
WHEN ARE CONTRARIAN PROFITS DUE TO

STOCK MARKET OVERREACTION?

by

Andrew W. Lo and A. Craig MacKinlay

Latest Revision: May 1989

Working Paper No. 3008-89-EFA

1__ �1�-�----·9�



WHEN ARE CONTRARIAN PROFITS DUE TO

STOCK MARKET OVERREACTION?

Andrew W. Lo* and A. Craig MacKinlay**

First Draft: November 1988
Latest Revision: May 1989

The profitability of contrarian investment strategies need not be the result of stock mar-
ket overreaction. Even if returns on individual securities are temporally independent,
portfolio strategies that attempt to exploit return reversals may still earn positive ex-
pected profits. This is due to the effects of cross-autocovariances from which contrarian
strategies inadvertently benefit. We provide an informal taxonomy of return-generating
processes that yield positive [and negative] expected profits under a particular contrar-
ian portfolio strategy, and use this taxonomy to reconcile the empirical findings of weak
negative autocorrelation for returns on individual stocks with the strong positive auto-
correlation of portfolio returns. We present empirical evidence against overreaction as
the primary source of contrarian profits, and show the presence of important lead-lag
relations across securities.

* Sloan School of Management, Massachusetts Institute of Technology, and NBER.
**Department of Finance, Wharton School, University of Pennsylvania.

We thank Andy Abel, Mike Gibbons, Don Keim, Bruce Lehmann, Rob Stambaugh, a referee, and seminar partici-
pants at Harvard University, University of Maryland, University of Western Ontario, and the Wharton School for useful
suggestions and discussion. Research support from the Geewax-Terker Research Fund (MacKinlay), the National Science
Foundation, the John M. Olin Fellowship at the NBER (Lo), and the Q Group is gratefully acknowledged.

_�_ �



1. Introduction.

Since the publication of Louis Bachelier's thesis Theory of Speculation in 1900,

the theoretical and empirical implications of the random walk hypothesis as a model

for speculative prices have been subjects of intense interest to financial economists.

Although first developed by Bachelier from rudimentary economic considerations of

"fair games," the random walk has received broader support from the many early

empirical studies confirming the unpredictability of stock price changes.1 Of course, it

is by now well-known that the unforecastability of asset returns is neither a necessary

nor a sufficient condition of economic equilibrium.2 And, in view of recent empirical

evidence, it is also apparent that historical stock market prices do not follow random

walks.3

This fact surprises many economists because the defining property of the random

walk is the uncorrelatedness of its increments, and deviations from this hypothesis nec-

essarily imply forecastable price changes.4 Several recent studies have attributed this

forecastability to what has come to be known as the "stock market overreaction" hy-

pothesis, the notion that investors are subject to waves of optimism and pessimism and

therefore create a kind of "momentum" which causes prices to temporarily swing away

from their fundamental values.5 Although such a hypothesis may be intuitively appeal-

ing, and does yield predictability since what goes down must come up and vice-versa,

a well-articulated equilibrium theory of overreaction with sharp empirical implications

has yet to be developed. But common to virtually all existing "theories" of over-

reaction is one very specific empirical implication: price changes must be negatively

autocorrelated for some holding period.6 Therefore, the extent to which the data are

consistent with stock market overreaction, broadly defined, may be distilled into an

1 See, for example, the papers in Cootner (1964), and Fama (1965, 1970).
2 1n particular, see Leroy (1973) and Lucas (1978).
s See, for example, Lo and MacKinlay (1988). Our usage of the term random walk' differs slightly from the classical

definition of a process with independently and identically distributed increments. We are interested primarily in the
uncorrelatedneu of increments, and not in either independence or identically distributed innovations. Therefore, a process
with uncorrelated but heteroscedastic first-differences would fall into our definition of a random walk; see Lo and MacKinlay
(1988) for the exact statement of the random walk hypothesis that we implicitly use here.

4 However, our surprise must be tempered by the observation that forecasts of stock returns are still subject to random
fluctuations, so that profit opportunities are not immediate consequence of forecastability. Nevertheless, recent studies
maintain the possibility of significant profits, even after controlling for risk in one way or another.

6For example, see DeBondt and Thaler (1985, 1987), De Long et. al. (1989), Lehmann (1988), Poterba and Summers
(1988), and Shefrin and Statman (1985).

eFor example, DeBondt and Thaler (1985) write: If stock price systematically overshoot, then their reversal should
be predictable from past return data alone.. . Other studi that consider overreaction also assume this either explicitly
or implicitly.
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empirically decidable question: are return reversals responsible for the predictability

in stock returns?

A more specific consequence of overreaction is the profitability of a contrarian

portfolio strategy, a strategy that exploits negative serial dependence in asset returns

in particular. The defining characteristic of a contrarian strategy is the purchase of

securities that have performed poorly in the past and the sale of securities that have per-

formed well. 7 Selling the "winners" and buying the "losers" will earn positive expected

profits because current losers are likely to become future winners and current winners

are likely to become future losers when stock returns are negatively autocorrelated.

Therefore, it may be said that an implication of stock market overreaction is positive

expected profits from a contrarian investment rule. It is the apparent profitability

of several contrarian strategies that has led many to conclude that stock markets do

indeed overreact.

In this paper we question the reverse implication that the profitability of contrar-

ian investment strategies is evidence of stock market overreaction. Whereas return

reversals may be sufficient to yield positive expected profits from a contrarian strat-

egy, they are not necessary. Indeed, as an illustrative example we construct a simple

return-generating process in which each security's return is temporally independent,

and yet will still yield positive expected profits for a portfolio strategy that buys losers

and sells winners. This seemingly counterintuitive result is a consequence of positive

cross-autocovariances across securities, from which contrarian portfolio strategies inad-

vertently benefit. For a single security in isolation, negative serial correlation is indeed

necessary and sufficient for the contrarian investor to earn positive expected profits.

However, when there are many securities to choose from the complex cross-effects

among the distinct assets break this link. Therefore, the fact that some contrarian

strategies have positive expected profits need not imply that stock markets overreact.

In fact, for the particular contrarian strategy we examine, over half of the expected

profits is due to cross-effects and not to negative autocorrelation in individual security

returns.

However, the most striking aspect of our empirical findings is that these cross-

effects are generally positive in sign and have a pronounced lead-lag structure: the

7 How performance is defined and for what length of time generates as many different kinds of contrarian strategies as
there are theories of overreaction.
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returns of large capitalization stocks almost always lead those of smaller stocks. This re-
sult, coupled with the observation that individual security returns are generally weakly
negatively autocorrelated, indicates that the recently documented positive autocorrela-
tion in weekly returns indexes is completely attributable to cross-effects. By exploiting
our contrarian strategy framework, we show that these cross-autocorrelations are incon-
sistent with a return-generating process that is the sum of a positively autocorrelated

common factor [which generates positive index autocorrelation] plus an idiosyncratic
bid-ask spread process [which yields weak negative serial dependence in individual re-

turns]. Although this is a negative result, it does provides important guidance for
theoretical models of equilibrium asset prices attempting to explain positive index au-
tocorrelation via time-varying conditional expected returns. Such theories must be
capable of generating lead-lag patterns, since it is the cross-autocorrelations that is
the source of positive dependence in stock returns.

Since we focus only on the expected profits of the contrarian investment rule and
not on its risk, our results have implications for stock market efficiency only insofar as

they provide restrictions on economic models that might be consistent [or inconsistent]
with the empirical results. We do not assert or deny the existence of "excessive"

contrarian profits. Such an issue cannot be addressed without specifying an economic
paradigm within which asset prices are rationally determined in equilibrium.8 However,
we have found the contrarian investment strategy to be a convenient tool in exploring
the autocorrelation properties of stock returns. Moreover, our analysis of the nature

of expected profits does point to more specific sources of risk for contrarian strategies
that must be weighed in assessing market efficiency. We leave this more ambitious task

to future research.

In Section 2 we provide a summary of the autocorrelation properties of daily,
weekly and monthly returns, documenting the positive dependence in portfolio returns

and the negative autocorrelations of individual returns. Section 3 presents a formal
analysis of the expected profits from a specific contrarian investment strategy under
several different return-generating mechanisms, and shows how positive expected profits
need not be related to overreaction. In Section 4 we attempt to empirically quantify
the proportion of contrarian profits that may be attributed to overreaction and find

Some have accounted for risk in one way or another with mixed results. For example, Chan (1988) claims that
DeBondt and Thaler's (1986) excess profits are minimal after properly adjusting for risk, whereas Lehmann (1988) uses a
continuous-time argument to conclude that his weekly trading strategy is excessively profitable.
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that a substantial portion cannot be. We show that a systematic lead-lag relation

among returns of size-sorted portfolios is the primary source of contrarian profits and

positive index autocorrelation. In Section 5 we provide some discussion of our use of

weekly returns in contrast to the much longer-horizon returns used in previous studies

of stock market overreaction, and we conclude in Section 6.

2. A Summary of Current Findings.

In Table la we report the first four autocorrelations of weekly equal-weighted and

value-weighted returns indexes for the sample period from 6 July 1962 to 31 December

1987, where the indexes are constructed from the CRSP daily returns files. 9 For this

sample period the equal-weighted index has a first-order autocorrelation P1 of approx-

imately 30 percent. Since its heteroscedasticity-consistent standard error is 0.046, this

autocorrelation is statistically different from zero at all conventional significance lev-

els. The sub-period autocorrelations indicate that this significance is not an artifact of

any particularly influential sub-sample; equal-weighted returns are strongly positively

autocorrelated throughout the sample. Higher order autocorrelations are also posi-

tive although generally smaller in magnitude, and the decay rate is somewhat slower

than the geometric rate of an AR(1) [for example, 2 is 8.8 percent whereas p2 is 11.6

percent].

To develop a sense of the economic importance of the autocorrelations, recall that

the R 2 of a regression of returns on a constant and its first lag is the square of the slope

coefficient which is simply the first-order autocorrelation. Therefore, an autocorrelation

of 30 percent implies that 9 percent of weekly return variation is predictable by using

only the preceding week's returns. In fact, the autocorrelation coefficients implicit in

Lo and MacKinlay's (1988) variance ratios are as high as 49 percent for a sub-sample

of the portfolio of stocks in the smallest size quintile, implying an R 2 of about 25

percent. This degree of predictability suggests that a profitable trading strategy might

be to switch from stocks to bonds when this week's predicted index return falls below

the risk-free rate, and vice-versa when it is above. With no transactions costs, the

profitability of such a trading rule may be readily verified.

9 Unless stated otherwise, we take returns to be simple returns and not continuously-compounded. Our construction of
weekly returns i described in Lo and MacKinlay (1988).
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It may therefore come as some surprise that individual returns are generally weakly

negatively autocorrelated. Table 2a reports the cross-sectional average of autocorrela-

tion coefficients across all stocks that have at least 52 non-missing weekly returns during

the sample period. For the entire cross-section of 4786 such stocks, the average first-

order autocorrelation coefficient, denoted by P1, is -3.4 percent with a cross-sectional

standard deviation of 8.4 percent. Therefore, most of the individual first-order auto-

correlations fall between -20 percent and 13 percent. This implies that most R 2 's of

regressions of individual security returns on their return last week fall between 0 and

4 percent, considerably less than the predictability of equal-weighted index returns.

Average higher-order autocorrelations are also negative, though smaller in magnitude.

The negativity of autocorrelations may be an indication of stock market overreaction

for individual stocks, but it is also consistent with the existence of a bid-ask spread.

We discuss this further in Section 3.

Table 2a also reports average autocorrelations within size-sorted quintiles.1 0 The

negative autocorrelations are stronger in the smallest quintile but even the largest

quintile has average autocorrelations less than zero. Compared to the 30 percent auto-

correlation of the equal-weighted index, the magnitudes of the individual autocorrela-

tions indicated by the means [and standard deviations] in Table 2a are generally much

smaller.

For completeness, we also report autocorrelations for returns on daily and monthly

indexes in Tables lb and c; cross-sectional averages of autocorrelations for daily and

monthly returns on individual stocks are given in Tables 2b and 2c. Similar patterns

are observed: autocorrelations are strongly positive for index returns [35.5 and 14.8

percent l's for the equal-weighted daily and monthly indexes respectively], and weakly

negative for individual securities [-1.4 and -2.9 percent l's for daily and monthly

returns respectively].

The general tendency for individual security returns to be negatively serially de-

pendent and for portfolio returns such as those of the equal- and value-weighted market

to be positively autocorrelated raises an intriguing issue. We mentioned earlier that

because the equal-weighted index exhibits strong positive autocorrelation, a profitable

investment strategy would be to allocate assets into equity when equity returns are high

'°All size-sorted portfolios are constructed by sorting only once using market values of equity at the middle of the
sample period], hence their composition does not change over time.
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and into bonds when equity returns are low. This, however, is at odds with virtually

any contrarian strategy since it involves buying winners and selling losers. And yet

several contrarian strategies have also been shown to yield positive expected profits, l l1

even though movements in the aggregate stock market do not support overreaction and

the returns of individual stocks are generally only marginally predictable. Is it possible

that contrarian profits are due to something other than overreacting investors? We

answer these questions in the next two sections.

3. Analysis of Contrarian Profitability.

To reconcile the profitability of contrarian investment strategies with the posi-

tive autocorrelation in stock returns indexes, we examine the expected profits of one

such strategy under various assumptions on the return-generating process. Consider a

collection of N securities and denote by Rt the Nxl-vector of their period t returns

[Rlt ... RNt]' . For convenience, we maintain the following assumption throughout this

section:

(Al) Rt is a jointly covariance-stationary stochastic process with expectation

E[Rt] = [A1 2 ... N]' and autocovariance matrices E[(Rt_k -

A) (Rt - )'] = rk where, with no loss of generality, we take k > 0 since

rk = rk 12

In the spirit of virtually all contrarian investment strategies, consider buying stocks at

time t that were "losers" at time t - k and selling stocks at time t that were "winners"

at time t - k, where winning and losing is with respect to the equal-weighted return

on the market. More formally, if wit(k) denotes the fraction of the portfolio devoted to

security i at time t, let:

For example, DeBondt and Thaler (1985, 1987) and Lehmann (1988).
12 Assumption (Al) is made for notational simplicity, since joint covariance-stationarity allows us to eliminate time-

indexes from population moments such as and rk; the qualitative features of our results will not change under the
weaker assumptions of weakly dependent heterogeneously distributed vectors Rt. This would merely require replacing
expectations with corresponding probability limits of suitably defined time-averages. For the results in this section, the
added generality does not outweigh the expositional complexity that a weaker set of assumptions requires. However, the
empirical results of Section 4 are based on these weaker assumptions; interested readers may refer to conditions (A2)-(A4)
in Appendix 2.

-6-
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wit(k) = - (Rt-k- Rmt-k) i= 1,...,N (3.1)

where Rmt- k = N=1 Rit-klN is the equally-weighted market index.l If, for example,
k = 1 then the portfolio strategy in period t is to short the winners and buys the losers

of the previous period, t - 1. By construction, wt(k) [wlt(k) w 2t(k) ... wNt(k)] is

an arbitrage portfolio since the weights sum to zero. Therefore, the total investment

long or short] at time t is given by It(k) where:

N
Itit ( 2 .) (3.2)

i=l

Since the portfolio weights are proportional to the differences between the market

index and the returns, securities that deviate more positively from the market at time

t - k will have greater negative weight in the time t portfolio, and vice-versa. Such a

strategy is designed to take advantage of stock market overreactions as characterized,

for example, by DeBondt and Thaler (1985): (1) Extreme movements in stock prices

will be followed by extreme movements in the opposite direction. (2) The more extreme

the initial price movement, the greater will be the subsequent adjustment." The profit

7rt(k) from such a strategy is simply:

N
7rt(k) = wit(k)Rit . (3.3)

i=1

Re-arranging (3.3) and taking expectations yields the following:1 4

x3 This is perhaps the simplest portfolio strategy that captures the essence of the contrarian principle. Lehmann (1988)
also considers this strategy, although he employs a more complicated strategy in his empirical analysis in which the portfolio
weights (3.1) are re-normalized each period by a random factor of proportionality so that the investment is always one
dollar long and short. This portfolio strategy is also similar to that of DeBondt and Thaler (1985, 1987), although in
contrast to our use of weekly returns they consider holding periods of three years. See Section 5 for further discussion.

"1The relatively straightforward derivation of this equation is included in Appendix 1 for completeness. This is the
population counterpart of Lehmann's (1988) sample moment equation (5) divided by N.

-7-
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E[rt(k)] = Nk - 1 tr(rk) - N
i=1

(3.4)

where Am m E[Rmt] = I'L/N and tr(.) denotes the trace operator. The first term

of (3.4) is simply the k-th order autocovariance of the equally-weighted market index.

The second term is the cross-sectional average of the k-th order autocovariances of the

individual securities, and the third term is the cross-sectional variance of the mean

returns. Since this last term is independent of the autocovariances rk and does not

vary with k, we define the profitability index Lk = L(rk) and the constant a 2 (M) as:

L'rkL
Lk = N 2

N2
- tr(rk)

N

N
o2( ) = _ 1~ 2 .

i=1
(3.5)

(3.6)E[rt(k)] = Lk - 2 (M,).

For purposes that will become evident below we re-write Lk as the following sum:

Lk = kN1 [L rk- tr(rk)]L k= - - (N%21) .tr(rk) - Ck + Ok

Ck N2 1['rk - tr(rk)]N2 Ok -N2)(r)

E[rt(k) = Ck + ok - a2(,). (3.9)

-8-
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(3.8)
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Written this way, it is apparent that expected profits may be decomposed into three

terms, one [Ck] depending on only the off-diagonals of the autocovariance matrix rk, the

second [Ok] depending on only the diagonals, and a third [a2(,s)] which is independent

of the autocovariances. This allows us to separate the fraction of expected profits due

to the cross-autocovariances Ck, versus the own-autocovariances Ok of returns.

From (3.9), it is clear that the profitability of the contrarian strategy (3.1) may

be perfectly consistent with a positively autocorrelated market index and negatively

autocorrelated individual security returns. Positive cross-autocovariances imply that

the term Ck is positive, and negative autocovariance for individual securities implies

that Ok is also positive. Conversely, the empirical finding that equal-weighted indexes

are strongly positively autocorrelated and that individual security returns are weakly

negatively serially dependent implies, through (3.7), that there must be significant

positive cross-autocorrelations across securities. To see this, observe that the first-

order autocorrelation of the equally-weighted index Rmt is simply:

Cov[Rmt_l,Rmt] _ rl _ trls - tr(rl) tr(rl)V[Rt rt+ . (3.10)Var[Rmt] r o rol + Trot

The numerator of the second term of the right-hand side of (3.10) is simply the sum

of the first-order autocovariances of individual securities which, if negative, implies

that the first term must be positive in order for the sum to be positive. Therefore,

the positive autocorrelation in weekly returns may be attributed solely to the positive

cross-autocorrelations across securities.

The expression for Lk also suggests that stock market overreaction need not be the
reason that contrarian investment strategies are profitable. To anticipate the examples

below, if returns are positively cross-autocorrelated then a return-reversal strategy

will yield positive profits on average, even if individual security returns are temporally

independent! That is, if a high return for security A today implies that security B's

return will probably be high tomorrow, then a contrarian investment strategy will be

profitable even if each security's returns are unforecastable using past returns of that

security only. The intuition for such a result is straightforward. Suppose there are
only the two stocks, A and B; if A's return is higher than the market today, we sell it
and buy B. But if A and B are positively cross-autocorrelated, a higher return for A

-9-
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today implies a higher return for B tomorrow- [on average], thus we will have profited

from our long position in B [on average]. Nowhere do we require that the stock market

overreacts, i.e., that individual returns are negatively autocorrelated. Of course, the

presence of stock market overreactions enhances the profitability of the return-reversal

strategy, but it is not necessary.

To organize our understanding of the sources and nature of contrarian profits,

we provide four illustrative examples below. They are highly stylized special cases,

nevertheless they yield a useful informal taxonomy of conditions necessary for the

average profitability of the investment strategy (3.1).

3.1. The I.I.D. Benchmark.

Let returns Rt be both cross-sectionally and temporally independent. In this case

rk = 0 for all non-zero k hence:

Lk = C k = O k = 0 (3.11)

E[Irt(k)] = - 2(/) < 0. (3.12)

Although returns are both temporally and cross-sectionally unforecastable, the ex-

pected profits are negative as long as there is some cross-sectional variation in expected

returns. This is a result of the fact that our strategy is shorting the higher and buy-

ing the lower mean return securities respectively, a losing proposition even when stock

market prices do follow random walks.1 5 Since r2 (11) is generally of small magnitude

and does not depend on the autocovariance structure of Rt, we will focus on Lk and

ignore a 2 (A) for the remainder of Section 3.

3.2. Stock Market Overreaction and Fads.

Almost any operational definition of stock market overreaction implies that indi-

vidual security returns are negatively autocorrelated over some holding period, so that
1 6 This provides a simple counterexample to the somewhat surprising implication that one cannot systematically lose

money in the stock market if prices follow random walks [and there are no transactions costs]. Multiple securities with
distinct means imply the existence of portfolio strategies with positive and negative expected returns.

3.4 - 10- 5.89
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"what goes up must come down" and vice-versa. If we denote by ijy(k) the i,j-th

element of the autocovariance matrix rk, the overreaction hypothesis implies that the

diagonal elements of rk are negative, i.e., '-ii(k) < O, at least for k = 1 when the span

of one period corresponds to a complete cycle of overreaction.1 6 Since the overreaction

hypothesis generally does not restrict the cross-autocovariances, for simplicity we set

them to zero, i.e., 'yij(k) = O, i j. Hence, we have:

yll(k)

rk =

O

0

022(k)

... 0
... O

** -NN(k) 

The profitability index under these assumptions for Rt is then:

Lk = O k (N 1)trfik) = (N 21) ii(k)
i=1

> 0 (3.14)

where the cross-autocovariance term Ck is zero; the positivity of Lk follows from the

negativity of the own-autocovariances, assuming N > 1. Not surprisingly, if stock

markets do overreact the contrarian investment strategy is profitable on average.

Another price process for which the return-reversal strategy will yield positive

expected profits is the sum of a random walk and an AR(1), which has been recently

proposed as a model of "fads" and "animal spirits."1 7 Specifically, let the dynamics

for the log-price Xit of each security i be given by:

Xit = Yit + Zit (3.15)

where

Yit = Ai + Yit- 1 + it

Zit = PiZit-1 + it 0 < p <

(3.16)

(3.17)

- 11 -

(3.13)

16 We discuss this further in Section 5.
17 See, for example, Summers (1986).
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and the disturbances {(it} and {vit} are temporally, mutually, and cross-sectionally

independent at all positive leads and lags.18 The k-th order autocovariance for the

return vector Rt is then given by the following diagonal matrix:

rk = diag [ -p k-l 12 1 -P v '1 PN (3.18)
1 + ' 1'' l+pN

The profitability index follows immediately:

LA = OA;= - ( N2) * tr(rk) = 2 Yp 11 + .2;i > 0 (3.19)
Lk = Ote N-N2 )-~N 2 1+Pi

tr =1

Since the own-autocovariances in (3.18) are all negative this is a special case of (3.13)

and may therefore be interpreted as an example of stock market overreaction. However,

the fact that returns are negatively autocorrelated at all lags is an artifact of the first-

order autoregressive process and need not be true for the sum of a random walk and a

general stationary process, a model that has been proposed for both stock market fads

and time-varying expected returns.1 9 For example, let the "temporary" component of

(3.15) be given by the following stationary AR(2) process:

Zit = Zit l - Zit2 + Vit (3.20)7 7

It is easily verified that the first-difference of Zit is positively autocorrelated at lag 1

implying that L 1 < 0. Therefore, stock market overreaction necessarily implies the

profitability of the portfolio strategy (3.1) [in the absence of cross-autocorrelation], but

stock market fads do not.

s This last assumption requires only that tit is independent of ejt+k for k $ 0, hence the disturbances may be contem-
poraneously cross-sectionally dependent without loss of generality.

'lFor example, see Fama and French (1988) and Summers (1986).
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3.3. Trading on White Noise and Lead-Lag Relations.

Let the return-generating process for Rt be given by:

Rit = i + PiAt-i + it ,i >O , i=l,..., N (3.21)

where At is a temporally independent common factor with zero mean and variance

o, and the Eit's are assumed to be both cross-sectionally and temporally independent.

These assumptions imply that for each security i, its returns are white noise with drift]

so that future returns to i are not forecastable from its past returns. This temporal

independence is certainly not consistent with either the spirit or form of the stock

market overreaction hypothesis. And yet it is possible to predict i's returns using past

returns of security j, where j < i. This is obviously an artifact of (3.21) in which the

return on the i-th security depends positively on a lagged common factor, where the

lag is determined by the security's index. This implies that the return of security 1

leads that of securities 2, 3, etc.; the return of security 2 leads that of securities 3,

4, etc.; and so on. Alternatively, observing the return on security 1 today will help

forecast the return on security 2 tomorrow, but today's return on security 2 provides

no information for how security 1 will fare tomorrow. This lead-lag relation will induce

positive expected profits for the contrarian strategy (3.1). To see this, observe that:

/102
0

0
0

0
0

0
O

0
0

r 2
O
O

0

0

0
0
O
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0 0

0 0
0 0
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0

0
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0

02P4

0
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0
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and, more generally, when k < N then rk has zeros in all entries except along the

k-th super-diagonal, for which Yii+k = Yp;ifi+k. For future reference, observe that a

characteristic of the lead-lag model is the asymmetry of the autocovariance matrix rk.

The profitability index in this case is:

2 N-k
Lk = Ck = > 0 (3.24)

i=l

From this example the importance of the cross-effects is evident; although each security

is individually unpredictable, a contrarian strategy may still profit if securities are

positively cross-correlated at various leads and lags. Moreover, it should be apparent

that less contrived return-generating processes will also yield positive expected profits

to contrarian strategies as long as the cross-autocovariances are sufficiently large. One

source of such cross-effects may be non-synchronous trading, as in the models of Scholes

and Williams (1977) and Cohen et. al. (1986). For example, the non-trading process

proposed by Cohen et. al. induces the following time series properties in observed

returns when true returns are generated by the market model: 20

1. Individual returns are negatively autocorrelated.

2. A market index composed of observed returns to securities with positive betas will

exhibit positive serial dependence.

3. Cross autocorrelations of returns for securities i and j will be non-zero, and of the

same sign as iPj

If securities' betas are generally of the same sign, then non-trading induces positive

cross-effects; coupled with the negative individual autocorrelations, this yields positive

expected profits for a contrarian investment strategy. However, Lo and MacKinlay

(1989) show that the magnitudes of cross-effects documented in Section 4 cannot be

completely attributed to non-synchronous trading biases.

20 See Chapter 6 of Cohen et. al. (1986).
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3.4. A Positively Dependent Common Factor and the Bid-Ask Spread.

One plausible return-generating mechanism that is consistent with positive index
autocorrelation and negative serial dependence in individual returns is to let each R/t be
the sum of three components: a positively autocorrelated common factor, idiosyncratic
white noise, and a bid-ask spread process.2 1 More formally, let:

Rit = i + iAt + 7it + eit (3.25)

where:

E[At] = 0 E[AtAt+k] - A (k) > o

= E[rit] 

O
2_ 'i

4
O

0 V i,t

if k = 0 and i = j.
otherwise.

if k = 1 and i =j.
otherwise.

We have implicitly assumed in (3.29) that Roll's (1984) model of the bid-ask spread
obtains so that the first-order autocorrelation of it is the negative of one-fourth the
square of the percentage bid-ask spread si, and all higher-order autocorrelations and
all cross-correlations are zero. Such a return-generating process will yield a positively
autocorrelated market index since averaging the white-noise and bid-ask components
will trivialize them, leaving the common factor At. Yet if the bid-ask spread is large
enough, it may dominate the common factor for each security, yielding negatively
autocorrelated individual security returns.

2 1This is suggested in Lo and MacKinlay (1988). Conrad, Kaul, and Nimalendran (1988) invmtigate a similar specifica-
tion.
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The autocovariance matrices for (3.25) are given by:

rl = 1(1)pI - 1 diag[s2 , 2, (3.30)

rk = (k)PP' k > 1 (3.31)

where p - [pl /2 ... 6NI - In contrast to the lead-lag model of Section 3.3, the au-

tocovariance matrices for this return-generating process are all symmetric. This yields

an important empirical implication that distinguishes the common factor model from

the lead-lag process and will be exploited in our empirical appraisal of overreaction.

Denote by pm the cross-sectional average EiN1 i/N. Then the profitability index

is given by:

NY() N 1N- lN s2
L1 N= - ) (pism)2+ N2 E (3.32)N 4

i=1 i=1

N
Lk = N (ipm)2 k >1 . (3.33)

i=l

From (3.32), it is evident that if the bid-ask spreads are large enough and the cross-

sectional variation of the Pk'S is small enough, the contrarian strategy (3.1) may yield

positive expected profits when using only one lag [k = 1] in computing portfolio weights.

However, the positivity of the profitability index is due solely to the negative autocorre-

lations of individual security returns induced by the bid-ask spread. Once this effect is

removed, which is the case when portfolio weights are computed using lags 2 or higher,

relation (3.33) shows that the profitability index is of the opposite sign of the index

autocorrelation coefficient 'y (k); since -y(k) > 0 by assumption, expected profits are

negative for lags higher than 1. In view of our empirical analysis of Section 4 which

shows that Lk is still positive for k > 1, it seems unlikely that the return-generating

process (3.25) can account for the weekly autocorrelation patterns of Lo and MacKinlay

(1988).
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4. An Empirical Appraisal of Overreaction.

To examine the extent to which contrarian profits are due to stock market over-

reaction, we estimate the expected profits from the return-reversal strategy of Sec-

tion 3 for several samples of CRSP NYSE-AMEX securities. Recall that E[Irt(k)] =

Ck + O k - 2 (/) where Ck depends only on the cross-autocovariances of returns and Ok

depends only on the own-autocovariances. Table 3a presents estimates of E[rt(k)], Ck,

Ok, and o 2 (A) for the 551 stocks that have no missing weekly returns during the entire
sample period from 6 July 1962 to 31 December 1987. Estimates are computed for

the sample of all stocks and for three size-sorted quintiles. We develop the appropriate

sampling theory in Appendix 2, in which the covariance-stationarity assumption (A2)

is relaxed and replaced with assumptions (A2)-(A4) that allow for weakly dependent

heterogeneously distributed returns.

Consider the last three columns of Table 3a which report the magnitudes of the

three terms k, Ok, and a2(A) as percentages of expected profits. At lag 1 half the

expected profits from the contrarian strategy is due to positive cross-autocovariances.

In the central quintile about 67 percent of the expected profits is attributable to these

cross-effects. The results at lag 2 are similar; positive cross-autocovariances account

for about 50 percent of the expected profits, 66 percent for the smallest quintile.

The positive expected profits at lags 2 and higher provide direct evidence against

the common component/bid-ask spread model of Section 3.4. If returns contained a

positively autocorrelated common factor and exhibited negative autocorrelation due to

"bid-ask bounce," expected profits can be positive only at lag 1; higher lags must exhibit

negative expected profits as (3.33) shows. Table 3a shows that estimated expected

profits are significantly positive for lags 2 through 4 in all portfolios except one.

The z-statistics for Ck, Ok, and E[7rt(k)] are asymptotically standard normal under

the null hypothesis that the population values corresponding to the three estimators are

zero. At lag 1 they are almost all significantly different from zero at the 1 percent level.

At higher lags, the own- and cross-autocovariance terms are generally insignificant.

However, estimated expected profits retains its significance even at lag 4, largely due to

the behavior of small stocks. The curious fact that E[7rt(k) is statistically different from

zero whereas Ck and 6k are not suggests that there is important negative correlation
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between the two estimators Ck and °k.22 That is, although they are both noisy

estimates, the variance of their sum is less than each of their variances because they

co-vary negatively. Since Ck and O'k are both functions of second moments and co-

moments, significant correlation of the two estimators implies the importance of fourth

co-moments, perhaps as a result of co-skewness or kurtosis. This is beyond the scope

of our paper, but bears further investigation.

Table 3a also reports the average long [and hence short] positions generated by

the return-reversal strategy over the 1330-week sample period. For all stocks the aver-

age weekly long/short position is $152, corresponding to profits of $1.69 per week on

average. In contrast, applying the same strategy to a portfolio of small stocks yields

an expected profit of $4.53 per week, but requires only $209 long and short each week

on average. The ratio of expected profits to average long investment is 1.1 percent

for all stocks, and 2.2 percent for stocks in the smallest quintile. Of course, in the

absence of market frictions such comparisons are irrelevant since an arbitrage portfolio

strategy may be scaled arbitrarily. However, if the size of one's long/short position is

constrained, as is sometimes the case in practice, then the average investment figures

reported in Table 3a suggest that applying the contrarian strategy to small firms would

be more profitable on average. Alternatively, this may imply that the behavior of small

stocks is the more anomalous from the perspective of the efficient markets hypothesis.2 3

Using stocks with continuous listing for over twenty years obviously induces a

survivorship bias that is difficult to evaluate. To reduce this bias we perform similar

analyses for two sub-samples: stocks with continuous listing for the first and second

halves of the 1330-week sample respectively. These results are reported in Tables 3b

and 3c. The patterns are virtually identical. In both sub-periods positive cross-effects

account for at least 50 percent of expected profits at lag 1, and generally more at higher

lags.

To develop further intuition for the pattern of these cross-effects we report in

Table 4 cross-autocorrelation matrices Tk for the vector of returns on the five size-

sorted quintiles and the equal-weighted index using the first sample of 551 stocks.

Specifically, let Zt denote the vector [Rlt R2t R3t R 4t Rst Rmt]' where %Rt is the return

2 2 We have investigated the unlikely possibility that o2 (A) is responsible for this anomaly; it is not.
23 Of course, we cannot infer from this that the market for small capitalization equity is less efficient than the market for

larger stocks since smaller stocks may be more risky. Moreover, no attempt has been made to control for market depth.
These two factors might explain the differential in expected profits per dollar long/short between size-sorted portfolios.
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on the equal-weighted portfolio of stocks in the i-th quintile and Rmt is the return on
the equal-weighted portfolio of all stocks. Then we let Tk D-1/2 E[(Ztk - p)(Zt -

i)']D-1 /2 where D = diag[a2,...,a2,a2 and p = E[Zt]. By this convention, the
i,j-th element of Tk is the correlation of Rit-k with Rjt. The estimator Tk is the
usual sample autocorrelation matrix. Note that it is the upper left 5x5 partition of
Tk that corresponds to our definition of rk, since the full matrix Tk also contains
autocovariances between portfolio returns and the equal-weighted market index Rmt.24

An interesting pattern emerges from Table 4: the entries below the diagonals of
Tk are almost always larger than those above the diagonals [excluding the last row
and column, which are the autocovariances between portfolio returns and the market].
This implies that current returns of smaller stocks are correlated with past returns of
larger stocks, but not vice-versa. This is strong evidence in favor of a distinct lead-lag
relation: the returns of large stocks tend to lead those of small stocks. For example,
the first-order autocorrelation between last week's return on large stocks [Rst-1] with
this week's return on small stocks [Rit] is 27.6 percent, whereas the first-order autocor-
relation between last week's return oGi small stocks [Rlt-1] with this week's return on
large stocks [R5 t] is only 2.0 percent! Similar patterns may be seen in the higher-order
autocorrelation matrices, although the magnitudes are smaller since the higher-order
cross-autocorrelations decay. The asymmetry of the Tk matrices implies that the au-
tocovariance matrix estimators k are also asymmetric. This provides further evidence
against the return-generating process (3.25) of Section 3.4, since that model implies
symmetric autocovariance matrices.

The results in Tables 3 and 4 point to the complex patterns of cross-effects among
securities as significant sources of positive index autocorrelation as well as expected
profits for contrarian investment rules. Moreover, the presence of these cross-effects has
important implications irrespective of the nature of contrarian profits. For example,
if such profits are genuine, the fact that at least half may be attributed to cross-
autocovariances suggests further investigation of mechanisms by which aggregate shocks
to the economy are transmitted from large capitalization companies to small ones.

2 4 We include the market return in our autocovariance matrices so that those who are interested may compute portfolio
betas and market volatilities from our tables.
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5. Long Horizons Versus Short Horizons.

Since many recent studies have employed longer-horizon returns in examining con-

trarian strategies and predictability of stock returns, we should provide some discussion

of our choice to focus exclusively on weekly returns. Because our analysis of the con-

trarian investment strategy (3.1) uses only short-horizon returns, we have little to say

about the behavior of long-horizon returns. Distinguishing between short and long

return horizons is important, as it is now well-known that weekly fluctuations in stock

returns differ in many ways from movements in three- to five-year returns. There-

fore, inferences concerning the performance of the long-horizon strategies cannot be

drawn directly from short-horizon results such as ours. Nevertheless, some suggestive

comparisons are possible.

Statistically, the predictability of short-horizon returns, especially in weekly and

monthly returns, is stronger and more consistent through time. For example, Blume

and Friend (1978) have estimated a time series of cross-sectional correlation coefficients

of returns in adjacent months using monthly New York Stock Exchange data from 1926

to 1975, and found that for 422 of the 598 months the sample correlation was negative.2 5

This proportion of negative correlations is considerably higher than expected if returns

are unforecastable. Moreover, in their framework a negative correlation coefficient

implies positive expected profits in our equation (3.4) with k = 1. Jegadeesh (1988)

provides further analysis of monthly data and reaches similar conclusions.

The results are even more striking for weekly stock returns. For example, Lo and

MacKinlay (1988) show evidence of strong predictability for portfolio returns using

New York and American Stock Exchange data from 1962 to 1985. Using the same

data, Lehmann (1988) shows that the profits of a contrarian strategy similar to (3.1)

is virtually always profitable. Not surprisingly, such profits are sensitive to the size

of the transactions costs; for some cases a one-way transactions cost of 0.40 percent

is sufficient to render them positive half the time and negative the other half. The

importance of Lehmann's findings obviously hinge on the relevant costs of turning over

26 Specifically, for every pair of adjacent months t - 1 and t, Blume and Friend (1978) compute the following statistic pt:

pt - - Rm(Rt,- Rt-1)(R- R,)
(R,_ -R ,,,_) 2 . - R(, i j)2

where R,,, = , Rit/Nt and Nt is the number of securities with non-missing returns in months t - 1 and t. Note that pt
is proportional to the profits (3.3) of the contrarian strategy (3.1) where the factor of proportionality is always negative].
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securities frequently, an issue that is not considered in this paper. However, the fact

that our Table 3a shows the smallest firms to be the most profitable on average [as

measured by the ratio of expected profits to the dollar amount long] may indicate that

0.80 percent roundtrip transactions costs are low. In addition to the bid-ask spread,

which is generally $0.125 or larger and will be a larger percentage of the price for

smaller stocks,2 6 the price impact of trades on these relatively thinly traded securities

may become important.

Evidence regarding the predictability of long horizon returns is somewhat mixed.

Perhaps the most well-known studies of a contrarian strategy using long horizon returns

are those of DeBondt and Thaler (1985, 1987) in which winners are sold and losers

are purchased, but where the holding period over which "winning" and "losing" is

determined is three years. Based on data from 1926 through 1981 they conclude that

the market overreacts since the losers outperform the winners. However, Chan (1988)

challenges their conclusion and finds that the performance differences can be largely

explained by differences in risk. Moreover, the behavior of DeBondt and Thaler's

(1985) cumulative average residual plots, and the results of Lehmann (1989), suggest

that short-horizon return reversals may be responsible for the long-horizon effect.

Fama and French (1988) and Poterba and Summers (1988) have also examined

the predictability of long horizon returns in a portfolio context, and conclude that

there is negative serial correlation in long horizon returns - a result which is consistent

with those of DeBondt and Thaler. However, this negative serial dependence is quite

sensitive to the sample period employed and may be largely due to the first ten to twenty

years of the 1926 to 1989 sample. 27 Furthermore, the statistical procedure on which

the long-horizon predictability is based has been questioned by Richardson (1988).

Richardson has shown that properly adjusting for the fact that multiple time horizons

[and test statistics] are considered simultaneously yields serial correlation estimates
that are statistically indistinguishable from zero.

These considerations point convincingly to short-horizon returns as the more im-

mediate source from which evidence of predictability and stock market overreaction

might be culled. Of course, this is not to say that nothing may be gleaned from a

careful investigation of returns over longer time spans. Indeed, it may be only at these

26 Smaller stocks tend to have lower prices.
27 ee Kim, Nelson, and Starts (1988).
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lower frequencies that the impact of economic factors such as the business cycle is

detectable. Moreover, to the extent that transaction costs are greater for strategies

exploiting short-horizon predictability, allowing the predictability to persist without

representing any unexploited profit opportunities, long-horizon predictability may be

the more significant issue.

6. Conclusion.

Traditional tests of the random walk hypothesis for stock market prices have gen-

erally focused on either the returns to individual securities or to portfolios of securities.

In this paper we show that the cross-sectional interaction of security returns over time

is an important aspect of stock price dynamics. As an example, we document the fact

that stock returns are often positively cross-autocorrelated, which reconciles the nega-

tive serial dependence in individual security returns with the positive autocorrelation

in market indexes. This also shows that stock market overreaction need not be the sole

explanation for the profitability in contrarian portfolio strategies. Indeed, the empirical

evidence suggests that less than 50 percent of the expected profits from a contrarian

investment rule may be attributed to overreaction; the majority of such profits is due

to the cross-effects among the securities. We have also shown that these cross-effects

have a very specific pattern for size-sorted portfolios: they display a lead-lag relation,

with the returns of larger stocks generally leading those of smaller ones.

The tantalizing question remains: What are the economic sources of positive cross-

autocorrelations across securities? One possibility that is consistent with lead-lag be-

havior is that different sectors of the economy have different sensitivities to macroe-

conomic shocks, sensitivities that may be determined by factors such as the degree of

vertical and horizontal integration, concentration, market share, etc. Why this should

manifest itself in size-sorted portfolios is still a mystery and remains to be investigated.

- 22 -
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Appendix 1 - Derivation of (3.4)

Irt(k)
i=l

1 N
= - N -k

= _ E 1it-k
i=l

1
E[7rt (k)] = - NF[Rt.

i=1

N

= -N (Rit-k - Rt-k)Ri t
i-1

i=l

Rit + Rmt-kRmt

-kRit + E[Rmt-kRmt]

-N E {Covl[Rit-k, Rit + } +
i=1

{ Cov[Rmt-k, Rmt] + m

1 N1 
N --tr(rk) - NE 't + 2N N I z N 2

i=1

tdrk 1 ( _E[irt(k)] = N2 N ·
N 2 tr(rk) -N
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(A1.2)

(A1.3)

(A1.4)

(A1.5)

(A1.6)

(A1.7)
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Appendix 2 - Sampling Theory for Ck, 0 k, and [7rt(k)]

To derive the sampling theory for the estimators Ck, Ok, and E[Irt(k)], we re-express

them as averages of artificial time series and then apply standard asymptotic theory to

those averages. We require the following assumptions:

(A2) For all t, i, j, and k the following condition is satisfied for finite constants

K > 0, 6 > 0, and r > 0:

E[IRJt_kRjtI4 (r+6 )] < K < oo. (A2.1)

(A3) The vector of returns Rt is either a-mixing with coefficients of size 2r/(r- 1)

or -mixing with coefficients of size 2r/(2r - 1).

These assumptions specify the trade-off between dependence and heterogeneity in Rt

that is admissible while still permitting some form of the central limit theorem to

obtain. The weaker is the moment condition (A2), the quicker the dependence in Rt

must decay, and vice-versa. 2 8 Observe that the covariance-stationarity of Rt is not

required. Denote by Ckt and Okt the following two time series:

N
Ckt -Rmt-kRmt - Am - (tkRit (A2.2)

1=1

where i and fim are the usual sample means of the returns to security i and the

equally-weighted market index respectively. Then the estimators Ck, Ok, and 2 ()

are given by:

28 See Phillips (1987) and White (1984) for further discussion of this trade-off.
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I T
Ck T- E C (A2.4)

t=k+ 1

1
o (A) = n (ainA) (A2.6)

i=l

Because we have not assumed covariance-stationarity, the population quantities Ck

and Ok obviously need not be interpretable according to (3.8) since the autocovariance

matrix of Rt may now be time-dependent. However, we do wish to interpret Ck and

O k as some fixed quantities which are time-independent, thus we require the following:

(A4) The following limits exist and are finite:

T
lim T-k E[Ckt] =r Ck (A2.7)

t=k+l

T
lim T ka E[Okt] = Ok * (A2.8)

t=k+1

Although the expectations E[Ckt] and E[Okt] may be time-dependent, assumption

(A4) asserts that their averages converge to well-defined limits, hence the quantities

Ck and Ok may be viewed as "average" cross- and own-autocovariance contributions

to expected profits. Consistent estimators of the asymptotic variance of the estimators

Ck and Ok may then be obtained along the lines of Newey and West (1987), and are
given by &a2 and a2 respectively, where:

r2 = T-k { %(O) + 2Zaj(q)' (j) (A2.9)
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2 =J ' # :i k ( +
0 = T (0kl 2 a(q) 'O',(j) (

3=1)

(A2.10)

aj(q) 1 - , q < T

and '%k (j) and ok (j) are the sample j-th order autocovariances of the time series Ckt

and Okt respectively, i.e.:

yk ()

ok (j) =

T

= 1k E (Ckt-_j-Ck)(Ckt - Ck)
t=k+j+l

(A2.11)

1 T
- ( j - k)(Ok - k)
t=k+j+l

(A2.12)

Assuming that q o(T1/4 ), Newey and West (1987) show the consistency of 2 and

a2 under our assumptions (A2)-(A4).29 Observe that these asymptotic variance esti-

mators are robust to general forms of heteroscedasticity and autocorrelation in the Ckt

and Okt time series. Since the derivation of heteroscedasticity- and autocorrelation-

consistent standard errors for the estimated expected profits E[7rt(k)] is virtually iden-

tical, we leave this to the reader.

29 In our empirical work we choose q = 8.
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Table 2a

Averages of autocorrelation coefficients for weekly returns on individual securities, for
the period 6 July 1962 to 31 December 1987. The statistic pj is the average of j-th
order autocorrelation coefficients of returns on individual stocks that have at least 52
non-missing returns. The population standard deviation (SD) is given in parentheses.
Since the autocorrelation coefficients are not cross-sectionally independent, the reported
standard deviations cannot be used to draw the usual inferences; they are presented merely
as a measure of cross-sectional variation in the autocorrelation coefficients.

11.88

Sample Number of Pl P2 P3 P4
Securities (SD) (SD) (SD) (SD)

All Stocks 4786 -0.034 -0.015 -0.003 -0.003
(0.084) (0.065) (0.062) (0.061)

Quintile 1 957 -0.079 -0.017 -0.007 -0.004
(0.095) (0.077) (0.068) (0.071)

Quintile 3 958 -0.027 -0.015 -0.003 -0.000
(0.082) (0.068) (0.067) (0.065)

Quintile 5 957 -0.013 -0.014 -0.002 -0.005
(0.054) (0.050) (0.050) (0.047)
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Table 2b

Averages of autocorrelation coefficients for daily returns on individual securities, for the
period 3 July 1962 to 31 December 1987. The statistic 53 is the average of j-th order
autocorrelation coefficients of returns on individual stocks that have at least 52 non-missing
weekly returns. The population standard deviation (SD) is given in parentheses. Since the
autocorrelation coefficients are not cross-sectionally independent, the reported standard
deviations cannot be used to draw the usual inferences; they are presented merely as a
measure of cross-sectional variation in the autocorrelation coefficients.

11.88

Sample Number of P P2 P3P4
Securities (SD) (SD) (SD) (SD)

All Stocks 4786 -0.014 -0.016 -0.015 -0.006
(0.101) (0.041) (0.036) (0.034)

Quintile 1 957 -0.093 -0.020 -0.017 -0.008
(0.106) (0.043) (0.040) (0.041)

Quintile 3 958 -0.008 -0.015 -0.017 -0.005
(0.094) (0.042) (0.038) (0.035)

Quintile 5 957 0.048 -0.015 -0.017 -0.008
(0.065) (0.033) (0.029) (0.028)
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Table 2c

Averages of autocorrelation coefficients for monthly returns on individual securities, for
the period 31 August 1962 to 31 December 1987. The statistic Pj is the average of j-th
order autocorrelation coefficients of returns on individual stocks that have at least 24 non-
missing monthly returns. The population standard deviation (SD) is given in parentheses.
Since the autocorrelation coefficients are not cross-sectionally independent, the reported
standard deviations cannot be used to draw the usual inferences; they are presented merely
as a measure of cross-sectional variation in the autocorrelation coefficients.

Number of
Securities

All Stocks

Quintile 1

Quintile 3

Quintile 5

4472

894

894

894

-0.029
(0.111)

-0.055
(0.131)

-0.019
(0.112)

-0.016
(0.084)

-0.017
(0.100)

-0.011
(0.115)

-0.011
(0.101)

-0.028
(0.079)

-0.002
(0.098)

-0.007
(0.113)

0.003
(0.097)

-0.005
(0.079)

-0.001
(0.094)

0.005
(0.107)

0.002
(0.087)

-0.004
(0.077)

11.88
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I(SD)
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(SD)
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(SD)
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Table 3a

Analysis of the profitability of the return-reversal strategy applied to weekly returns, for the sample of 551 CRSP NYSE-
AMEX stocks with non-missing weekly returns from 6 July 1962 to 31 December 1987 (1330 weeks). Expected profits is given
by E[re(k)] = Ck + Ok - o2 (p), where Ck depends only on cross-autocovariances and Oh depends only on own-autocovariances.
All z-statistics are asymptotically N(0,1) under the null hypothesis that the relevant population value is sero, and are robust to
heteroscedasticity and autocorrelation. The average long position It(k) is also reported, with its sample standard deviation in
parentheses underneath. The analysis is conducted for all stocks as well as for the five size-sorted quintiles; to conserve space,
results for the second and fourth quintiles have been omitted.

Portfolio Lag e,4 6 k c 2
(i)& tlrt(k)l l(k) %-e, %-6 k %. 02(A)

k (S-stat) (z-stat) (s-stat) (SD-)

All Stocks 1 0.841 0.862 0.009 1.694 151.9 49.6 $0.9 -0.5
(4.95) (4.64) (20.81) (31.0)

Quintile 1 1 2.048 2.493 0.009 4.532 208.8 45.2 55.0 -0.2
(6.36) (7.12) (18.81) (47.3)

Quintile 3 1 0.703 0.366 0.011 1.058 138.4 66.5 34.6 -1.0
(4.67) (2.03) (13.84) (32.2)

Quintile 5 1 0.188 0.433 0.005 0.617 117.0 30.5 70.3 -0.8
(1.18) (2.61) (11.22) (28.1)

All Stocks 2 0.253 0.298 0.009 0.542 151.8 46.7 54.9 -1.6
(1.64) (1.67) (10.63) (31.0)

Quintile 1 2 0.803 0.421 0.009 1.216 208.8 66.1 34.7 -0.7
(3.29) (1.49) (8.86) (47.3)

Quintile 3 2 0.184 0.308 0.011 0.481 138.3 38.3 64.0 -2.3
(1.20) (1.64) (7.70) (32.2)

Quintile 5 2 -0.053 0.366 0.005 0.308 116.9 -17.3 118.9 -1.6
(-0.39) (2.28) (5.89) (28.1)

All Stocks 3 0.223 -0.066 0.009 0.149 151.7 149.9 -44.0 -5.9
(1.60) (-0.39) (3.01) (30.9)

Quintile 1 3 0.552 0.038 0.009 0.582 208.7 94.9 6.6 -1.5
(2.73) (0.1-) (3.96) (47.3)

Quintile 3 3 0.237 -0.192 0.011 0.035 138.2 677.6 -546.7 -30.9
(1.66) (-1.07) (0.50) (32.1)

Quintile 5 3 0.064 -0.003 0.005 0.056 116.9 114.0 -5.3 -8.8
(0.39) (-0.02) (1.23) (28.1)

All Stocks 4 0.056 0.083 0.009 0.130 151.7 43.3 63.5 -6.7
(0.43) (0.51) (2.40) (30.9)

Quintile 1 4 0.305 0.159 0.009 0.455 208.7 67.0 34.9 -1.9
(1.53) (0.69) (3.27) (47.3)

Quintile 3 4 0.023 -0.045 0.011 -0.038 138.2 _ _
(0.18) (-0.26) (-0.44) (32.0)

Quintile 5 4 -0.097 0.128 0.005 0.026 116.8 -374.6 493.4 -18.8
(-0.65) (0.77) (0.52) (28.0)

' Multiplied by 10,000.
& Not computed when expected profits are negative.
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Table 3b

Analysis of the profitability of the return-reversal strategy applied to weekly returns, for the sample of 949 CRSP NYSE-AMEX
stocks with non-missing weekly returns during the period 6 July 1962 to 3 April 1975 (665 weeks). Expected profits is given
by E[rt (k)j = C& + Ok - c(p), where Ck depends only on cross-autocovariances and Ok depends only on own-autocovariances.
All s-statistics are asymptotically N(0,1) under the null hypothesis that the relevant population value is sero, and are robust to
heteroscedasticity and autocorrelation. The average long position It(k) is also reported, with its sample standard deviation in
parentheses underneath. The analysis is conducted for all stocks as well as for the five sie-sorted quintiles; to conserve space,
results for the second and fourth quintiles have been omitted.

Portfolio Lag 'a 6 k o2 (p)A) t[rt(k)]' i,() %- %-6k %_2 (A)
k (r-stat) (-stat) (s-stat) (SD')

All Stocks 1 1.194 1.191 0.019 2.366 164.0 50.5 50.3 -0.8
(5.34) (4.61) (15.36) (35.3)

Quintile 1 1 2.409 3.533 0.020 5.923 221.8 40.7 59.7 -0.3
(6.73) (8.84) (16.63) (49.0)

Quintile 3 1 1.196 0.445 0.020 1.621 154.4 73.8 27.5 -1.3
(5.10) (1.50) (10.&) (35.4)

Quintile 5 1 0.302 0.380 0.015 0.668 119.8 45.2 57.0 -2.2
(1.53) (1.64) (9.82) (28.5)

All Stocks 2 0.566 0.192 0.019 0.739 164.0 76.6 26.0 -2.6
(2.80) (0.86) (9.16) (35.3)

Quintile 1 2 1.128 0.305 0.020 1.413 221.8 79.8 21.6 -1.4
(3.83) (0.86) (7.71) (49.1)

Quintile 3 2 0.539 0.164 0.020 0.682 154.3 78.9 24.0 -3.0
(2.59) (0.73) (6.46) (35.4)

Quintile 5 2 0.149 0.248 0.015 0.382 119.8 38.9 65.0 -3.9
(1.09) (1.47) (5.52) (28.6)

All Stocks 3 0.314 -0.062 0.019 0.232 163.9 135.2 -26.9 -8.3
(1.42) (-0.24) (3.02) (35.3)

Quintile 1 3 0.583 0.156 0.020 0.719 221.7 81.1 21.7 -2.7
(2.06) (0.45) (4.06) (49.1)

Quintile 3 3 0.385 -0.174 0.020 0.190 154.2 202.1 -91.4 -10.7
(1.61) (-0.61) (1.83) (35.4)

Quintile 5 3 0.227 -0.044 0.015 0.168 119.7 134.7 -26.0 -8.8
(1.05) (-0.17) (2.73) (28.6)

All Stocks 4 0.149 0.030 0.019 0.159 163.8 93.2 19.0 -12.1
(0.78) (0.13) (2.18) (35.2)

Quintile 1 4 0.347 0.103 0.020 0.430 221.6 80.8 23.8 -4.6
(1.17) (0.27) (2.64) (49.1)

Quintile 3 4 0.169 -0.152 0.020 -0.004 154.0 _ -_

(0.84) (-0.62) (-0.04) (35.1)
Quintile 5 4 -0.025 0.075 0.015 0.035 119.6 -71.4 213.2 -41.8

(-0.14) (0.38) (0.69) (28.6)

I Multiplied by 10,000.
6 Not computed when expected profits are negative.

3.3
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Table Sc

Analysis of the profitability of the return-reversal strategy applied to weekly returns, for the sample of 1172 CRSP NYSE-
AMEX stocks with non-missing weekly returns during the period 4 April 1975 to 31 December 1987 (665 weeks). Expected
profits is given by E[rt(k)] = C + OA - o2 (p), where Ct depends only on cros-autocovariances and Ok depends only on
own-autocovariances. All s-statistics are asymptotically N(0,1) under the null hypothesis that the relevant population value
is zero, and are robust to heteroscedasticity and autocorrelation. The average long position It(k) is also reported, with its
sample standard deviation in parentheses underneath. The analysis is conducted for all stocks as well as for the five size-sorted
quintiles; to conserve space, results for the second and fourth quintiles have been omitted.

Portfolio Lag &* k' u a2 (2)' .[r,(k)]' 1,(k)' %(k %-6 k %.
2(()

k (i-stat) (z-stat) (s-stat) (SD')

All Stocks 1 1.022 1.105 0.026 2.101 167.7 48.7 52.6 -1.2
(3.16) (3.10) (17.05) (31.6)

Quintile 1 1 1.897 2.873 0.031 4.739 217.8 40.0 60.6 -0.6
(3.83) (5.18) (15.25) (47.2)

Quintile 3 1 1.038 0.689 0.031 1.696 161.4 61.2 40.6 -1.8
(3.10) (1.88) (12.43) (31.7)

Quintile 5 1 0.465 0.368 0.014 0.819 128.9 56.7 44.9 -1.7
(1.77) (1.47) (9.58) (28.8)

All Stocks 2 0.211 0.438 0.026 0.622 167.5 33.8 70.4 -4.2
(0.75) (1.36) (8.38) (31.4)

Quintile 1 2 0.788 0.665 0.031 1.422 217.7 55.4 46.7 -2.2
(1.92) (1.57) (7.72) (47.2)

Quintile 3 2 0.220 0.237 0.031 0.426 161.2 51.7 55.6 -7.4
(0.79) (0.68) (3.65) (31.5)

Quintile 5 2 -0.083 0.317 0.014 0.220 128.9 -37.8 144.0 -6.2
(-0.33) (1.09) (3.04) (28.8)

All Stocks 3 0.277 -0.025 0.026 0.225 167.4 122.9 -11.3 -11.6
(1.30) (-0.10) (3.22) (31.2)

Quintile 1 3 0.816 -0.178 0.031 0.608 217.5 134.3 -29.3 -5.1
(3.05) (-0.54) (3.69) (47.1)

Quintile 3 3 0.277 0.109 0.031 0.354 161.0 78.2 30.7 -8.8
(1.19) (0.39) (3.83) (31.2)

Quintile 5 3 -0.028 0.042 0.014 0.000 128.8 -7949.7 11873.6 -3823.9
(-0.13) (0.18) (0.01) (28.7)

All Stocks 4 0.098 0.088 0.026 0.160 167.3 61.2 55.2 -16.4
(0.45) (0.34) (2.09) (31.1)

Quintile 1 4 0.407 0.063 0.031 0.439 217.5 92.8 14.2 -7.0
(1.50) (0.19) (2.57) (47.2)

Quintile 3 4 0.124 -0.054 0.031 0.038 160.9 324.3 -142.2 -82.0
(0.55) (-0.20) (0.38) (31.0)

Quintile 5 4 -0.034 0.104 0.014 0.056 128.7 -61.1 185.3 -24.1
(-0.15) (0.42) (0.84) (28.7)

* Multiplied by 10,000.
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Table 4

Autocorrelation matrices of the vector Zt = [Rlt R2 t R3t R4t Rst Rmt]' where Rit is the return on the
portfolio of stocks in the i-th quintile, i = 1, .. ., 5 and R,,t is the return on the equal-weighted index, for
the sample of 551 stocks with non-missing weekly returns from 6 July 1962 to 31 December 1987 (1330
observations). Note Tk = D- 1/2E(Zt,_k - )(Zt - p)']D-/ 2 , where D diag[ol,..., r,a,]. Asymptotic
standard errors for the autocorrelations under an i.id. null hypothesis are given by * = 0.027.

R1 R2 R3 R4 Rs R.
R1 1.000 0.919 0.857 0.830 0.747 0.918
R2 0.919 1.000 0.943 0.929 0.865 0.976

-= R3 0.857 0.943 1.000 0.964 0.925 0.979
R4 0.830 0.929 0.964 1.000 0.946 0.974
R5 0.747 0.865 0.925 0.946 1.000 0.933
Rm 0.918 0.976 0.979 0.974 0.933 1.000

R1 R2 R3 R4 R5s Rm
R1 0.333 0.244 0.143 0.101 0.020 0.184
R2 0.334 0.252 0.157 0.122 0.033 0.195

- R3 0.325 0.265 0.175 0.140 0.051 0.207
R4 0.316 0.262 0.177 0.139 0.050 0.204
Rs 0.276 0.230 0.154 0.122 0.044 0.178
Rm 0.333 0.262 0.168 0.130 0.041 0.202

R1 R2 R3 R4 R5 Rm
R1 0.130 0.087 0.044 0.022 0.005 0.064
R2 0.133 0.101 0.058 0.039 0.017 0.076

-t R3 0.114 0.088 0.046 0.027 0.002 0.061
R4 0.101 0.085 0.048 0.029 0.008 0.059
R5 0.067 0.055 0.020 0.008 -0.012 0.031
Rm 0.115 0.087 0.045 0.026 0.004 0.061

R1 R2 R3 R4 R5 Rm

R1 0.089 0.047 0.015 0.013 -0.005 0.036
R2 0.094 0.066 0.038 0.041 0.018 0.056

-3 R3 0.096 0.079 0.059 0.061 0.041 0.072
R4 0.084 0.067 0.047 0.049 0.031 0.059
R5 0.053 0.044 0.031 0.034 0.015 0.038
Rm 0.087 0.063 0.038 0.040 0.020 0.054

R1 R2 R3 R4 R5 R.
R1 0.050 0.001 -0.014 -0.029 -0.030 -0.002
R2 0.064 0.023 -0.002 -0.012 -0.020 0.014

- R3 0.065 0.029 0.006 -0.002 -0.017 0.019
R4 0.072 0.042 0.017 0.005 -0.008 0.029
R5 0.048 0.023 0.002 -0.007 -0.022 0.011
R. 0.062 0.024 0.001 -0.010 -0.021 0.014

11.88
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