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1. Introduction.

That economic time series may exhibit long-range dependence has been a hypoth-

esis of many early theories of the trade and business cycles. Such theories were often

motivated by the distinct but non-periodic cyclical patterns that typified plots of eco-

nomic aggregates over time. Economic data often display cycles of many periods, some

that seem nearly as long as the span of the sample. In the frequency domain such time

series are said to have power at the low frequencies. So common was this particular

feature of the data that Granger (1966) dubbed it the "typical spectral shape of an

economic variable," whereas Mandelbrot and Wallis (1968) used the more colorful term

"Joseph Effect." 1

Nature's predilection towards long-range dependence has been well-documented

in the natural sciences such as hydrology, meteorology, and geophysics and to the

extent that the ultimate sources of economic uncertainty are natural phenomena like

weather or sunspots, we might also expect long-term memory in economic time series.2

Among the first to have considered the impact of persistent statistical dependence in

asset prices was Mandelbrot (1971), who argued that the random walk and martingale

models of speculative prices may not be realizable through arbitrage in the presence of

long-term memory. Since then, several empirical studies have lent further support to

the possibility of such persistence in financial asset prices. For example, Greene and

Fielitz (1977) claim to have found long-range dependence in the daily returns of many

securities listed on the New York Stock Exchange. More recent investigations have

uncovered anomalous behavior in long-horizon stock returns; 3 alternately attributed

to speculative fads and to time-varying conditional expected returns, these long-run

swings may be further evidence of the Joseph Effect.

The presence of long-memory components in asset returns has important impli-

cations for many of the paradigms used in modern financial economics. For example,

optimal consumption/savings and portfolio allocation decisions may become extremely

sensitive to the investment horizon if stock returns were long-range dependent. Prob-

lems also arise in the pricing of derivative securities such as options and futures via

1 This refers to the passage in the Book of Genesis Chapter 42] in which Joseph foretold the seven years of plenty
followed by the seven years of famine that Egypt was to experience.

2 See Haubrich and Lo (1989) for a more mundane theory of long-range dependence in economics.
8 See DeBondt and Thaler (1985), Fama and French (1988), Jegadeesh (1988, 1989), and Poterba and Summers (1988)

for example.
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martingale methods, since long-term memory is inconsistent with the martingale prop-

erty. Traditional tests of the Capital Asset Pricing Model and the Arbitrage Pricing

Theory are no longer valid since standard methods of statistical inference do not ap-

ply to time series displaying such persistence. The conclusions of more recent tests of

"efficient" markets or stock market rationality also hang precariously on the presence

or absence of these non-periodic cycles in asset returns.4

In this paper we test for such forms of long-range dependence using a simple gen-

eralization of a statistic first proposed by the English hydrologist Harold Edwin Hurst

(1951). This statistic, called the "rescaled range" or "range over standard deviation"

or "R/S" statistic, has subsequently been refined by Mandelbrot (1972, 1975) and

others in several important ways. 5 However, even its refinements cannot distinguish

between short and long run dependence [in a sense to be made precise below], a severe

shortcoming in applications of R/S analysis to recent stock returns data since it is

now well-known that such data display substantial short-range dependence. 6 To be of

general interest, an empirical investigation of long-term memory in stock returns must

account for the presence of low-order autocorrelation. By modifying the rescaled range

appropriately, we construct a test statistic that is robust to short-term dependence and

apply it to daily, weekly, monthly, and annual stock market returns indexes over sev-

eral different sample periods. In contrast to the findings of Greene and Fielitz (1977),

we find no evidence of long-range dependence in the data for any sample period or

sub-period once the effects of short run dependence are accounted for. Monte Carlo

experiments indicate that the modified R/S test has power against at least two particu-

lar models of long-run memory, suggesting that the time series behavior of stock returns

may be adequately captured by more conventional stochastic models with short-range

dependence.

The particular notions of short and long memory are defined in Section 2 and some

illustrative examples are provided. Section 3 reviews the original rescaled range statistic

and discusses its limitations. In Section 4 the modified R/S statistic is presented and

an asymptotic sampling theory is developed via functional central limit theory. The

results of the empirical investigation are reported in Section 5, size and power issues

are discussed in Section 6, and we conclude in Section 7.

'Merton (1987) provides an excellent survey of the recent literature.
6 See Mandelbrot and Taqqu (1979) and Mandelbrot and Wallis (1968, 1969a-c).

See Lo and MacKinlay (1988).
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2. Long-Range Versus Short-Range Dependence.

To develop a method of detecting long-term memory the distinction between long-

range and short-range statistical dependence must be made precise. One of the most

widely used concepts of short-range dependence is the notion of "strong-mixing" due

to Rosenblatt (1956), a measure of the decline in statistical dependence of two events

separated by successively longer spans of time. Heuristically, a time series is strong-

mixing if the maximal dependence between any two events becomes trivial as more time

elapses between them.7 By controlling the rate at which the dependence between past

and future events declines, it is possible to extend the usual laws of large numbers and

central limit theorems to dependent sequences of random variables. We adopt strong-

mixing as an operational definition of short-range dependence in our null hypothesis of

Section 4.

Such mixing conditions have been used extensively by White (1982), White and

Domowitz (1984), and Phillips (1987) for example to relax the assumptions that ensure

consistency and asymptotic normality of various econometric estimators. As Phillips

(1987) observes, these conditions are satisfied by a great many stochastic processes

including all Gaussian finite-order stationary ARMA models. Moreover, the inclusion

of a moment condition also allows for heterogeneously distributed sequences [such as

those exhibiting unconditional heteroscedasticity], an especially important extension in

view of the apparent instabilities of financial time series.

2.1. An Example of Long-Range Dependence.

In contrast to the short memory of "weakly dependent" [i.e., mixing] processes,

natural phenomena often display long-term memory in the form of non-periodic cy-

cles. This has lead several authors, most notably Mandelbrot, to develop stochastic

7 Let {Xt(w)} be a stochastic process on the probability space (, T,P) and define:

a(A,B) - sup IP(AnB)-P(A)P(B)I A c 7,B c 7 .
{AEA.BEB)

The quantity a(A, B) is a measure of the dependence between the two a-fields A and B in 7. Denote by B' the Borel
a-field generated by {X,(w),... ,Xt(w)}, i.e., B' = o(X,(w),...,Xt(w)) C 7. Define the coefficients ak as:

Ct E supa(B4,Bj0 +0).

Then {Xt(w)} is said to be strong-mixing if limk-.oo a = 0. There are several other ways of measuring the degree
statistical dependence, giving rise to other notions of mixing." For further details, see Rosenblatt (1956), White (1984),
and the papers in Eberlein and Taqqu (1986).
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models that exhibit dependence even over very long time spans, such as the fractionally-

integrated time series models of Mandelbrot and Van Ness (1968), Granger and Joyeux

(1980), and Hosking (1981). These stochastic processes possess autocorrelation func-

tions that decay at much slower rates than those of weakly dependent processes, and

violate the conditions of strong-mixing. For concreteness, let Xt satisfy the following

difference equation:

(1-L)dXt = Et Et WN(o, a2)

where L is the lag operator and t is white noise. Granger and Joyeux (1980) and

Hosking (1981) show that when the quantity (1 - L)d is extended to non-integer pow-

ers of d in the [mathematically] natural way, the result is a well-defined time series

that is said to be fractionally-differenced" [or, equivalently, "fractionally-integrated"].

Briefly, this involves expanding the expression (1 - L)d via the binomial theorem for

non-integer powers:

E)(-)k d) Lk
k=O (d)

d(d- l)(d-2).. (d-k + 1)
k! (2.2)k!

and then applying the expansion to Xt:

00

= EAkXt-k
k=O

where the AR coefficients Ak are often re-expressed

gamma function:

Ak = (_l)k() =
kk

= Et (2.3)

more compactly in terms of the

r(k- d).
r(-d)r(k + ) 

(2.4)

Xt may also be viewed mechanically as an infinite-order MA process since:

-4-

(2o1)

(1 - L)d =

(1 - L)dXt =E(1)k Lkxt.
k=O
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Bk = (1-r(k + d)X (1-L)-dEt = B(L)t Bk = r( )r(k +1) (2.5)

It is not obvious that such a definition of fractional-differencing might yield a use-

ful stochastic process, but Granger (1980), Granger and Joyeux (1980), and Hosking

(1981) show that the characteristics of fractionally-differenced time series are interest-

ing indeed. For example, it may be shown that Xt is stationary and invertible for

d E (-j, ),8 and exhibits a unique kind of dependence that is positive or negative de-

pending on whether d is positive or negative; that is, the autocorrelation coefficients of

Xt are of the same sign as d. So slowly do the autocorrelations decay that when d is pos-

itive their sum diverges to infinity, and collapses to zero when d is negative. To develop

a sense of this long-range dependence, compare the autocorrelations of a fractionally-

differenced Xt with those of a stationary AR(1) in Table 1. Although both the AR(1)

and the fractionally-differenced [d = 1] series have first-order autocorrelations of 0.500,

at lag 25 the AR(1) correlation is 0.000 whereas the fractionally-differenced series has

correlation 0.173, declining only to 0.109 at lag 100.

2.2. A More Interesting Example.

It is a simple matter to construct long-term memory processes with more realistic

autocorrelation functions, ones that exhibit both positive and negative dependence

at various lags. This is particularly relevant for stock returns since recent evidence

suggests that short-horizon returns are positively autocorrelated whereas longer-horizon

returns seem to display negative serial dependence. For example, Lo and MacKinlay

(1988) show that the ratios of k-week stock return variances to k times the variance of

one-week returns generally exceed unity when k is small [2 to 32]. However, Poterba

and Summers (1988) find that this same variance ratio falls below one when k is much

larger [96 and greater].

Denote by Rt the time-t return on a stock and let Rt be the sum of two components

Xt and Yt where:

(1 - L)dXt = Et (1 - pL)Yt = tit (2.6)

-5-

8 See, for example, Hosking (1981).

1^1�___1�_11_1____11_�----�_--____�I___�
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and we choose the values (-0.2, 0.25, 1, 1.1) for the parameters (d,p, a2, 2). Let the

ratio of the k-period return variance to k times the variance of Rt be denoted by VR(k).

Then a simple calculation will show that for the parameter values chosen:

VR(2) = 1.04 VR(10) = 1.04

VR(3) = 1.06 VR(50) = 0.97

VR(4) = 1.07 VR(100) = 0.95

VR(5) = 1.06 VR(250) = 0.92

The simple intuition for this pattern of variance ratios comes from observing that

VR(k) is a weighted sum of the first k - 1 autocorrelation coefficients of Rt with

linearly declining weights. 9 When k is small the autocorrelation of Rt is dominated by

the positively autocorrelated AR(1) component Yt. But since the autocorrelations of

Yt decay rapidly relative to those of Xt, as k grows the influence of the long-memory

component eventually outweighs that of the AR(1), ultimately driving the variance

ratio below unity.

3. The Classical R/S Statistic.

To detect long-range dependence [also called "strong dependence"], Mandelbrot

has suggested using the range over standard deviation or R/S statistic, also called the

"rescaled range," which was developed by Hurst (1951) in his studies of river discharges.

The R/S statistic is the range of partial sums of deviations of a time series from its

mean, rescaled by its standard deviation. Specifically, let Pt denote the price of an

asset at time t and define Xt = log Pt - log Pt-1 to be the continuously compounded

single-period return of that asset from t - 1 to t. We assume throughout that:

Xt = + t. (3.1)

Specifically, if Pk is the k-th order autocorrelation coefficient, then:

VR(k) = 1+ 2E k -p
j=1
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where It is an arbitrary but fixed parameter. Consider a sample of returns X 1, X 2 ,..., X

and let 9Xn denote the sample mean 1 Ej Xj. Then the classical re-scaled range statis-

tic, which we shall call Q,n, is given by:

k k

Qn -lM X - Mn (X Xn)] (3.2)
-- j=1

where Sn is the usual [maximum likelihood] standard deviation estimator:

[1 > (X - X) 2] 2 . (3.3)

The first bracketed term in (3.2) is the maximum lover k] of sum of the first k deviations

of Xj from its sample mean. Since the sum of all n deviations of Xj's from their mean is

zero, this maximum is always non-negative. The second term in (3.2) is the minimum

[over k] of this same sequence of partial sums, hence it is always non-positive. The

difference of the two quantities, called the "range" for obvious reasons, is always non-

negative hence Qn > 0.

The behavior of Qn may be better understood by considering its origins in hy-

drological studies of reservoir design. To accommodate seasonalities in riverflow, a

reservoir's capacity must be chosen to allow for fluctuations in the supply of water

above the dam while still maintaining a relatively constant flow of water below the

dam. Since dam construction costs are immense, the importance of estimating the

reservoir capacity necessary to meet long term storage needs is apparent. The range

is an estimate of this quantity. If Xj is the riverflow [per unit time] above the dam

and Xn is the desired riverflow below the dam, the bracketed quantity in (3.2) is the

capacity of the reservoir needed to ensure this smooth flow given the pattern of flows in

periods 1 through n.10 This is most readily appreciated through a simple four-period

numerical example in which we assume the riverflows to be 100, 50, 100, and 50 per

year. If a constant annual flow of 75 below the dam is desired each year, a reservoir

must have a minimum total capacity of 25 since it must store 25 units in years 1 and

IlIf some other smoothed flow Zn is desired below the dam in each of the n periods, (3.2) still yields the necessary
capacity if J.n is replaced by Zn.
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3 to provide for the relatively dry years 2 and 4. Now suppose the natural pattern

of riverflow is 100, 100, 50, 50. To ensure a flow of 75 below the dam in this case,

the minimum capacity must increase to 50 so as to accommodate the excess storage

needed in years 1 and 2 to supply water during the "dry spell" in years 3 and 4. Seen

in this context, it is clear that an increase in persistence will increase the required

storage capacity as measured by the range. Indeed, it was the apparent persistence of

"dry spells" in Egypt that sparked Hurst's life-long fascination with the Nile, leading

eventually to his interest in the rescaled range.1 1

In several seminal papers Mandelbrot, Taqqu, and Wallis demonstrate the supe-

riority of R/S analysis to more conventional methods of determining long-range de-

pendence [such as autocorrelation analysis, spectral analysis, and variance ratios]. 12

However, the rescaled range is also sensitive to short-range dependence. To see how,

suppose the null hypothesis is that {Xj} is an independently and identically distributed

sequence. Then it is well-known [and is a special case of Theorem 3.1 below] that as n

increases without bound, the rescaled range converges in distribution to a well-defined

random variable V when properly normalized, i.e.,

1 
-Qn #- V (3.4)

where '.' denotes weak convergence and V is the range of a Brownian bridge on the

unit interval.1 3 If {Xj) were generated by a long-range dependent process, the behavior

of Q, would not be consistent with (3.4). Therefore, a test of the null hypothesis may

be conducted by computing Q, and checking the compatibility of the point estimate

with the theoretical distribution of V. But suppose, instead, that {X}j were generated

by a stationary AR(1):14

Xt = pXt-1 + Et , t - WN(O, r2) , IplE (0,1). (3.5)

l The rescaled range was not Hurst's primary contribution to hydrology since the origin of the range statistic may be
traced back to Rippl (1883). The importance of Hurst's (1951, 1956) papers lies in his then startling discovery that the
rescaled range grows as nH where H is between 0.6 and 0.8 for hydrological applications. At the time, virtually all time
series models predicted an H of .

1 2 Mandelbrot (1972, 1975), Mandelbrot and Taqqu (1979), and Mandelbrot and Wallis (1968, 1969a-c).
1 s See Billingsley (1968) for the definition of weak convergence. We discuss the Brownian bridge and V more formally in

Section 4.
14It is implicitly assumed throughout that white noise has a Lebesgue-integrable characteristic function to avoid the

pathologies of Andrews (1984).
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Although (3.5) is short-range dependent, it yields a Qn that does not satisfy (3.4). In

fact, it may readily be shown that for a stationary AR(1) the limiting distribution of

Q~/VJ is V where = /(1 + p)/(1 - p) .15 For some portfolios of common stock p

is as large as 50 percent, 16 implying that the mean of Q/ may be biased upward by

73 percent! Since the mean of V is V/ ; 1.25, the mean of the classical rescaled range

would be 2.16 for such an AR(1) process. Using the critical values of V reported in

Table 2a, it is evident that a value of 2.16 would yield a rejection of the null hypothesis

at any conventional significance level. This is not surprising since the values in Table

2a correspond to the distribution of V, not V. Of course, by taking into account

the "short-term" autocorrelations of the Xi's we may restore convergence to V. But

this requires knowing the data-generating process which would eliminate the need for

testing altogether.

Although aware of the effects of short-range dependence on the rescaled range,

Mandelbrot (1972, 1975) did not correct for this bias since his focus was the relation

of the R/S statistic's logarithm to the logarithm of the sample size as the sample size

increases without bound. For short-range dependent time series such as strong-mixing

processes the ratio log Qn/ log n approaches ½ in the limit, but converges to quantities

greater or less than ½ according to whether there is positive or negative long-range

dependence. The limit of this ratio is often denoted by H and is called the "Hurst"

coefficient. 17 Mandelbrot suggests estimating the Hurst coefficient by plotting the

logarithm of Qn against the logarithm of the sample size n; beyond some large n, the

slope of such a plot should settle down to H.1 8 However, although H = across

general classes of short-range dependent processes, the finite-sample properties of the

estimated Hurst coefficient are not invariant to the form of short run dependence. For

example, Davies and Harte (1987) show that even though the Hurst coefficient of a

stationary Gaussian AR(1) is precisely , the 5 percent Mandelbrot regression test

rejects this null hypothesis 47 percent of the time for an autoregressive parameter of

0.3. Additional Monte Carlo evidence is reported in Section 6.

1 6 See Proposition 4.1.
16 See Lo and MacKinlay (1988).
17For the fractionally-differenced process (2.1) we have the simple relation: H = d + 1/2.
is These are the Upox diagrams" of Mandelbrot and Wallis (1969a).
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4. The Modified R/S Statistic.

To distinguish between long- and short-range dependence, we must modify the

R/S statistic so that its statistical behavior is invariant over a general class of short

memory processes, but deviates for long memory processes. Since Xt = + Et, whether

or not Xt exhibits long-term memory depends on the properties of the sequence of

disturbances {Et}. The particular properties that comprise our null hypothesis of short-

range dependence are given in Section 4.1 and we derive the limiting behavior of the

modified R/S statistic under this null in Sections 4.2 to 4.4.

4.1. The Null Hypothesis.

Our null hypothesis consists of the following assumptions for {Et}:

(Al) E[Et] = 0 for all t.

(A2) supt E[ItO] < oo for some > 2 

(A3) 0 < 2 = limn- ooE [ (3=1 ) < 00.

(A4) {Et} is strong-mixing with mixing coefficients ak that satisfy:

oo 1-2

E a < 0.

j= 1

Condition (Al) is standard. Conditions (A2) through (A4) are restrictions on the

maximal degree of dependence and heterogeneity allowable while still permitting some

form of the law of large numbers and the [functional] central limit theorem to obtain.

Although condition (A2) rules out infinite variance marginal distributions of Et such

as those in the stable family with characteristic exponent less than 2, the disturbances

may still exhibit leptokurtosis via time-varying conditional moments [e.g. conditional

heteroscedasticity]. Moreover, since there is a trade-off between conditions (A2) and

(A4), the uniform bound on the moments can be relaxed if the mixing coefficients

decline faster than (A4) requires. 19 For example, if we require Et to have finite absolute
1 9 See Herrndorf (1985). One of Mandelbrot's (1972) arguments in favor of R/S analysis is that finite second moments

are not required. This is indeed the case if we are interested only in the almost sure convergence of the statistic. But since
we wish to derive its limiting distribution for purposes of inference, a stronger moment condition is needed.
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moments of all orders (corresponding to - oo], then ak must decline faster than

1/k. However, if we restrict t to have finite moments only up to order 4 then ak must

decline faster than 1/k 2 . These conditions are discussed at greater length by Phillips

(1987), to which we refer interested readers.

Although conditions (Al) - (A4) have been widely cited in the recent literature,

several other sets of assumptions might have served equally well as our short-range

dependent null hypothesis. For example, if we assume {Et} to be stationary and ergodic,

the moment condition (A2) can be relaxed and more temporal dependence than (A4)

is allowable.2 0 Whether or not the assumption of stationarity is a restrictive one for

financial time series is still unsettled. There is ample evidence of changing variances

in stock returns over periods longer than 5 years, but unstable volatilities can be a

symptom of conditional heteroscedasticity which can manifest itself in stationary time

series. Since the empirical evidence regarding changing conditional moments in asset

returns is mixed, allowing for non-stationarities in our null hypothesis may still have

value. Moreover, conditions (Al) - (A4) may be weakened further, allowing for still

more temporal dependence and heterogeneity, hence widening the class of processes

contained in our null hypothesis.2 1

Conditions (Al) - (A4) are also satisfied by many of the recently proposed stochas-

tic models of persistence, such as those of Campbell and Mankiw (1987), Fama and

French (1988), and Poterba and Summers (1988). Consequently, our null hypothesis of

short-range dependence encompasses their notions of longer-term correlation. Although

the distinction between dependence in the short-run and the long-run may appear to

be a matter of degree, strongly dependent processes behave so differently from weakly

dependent time series that the dichotomy proposed in our null seems most natural. For

example, the spectral densities at frequency zero of strongly dependent processes are

either unbounded or zero whereas they are non-zero and finite for processes included in

our null. The partial sums of strongly dependent processes do not converge in distri-

bution at the same rate as weakly dependent series. And graphically, their behavior is

marked by cyclical patterns of all kinds, some that are virtually indistinguishable from

trends.
2 0 See Hall and Heyde (1980).
21 Specifically, that the sequence {at} is strong-mixing may be replaced by the weaker assumption that it is a near-epoch

dependent function of a strong-mixing process. See McLeish (1977) and Wooldridge and White (1988) for further details.
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4.2. The Test Statistic.

Given a sample of observations X 1, X 2 ,..., Xn the modified rescaled range,

which we denote by Qn, is defined as:

k k

Qn n)l - 1kn ( - Xn)] (4.1)
an(q) 1k<n E(Xj -'M EM(ki - )(.

where

n 2f ql
2()- 1 y(X j - Xn) 2 + - Z wj(q) E (Xi- Xn)(Xi_j - Xn) (4.2)

/=1j=1 j+1

2 q
2 + 2 wj(q)j j (q) _ q < n . (4.3)= z + z, wyq) = 1- q<n. (4.3)

j=1

and 6 2 and j are the usual sample variance and autocovariance estimators of X.

Qn differs from Qn only in its denominator, which is the square root of a consistent

estimator of the partial sum's variance. If {Xt} is subject to short-range dependence,

the variance of the partial sum is not simply the sum of the variances of the individual

terms, but also includes the autocovariances. Therefore, the estimator an(q) involves

not only sums of squared deviations of Xj, but also its weighted autocovariances up

to lag q. The weights wy(q) are those suggested by Newey and West (1987) and al-

ways yield a positive 2(q), an estimator of the spectral density function of Xt at

frequency zero using a Bartlett window. Theorem 4.2 of Phillips (1987) demonstrates

the consistency of &n(q) under the following conditions:

(A2') supt E[Etl2 s] < oo for some > 2 .

(A5) As n increases without bound, q also increases without bound such that

q o(nl/4).
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By allowing q to increase with [but at a slower rate than] the number of observations

n, the denominator of Qn adjusts appropriately for general forms of short-range de-

pendence. Of course, although the conditions (A21) and (A5) ensure the consistency of

&2 (q), they provide little guidance in selecting a truncation lag q. Monte Carlo studies

have shown that when q becomes large relative to the sample size n, the finite-sample

distribution of the estimator can be radically different from its asymptotic limit.2 2

However q cannot be chosen too small since the autocovariances beyond lag q may be

substantial and should be included in the weighted sum. Therefore, the truncation lag

must be chosen with some consideration of the data at hand. Andrews (1988) does

provide a data-dependent rule for choosing q, however its minimax optimality is still

based on an asymptotic mean-squared error criterion; little is known about how best

to pick q in finite samples. We report some suggestive Monte Carlo evidence in Section

6.

Since there are several other consistent estimators of the spectral density function

at frequency zero, conditions (A2') and (A5) can be replaced with weaker assumptions

if conditions (Al), (A3), and (A4) are suitably modified. If, for example, Xt is m-

dependent [so that observations spaced greater than m periods apart are independent],

Hansen (1982, Lemma 3.2) shows that the spectral density and frequency zero may be

estimated consistently with a finite number of [unweighted] autocovariances. 23 Other

alternatives may be found in Hannan (1970, chapter V.4).

4.3. The Asymptotic Distribution of Qn.

To derive the limiting distribution of the modified rescaled range Qn under our

null hypothesis, consider the behavior of the following standardized sum:

1
W,(r) - /Sr] r E [0,1] (4.4)

where Sk denotes the partial sum E=_1 Ej and [nr] is the greatest integer less than or

equal to nr. The sample paths of Wn(r) are elements of the function space D [0, 1], the

space of all real-valued functions on [0, 1] that are right-continuous and possess finite

22 See Lo and MacKinlay (1989).
23 Hansen also requires stationarity, ergodicity, and some moment conditions.
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left limits. Under certain conditions it may be shown that Wn(r) converges weakly

to a Brownian motion W(r) on the unit interval, and that well-behaved functionals of

Wn(r) converge weakly to the same functionals of Brownian motion. 2 4 Since we apply

these two results extensively in deriving the limiting distribution of Qn, we state them

here for reference:

Lemma 4.1. [Herrndorf (1984)] If {et} satisfies assumptions (A1)-(A4) then as n

increases without bound, Wn(r) W(r).

Lemma 4.2. [Extended Continuous Mapping Theorem]2 5 Let hn and h be measur-

able mappings from D[O, 1] to itself and denote by E the set of x E D[O, 1] such that

hn(x,) - h(x) fails to hold for some sequence x, converging to x. If Wn(r) W(r)

and E is of Wiener-measure zero, i.e. P(W E E) = 0, then hn(Wn) = h(W).

Armed with these results, the limiting distribution of the modified rescaled range may

be derived in three easy steps, summarized in:2 6

Theorem 4.1. 27 If {Et} satisfies assumptions (Al), (A2'), (A3)- (A5), then as n

increases without bound:

k
(a) (MaxX 1x - 9 Ma W (r) MO

k

(b) ( - =. Min W (r) - m
l<k<n 0n(q)/n - X O<r<l

(c) Q M ° - m° V.

Parts (a) and (b) of Theorem 4.1 follows from Lemmas 4.1, 4.2 and Theorem 4.2

of Phillips (1987), and shows that the maximum and minimum of the partial sum

24 See Billingsley (1968) for further details.
25 See Billingsley (1968) for a proof.
26Mandelbrot (1975) derives similar limit theorems for the statistic Qn under the more restrictive i.i.d. assumption, in

which case the limiting distribution will coincide with that of Q. Since we wish to expand our null hypothesis to include
weakly dependent disturbances, we extend his results via the more general functional central limit theorem of Herrndorf
(1984, 1985).

27 Proofs of theorems are provided in the Appendix.
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of deviations of Xj from its mean converges to the maximum and minimum of the

celebrated Brownian bridge W 0 (r) on the unit interval, also called "pinned" or tied-

down" Brownian motion because W°(0) = W 0 (1) = 0. That the limit of the partial

sums is a Brownian bridge is not surprising since the summands are deviations from

the mean and must therefore sum to zero at k = n. Part (c) of the theorem follows

immediately from Lemma 4.2 and is the key result, allowing us to perform large sample

statistical inference once the distribution function for the range of the Brownian bridge

is obtained. Since the joint distribution of the maximum M ° and minimum m of

the Brownian bridge is well-known [see Billingsley (1968)], the distribution function of

their difference may be readily derived: 2 8

Theorem 4.2. The distribution and density functions of V M - m ° , denoted by

Fv(v) and fv(v) respectively, are given by:

oo

Fv(v) = 1 + 2 (k-4k2v2)e- 2(kv) 2 (4.5)
k=l

fv(v) = 4v E k 2 (4k 2 v 2 - k - 2)e - 2(kv) 2 . (4.6)
k=l

Critical values for tests of any significance level are easily obtained from the simple

expression (4.5) for F. The values most commonly used are reported in Table 2.

The moments of V may be readily computed from (4.6); a simple calculation shows

that E[V] = / and E[V2 ] =- 2, thus the mean and standard deviation of V are

approximately 1.25 and 0.27 respectively. Plots of Fv and fv are given in Figure

1 along with Gaussian distribution and density functions with comparable mean and

variance. The distribution of V is positively skewed and most of its mass falls between

3 and 2.4

4.4. The Relation Between Q, and Q,.

Since Qn and Qn differ solely in how the range is normalized, the limiting be-

havior of our modified R/S statistic and Mandelbrot's original will only coincide when

26 Feller (1951) obtains similar results under the more restrictive assumption of i.i.d. disturbances.
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&n(q) and sn are asymptotically equivalent. From the definitions of an(q) and s, it is

apparent that the two will generally converge in probability to different limits in the

presence of autocorrelation. Therefore, under the weakly dependent null hypothesis

the statistic ,In/V/E will converge to the range V of a Brownian bridge multiplied by

some constant. 2 9 More formally, we have the almost trivial result:

Proposition 4.1. Under assumptions (Al) - (A4), Qn = V where:

_2 . (4.7)
limn-.o E [ n1 j E]

Therefore, normalizing the range by s in place of &n,(q) changes the limiting distri-

bution of the rescaled range by the multiplicative constant . This result was used in

Section 3 to derive the limiting distribution of Qn in the AR(1) case.

Despite its sensitivity to short-range dependence, the classical R/S statistic may

still be used to test for independently and identically distributed Xt's; indeed, the

AR(1) example of Section 3 and the results of Davies and Harte (1987) suggest that

such a test may have considerable power against non-i.i.d. alternatives. However, since

there is already a growing consensus among financial economists that stock market

prices are not i.i.d., this null hypothesis is of less immediate interest. For example, it

is now well-known that aggregate stock market returns exhibit significant serial depen-

dence for short-horizon holding periods and are therefore not independently distributed.

Since it is robust to many forms of heterogeneity and weak dependence, tests based

on the modified R/S statistic Qn covers a broader set of null hypotheses than those

using Q,. More to the point, the modified rescaled range is able to distinguish between

what we have termed "short-range" and "long-range" dependence; the classical rescaled

range cannot. Whereas an extreme value for Qn indicates the likelihood of long-term

memory, a rejection based on the Qn statistic is also consistent with short-range de-

pendence or heterogeneity in the data. Of course, it is always possible to tabulate

the limiting distribution of the classical R/S statistic under a specific model of short-

range dependence; this obviously suffers from the drawback of specificity. The modified

rescaled range converges weakly to the range of a Brownian bridge under general forms

"2Although he does not suggest normalizing by &,, Mandelbrot (1972, p. 285) was certainly aware of this problem.
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of weak dependence.

5. R/S Analysis for Stock Market Returns.

Greene and Fielitz (1977) were perhaps the first to apply R/S analysis to common

stock returns. 3 0 Their empirical analysis differs from ours in several respects. First,

like Mandelbrot and Wallis (1969a), Greene and Fielitz compute R/S statistics but do

not provide any sampling theory with which to judge their significance. Second, they

use the Qn statistic which is not robust to short-range dependence. Third, they do

not focus on the R/S statistic itself, but rather on the behavior of its logarithm as the

number of observations is increased. Although they use regression analysis to study

this relation, they do not specify the properties of their regression equation, nor do

they perform any diagnostics to check its specification. 3 1 Finally, their data set covers

a shorter time span [1963-1968], and they consider individual stock returns; we analyze

aggregate stock returns indexes over a much longer time period.

To test for long-term memory in stock returns we use data from the Center for

Research in Security Prices (CRSP) monthly and daily returns files, and the annual

Standard and Poor's Composite Index data of Campbell and Shiller (1988). Tests are

performed for the value- and equal-weighted CRSP indexes. Daily observations for the

returns indexes are available from 3 July 1962 to 31 December 1987 yielding a sample

size of 6,409 observations. Monthly indexes are each composed of 744 observations

from 30 January 1926 to 31 December 1987. We also perform tests for weekly returns

constructed from the daily returns file as in Lo and MacKinlay (1988), yielding 1,330

observations from 11 July 1962 to 30 December 1987. Finally, our annual data consists

of 115 observations on the return to Standard and Poor's Composite Index spanning the

period from 1872 to 1986. The following statistic is computed for the various returns

indexes:

Vn(q) Qn- V (5.1)
N/n

80More recent economic applications of R/S analysis include Booth, Kaen and Koveos (1982), Helms, Kaen, and Rosen-
man (1984), and Kaen and Rosenman (1986).

81 Davies and Harte (1987) show such tests to be significantly biased toward rejection even for a stationary AR(1) process
with autoregressive parameter 0.3.
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where the distribution F of V is given in (4.5). Using the values in Table 2a a

test of the null hypothesis may be performed at the 95 percent level of confidence by

accepting or rejecting according to whether V, is or is not contained in the interval

[0.809,1.862]. This interval assigns equal probability to each tail; symmetric confidence

intervals about the mean / of V are given in Table 2b.

We have written Vr(q) as a function of q to emphasize the dependence of the

modified rescaled range on the truncation lag. To check the sensitivity of the statistic

to the lag length, we calculate Vr(q) for several different values of q. The normalized

classical Hurst-Mandelbrot rescaled range Vn is also computed for comparison, where:

ln = -Qn eV . (5.2)

Table 3 reports results for the daily equal- and value-weighted returns indexes. Panel A

presents the Vn(q) and n statistics for the equal-weighted index for the entire sample

period [the first row], two equally-partitioned sub-samples [the next two rows], and four

equally-partitioned sub-samples the next four rows]. The modified rescaled range is

computed with q-values of 90, 180, 270, and 360 days. The columns labelled "%-Bias"

report the estimated bias of the original rescaled range V,, and is 100. (d - 1) where

= (q)/S = fl/Vn.

Although Table 3 shows that the classical R/S statistic f/n is statistically significant

at the 5 percent level for the daily equal-weighted CRSP returns index, the modified

R/S statistic Vn is not. While Vn is 2.63 for the entire sample period the modified

R/S statistic is 1.46 with a truncation lag of 90 days, and 1.50 with a truncation lag

of 360 days. The importance of normalizing by an(q) is clear: dividing by sn imparts

an upward bias of 80 percent!

The statistical insignificance of the modified R/S statistics indicates that the data

are consistent with the short-memory null hypothesis. The stability of the Vn(q) across

truncation lags q also supports the hypothesis that there is little dependence in daily

stock returns beyond one or two months. For example, using 90 lags yields a Vn of

1.46 whereas 270 and 360 lags both yield 1.50, virtually the same point estimate. The

results are robust to the sample period; none of the sub-period Vn(q)'s are significant.

The classical rescaled range is significant only in the first half of the sample for the

value-weighted index [Panel B], and is insignificant when the entire sample is used.
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Tables 4 and 5 report similar results for weekly and monthly returns indexes. For

weekly returns, the four values of q employed are 13, 26, 39, 52 weeks, and for monthly

returns, we set q to 3, 6, 9, and 12 months. None of the modified R/S statistics are

statistically significant at the 5 percent level in any sample period or sub-period for

either indexes. The percentage bias is generally lower for weekly and monthly data,

although it still ranges from -30.0 to 47.5 percent for weekly returns, and from - 0.2

to 25.3 percent for monthly returns.

To develop further intuition for these results, Figure 2 contains the autocorrel-

ograms of the daily, weekly, and monthly equal-weighted returns indexes, where the

maximum lag is 360 for daily returns, 52 for weekly, and 12 for monthly. For all three

indexes only the lowest order autocorrelation coefficients are statistically significant.

For comparison, alongside each of the index's autocorrelogram is the autocorrelogram

of the fractionally-differenced process (2.1) with d = .25 and the variance of the distur-

bance chosen to yield a first-order autocorrelation of 4. Although the general shapes

of the fractionally-differenced autocorrelograms seem consistent with the data, closer

inspection reveals that the index autocorrelations decay much more rapidly. Therefore,

although short-term correlations are large enough drive Q, and Qn apart, there is little

evidence of long-range dependence in Q, itself.

Table 6 reports estimates of the rescaled range for annual stock returns data from

1872 to 1986, using Standard and Poor's Composite Index series of Campbell and

Shiller (1988), adjusted for dividends.3 2 Even with a much longer time span, neither

the classical nor the modified R/S statistics are statistically significant.

The evidence in Tables 3 to 6 shows that the null hypothesis of short-range depen-

dence cannot be rejected by the data; there is little support for long-term memory in

stock returns. With adjustments for autocorrelation at lags up to one calendar year,

estimates of the modified rescaled range are consistent with the null hypothesis of weak

dependence. This reinforces Kandel and Stambaugh's (1988) contention that the long-

run predictability of stock returns uncovered by Fama and French (1988) and Poterba

and Summers (1988) may not be "long-run" in the time series sense, but may be the

result of more conventional models of short-range dependence. Of course, since our

inferences rely solely on asymptotic theory, the finite-sample size and power of our test

must be explored before reaching further conclusions. We turn to these issues next.

31 am grateful to John Campbell and Robert Shiller for sharing their data.
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6. Size and Power.

The fact that we have not rejected the null hypothesis of short-range dependence

need not imply the absence of long-range dependence, but may merely be a symptom

of low power. To explore this possibility, and to check the quality of our asymptotic

approximations for various sample sizes, we perform several illustrative Monte Carlo

experiments. Section 6.1 reports the empirical size of the test statistic under two

Gaussian null hypotheses: i.i.d. and AR(1) disturbances. Section 6.2 presents power

results against the fractionally-differenced process (2.1) for d = and -.

6.1. The Size of the R/S Test.

Table 7a contains simulation results for the modified R/S statistic with sample

sizes of 100, 250, 500, 750, and 1000 under the null hypothesis of independently and

identically distributed Gaussian errors. 3 3 For each sample size the statistic Vn(q) is

computed with q = 0,5,10,25,50; when q = 0, Vn(q) is identical to Mandelbrot's

classical R/S statistic Vn. The entries in the last three columns show that the classical

R/S statistic tends to reject too frequently; even for sample sizes of 1000 the empirical

size of a 5 percent test based on 1'n is 6.3 percent. The modified R/S statistic tends to

be conservative for values of q that are not too large relative to the sample size. For

example, with 100 observations and 5 lags the empirical size of the 5 percent test using

V,(q) is 2.1 percent. However, with 50 lags this test has a rejection rate of 31 percent!

That the sampling properties worsen with the number of lags is not surprising; the

imprecision with which the higher-order autocovariances are estimated can introduce

considerable noise into the statistic.3 4

Table 7b reports the results of simulations under the null hypothesis of a Gaussian

AR(1) with autoregressive coefficient 0.5; recall that such a process is weakly dependent.

The last three columns confirm the example of Section 3 and accord well with the results

of Davies and Harte (1987): tests based on the classical R/S statistic have considerable

power against an AR(1) null. In samples of only 100 observations the empirical size

of the 5 percent test based on V/, is 38 percent and increases to 61 percent for sample

sizes of 1000. In contrast, the empirical sizes of tests based on Vn(q) are much closer

s- All simulations were performed on a VAX 8700 in double precision using the random generator DRNNOA from IMSL
Version 10.0.

S4See Lo and MacKinlay (1989) for simulation evidence to this effect.
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to their nominal values since the short-range correlations are taken into account by the

denominator &n (q) of Vn(q).

6.2. Power Against Fractionally-Differenced Alternatives.

Tables 8a and 8b report the power of the R/S tests against the Gaussian fractionally-

differenced alternative:

(1 - L)dEt = n7t , t i.i.d. N(0,a 2 ) (6.1)

with d = l and -~, and a 2 chosen to yield a unit variance for t 35 For sample sizes of

100 tests based on Vn(q) have very little power, but when the sample size reaches 250

the power increases dramatically. According to Table 8a, the power of the 5 percent

test with q = 5 against the d = alternative is 34.3 percent with 250 observations,

63.2 percent with 500 observations, and 83.6 percent with 1000 observations. For a

given sample size, the power of the Vn(q)-based test declines as the number of lags

is increased. This is due to the denominator n(q), which generally increases with

q since there is positive dependence when d = . The increase in the denominator

decreases the variability of the statistic, pulling probability mass from both tails of the

distribution towards the mean, and decreases the mean thereby reducing the frequency

of draws in the right tail's critical region [where virtually all the power is coming from].

Against the d = - alternative, Table 8b shows that the test seems to have some-

what higher power. However, in contrast to Table 8a the rejections are now coming

from the left tail of the distribution, not the right. Moreover, for the larger sample sizes

the power declines as the number of lags increases. Again this is due to the denom-

inator ,n(q), which declines as q increases because the [theoretical] autocorrelations

are all negative when d = -}. The resulting increase in the mean of Vn(q)'s sampling

distribution overwhelms the increase in its variability, leading to a lower rejection rate

from the left tail.

Finally, Tables 9a and b report the results of simulations of Qn under the two

nulls and two alternatives, where the truncation lag q is chosen according to Andrews'

(1988) data-dependent formula:

6 In particular, o2 = r2 ( - d)/r( - 2d).
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q = [k , - 3 (6.2)

where [k,] denotes the greatest integer less than or equal to kn and is the estimated

first-order autocorrelation coefficient of the data. Also, in place of the Newey and West

(1987) weights (4.3), Andrews (1988) suggests the alternative:

w 3 = 1 - | k-| . (6.3)

Using this automatic procedure for selecting q, both the size and power of the test are

comparable to the best cases in Tables 7 and 8. This being the case, perhaps the data-

dependent method for selection the truncation lag is to be preferred since it eliminates

one more degree of arbitrariness in our inferential procedure.

In summary, Tables 8 and 9 show that the modified R/S statistic has power against

at least two specific models of long-term memory. Of course, the simulations are merely

illustrative; a more conclusive study must examine the finite-sample size and power of

the test for several other values of the differencing parameter d. Since our empirical

work has employed data sampled at different frequencies [implying different values of

d for different sample sizes], the trade-off between the time span of the data and the

frequency of observation for the test's power is an important issue. Nevertheless, the

simulation results suggest that short-range dependence may be the more significant

feature of stock market returns.

- 22 -
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7. Conclusion.

Our empirical results suggest that stock market returns do not exhibit long-range

dependence. If the source of serial correlation is lagged adjustment to new informa-

tion, the absence of strong dependence in stock returns should not be surprising from

an economic standpoint given the frequency with which financial asset markets clear.

Surely financial security prices must be immune to persistent informational asymme-

tries, especially over longer time spans. Perhaps the fluctuations of aggregate economic

output are more likely to display such long run tendencies as Kondratiev and Kuznets

have suggested, and this long-memory in output may eventually manifest itself in the

return to equity. But if some form of long-run dependence is indeed present in stock

returns, it will not be easily detected by any of our current statistical tools, especially

in view of the optimality of the R/S statistic in the Mandelbrot and Wallis (1969) sense.

Direct estimation of particular parametric models may provide more positive evidence

of long-term memory and is currently being pursued by several investigators. 3 6

36 See, for example, Diebold and Rudebusch (1988), Fox and Taqqu (1986), Geweke and Porter-Hudak (1983), Sowell
(1987a,b), and Yajima (1985,1988).
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Appendix

Proof of Theorem 4.1:

Let S, = Eyl Ej and define the following function Yn(r) on D[O, 1]:

Yn(r) = Sn]
bn( ); nr"'

E [0,1]

where [nr] denotes the greatest integer less

Yn(O) O. Under conditions (Al), (A2'),

that Yn(r) =- W(r). But consider:

1 (
Max (X - n

1<k<n n(q)vJni/ -~ .j=1

where:

than or equal to nr. By convention, we set

(A3) - (A5) Herrndorf (1984) has shown

= <Max ( Sk
1<kcln Iii q-n -

(A.2a)

(A.2b)

(A.3)

Since the sequence of functions hn that map Yn(r) to Zn(r) satisfy the conditions of

Lemma 4.2, where the limiting mapping h takes Yn(r) to Yn(r) - rYn(l), we conclude

that:

(A.4)

The rest of the theorem follows directly from repeated application Lemma 4.2.

Q.E.D.
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Proof of Theorem 4.2:

From Billingsley (1968, p. 85) we have:3 7

P(m < m ° < M < M) E e-2(kc) 2 _ E e-2(M+kc)2

k=-oo k=-oo

where c = M-m > 0. It may be verified directly that (A.4) is uniformly convergent

in m and M, hence the interchange of limits to follow is appropriate. Since P(M ° <

M) = 1- e -2M 2 [let m -+ -oo in (A.4)] and P(m < m ° < M < M) + P(m <

m, M ° < M) = P(M ° < M), we have:

P(m < m,M < M ) =

The joint density f(m, M) of (m°, M ° ) is

to m and M [note the sign change]:

E {e2M+kc) _- e-2(kc)2 } (A.5)

k#O

obtained by differentiating (A.4) with respect

a2

f(m,M) = amaMP(m < m < M < M)d9m8M (A.6a)

= 4/i; , { k(k + 1)[1 -ac]q(ak) - k 2 1-k],(/k) (A.6b)
k=- 00

where ak 2[M(k + 1) - mkj, ,k 2k(M - m), and (zx) is the standard Gaussian

density function 72 e- . Since (A.6b) is also uniformly convergent in (m,M), this

is indeed the joint density function of (mn,M°). Let V M - m° . We seek the

probability P(V < v), which is simply:

P(V < ) =
vJO

f(m, M)dMdm (A.7a)

S7 See also Darling and Erdos (1956) and Feller (1951).
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= 4V/ E {k(k + 1) [1 - c2k]O(ak)dMdm -
k=-oo

k 2 [1- ,Ik821(/lk)dMdm } (A.7b)

where U denotes the region of integration in (A.7a) and the uniform convergence of

(A.6b) allows us to integrate termwise. Using the fact that f xe(x)dx = -(x) and

f(1- x 2 )0(x)dx = xzc(x) then yields the following:

fU[1 - a2k](ak)dMdm 1 { 2(k + 1) (2kv)
2(k 1) aT

1
- -k(2[k + 1v)2 2k (°) }

lll- i3k](I3k)dMdm [(2kv)2 + 1](2kv)

Substituting these expressions into (A.7b) and simplifying then yields:

= -(1-4
k=-oo

oo

= , k e - 2( kv) 2

k=-oo

v 2) e- 2(kv)2 - k e- 2( [k+1 ] )2 } (A.8a)

00

- 4 E k2v2e-2(kv)2 -

k=-oo

Z k e-2([k+1I] )2

k=-oo

(A.8b)

By symmetry the first summation in (A.8b) is zero and the index of the second summa-

tion may be taken from 1 to infinity if the summands are doubled. Further cancellations

in the third summation of (A.8b) then yield the desired result:

00oo

P(V < ) = 1 + 2 (k -4k22)e-2(kv) 2

k=l
(A.9)
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The density function follows by differentiating the uniformly convergent series (A.9)

termwise and verifying that the resulting series also converges uniformly.

Q.E.D.
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Distribution and density function of the range V of a Brownian bridge. Dashed curves
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Table 1

Comparison of autocorrelation functions of fractionally differenced time series (1- L)dXt =
1 1 with that of an AR(1) Xt = pXt-1 + t, p = .5. The variance of t was

chosen to yield a unit variancet for d = a, ,three cases.
chosen to yield a unit variance for Xt in all three cases.

1.6.1

Lag p(k) p(k) p(k)
k [d = ½]A d =-] [AR(1), p = .5]

1 0.500 - 0.250 0.500
2 0.400 - 0.071 0.250
3 0.350 - 0.036 0.125
4 0.318 - 0.022 0.063
5 0.295 - 0.015 0.031

10 0.235 - 0.005 0.001
25 0.173 - 0.001 0.000
50 0.137 - 0.000 0.000

100 0.109 - 0.000 0.000

5.89



Table 2a. Fractiles of the Distribution F(v).

P(V < v) .005 .025 .050 .100 .200 .300 .400 .500

v 0.721 0.809 0.861 0.927 1.018 1.090 1.157 1.223

P(V < v) .543 .600 .700 .800 .900 .950 .975 .995

v N 1.294 1.374 1.473 1.620 1.747 1.862 2.098

Table 2b. Symmetric Confidence Intervals About the Mean.

1.6.2

p(VS- < v< +) <

.001 0.748

.050 0.519

.100 0.432

.500 0.185

�������----�---�- ---

5.89
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Table 6

R/S analysis of annual stock returns on Standard and Poor's Composite Index (including
dividends) from 1872 to 1986,1 using the classical rescaled range Vn and the modified
rescaled range Vn(q) which is robust to weak dependence and heterogeneity; under the
null hypothesis of short-range dependence [conditions (Al), (A2'), (A3)-(A5) of the paper]
the limiting distribution of Vn(q) is the range of a Brownian bridge, which has mean

r/-i. Fractiles are given in Table 2a; the 95 percent confidence interval with equal
probabilities in both tails is [0.809, 1.862]. Entries in the %-Bias columns are computed
as [(Vn/Vn) - 1] 100, and are estimates of the bias of the classical R/S statistic in the
presence of short-term dependence. Asterisks indicate significance at the 5 percent level.

Since the S&P Composite Index does not include dividends, the total dividends series (per share for the year, adjusted to
the index) was added to the returns series. I am grateful to John Campbell and Robert Shiller for sharing this data set, more
fully described in Campbell and Shiller (1988).

1.6.6

q Vn(q) %-Bias

1 0.83 0.81 2.8
2 0.83 0.87 -4.2
3 0.83 0.89 -5.9
4 0.83 0.92 -9.4
5 0.83 0.98 -15.0

5.89
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