987). They showed that any trading strategy that satisfies (2),

(3), (4), (5), and (11) must satisfy the nonnegative wealth constraint. The strategies satisfying (2)-(5)

and the nonnegative wealth constraint but not (11) are suicidal strategies - strategies that essentially

_______ __1_11___�·___·1_____1____1·1�______�___



2 The Dynamic Consumption-Portfolio Problem

run a free lunch in reverse and throw money away. Any individual with strictly increasing preferences

will never employ a suicidal strategy! Before proceeding, the following lemma shows that (11) is

sufficient for (3).

Lemma 2.1 Let satisfy (11). Then satisfies ().

PROOF. Let satisfy (11). Then it is necessary that

|j I(t)o(t)/B(t) 2dt < oo a.s.

Since B(t) is a continuous process, a sample path is bounded on [0, T] almost surely. Thus

jT l(t)(t)l2dt < oo a. s.,

which is (3). I

Now we are ready to complete the specification of admissible trading strategies. A trading strategy

(a,O) is admissible if it satisfies (2), (4), (5) and (11). We will use H(Q) to denote the space of

admissible trading strategies, where Q signifies that the expectation of (11) is taken with respect to

the unique equivalent martingale measure Q. One can verify that H(Q) is a linear space.

Now consider an agent with a time-additive utility function for consumption, u(c(t),t), a utility

function for final wealth, V(W), and an initial wealth Wo > 0. He wants to solve the following problem:

sup(,W)ELP(V)XLP(P) E [foT u(c(t),t)dt + V(W)]

(12)
s.t. (c,W) is financed by some (a,0) E H(Q)

with a(0)B(0) + O(0)TS(0) = Wo.

Our task is to provide a set of easily verifiable conditions to ensure that (12) has a solution in that the

supremum is finite and is attained. Note that the consumption-portfolio problem of (12) has infinitely

many budget constraints as specified in (4) and (5).

2.2 The correspondence between a dynamic problem and a static problem

In this subsection, we will show the connection between the dynamic problem of (12) with infinitely

many budget constraints with a static problem with a single budget constraint. We begin by defining

the set of consumption-final wealth pairs (c,W) financed by admissible trading strategies:

F _ (c,W) E L+(v) x L+(P) : (c,W) is financed by some (a, 8) E H(Q)}.

9



2 The Dynamic Consumption-Portfolio Problem 10

Propositions 2.2 and 2.3 to follow will characterize properties of the set F. We first give a definition

and record a technical lemma. A martingale {X(t);t E [0, T]} is a LP(Q)-martingale if it is martingale

under Q and

E[IX(t)IPl < oo t E [0,T].

Lemma 2.2 Let 0 satisfy (11). Then

fo (8)T ( ) / B(s)dw* (s)

is a LP(Q)-martingale.

PROOF. See Jacod (1979, Chapter IV). I

The following proposition shows that the cost over time of any (c,W) E F can be computed by

taking a conditional expectation with respect to the martingale measure Q.

Proposition 2.2 Let (c,W) E F be financed by (cx,O). The initial cost of(c,W), a(O)B(O)+0(O)TS(O),

is

a(O)B(0) + O(0)T S(0) = B(O)E [I c(t)/B(t)dt + W/B(T) . (13)

More generally, the cost of {c(s); s E [t, T]} and W at time t is

a(t)B(t) + (t) T S ( t) = B(t) = B() [ c(s)/B(s)ds + W/B(T)Yt] 

PROOF. Let (c,W) E F be financed by (a,@) E H(Q). It6's lemma implies that

a(t) + e(t)T S(t)/B(t) + f c(s)/B(s)ds
(14)

= c(O0) + (O)TS(O)/B(O ) + (s)(s)s)/B(s)dw*(s) Vt E [0,T] a.s.,

where we have used (4). Lemma 2.2 implies that the stochastic integral on the right-hand side of (14)

is an LP(Q)-martingale. Evaluating (14) at t = T, using (5) and (14) we have

T

W/B(T) + c(s)/B(s)ds

(= (t) + (t)TS(t)/B(t) + f (s)T(s)/B(s)dw*(s) Vt e [0,T] a.s.

Taking expectation conditional on t under Q of both sides of the above relation we get

E* c(s)/B(s)dt + W/B(T)i = a(t) + O(t) T S(t)/B(t).
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Multiplying both sides of the above relation by B(t) we have the second assertion. Evaluating the

second assertion at t = 0, we get (13). i

Proposition 2.2 says that the initial cost of a consumption-final wealth pair financed by an admis-

sible strategy is equal to B(O) times the expectation, under the martingale measure Q, of the "sum"

of discounted future consumption and final wealth. With the aid of the following lemma, (13) has a

very intuitive interpretation in the context of an Arrow-Debreu economy.

Lemma 2.3 Let g be an a aptc d process, then

E* g[lo (t)dt = E [ g(t)t7(t)dt],

whenever the integrals are well-defined. Thus for any (c,W) E LP(v) x LP(P) we can write

B(O)E* [I c(t)/B(t)dt + W/B(T) = B(O)E I c(t)(t)/B(t)dt + W 7/(T)/B(T)] < Wo. (15)

PROOF. The first assertion follows from Dellacherie and Meyer (1982, VI.57). Using the first assertion

and the definition of Q we have the second assertion, since c(t) and B(t) are adapted processes. I

From (15), we can interpret B(O)qr(w,t)P(dw)/B(w,t) to be the time 0 Arrow-Debreu price of

a security that pays one unit of consumption in state w at time t and nothing otherwise. In other

words, there exists an implicit system of Arrow-Debreu prices in the dynamic economy that value any

(c,W) E F by (15). Note that since the equivalent martingale measure is unique and, by (9), is defined

by r(T), the system of Arrow-Debreu prices is unique (recall that {qr(t)} is a martingale under P and

thus tr(t) = E[rj(T)|It] a.s.).

The next proposition shows that F contains the intersection of L () x L P (P) and L p (v*) x L (Q)

when (t) satisfies an integrability condition. The following technical lemma is instrumental for the

proof of Proposition 2.3.

Lemma 2.4 Suppose that

E* [T I(t)12dt] < oo. (16)

Then for any z E LP(Q), there exists an N-dimensional process {(t); t E [O,Tj} satisfying

E* [o i(t) 12 dt) < (17)

such that

E'[xlrt] = E*[zx]+ f O(s)Tdw* (s) Vt E [O,T] a.s.

11



2 The Dynamic Consumption-Portfolio Problem 12

PROOF. This is a consequence of Jacod (1976, Chapter IV) and Fujisaki, Kallianpur, and Kunita

(1972, Theorem 3.1). 1

Lemma 2.4 is a martingale representation theorem. Note that for any z E LP(Q), {E*[zlFt];t E

[0,T]} defines a LP(Q)-martingale. Conversely, any LP(Q) martingale {z(t);t E [,T]} can be rep-

resented by the random variable z(T) E LP(Q) in that the whole process {x(t);t E [0,T]} can be

"recovered" by taking conditional expectation of x(T) with respect to Q. Lemma 2.4 says that any

LP(Q) martingale can be represented by an It8 integral with respect to the N-dimensional Brownian

motion w* under Q defined in Proposition 2.1, if (16) is satisfied.

Proposition 2.3 Suppose that (16) holds. Then LP (v) x L+(P) n LP(v*) x L+(Q) c F.

PROOF. Let (c,W) E LP(v) x LP(P) nLP (v*) x LP (Q). First note that, by Jensen's inequality and

by the fact that B(t) is bounded below away from zero,

T
c(t)/B(t)dt E L+ (Q) and W(T)/B(T) e L+(Q).

Hence

| c(t)/B(t)dt + W/B(T) E LP(Q).

By Lemma 2.4, there exists an N-dimensional process 4 satisfying (17) such that

E* [fIT c(t)/B(t)dt + W/B(T)IIt]
(18)

E* [foT c(t)/B(t)dt + W/B(T)] + ()dw(s) Vt E [O,T] a.s.

Now define
0(t) -0 (t)a(t)-lB(t),

(19)

a(t) _ E' [ftT c(s)/B(s)ds + W/B(T)jt] - (t) T S(t)/B(t).

We claim that (a,0) of (19) lies in H(Q) and finances (c,W).

We note that (a(t),O(t)) of (19) are finite a.s. and 6 satisfies (11). Moreover, evaluating (19) at

t = T gives (5). We need to verify (2) and (4). Relations (18) and (19) and Proposition 2.2 imply that

a(t) + 6(t)T S(t)/B(t) + ft c(s)/B(s)ds
(20)

= a(0) + (0)T S(O)/B(O) + ft o(s)T (s)/B(s)dw*(s).

Using It6's lemma and (20) we get

c(t)B(t) + 0(t)S(t) + f c(8)ds

(O)B(0) + (O)T S(o) + (s)Ta(s)dw(s) + |/ (a(s)B(s)r(s) + ()T.(s)) ds.

II



2 The Dynamic Consumption-Portfolio Problem

The integral on the right-hand-side is well-defined since the left-hand-side is. This is just (4). Moreover,

since the second integral on the right-hand side is well-defined, we have (2). Hence any element of

LP(v) x L+(P) nLL(v*) x LP+(Q) is in F, and the last assertion follows. I

Now we are ready to show the correspondence between the dynamic problem of (12) with infinitely

many budget constraints and a static problem with a single budget constraint. Consider the following

static variational problem:

sup(c,W)ELP(v)XL(p) E [fo u (c(t),t)dt + V(W)]
(21)

s.t. B(O) E [ c(t)t(t)/B(t)dt + W(T)/B(T)] = Wo.

Basically, in this static problem, we take the Arrow-Debreu prices implicit in the second assertion of

Lemma 2.3 to formulate a single budget constraint. The interpretation of the single budget constraint

of (21) is that for a price B(O)r(w, t)P(dw)/B(t), an individual can purchase at time 0 an Arrow-

Debreu security that pays one unit of consumption at time t in state w. We will show that if there

exists a solution to (21) and it lies in F, then it must also be a solution to the dynamic problem of (12).

The argument goes as follows: Suppose this is not the case. Then there must be (c, W) E F which the

agent strictly prefers to the solution to (21). But (c,W) is budget feasible in (21) by Lemma 2.3 and

Proposition 2.2, which is a contradiction. The following proposition formalizes this idea:

Proposition 2.4 Suppose that (c,W) is a solution to the static problem of (21) and lies in F. Then

it is a solution to the dynamic problem. Conversely, if every solution to (21) lies in F, then if there

exists a solution to the dynamic problem, it is also a solution to (21).

PROOF. Suppose that there exists ( E,W) E F financed by (a,O) with c(O)B(O) + O(t)TS(O ) = Wo

such that

E [ 0 u((t),t))dt + V(W)] > E [ u(c(t),t))dt + V(W) .

Proposition 2.2 and Lemma 2.3 imply that

B(O)E [| a(t)r(t)/B(t)dt + ft(T)/B(T) = a(O)B(0) + (0) T S (0 ) < Wo.

Thus (,W) is budget feasible in the static problem of (21). This contradicts the hypothesis that (c,W)

is a solution to (21).

The second assertion is obvious. I

Given Proposition 2.4, if we can show that there exists a solution to (21) and that it lies in

F, then there exists a solution to the dynamic problem of (12). Recall from Proposition 2.3 that

13



3 A Static Variational Problem 14

L+(v) x L+(P) nL.+(v*) x L+(Q) c F, provided that conditions of Proposition 2.1 and (16) are

satisfied. Thus it suffices to look for conditions under which there exists a solution to (21) that lies in

L(v*) x L+(Q) and the conditions of Proposition 2.1 and (16) are satisfied. This is the subject to

which we now turn in the following two sections.

3 A Static Variational Problem

In this section we will study a class of static variational problems of the kind described in (21). For

expositional purpose, we will first analyze a problem in detail without the time dimension. Later, we

will generalize the results in this simpler case to the case with the time dimension. In both cases, the

sufficient condition for existence involves whether the "inverse" of the implicit Arrow-Debreu price

system has a certain finite moment. We will see in Section 4 that the implicit Arrow-Debreu price

system in the context of Section 2 is a solution to a stochastic differential equation. The moments of

a solution to a stochastic differential equation turn out to be easily estimated and thus we are able to

provide easily verifiable sufficient conditions for existence.

3.1 The problem

Fix throughout this section a probability space (, A, P). We are interested in finding the solution to

the following problem:

supZELP(p) fn V(X())P(d)
(A 1)

s.t. (x) - n (w)()P(o) = Ko,
where LP(P) denotes LP(f, , P) with 1 < p < oo, E Lq(P) with 1/p+ 1/q = 1 and > 0 P-a.e.,

and Ko is a strictly positive constant. As usual, we shall say that there exists a solution to (A 1) if the

supremum is attained by some x E L (P). To begin, we will consider the case where V : + - R+ is

a continuous, concave, and increasing function. Note that by concavity,

IV((w))P(d) < o Vx E P(P).

Thus if the supremum is attained it must be finite. Therefore, the problem of the existence of a solution

is equivalent to whether the supremum is attained. As will be shown in the following two examples,

however, when L(P) is infinite dimensional, (A 1) may not have a solution. Consider the following

two examples.

Take to be [0,1], F to be the Borel a-field of [0, 11, and P to be Lebesgue measure on [0,1].

Suppose that u(z) = z, p = 1, and

() = / 2wx(w)dw Vx E L(n ,P).

II



3 A Static Variational Problem

Consider the sequence

(n(w) = Kon2 llo ,](w) n = 1,2,...

We first show that Xz E L 1(P) Vn:

j n(w) I dw = Kon < oo.

Next we note that

(zn).= 2Ko wn2l[0o,](w)dw

2n2Ko f wdw

= Ko Vn.

Thus every z, E LL(P) is budget-feasible. However,

2 1

ju(x(w))dw K n

oO as n -- oo.

Note that in the above example, the utility function is strictly concave, increasing, and continuous.

It has a zero derivative at infinity and an infinite right-hand derivative at zero - all the nice properties

that you would like a utility function to have. The problem arises because the prices for commodities,

as captured by 2w, are not bounded below away from zero, and the utility function grows too fast

asymptotically. The commodities close to w = 0 are worth almost nothing. The agent would like

to put all his money in the commodity indexed by w = 0, but his expected utility will be zero since

the event {w = O} is of zero measure. Thus he tries to purchase commodities as close to w = 0 as

possible. He achieves this by going along the sequence (Kon 21[0,](w))n=1. However, the slope of the

utility function does not approach zero fast enough, thus the expected utility explodes. Recall that the

expected utility of any E L, (P) is finite by concavity. Thus the supremum of (Al) is not attained.

The following example, which is adapted from Aumann and Perles (1965), shows that the supremum

may not be attained even if it is finite. Take nf to be [0,1], 7 to be the Borel sigma-field of [0, 1], and

P(A)= f 2wdw, VA E S.

In addition, let V(z) = z and

+(z) = X (w)) P(d = r x(w)dw.

In this case, it is easily verified that fo V(z(w))P(dw) < 2Ko but its supremum over all budget feasible

z E L (P) is equal to 2Ko, which is not attained. In this case, the prices as captured by 1/2w are

15
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bounded from below; but the utility function is linear and grows too fast to infinity. Hence the agent

chooses to concentrate his wealth buying inexpensive commodities close to w = 1.

Aumann and Perles (1965) studied a class of problems very similar to (A 1). Briefly, they considered

conditions under which there exists a solution to the following program:

supzEL ([1,O],B o,l], ,) fo f(z(W), w)dw
(A 2 )

s.t. fJ :1(w)dw = Ko,

where f(z,W) is increasing, concave, and continuous in z, for P-almost every w. The program (A 2)

differs from (A 1) in that f is state dependent and the prices of commodities are unity. We will show in

what follows that after a change of unit, the same conditions that ensure a solution to (A 2) guarantee

a solution to (A 1). This change of unit can be carried out by a change of measure. Lemma 3.1 and

Theorems 3.1 and 3.2 make the connection between (A 2) and (A 1).

We first give a definition which is just a generalization of Aumann and Perles'.

Definition 3.1 Let f : R+ x l - + be measurable with respect to the product a-field B((R+) x ,

where B (+) denotes the Borel sigma-field of R+. Then f(z,w) = o(z) as z - oo, LP(P)-integrably in

w, if for each e > 0 there exists y E L+(P) such that f (z,w) < cz for P-almost every w E Q whenever

z> y(w).

We will need the following lemma:

Lemma 3.1 Suppose that f : R+ x l R+ is such that f(z,w) = o(z) as z -- oo, LP(P)-integrably

in w. Suppose futher that P* is a measure on (, 7) absolutely continuous with respect to P such that

the Radon-Nikodym derivative of P* with respect to P belongs to Lq(P), where 1/q + i/p = 1. Then

f (z, w) = o(z) as z - oo, Ll(P*) integrably in w.

PROOF. Let y E L(P) be such that f(z, w) < z for P-almost every w E n whenever z > y(w).

Once we show that y E Ll(P*) we are done. Note that

n (w)P*(dw) = In(w) dP- (w)P(dw) < oo,

where dP*/dP is the Radon-Nikodym derivative of P* with respect to P and lies in Lq (P) by assump-

tion, and where the inequality follows from the H61der's inequality (cf. Royden (1968), p. 113). This

was to be shown. I

Now define a finite measure P* on (, 7) by

P*(A) = I (w)P(w) VA E ,~~VAe
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where we recall that is the price" in (A1). It follows from the Radon-Nikodym theorem that P*

is equivalent to P, since by the hypothesis > 0 P-a.s. For brevity of notation, throughout the rest

of this section, we will simply use a.s. to denote almost surely under P and a.e. to denote almost

everywhere under P*. This distinction is needed since P* may not be a probability measure.

Here is our first main result, which is a straightforward generalization of the theorem of Aumann

and Perles (1965):

Theorem 3.1 Suppose that V: t+ --- R+ is continuous, concave, and increasing. Suppose further

that V(z)C(w)-l = o(z) as z 00, LP(P)-integrably in w. Then there exists a solution to the following

program:
sUPZEL (P.) In V(x(w))P(dw)

(A*)
s.t. fn x(w)(w)P(dw) = K0 .

PROOF. The above program can be rewritten as follows:

sup j V( z(w))(w)P.()
xEL'(P)

s.t. f x(w)P*(dw) = K0 .

Then the assertion follows from generalizations of Lemma 2.1 and Proposition 2.2 of Aumann and

Perles (1965). I

Note that te consumption set in (A*) is L(P*). Therefore, a solution to (A*) may not be a

solution to (Al), since LP (P) c Ll(P*) and the inclusion may be strict. It turns out that under the

same set of conditions of the above theorem, every solution of (A*) is a solution of (Al), as long as

V(z) is strictly increasing.

Theorem 3.2 Under the same set of conditions of Theorem 3.1 and the assumption that V(z) is

strictly increasing, there eists a solution to (A 1). Indeed, in such event, every solution to (A*) is a

solution to (Al).

PROOF. Let * e Ll (P*) be a solution to (A*). Since the Slater's condition (cf. Holmes (1975)) is

obviously satisfied, it follows from the Saddle-Point Theorem and Rockafellar (1975) that there exists

a strictly positive constant A such that for all z E L(+tP*):

(x.(w)) (w)-' - u(z(w)) (w)-1 (x'(w) - Z(w)) a.e.

Without loss of generality we can assume that V(O) = O. Now take z(w) = 0 Vw E n in the above

relation. We get u(x*(w))C(w)- l > Az*(w) a.e. Since u(z)C(w)- 1 = o(z), LP(P)-integrably in w, and

17



3 A Static Variational Problem 18

since P and P* are equivalent, there must exists an y E L(P) such that

x*(@) < y(w) .s.

This implies that z* E L+(P), which was to be proved. I

Note that the class of utility functions considered above maps R+ into R+. Since solutions to (Al)

are invariant under strictly positive affine transformations of the utility function, Theorems 3.1 and 3.2

can be applied to utility functions that are not necessarily nonnegative but are bounded from below.

We simply transform the utility function to be nonnegative.

3.2 Moment conditions for a class of utility functions

The integrability condition of Theorem 3.1 is a joint condition on the utility function and the prices of

commodities and is hard to verify in general in applications. For a class of utility functions, however,

the integrability condition reduces to whether a certain moment of the inverse of the price system is

finite. This condition amounts to restricting how fast the prices for commodities asymptote to zero.

Before we proceed, we first consider the class of constant relative risk aversion utility functions:

Zl-b- 1
V(z) = 1-b >O, b>O;

= 0 ifz=Oandifb< 1;

= not defined if z = O and b > 1;

where V(z) = lnz when b = 1 by the l'Hopital's rule. Note that when b > 1, V(z) is unbounded from

below, and thus is not covered by Theorem 3.1 or Theorem 3.2. For this class of utility functions, we

have a simple necessary and sufficient condition for the existence of a solution to (Al).

Theorem 3.3 Suppose that V(z) is of constant relative risk aversion with a coefficient of relative risk

aversion b > O. There ezists a solution to (A 1) if and only if - 1 E Lb(P).

PROOF. We first prove necessity. Suppose that z e L+ (P) is a solution to (Al). Since V(z) is strictly

increasing and since limz,-o V'(z) = oo, there must exist a strictly positive constant A such that

(w)-b = \C(w) a.s.;

cf. Rockafellar (1975). Equivalently,

x() = b ((w) b a.s..

Thus z E LP(P) only if -'1 E L (P).

II
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Next suppose that - 1 E L (P). Let A be any strictly positive real number. Define

$>(w) = () 

It follows from the hypothesis that zX E LP(P). Now define

B(A) = E(x, ) = A J (((w)1- < 00,

where the inequality follows from the fact that E Lq(P) with + = 1 and the Hlder's inequality.

It is clear that there exists a unique A > 0 such that B(A) = Ko. Then we have

ZX-b(w) = A(w a.s.

and

fn X()C(w)P(dw) = Ko.

The above two conditions constitute sufficient conditions for xX to be a solution to (A 1). I

Thus for constant relative risk aversion utility functions the condition for the existence of a solution

to (A 1) reduces to whether a certain moment of -1 is finite. The higher the relative risk aversion,

the less the requirement of t - 1, or, equivalently, the faster the prices are allowed to asymptote to zero.

Intuition suggests that this kind of moment condition should at least extend to the class of utility

functions that hehave like power functions asymptotically, since it is what happens at infinity" that

causes problem for existence. The reader will soon find out that we can do better than the class of

utility functions that behave like power functions asymptotically.

The following theorem gives a sufficient condition for existence.

Theorem 3.4 Suppose that V : + -4 R+ is continuous, concave, and strictly increasing. Suppose

further that there ezists b E (0, 1), B > 0, z > 0 such that

V(z) < Bzl -b > *.

For there to exist a solution to (A 1), it is sufficient that -1 E Lb(P). Moreover, if C-1 E Lb(P) for

some p' > p, then every solution to (A 1) is an element of LP'(P).

PROOF. Let -1 E Lf(P). By the hypothesis, we know there exist B > 0 and z* > 0 such that

V(z) < g(z) - Bz 1- b Vz > z*.

We claim that given > O, there exists y e Lp (P) such that

g(z) < z((w) Vz > y(w),

I� I___
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3 A Static Variational Problem 20

for almost every w E n. Note that g(z)/z is of the same order of magnitude of z - b as z oo and is

decreasing. Thus there exists constants K > 0 and > 0 such that

g(z) < Kz-b Vz> '.

Now putting z ° max{z*, J} and

A = {w E £: gzo < ()

we define
f zo if w E A;

y(w) = {
Y K (() if w A.

It is clear that y > 0 a.s. and y E LP(P) since -' C L (P). Note also that y > z ° a.s. Next note the

following. On A, since g(z)/z is decreasing,

g(z) < g(z) < (u) Vz > 

On lq \ A, we know z > y(w) implies that

g() < Kz-b < Ky(w)b = e(W
z

Finally, since V(z) < g(z) for all z > z and since y(w) > z a.s. by construction, we know

V(z) < Cz(w) Vz > (w).

Hence V(z)C(w) - 1 = o(z) LP(P)-integrably in w and there exists a solution to (Al) by Theorem 3.2.

The proof for the second assertion is similar to that for Theorem 3.2. I

Remark 3.1 A sufficient condition for there to exist b E (0,1), z* > 0, and B > 0 such that V(z) <

Bzl-b Vz > z* is that V is asymptotically twice differentiable with liminfzo U'z = b E (0,1].

That is, the Arrow-Pratt measure of relative risk aversion exists asymptotically and has a limit infimum

be (0,1].

Remark 3.2 Note that bounded from below utility functions whose coefficients of relative risk aversion

have limit infima strictly greater than one are bounded from above and thus will be covered by Theo-

rem .5. Also, utility functions that are concave and not strictly increasing must be bounded from above

and will also be covered by Theorem .5.

____I��



3 A Static Variational Problem 21

The proof for the above theorem reveals the following.

Theorem 3.5 Suppose that V : R+ -4 r+ is continuous, concave, strictly increasing, and is bounded

from above. If C-' E LP(P), there ezists a solution to (A 1). In addition, if -' E LP'(P) for some

p' > p, any solution to (Al) is an element of LP'(P).

PROOF. We note that if V(z) is bounded from above, then V(z)/z is of the same order of magnitude

as 1/z as z -- oo. Along the same line of arguments as in the previous theorem, the assertion can be

proved easily. I

The above two theorems include, for example, the class of HARA utility functions that are strictly

increasing, concave, and bounded from below.

3.3 Existence of a solution for a class of utility functions unbounded from
below

Except for the class of constant relative risk aversion utility functions, the previous two subsections

give sufficient conditions for the existence of a solution to (A 1) when utility functions are continuous,

increasing, concave, and bounded from below. When utility functions are strictly concave, a set of

sufficient conditions can be given that covers utility functions unbounded from below.

Throughout this section we consider utility function V that may be unbounded from below at zero

in that V : R+ \ {O} H4 R with lim,-o V(z) = -oo. We assume that V(.) is nontrivial, increasing,

concave, and strictly concave on any subset of its domain where V(-) is strictly increasing. In the case

that V(.) is strictly increasing, we further suppose that there exists b > 0, z* > 0, and K > 0 such that

V+(z) < Kz - b Vz > *,

where V (.) denotes the right-hand derivative of V. (Here we remark that the right-hand derivative

of a concave function is always well-defined.) Note that the purpose of this last assumption is to make

sure that the inverse" of V+(.), appropriately defined, is bounded from above asymptotically by a

power function with a negative exponent. Thus when the inverse of the Arrow-Debreu price has a

certain finite moment, the supremum in (Al) is finite. This, however, does not guarantee that the

supremum is attained and therefore the assumption about the strict cocavity of V is needed.

Remark 3.3 A sufficient condition for there to exist z* > O, K > 0, and b > 0 such that V+ (z) < Kz-b

is that V(-) is asymptotically twice differentiable with

lim inf zV"(z) = b > 0.·-~O lt
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Note that since V is continuous, concave and nontrivial, if it is not strictly increasing, there must

exists z > 0 such that V+ (z) = 0 Vz > z. We shall put

z ° = inf{z E R+: V+(z) = 0). (22)

It is easily seen that the infimum is actually attained.

Now define the inverse of V+, g ·R+ - R+, by

g(y) = inf{z E + : V+(z) < y},

where we recall the convention that if the infimum does not exist, we assign +oo to g.

Proposition 3.1 g is decreasing, continuous, and limyv_ g(y) = 0. When V(-) is strictly increasing,

we have limv,o g(y) = oo. When V(.) is not strictly increasing, we have limy-o g(y) = z.

PROOF. The fact that g is continuous and decreasing follows from the hypothesis that V(.) is strictly

concave when V(.) is strictly increasing. The assertion that g(y) -- 0 as y -, oo follows from concavity.

Now we take cases. Suppose V(.) is strictly increasing. By the hypothesis that

V+(z) < Kz - b Vz > z*,

for some b > 0, K > 0, and z > 0, V+i(z) - 0 as z -, oo. Hence g(y) -+ oo as y -+ O.

Finally, suppose that V(.) is not strictly increasing. Then it is easily seen that g(0) = z °, where z °

is defined in (22). I

For any A > 0, put

x(w) = g(AC(w)).

By the definition of g we know that

Vt( ()) • < A(w) < Vl(x(w)) for a.e.ws.t. x(w) > 0;
< (w) fora.e.ws.t. zx(w) = 0;

where Vl (z) denotes the left-hand derivative of V(z). If we can show that x, E LP(P), then by the

Saddle-Point theorem, xx is a solution to (A 1) with an initial wealth

K(A) - f. (w)((w)P(d,).

If we further demonstrate that there exists A > 0 such that K(A) = Ko the we are done. These are the

steps on which we now take.

Proposition 3.2 Suppose V(.) is strictly increasing, then zx E LP(P) VA > 0 if -L E Lb (P). When

V(.) is not strictly increasing, x, e L+(P) VA > O.

III
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PROOF. See Appendix. I

Proposition 3.2 says that given any strictly positive "Lagrangian multiplier" A, the random con-

sumption/wealth zx that is consistent with A and V(-) lies in LP(P) when the inverse of the Arrow-

Debreu price system has a finite certain moment. Our task now is to show that there exists a Lagrangian

multiplier A* > 0 so that zx). exhausts the initial wealth. To accomplish this, we first characterize some

properties of the function K(-) in the following proposition, whose proof is in the Appendix.

Proposition 3.3 Suppose that -1 E L (P) whenever V(.) is strictly increasing. Then K(A) is finite

for all A E (O, oo), is a continuous function of A, and limA_.OO K(A) = 0. In addition, if V(.) is strictly

increasing, we have

lim K(A) = oo;
A--O

on the other hand if V(-) is not strictly increasing, we have

lim K(A) = z fn (w)P(dw),

which is finite and strictly positive.

Here is the main theorem:

Theorem 3.6 Suppose that -l E L- (P) whenever V(-) is strictly increasing. There exists a solution

to (A 1).

PROOF. We take cases. Case 1: V(.) is strictly increasing. By Proposition 3.3 there exists A > 0

such that K(A) = Ko. Hence x, e L P(P) satisfies

f x(w)(w)P(dw) = Ko0 ,

and thus is budget-feasible. Also, by definition of zx we know

VI (X()) { < A(w) < V(xA(w)) for P - a.e.w s.t. xA(w) > 0;
< A (w) for P - a.e.w s.t. xA(w) = 0.

It then follows from the Saddle-Point theorem that xz is a solution to (A 1).

Case 2: V(.) is not strictly increasing. Put

K 0 _ f (w)P(dw).

If Ko < K ° , there exists a solution along the same line of arguments of the previous paragraph. If

Ko > K ° , any x E LP(P) such that x > z a.s. and that

i (w)(w)P(dw) = Ko

is a solution. I
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3.4 Generalization

In this subsection, we will give sufficient conditions for there to exist a solution to the Arrow-Debreu

style variational problem of (21) with a time dimension. Proofs of the following theorems are straight-

forward generalizations of their counterparts in Sections 3.2 and 3.3. We will prove Theorem 3.8 in the

Appendix as a demonstration and omit the proofs for other theorems.

We will first rewrite (21) in a form that can be analyzed more conveniently. Let A denote Lebesgue

measure plus a unit mass at T and let y denote the product measure on x [0, T] generated by P

and A. Also, recall from Section 2 that v denotes the product measure generated by P and Lebesgue

measure. Letting u(z,T) = V(z), (21) is equivalent to

SUPIEL+(y) E [T u(c(t),t) (dt)]

(TA)

s.t. E [f T c(t)(t)(dt)] =Wo ,

where LP() - LP(f0 x [0,T], 0,7) = LP(v) x LP(P), and where, for convenience, we have put (t)

qr(t)B(O)/B(t). Note that redefining the utility function for time T consumption to be the utility

function for final wealth has no effect on the solution to (21) since we only alter utility function of

consumption on a Lebesgue measure zero set. Note also that any c E L y(7) represents a consumption-

final wealth pair (c,W) _ (c,c(T)) E L+(v) x L+(P).

The following definition is a generalization of Definition 3.1:

Definition 3.2 Let f : + x n x [0, T] - R+ be measurable with respect to the product a-field B (R+) x

x B([0, T]). Then f(z,w,t) = o(z) as z -* oo, LP(-')-integrably in (w,t), if for each e > 0 there ezists

y E L+(7) such that f(z,w,t) < cz for -almost every (w,t) e fl x [0,T] whenever z > y(w,t).

Here is the generalization of Theorem 3.2:

Theorem 3.7 Suppose that

1. u(z,t): R+ x [0,T] -4 R+ is Borel measurable and is continuous, strictly increasing, and concave

in the first argument, for A-a.e. t E [0,TI; and

2. u(z,t)C(w,t)- 1 = o(z), LP(.)-integrably in (w,t).

Then there exists a solution to (TA).

Theorem 3.4 can be generalized as follows:

---- �-��I-^---I�~`~-------'�------------
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Theorem 3.8 Suppose that u(z, t): t+ x [0, TJ is Borel measurable, and is continuous, concave, and

strictly increasing in z for A almost every t E [0,T]. Suppose further that there exist b E (0, 1), z* > 0,

B > 0 such that

u(z, O) < Bz-b and u(z,T) < Bzl-b Vz > z.

For there to exist a solution to (TA), it is sufficient that, u(z, t) exhibits discounting in that

u(z,t) < u(z,O) for X - a.e. t e [0,T),

and -' E L (y). Moreover, if E-1 E L () for some p' > p, then every solution to (TA) is an

element of LP'(y).

PROOF. See Appendix. I

The following theorem generalizes Theorem 3.5, whose proof is omitted.

Theorem 3.9 Suppose that u(z, t) : R+ x [0, T] - R+ is Borel measurable, and is continuous, concave,

and strictly increasing in z for A-a.e. t E [0,T]. Suppose further that u(z,t) exhibits discounting in

that

u(z,t) < u(z,O) for A - a.e.t E [0,T),

and u(z,0) and u(z,T) is bounded from above for all z. If C-1 E LP(7), there exists a solution to (TA).

In addition, if E-1 E LP'(y) for some p' > p, any solution to (TA) is an element of LP'(').

Under a different discounting condition, the following theorem generalizes results in Section 3.3.

Theorem 3.10 Suppose that u(z,t) : K+ x [0,T] - U({-oo} is Borel measurable and can be un-

bounded from below at z = O. Suppose also that, for A-a.e. t E [0,TI, u(z,t) is nontrivial, increasing,

and concave, and is strictly concave on any subset of z where u(z, t) is strictly increasing in z. In the

case that u(z,t) is strictly increasing in z for a strictly positive A-measure oft, we further suppose that

1. there exists b > 0, z* > 0 and K > 0 such that

uz+(z,) < Kz- b Vz > Z*

if u(z,T) is not strictly increasing, where u,+(z,O) denotes the right-hand partial derivative of

u(z,O) with respect to z;



4 Sufficient Conditions for the Existence of a Solution to the Dynamic Problem

2. there exist b > 0, z*, and K > 0 such that

u,+(z,T) < Kz- Vdz > z*,

if u(z,T) is strictly increasing in z; moreover,

uz+(z, 0) < Kz- b Vz > z*

if there exists a strictly positive Lebesgue measure of t such that u(z,t) is strictly increasing in z.

If u(z, t) exhibits discounting in that

uz+(z,t) < uz+(z,O) for X - a.e. t e [O,T),

then there exists a solution to (TA), provided that

i. E-1 e L (y) when u(z, t) is strictly increasing in z for a strictly positive A-measure of t; or

2. u(z,t) is not strictly increasing in z for A-almost every t.

Remark 3.4 The discounting conditions appear in Theorems 3.9-S.10 are satisfied by time-separable

utility functions u(z, t) = h(t)g(z) with h(t) a decreasing function of time.

Remark 3.5 In Theorems S.8-3.10, utility functions of consumption and the utility function of final

wealth have similar characteristics. For example, u(z,O) and V(z) of Theorem .8 both satisfy condi-

tions of Theorem 3.4. We can also allow u(z, 0) and V(z) to have different characteristics. But we feel

that this rarely happens in applications and thus leave it for the interested reader.

4 Sufficient Conditions for the Existence of a Solution to the
Dynamic Problem

We will give in this section easily verifiable sufficient conditions on the price processes for the existence of

a solution to the dynamic consumption-portfolio problem of (12) for various classes of utility functions

discussed in Section 3. Before doing that, we will first collect in Propositions 4.1, 4.2, and 4.3 three

sets of sufficient conditions for existence of a solution to (12). Throughout, we will use the notation

__�__________II_____�_�1^__1____�_11___
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4 Sufficient Conditions for the Existence of a Solution to the Dynamic Problem

of A and y as defined in Section 3.4. Also, (t) = qr(t)B(O)/B(t). The product measure generated by

and Q will be denoted by *. An element c L () represents a consumption-final wealth pair

(c,c(T)) E L(v) X L(P).

Consider the following three conditions:

(a) E[1r(T)q] < oo with 1/p + 1/q = 1;

(b)

E* [|o [~(S(t),t)12dt] < oo;

(c) and

E* [f I (t) 2dt] < o.

Note that (a) and (b) are sufficient for Q to be the unique equivalent martingale measure by Proposi-

tion 2.1, and (c) is (16), which is needed for the martingale representation theorem of Lemma 2.4.

Proposition 4.1 Let u(z,T) = V(z). Suppose that u(z,t) satisfies conditions in Theorem S.8 with

b E (0, 1). Then there exists a solution to (12) if (a), (b), and (c) hold and C-1 e L ().

PROOF. By Proposition 2.1, (a) and (b) ensure that there exists a unique martingale measure Q.

From Theorem 3.8 and (d) we know that there exists a solution to (21) that lies in LPP (-I). Denote this

solution by c*. We claim that c* E LP(ry*). Next, by the Jensen's inequality

(T Ic*(Wt)P(dt)) < (T+ ) p -1 T Ic*(w,t)lPP (dt) w.

Thus

huE[(f c*(t)P(dt)) < (T + 1)P-IE [c*(t)lPX(dt) < o,

where the last inequality follows since c* E LP'(y). That is, foT Ic*(t)lP!(dt) E LP(P). It then follows

from H6lder's inequality that

E* [f Ic*(t)lP5(dt)] = E [.(T) f Ic*(t)lPi(dt)] < oo,

where we have used (a). That is, c* E LP(-*). Hence c* E LP (')n LP('y*), or, equivalently,

(c*, *(T)) E LP(v) x LP(P) nLP(v*) x LP(Q).

Proposition 2.3 and (c) imply that

(c*,c*(T)) E LP(v) x LP(P) nLP(v*) x LP(Q) c F.

This and Proposition 2.4 show that there exists a solution to (12), which was to be shown.
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I

The reader may find condition on -1 of Proposition 4.1 a bit unusual. Its purpose is to ensure

that a solution to (21) exists that lies in F. Note that since p > 1, pP > p.

The following two propositions utilize Theorems 3.9 and 3.10, whose proofs are similar to that of

Proposition 4.1 and are omitted.

Proposition 4.2 Let u(z,T) = V(z). Suppose that u(z,t) satisfies conditions in Theorem 3.9. Then

there ezists a solution to (12) if (a), (), and (c) are satisfied and E-' E LPP(y).

Proposition 4.3 Let u(z,T) = V(z). Suppose that u(z,t) satisfies conditions in Theorem .10 with

b > 0 when u(z,t) is strictly increasing in z for a strictly positive A measure of t E [0,T]. Then there

exists a solution to (12) provided that (a), (b), and (c) are satisfied and '-1 E L (by) when u(z,t) is

strictly increasing in z for a strictly positive A-measure of t E [0, T].

Now we are ready to provide easily verifiable sufficient conditions for the requirements of Proposi-

tions 4.1, 4.2, and 4.3. Some preliminaries are in order.

Putting +(t) B(t)/ir(t), It6's lemma implies that

1 1(t) = 1+ (s(S(s),s)Tdw(s) Vt E [0,T], a.s. (23)

and

(t) = O(0) + 4(s)r(S(t),t)t)(S(s),s)T r(s(s(),s)ds - j (s)r(S(s),8)Tdw(s) Vt e [0,T] a.s.

(24)

Here is the main theorem:

Theorem 4.1 Consider the system of stochastic integral equations (1), (23) , and (24), compactly

written as:

( S(t) S(o) t

t +(t) = l=+(0) 1 (s) ),8)dw(8) t E [0,T], a.s.

Suppose that there exists a constant K 1 such that

(25)
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4 Sufficient Conditions for the Existence of a Solution to the Dynamic Problem

for all z E &N+2 and for all t E [O,T], and that for any M > 0 there is a constant KM such that for

all y, z e RN+2 with IYl < M and IzI < M and t E [0,T]

I(y, t) - F(z, t)lI < KMIY - Zl, la(y,t) - a(z,t) < Kily- z, (26)

that is, (z,t) and &(z,t) satisfy a local Lipschitz and a uniform growth condition. Then there exists

a solution to the dynamic problem of (12) if the conditions on the utility function of Theorem .8,

Theorem 3.9, or Theorem 3.10 are satisfied.

PROOF. Under the hypothesis, Theorem 5.2.3 of Friedman (1975) implies that, for all positive integers

m, there exist constants Lm such that

E [(t)l2m] < 2exp{Lmt}, (27)

E [IB(t)l7(t)-' 2m] < (1 + B(0),T(0)-ll2n")exp{Lmt}, (28)

and

E [IS(t)2m] < (1 + S(O)1 2 ) exp{Lmt}, (29)

for all t E [O,T].

Note first that Relation (27) implies that E[tl(T)q] < oo with 1/p + 1/q = 1. This is (a). Relation

(28) and Fubini theorem implies that

E [ (B(t)7(t))P (dt)] = E [B(t)l(t)- 1]P (dt) < oo (30)

for any p' > 2. Thus the conditions on (t) = B(O)r(t)/B(t) of Propositions 4.1-4.3 are satisfied. Next

note that, by again the Fubini's theorem and Lemma 2.3, we have

E* [l o(S(t), t)I12dt] = f Eti(t)lo(S(t),t)l]dt

and

E* [T (t) (S(t),t)12dt] = t E[t(t)l(S(t),t)12]dt.

The growth condition of (25), relations (27) and (29), and Holder's inequality imply that

E[r/(t)lI(S(t),t)l2] < Kexp{Lt}, Vt,

for some constants K and L. Hence

j E[rt(t)Ja((t),t)1l2 < oo.
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This is condition (b).

Finally, note that, by the definition of +(t),

E[t(t)jrc(S(t),t)l = E [t7(t) 4(t)l(S(t),t)2]

< B(whE [7r(t)(t)Ji(S(t)it)J],

where the inequality follows from the assumption that r(t) is positive. It is then easily verified that

E [t12(t)O(((t((t),t)l 2] < Kexp{Lt) Vt [O,T]

for some constants K and L, by the growth condition of (25), relations (27) and (29), and H6older's

inequality. Then (c) follows from Fubini's theorem and Lemma 2.3.

The rest of the assertion then follows from Propositions 4.1-4.3. I

For the three classes of utility functions of Propositions 4.1-4.3, for the existence of a solution to

(12), it suffices to check whether the parameters of a system of stochastic differential/integral equations,

completely derived from the price system, satisfy a local Lipschitz and a uniform growth condition.

Thus we have provided easily verifiable conditions for the existence of a solution to (12), where the

space of admissible strategies form a linear space. Before we leave this section, the reader is cautioned

to note that throughout our analysis it is assumed that E[q1(T)] = 1, for which a sufficient condition is

(8). Thus, for existence, besides the local Lipschitz and the uniform growth conditions of Theorem 4.1,

one still needs to verify, for example, the regularity condition of (8).

5 An Example

In this section, we will briefly discuss a simple example of the general securities market analyzed above.

Assume that S(S(t),t) = Is(t)p, a(S(t),t) = Is(t)a, and r(S(t),t) = r, where p is an N x 1 vector of

constants, a is an N x N matrix of constants, Is(t) is a diagonal matrix with elements Sn(t), and r is

a constant. This is the geometric Brownian motion model considered by Merton (1971). In this case,

rc(S(t),t) = -'l(p - rl),

which is a constant, where 1 denotes an N-vector of 1's. Then

1r(t) = exp {( - rl)T a - lw(t) - 1 ( r)T lt

is lognormally distributed with a mean equal to one. Since a lognormal distribution has finite moments

of any order, E[rl(T)ql < oo for any 1 < q < oo. It follows that Yj defines a unique equivalent martingale

measure. It can also be easily verified that (30) holds.

_1�1_ __1^1___1�_1___1____j�·�-�ml-��-n�
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6 Generalizations and Concluding Remarks

Now consider the class of HARA utility functions

u(Yt) = e(t ( I4 ) 0(P + ()1-^ (31)
V(y) = u(y,T),

with > 0, b $ 0 or 1. It is understood that if b < 0, then u(y,t) = 0 for all y > (-b) /P. With b > 0

and < 0, the agent's problem is not completely specified because the utility function does not state

the consequence of consuming less than I lb/f,. Furthermore, for sufficiently low initial wealth,

Ko < ll(b) (1- e-rT) /,r,

there is no policy that can guarantee c(t) > Ill(b)/ for all t with probability one. Consequently, we

only consider the case > 0.

Merton (1971) has shown that, for this class of utility functions, there exists a solution to (12)

without the constraint of nonnegative consumption and nonnegative final wealth when asset prices

follow geometric Brownian motion and when the instantaneous riskless rate is a constant. His method

of proof is by solving a partial differential equation and then using the verification theorem in dynamic

programming. We will now use the results of previous sections to show that there also exists a solution

to (12) when the nonnegativity constraint is present. Regardless whether the utility functions of (31)

are bounded from below or not, they are strictly concave when they are strictly increasing and thus

fall into the class of utility functions of Section 3.3. Note that since

lim UvY(' t)y = b
--OO uy(y, t)

when utility functions are strictly increasing, Remark 3.3 and Theorem 4.3 show that there exists a

solution to (12).

Optimal consumption-portfolio policies for HARA utility functions can in fact be explicitly calcu-

lated. They are no longer linear in wealth in contrast to the optimal policies calculated by Merton

(1971). We refer the interested reader to Cox and Huang (1987) for complete details.

6 Generalizations and Concluding Remarks

Our analysis can be extended in several directions. First, we have assumed that the instantaneous

interest rate r(t) depends only on S(t) and t. This is not necessary. It can be allowed to depend on the

bond price process, for example, in that r(t) = r(S(t), B(t),t). In this case, we simply add one more

equation

B(t) = B(O) + f B(8)r(S(8),B(s),8)ds/0

___�_
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to the system of stochastic integral equations in Theorem 4.1.

Second, the parameters of the price processes at any time do not have to depend only on the

realizations of the prices at that time. For example, assume that

S(t) + j f(Y(s),S(9),s)ds = S(O)+j (Y(s),S(s),)d8+ (Y(8),S(s),8)dw(s)

where Y is an M-vector of It5 processes:

Y(t) = Y(0) + f lu(Y(s),s8)ds + ay (Y(s), s)dwu(s)

with M < N. Then Theorem 4.1 goes through when the system of stochastic integral equations is

expanded to include Y.

Third, the parameters of the price processes at any time can be allowed to depend on their own

historical realizations. In that case, the bounds of the moments of certain processes as described in

(27)-(29) are still valid under a generalized Lipschitz and a generalized growth condition; see Theorem

4.6 of Liptser and Shiryayev (1977). The conclusion of Theorem 4.1 naturally follows. Moreover, a

generalization toward a combination of this and the previous case is also straightforward.

Throughout our analysis, we have assumed that the economy is of finite horizon. Our results can,

however, be extended to an infinite horizon economy in the following manner. Consider price processes

that admit a unique equivalent martingale measure. Roughly, use Chapter 8 of Friedman (1975) to

find conditions on the parameters of the price processes so that (30) holds with T replaced by oo and A

replaced by Lebesgue measure. This approach is not satisfactory, however. For there to exist a unique

equivalent martingale measure, we want condition (b) of Section 4 or, equivalently, relation (10) to be

satisfied when T is replaced by oo. This entails that a(S(t),t) goes to zero when t approaches oo and

rules out the case where the price processes are an N-dimensional geometric Brownian motion, which

happens to be the most prevalent case in applications. The question of how our approach could be

extended to the infinite horizon case while including the geometric Brownian motion as a special case

needs be resolved. This is a high priority issue.

The class of utility functions covered by Theorem 4.1 is quite general. It includes the HARA class

functions that are increasing and concave, continuous and concave functions that are bounded from

above and from below, and asymptotically non-risk-neutral utility functions that are increasing and

strictly concave, for example. It does not, however, include utility functions that are unbounded from

below and are not strictly concave when they are strictly increasing. The existence result needs to be

extended for this latter class of functions.

The results in Sections 2 and 4 depend largely upon the uniqueness of the martingale measure,

which in turn implies that the markets are dynamically complete as described in Proposition 2.3. How

._ ____FIIX__·l__l__llIXICXWI�)________�_
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7 References

the martingale technique can be useful when the markets are not dynamically complete is an open

question.

Another weakness of the results reported is the lack of necessary condition for existence. This,

unfortunately, is a feature of the theory of stochastic differential equations. For example, not much

is known about the necessary conditions for the existence and uniqueness of a solution to a system of

stochastic differential equations.
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Appendix

Proof of Proposition 2.1.

PROOF. We first show that Q is equivalent to P, that is, (T) = dQ/dP is strictly positive P-a.s. It
suffices to demonstrate that

fD(S(t),t)Tdtdw(t) - (S(t)t) 2dt > P - a.s.

We note that (7) implies

/0c(SS(t), t)T d w(t)i < oo;

see Liptser and Shiryayev (1977, Theorem 7.1). This, together with (7), ensures that r/(T) > 0 P-a.s.
Next, we want to show that G*(t) is a martingale under Q. By the Girsanov theorem (see Liptser

and Shiryayev (1977, Chapter 6)), we know

w*(t) _ w(t) - .s(S(),)ds Vt E [0, T]

is an N-dimensional standard Brownian motion under Q. Thus we can write

G*(t) = S(0)/B(0) +o (s) dw*o(s) Vt E [o,T]. (A.1)
c'() = Slo)/B(o)~ +d ~iB(s)

Given (10) and the fact that B(t) is bounded below away from zero, the right-hand side of (A.1) is a
(square-integrable) martingale under Q; see Liptser and Shiryayev (1977, (4.48)). The first assertion
then follows from the assumption that E[i7(T)q] < oo.

The uniqueness of Q follows from similar arguments of Theorem 3 of Harrison and Kreps (1979).

Proof or proposition 3.2:

PROOF. We take cases.
Case 1: V(.) is strictly increasing. From the hypothesis and the definition of g we know that there

exists y* > 0 such that
I -1

g(y) < Ky & Vy < y.

Let A > 0 be given. Put
A= {wE : (w) < y'}.

On A, we know
g(xA(w))< K (X(()).

On \ A, however, we have
g(A(w)) < g(y').
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Thus

J1 Ig(A~(w))IPP(dw) = If g(A(())1PP(dw) + \A g(A(W))jP(dw)

< K l/C(j( )) P(&)+ g(y*) < ,

which was to be shown.
Case 2: V(-) is not strictly increasing. Since g(0) = z0 , g(-) is bounded from above. Thus the

assertion follows. I

Proof of Proposition 3.3:

PROOF. We first note that K(A) is always finite for all A E (O, oo) since by Proposition 3.2 zx E LP(P)
and by assumption E Lq(P) with 1/p + 1/q = 1.

Next let An 1 A. We note that
A, At P- a.e.

By the continuity and monotonicity of g (see Proposition 3.1), it follows that

g(A.~)0 T g(AC)e P - a.e.

By the Monotone Convergence Theorem, we know

lim J, g(A.C(w))C(w)P(dw) = i g(AC(w))e(w)P(dw). (A.6)

Equivalently, limn-oo B(An) = K(A).
Next consider An t A. Using similar arguments while applying Lebesgue Convergence Theorem, we

get
lim B(An) = K(A). (A.7)

n---,

Relations (A.6) and (A.7) imply that B(.) is a continuous function.
Next note that from Proposition 3.1 we know

lim g(A)C = 0 P - a.e.
A-0oo

Since g is decreasing, by Lebesgue Convergence Theorem we have

lim K(A) = 0.
A--oo

Now we take cases. Case 1: V is strictly increasing. Then

lim g(Ae) = oo P - a.e.

By Fatou's lemma, we get
lim K(A) > oo.

Thus
lim K(A) = oo.
A--0
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Case 2: V is not strictly increasing. Then

lim g(A) = ze
-By the dominated convergence theorem we have

By the dominated convergence theorem we have

lim K(A) = z
,-.0

which was to be shown.

Proof of Theorem 3.8:

I

PROOF.
Let -' E L('y). By the hypothesis, we know there exist B > 0 and z* > 0 such that

u(z,O) < g(z) Bz - b

and that
u(z, T) < (z)- Bzl- b

The discounting hypothesis implies that

u(z,t) < u(z,O) < g(z) Vz > z*, - a.e. t E [0,T).

We claim that given c > 0, there exists y E LP (7y) such that

Vz > y(W, t),

for v-a.e. (w, t) E f x [0,T] and

Vz > y(w, T),

for P-a.e. w E 0.
Note that g(z)/z and §(z)/z are of the same order of magnitude

Thus there exists constants K > 0 and i > 0 such that

g(z) < Kz-b
z

of z- b as z -+ oo and is decreasing.

Vz > 2

§(z) < Kz- b
Z

Vz > i.

Now putting z ° - max z*, z},

A = {(w,t)E in x [O,T) : < (, t)},

and

A = {w E n z < (W, T)},
,z -

P - a.e.

C(w)P(dw),

Vz > z*

Vz > z*

and

------- ---

g(Z) < CZ (( t)

§(z) cz(owT)



we define

y(w,t) =

if (w, t) 6 A;

if w E and t=T;

if (w, t) e ln x [0,T) \ A;

if w E 1 \ A and t = T.

It is clear that y > 0 -a.e.
Next note the following:

and y E LP(y) since C-1 E L (-). Note also
On A, since g(z)/lz is decreasing,

that y > z ° '-a.e.

g() < g( ) < (,t)
z - o -

Vz > y(w, t).

On x [O,T) \ A, we know z > y(w,t) implies that

g() < Kz - < Ky(w,t)- = C((w,t).
z

Similarly, on A,
§(z) < () < c(w,T)

z oW-
Vz > y(w, T).

On fl\A,

-(z) < K - b < Ky(w,T)-b = ((w,t).
Z

Finally, since u(z,t) <
construction, we know

g(z) for all z > z° and for A-a.e. t E [O,T), and since y > z° y-a.e. by

Vz > y(w, t)

Hence u(z, t) (w, t)-l = o(z) LP(-)-integrably in (w, t) and there exists a solution to (TA).
The proof for the second assertion is similar to that for Theorem 3.2. *

zo

Z°

for y - a.e. (w, t).

I

U(Z t) < Z (W, t)


