
The Factory Approach to Software Development:

A Strateqic Overview

by

Michael Cusumano

WP3088-89 October 1989

THE FACTORY APPROACH TO SOFTWARE DEVELOPMENT:

A STRATEGIC OVERVIEW

Michael A. Cusumano

Mitsubishi Career Development
Assistant Professor of Management

MIT Sloan School of Management
Cambridge, MA 02139

(617) 253-2574

Draft: October 24, 1989

III

The Software Challenge

Writing software -- instructions (and data) required to operate

programmable computers, first introduced commercially during the 1950s -- has

plagued engineers, managers, and customers since the beginning of the industry.

The development process consists of requirements analysis, system design,

detailed program design, coding, testing, and installation, as well as redesign or

repairs referred to as maintenance. Yet these phases are usually more iterative

than sequential, and often unpredictable in time and costs. The productivity of

individual programmers tends to vary enormously and depend on elements

difficult for management to control, such as personal talent and experience with

particular applications.

Software producers thus encounter budget and schedule overruns as the

rule rather than the exception, especially when attempting to build large

complex systems with many components for the first time. The sheer difficulty

of software design and programming, exacerbated by a demand for programs

rising faster than the supply of software engineers, led to a situation referred

to as the "software crisis" as long ago as 1969.1 Despite years of advances in

tools (specialized programs and databases that aid in the production of other

software), design and programming techniques, and products themselves,

software has remained a most vexing challenge to all concerned, with many

problems that plagued pioneers still persisting through the 1980s.

In other industries, years of refinements and innovations have made it

possible for producers to make and customers to buy a wide range of

sophisticated products at low cost. Without modern engineering and factory

systems, for example, few people would ride in cars or use computers so

frequently. But continuing difficulties in software have led academic

researchers and practitioners alike to claim that frustrations are in part

1

misguided: Writing software is and may forever remain more like an art or a

craft rather than evolve into a technology suited to the precise descriptions and

predictability of true scientific, engineering, or manufacturing disciplines.

Indeed, software appears to have characteristics that make conventional

engineering or factory operations difficult to introduce -- little product or

process standardization to support economies of scale, wide variations in project

contents and work flows, cumbersome tasks difficult and sometimes

counterproductive to divide, de-skill, or automate. What is more, software

producers have struggled to contend with constant evolution in product and

process technology as well as in customer requirements, often for programs with

unique or tailored features.

To manage such a complex technology in such a dynamic industry, many

software producers have resorted to a simple solution: They have tried to

remain flexible in structure and processes, hiring as many experienced or

talented programmers as possible and relying on small, integrated teams -- as in

job-shop or craft production in other industries. This approach takes advantage

of the greater productivity usually associated with experienced personnel, and

reduces coordination or communications problems within the project, as well as

the need to divide labor and tasks too rigidly.

In fact, job-shop or craft practices have worked well in software and no

doubt proved essential in the early days of the industry, when all products

seemed new and changing, and when programs remained small, reflecting

hardware limitations. But the software market -- demand exceeding the supply

of skilled programmers and managers, tight budgets and short schedules,

customer requirements for unique features as well as low prices and high

reliability, long-term maintenance costs surpassing those of new design work,

continual increases in the length and complexity of programs as hardware

2

III

improves -- has created huge incentives for managers to reduce skill

requirements and systematically recycle key factors of production (methods,

tools, procedures, engineers, components) in as many projects as possible.

Thus, as the industry has evolved, loosely structured processes and craft

organizations have become inadequate to manage software, at least for many

producers. 2

Small teams working independently, no matter how well they perform or

what the individuals learn, will fail to help the firm solve problems

systematically unless management finds a way to optimize and improve

organizational skills -- not just in one project but across a stream of projects.

But, to accomplish this and still meet the demands of customers, competitors,

and the technology itself, requires firms to balance two seemingly contradictory

ends: efficiency and flexibility. This article explores how the leading Japanese

computer manufacturers have pursued this balance, not simply through the tools,

techniques, and concepts of software engineering, but through their strategic

integration and combination with an equally important element: the skilful

management of people and organizations.

The Japanese Challenge

Japanese firms have competed successfully in industries ranging from

automobiles and video recorders to industrial items like machine tools,

semiconductor chips, and computer hardware. They have become well-known for

high levels of productivity and reliability in manufacturing as well as

engineering, and for the increasing sophistication of designs. Perhaps their

most important contributions have been to exceed the efficiency of conventional

mass-production firms while introducing increasing levels of product variety and

continual improvements in products and manufacturing processes.

3

If Japanese firms were to transfer the same type of skills they have

cultivated in other industries to software, which seemed likely only to grow in

importance as a technology because of its critical role in so many industries

and organizations, users might probably become better off, with improved

products at lower prices. But then the Japanese would also confront the U.S.

where Americans have not only dominated in technological invention and

innovation but, in contrast to many other industries, seemed to retain a

daunting lead over all other nations -- including the Japanese. 3

While Japanese had little international market presence in software, major

firms -- led by Hitachi, NEC, Toshiba, and Fujitsu -- explicitly took up the

challenge, first suggested in the U.S. and Europe during the late 1960s, to apply

factory concepts to computer programming in order to bring this technology up

to the standards of other engineering and manufacturing disciplines (Exhibit 1).

Yet industry analysts remain divided over where the Japanese currently stand in

the software field. On the one hand, some reports continue to claim the

Japanese are years behind the U.S. and doubt whether the Japanese will ever

duplicate their achievements in a technology like computer programming, which

is highly dependent on individual creativity and innovation, and where customers

and producers have yet to define product or process standards. Competition in

overseas markets also requires fluency in local languages and business practices

related to computer usage, as well as a surplus of personnel able to serve

foreign customers. On the other hand, some reports stress Japanese creativity

in other areas of engineering, and abilities that should benefit them in computer

programming, especially in large projects: attention to detail, effective

production management and quality control techniques, good communication and

teamwork skills, strong educational foundations in mathematics and science, and

receptivity to extensive in-house training and discipline.4 This article, based on

4

II1

a 5-year study of Japan's major software producers, offers three general

observations regarding the Japanese challenge in this industry.

First, the top Japanese computer manufacturers, which also produce most

of Japan's basic systems software (operating systems, language compilers,

database-management systems) and much of its custom applications, have made

significant progress in managing the process of software development. In fact,

a survey of 40 software projects in the U.S. and Japan, while too small to be

definitive statistically, indicates that leading Japanese companies appeared at

least comparable and possibly superior to U.S. firms in productivity, defect

control, and reusability (recycling software designs or code across more than

one project) (Exhibit 2). 5

Second, in products, the Japane', seemed comparable to U.S. firms but not

particularly threatening in foreign markets. They made large-scale, complex

software, such as IBM-compatible operating systems, telecommunications systems,

and customized industrial or business applications, including sophisticated real-

time process-control software, such as for manufacturing or power-generation

plants. But they had only begun to invent international standards or build

systems that truly pushed the state-c;-the-art in software technology. Nor did

the Japanese have a suerplus of personnel that allowed them to seek many

contract programming jobs overseas or develop standardized programs (called

packages) specifically for foreign markets. In the late 1980s, meeting domestic

demand alone remained a struggle, although firms had perfected factories that

produced tailored applications software. It appeared to be this area -- custom

programming -- that Japan might exploit for export competition in the future,

especially since Japanese firms were paying increasing attention to product

functionality and customer responses.

Third, unlike in autos and some other industries, where Japanese

5

manufacturing and quality techniques departed from conventional practice in the

U.S. or Europe, Japanese software factories represented a refinement of

approaches to software engineering introduced primarily in the 1960s and 1970s.

Indeed, the very concept of the software factory, despite the greater popularity

of this label in Japan compared to the U.S. or Europe, originated in the U.S.

during the 1960s as a metaphor emphasizing the need to refine, standardize, and

integrate good ideas, tools, and techniques, such as reusability.

U.S. firms, led by International Business Machines (IBM), System

Development Corporation (SDC), and TRW Inc., pioneered variations of factory

approaches during the 1960s and 1970s, even though only SDC adopted the

factory label. Japanese firms not only adopted the word factory but launched

long-term efforts to centralize and systematize software production and quality

control, primarily to offset acute shortages of experienced programmers and

rising demand for large-scale complex programs, especially of the customized

variety. As in other industries, the Japanese emphasized process improvement

first, rather than product invention, and this corresponded to Japanese

strategies in hardware, which allowed U.S. firms to set product standards. It

was also true that these Japanese firms, similar to IBM, all had large revenues

from hardware sales and needed to produce software to sell their equipment,

whatever the costs of new programs. The Japanese, along with IBM and other

U.S. firms, thus had long-term incentives and financial resources to invest in

the systematic improvement of their software operations. Nevertheless, acting

effectively on these incentives required foresight and perseverance, as well as

considerable technical, managerial, and organizational skills -- which Japanese

firms and managers clearly exhibited, in software as in other industries.

The Practical Debate

6

III

But whether software producers should pursue efficiency like firms in

other industries or continue to operate as loosely-structured job or craft shops

reflects a debate dating back to the mid-1960s over the nature of software as a

technology and the appropriateness of factory or even engineering concepts for

this industry. 6 Both practitioners and academics reflected on progress in other

industries and suggested software producers adopt more engineering and

manufacturing-like practices, such as a design and production process divided

into distinct phases, with guidelines and controls for each phase, as well as

computer-aided support tools and some product construction from an inventory

of reusable parts. Managers that attempted to implement these and other ideas

associated with factory practices, such as divisions of labor, often encountered

obstacles that organizational theorists associate with the difficulty and still-

evolving nature of the industry and the technology -- suggesting that factory

operations for software were and may still be inappropriate, and thus doomed to

failure.

A few examples illustrate this argument. At General Electric (GE) during

the mid-1960s, an engineer named R.W. Bemer made numerous proposals dealing

with problems such as low and variable programmer productivity. His work

culminated in a 1968 paper encouraging GE to develop a software factory

consisting of standardized tools, a computer-based interface, and an historical

database useful for financial and management controls. This appears to be the

first published definition of what might constitute a factory approach for

software development (although GE management considered Bemer's proposal to

be premature and, in the face of strong competition from IBM, exited the

computer business in 1970, ending the company's commitment at the time to

commercial hardware and software production):

[A] software factory should be a programming environment residing
upon and controlled by a computer. Program construction, checkout

7

and usage should be done entirely within this environment, and by
using the tools contained in the environment... A factory... has
measures and controls for productivity and quality. Financial records
are kept for costing and scheduling. Thus management is able to
estimate from previous data.... Among the tools to be available in
the environment should be: compilers for machine-independent
languages; simulators, instrumentation devices, and test cases as
accumulated; documentation tools -- automatic flow-charters, text
editors, indexers; accounting function devices; linkage and interface
verifiers; code filters (and many others).

While Bemer focused on standardized tools and controls, an acquaintance

of his at AT&T, Dr. M.D. Mclroy, emphasized another factory concept--

systematic reusability of code when constructing new programs. In an address

at a 1968 NATO Science Conference on software engineering, Mcllroy argued

that the division of software programs into modules offered opportunities for

mass-production methods. He then used the term factory in the context of

facilities dedicated to producing parameterized families of software parts or

routines that would serve as building blocks for tailored programs reusable

across different computers. 8 Reception to Mcllroy's ideas was mixed: It

seemed too difficult to create program modules that would be efficient and

reliable for all types of systems and not constrain the user. Software was also

heavily dependent on the specific characteristics of hardware. Nor did anyone

know how to catalog program modules so they could be easily found and reused.

These objections proved difficult to overcome, even in the 1980s, when few

firms reused large amounts of software systematically.

Another case is Hitachi. In 1969, this became the first company in the

world to centralize programming operations in a facility management formally

viewed and labelled as a software factory. New methods and controls

representing good practice in the industry improved productivity, quality, and

scheduling accuracy. But performance stagnated for the next decade as

management struggled to find the right combination of products, procedures, and

8

11

tools. For example, because of differences in product requirements, Hitachi was

unable to introduce a components-control system (modelled after similar systems

in Hitachi's other engineering and manufacturing plants) to promote software

reusability. Management also failed to devise a single set of standards and

controls for both basic software and customized applications.

A U.S. firm, System Development Corporation, formerly a subsidiary of the

Rand Corporation established in the 1950s and since the mid-1980s a division of

Unisys, actually launched a software factory in the 1970s. The effort began in

1972 as an R&D project to develop a standardized set of software tools. After

discovering that a factory approach required more than tools alone, in 1975-

1976, the R&D team devised a standardized methodology for all phases and an

organizational structure separating sstems engineering, done by multiple teams

at customer sites, from program construction and testing, done by a centralized

group in a newly created software factory, utilizing the factory tool set. While

scheduling accuracy, budget control, and quality assurance improved for nearly

all the projects that went through the factory, the effort collapsed during 1978-

1979, for several reasons. On one major project, systems engineers did not have

the expertise to handle a new application and could not accurately specify

customer requirements to transfer to the factory. This problem, along with

difficulties in making general-purpose tools useful across different computer

systems, led SDC's chief executive to lose interest in the factory effort. At

the same time, project managers preferred to organize integrated teams of

systems engineers and programmers, rather than transferring designs to a

centralized facility over which they had no direct control. As top managers

moved or became impatient with the factory concept, and since they did not

require project managers to put work into the factory, projects returned to

previous practices and stopped sending specifications to the factory -- leaving

9

the factory workers with no work.9

General Telephone and Electric (GTE) attempted to standardize around

recognized good practices but found the diversity within the organization to be

too great. As a first step, a central steering committee and laboratory issued a

set of corporate software-development standards in 1980, based on proven

methodologies and ideas from different divisions. These standards specified a

hierarchical architecture for all software systems, a formal engineering process

based on a common life-cycle model, a method for configuration management

(how to design pieces of a system and then put them together), a list of

documents for each phase, and a glossary of terms and symbols for diagramming

programs. Creation of a common process and terminology appeared to help

engineers and managers communicate, and management encountered little

opposition, at first. But, in a subsequent phase, GTE tried to standardize not

just terminology but actual practices in different divisions, through the use of

required reports to enforce adherence to standards, as well as a common tool

set. These measures failed, reflecting the variety within GTE's software

activities, the preference of engineers for familiar tools, performance problems

users encountered with the standard process and tool set, as well as conflicting

perceptions among GTE business units regarding their real needs in software. 1 0

Similar stories abound, from the U;S., Japan, and elsewhere. Programmers

in NEC's basic software division during the late 1970s rejected a new factory-

type tool and methodology set developed in central research, because it proved

to be incompatible with existing products and practices. 11 Programmers in

several Danish companies, according to a 1987 report, rebelled against the

introduction of work standards and separations of design from coding and either

quit their jobs or ignored the new rules. 12 Programmers in a major U.S.

producer of custom software at least on occasion rejected management

10

III

regulations that they use a specified "design-factory" process and tool set,

requiring detailed specification in flow charts before actual coding. 13

To many observers, these examples evoke potentially dire conclusions:

Programmers may be too accustomed to craft-like practices, the technology too

unpredictable, and the environment too unstable, for software producers to

introduce the type of engineering and factory processes that have dramatically

improved efficiency in other industries. Furthermore, becoming more efficient

while remaining adaptable to different customer requirements and to evolution

itself, in any field, may be too difficult. It may require technical, managerial,

and organizational skills that are incompatible or at least difficult to reconcile,

especially in a dynamic industry with a complex product and process technology.

All these issues come to a head in the software field, where one could

easily argue that programming should be performed solely by highly-skilled

craftsman or professionals, who should rightly oppose attempts to de-skill or

routinize their jobs. Customer demands for tailored products also make mass-

production factories, except for the mass-replication of software packages, an

inappropriate model for this industry. But to return to an argument stated in

the beginning of this article: If a highly structured, factory process is the

wrong organizational paradigm for software developers, are other options viable?

Or must software producers always manage their facilities as loosely-structured

job shops, maximizing flexibility rather than efficiency, even though dramatic

improvements in computer hardware, and rising demand for lengthy, complex

programs, might stretch their manpower and organizational skills to the limit?

Strategic Options

Japanese firms, in approaching the management of software production,

11

have followed a specific rationale: While people may argue over whether

software is more art or craft than science, engineering, or manufacturing, the

software industry, like other industries, contains different types of products and

market segments. Some customers appear sensitive to combinations of price and

performance, rather than preferring low-cost standardized products or high-cost

customized systems. Furthermore, as software systems increase in size and

complexity, ad hoc approaches to managing product development become

inadequate, in a sense forcing producers either to fail consistently in project

control or become more structured, systematic, and, to use the term

metaphorically, factory-like.

In other words, software managers, like producers in any industry, need to

realize that they face a spectrum of product and process choices. For high-end

customers, they may provide leading products, fully customized for each

application, such as complex anti-ballistic missile control systems built for the

first time. Customer requirements drive these unique systems, many of which

may involve more research and invention than predictable engineering or

production tasks. Producers in this market probably need to rely on highly-

skilled personnel theoretically capable of inventing new products, as well as

methods and tools, as needed by the application and as long as the customer is

willing to pay and wait for the result. This is a job-shop or craft approach,

suited for unique jobs. It is adequate, however, only if a small group can build

the system, if budgets, schedules, and long-term service requirements are not

too stringent, and, of course, if there are adequate supplies of skilled personnel.

Nor does a job-shop process contribute to fostering organizational capabilities

to make new types of products if each project proceeds independently.

On the opposite side of the spectrum are low-end, fully-standardized

program products or packages. Customers trade off the greater features and

12

III

tailoring of a customized product for the lower price and immediate availability

of a package. Designing a good package might be costly and difficult, but the

potential sales are huge for a best seller, such as any one of several popular

word-processing or spreadsheet programs for personal computers. Specific

applications corresponding to needs in the mass market, rather than of one

customer, drive this type of product development. While there is no mass

production, in the conventional sense, there is electronic mass-replication of the

basic design. Yet this is a simple process and most of the real work is in the

design, construction, and testing of the product. Companies in the package

segment of the software industry, therefore, need to create product-oriented

projects as well as cultivate personnel highly familiar with both an application,

like word processing, and the cmr.-on requirements of users. Again, this

approach works well as long as a few people can build a product, skilled people

are available, and development costs are relatively unimportant compared to the

potential sales of a popular product. Once more, however, this project-centered

approach may not contribute in any way to the organization's ability to manage

a series of projects effectively.

In between these two extremes exists another option: Producers may

choose not to tailor products and processes fully for each customer or package

application, nor hire only highly-skilled people. Rather, they might seek

efficiencies across multiple projects and offer products competing on the basis

of a combination of price, performance, delivery, service, and reliability, among

other factors. Japanese software factories appeared to occupy this middle-

ground position. It turns out that producers following this strategy also did not

claim to make leading-edge products, at least not through their factories. If

customers wanted systems they had never built before, Japanese factory

managers created special projects or channeled this work to subsidiaries or

13

subcontractors. Software facilities operating like factories thus focused on

familiar but large-scale programs, and tried to offer high reliability, high

productivity, and low prices. Most important, to support this strategy, they

attempted to cultivate the necessary organizational and technical capabilities

(Exhibit 3).

The appearance and appropriateness of a factory approach is not peculiar

to any one national market, as analyses of firms adopting systematic

management practices, even without the factory label, demonstrate. However,

customer preferences in specific markets may make particular approaches more

or less suitable. For example, the Japanese and U.S. computer markets clearly

exhibit differences that present different problems and opportunities for

producers. Most Japanese customers prefer large computer systems (rather than

personal computers, although this preference was changing) and products from a

single vendor; there is little demand for unique military software; most Japanese

companies have let U.S. firms establish product standards, such as for

performance and price. These market features alone create a more stable

environment than exists for producers attempting to introduce radically new

products or standards, or invent new technologies for unique applications. At

the same time, extremely high demand in Japan for custom-built but somewhat

repetitive software, rather than for packages, seems to have created huge

incentives for Japanese managers to find ways to build nominally customized

programs as efficiently as possible, through the systematic reuse of software

tools and components, as well as automated support tools to make the

customization process less labor-intensive and less dependent on highly-skilled

(and scarce) software engineers (Exhibit 4).

The factory approach also represents basic technological and organizational

strategies firms may use to structure any engineering or production process:

14

III

Individuals, on their own or as members of a project, may use any tool,

technique, or component as a discrete element to help them design, construct,

test, or service a final product. An alternative, however, is to identify good

tools, techniques, and components that suit a series of similar projects, and

promote their use (or reuse) by adopting formal standards and process

strategies, such as to build as much of a new product as possible from a library

of existing components, systematically designed and catalogued. A company

needs to review and change standards or components periodically, as product

and process technology, as well as customer needs, evolve. Standardization in a

particularly dynamic industry, with rapidly changing product designs and

production tools, thus involves special risks. Nevertheless, managed skillfully on

an evolutionary basis, standards can provide important efficiencies and serve as

a means of communication. They can be especially valuable if problems persist

not because there are no good tools or techniques but because too many

individuals or teams operate in isolation and do not apply existing know-how

systematically.

Japanese Software Factories

Moving beyond craft practices to a factory process, and systematically

recycling reusable components, tools, methods, people, and other elements across

a series of similar projects, required years of effort and passage through

overlapping phases comparable to what firms in other industries encountered as

they grew and formalized operations. In software, however, the first step

demanded almost a heretical conviction on the part of key engineers, division

managers, and top executives that software was not an unmanageable

technology. This led to the creation of formal organizations and control

systems rather than continuing to treat software as a loosely organized service

15

provided free to customers primarily to facilitate hardware sales. Imposing

greater structure on the development process then required continual efforts to

introduce and refine elements common in other manufacturing and engineering

environments but not in software, at least not in the 1960s and early 1970s: a

product focus narrower than simply "programming," to limit the range of

problems managers and programmers faced; standards, at least temporary ones

and tailored to specific product families, that introduced solutions to recurring

problems in the form of methods, procedures, and tools, as well as provided

guidelines on expected worker performance to aid budgeting and scheduling;

training of employees and managers, to standardize skills though without

specifying all tasks for all situations; and development of mechanized or

partially automated tools for design, testing, product control, reuse support,

personnel and project management, and other functions, as well as continual

refinements of these tools and methods as well as products (Exhibit 5).

Japanese firms began their transition to a factory process a few years

after IBM organized its basic software operations in the 1960s. Many other

firms in the industry containing several hundreds or even thousands of

programmers waited until the mid-1980s to move beyond project-centered,

loosely-structured organizations. Some relatively large firms, such as leading

makers of packages for personal computers and high-end producers of

apparently unique customized software, have yet to make this transition. Some

may never find factory concepts appropriate, although any firm that needs to

manage large-scale efforts and develop a series of similar products should

benefit from the historical experiences and commonalities found in Japanese

software factories.

Cases of individual Japanese firms illustrate how managers can succeed

with a factory approach -- but only if they pay greater attention to balancing

16

III

product requirements with application expertise, and allocate the time needed to

solve the array of problems that are sure to arise in any major instance of

process innovation in a dynamic industry. Why Japanese companies persisted in

their efforts whereas SDC and others did not, despite encountering similar

obstacles, also reflected differences in corporate traditions, industry and market

conditions, as well as competitive strategies.

At Hitachi, a 50-year history of independent factories for each major

product area, covering both design and production, prompted executives in the

computer division to create a separate facility for software when programming

became a major activity in the late 1960s. The fact that all Hitachi factories

had to adopt corporate accounting and administrative standards then forced

software managers to analyze project' in great detail and experiment with work

standards, new organizational structures, as well as tools and techniques, aimed

primarily at improving process and quality control. The independence of Hitachi

factories within the corporation also gave factory managers considerable

authority over products and production. While Hitachi managers underestimated

how difficult it would be to implement factory concepts such as reusability and

process standardization, Hitachi Eventually became a leader in software

production technology, especially in quality control. In the late 1980s, Hitachi

also boasted the largest software factories in Japan, housing 5000 personnel at

one site for basic software and 6000 (including both systems engineers and

programmers) at another site for applications programs (see Exhibit 1).

Toshiba created a software factory during 1977 in its industrial equipment

division to support a process strategy fundamental to conventional engineering

and manufacturing: standardization of tools and methods, and reuse of product

components. The company achieved these ends with a highly focused facility,

devoted mainly to developing real-time control software for industrial

17

applications. Similarities in this type of software from project to project made

it possible to build semi-customized programs from reusable designs and code

combined with new software tailored to an individual customer's needs. Toshiba

did totally new projects outside the factory, but as demand led to repeat

projects, new software became part of a growing inventory of reusable

components and management added the new products to the factory repertoire.

In addition, Toshiba managed to generalize the factory tools and methods for

commercial sale as well as transfer to other Toshiba divisions.

Whereas Hitachi and Toshiba efforts centered on one factory in each

company, NEC attempted to structure software production for a wide range of

businesses simultaneously -- telecommunications, commercial systems software,

business applications, and industrial control systems. This presented a more

difficult challenge than Hitachi or Toshiba undertook in the 1970s, and though

the company faced many difficulties, it also made significant progress. In

addition to organizing several large facilities and subsidiaries between the mid-

1970s and mid-1980s, NEC launched a series of company-wide programs, directed

by top management and a central laboratory, to conduct process R&D as well as

standardize software-engineer;ng and management technology, and upgrade

quality controls and cross-divisional product and production planning. NEC's

broad software needs, and centralized management, forced software managers to

confront tradeoffs between standardization and flexibility almost continually.

Only one product division appears to have rejected a major tool set from the

central laboratory, although after this experience and the growing tendency of

the laboratory toward too basic research, NEC management began restructuring

to encourage a closer combination of centralized direction and R&D with more

divisional discretion.

Fujitsu began systematizing product handling and inspection procedures for

18

III

basic software during the early 1970s, after Hitachi but at roughly the same

time as NEC and Toshiba. It then developed numerous procedures, planning and

reporting systems, tools, and methods, before centralizing basic software in a

large facility during 1982-1983. In applications programming, Fujitsu established

a laboratory in 1970 but moved gradually toward a more standardized, factory

approach, opening an applications factory in 1979. By the mid-1980s, compared

to its Japanese competitors, Fujitsu appeared to have the broadest assortment of

computer-aided tools supporting design and reusability, as well as the largest

number of subsidiaries available to construct designs received from systems-

engineering departments.

Other Japanese firms also adopted factory organizations and practices

during the 1980s. In particular, Nippon Telephone and Telegraph (NTT), Japan's

primary telephone company and a large systems integrator for data-processing

and data-transmission services, had approximately 6000 software developers in

the company. It began reorganizing them in 1985 by establishing a Software

Development Division that centralized several hundred personnel formerly in

dispersed programming operations and introduced new methods and tools

emphasizing software reuse and automation. Mitsubishi Electric, a producer of

computers and office equipment, created an experimental software factory and

then reorganized approximately 700 programming personnel and engineers within

its Computer Factory to stress cost control, reusability, and tool support.

Common Elements

Each Japanese software facility differed in some respects, reflecting

differences in the products, competitive strategies, organizational structures, and

management styles of each company. Nonetheless, the factory approaches had

far more elements in common than they had in contrast, as each firm attempted

19

the strategic management and integration of activities required in software

production, as well as the achievement of planned economies of scope -- cost

reductions or productivity gains that come from developing a series of products

within one firm (or facility) more efficiently than building each product from

scratch in a separate project. Planned scope economies thus required the

deliberate (rather than accidental) sharing of resources or factors of production

across different projects, such as through the reuse of product specifications

and detailed designs, executable code, software tools, methods, documentation

and manuals, test cases, or personnel experience. It appears that scope

economies helped firms combine process efficiency with flexibility, allowing

them to deliver seemingly unique or tailored products with higher levels of

productivity than if they had not shared resources.

Japanese managers did not adopt factory models and pursue scope

economies simply out of faith. Detailed studies concluded that as much as 90%

of the programs they developed in any given year, especially in business

applications, appeared similar to work they had done in the past, with designs

of product components falling into a limited number of patterns. Such

observations convinced managers of the possibility for greater efficiencies, in

scope if not in scale, and set an agenda for process improvement. Companies

subsequently established facilities focused on similar products, collected

productivity and quality data, analyzed tools and techniques, and instituted

appropriate goals and controls. Managers found ways to standardize and

leverage employee skills, systematically reuse components, and incrementally

improve process technology and standards as well as products. As the factory

cases demonstrate, Japanese firms managed in this way not simply a few

projects for a few years. They established permanent software facilities and

R&D efforts, and emphasized common elements in managing across a series of

20

III

projects (Exhibit 6):

Commitment to Process Improvement: The managers who established software

factories all believed they could structure and improve software operations and

achieve higher, or more predictable, levels of productivity, quality, and

scheduling control. They also acted on this conviction, demonstrating a long-

term commitment to process improvement -- not as a brief experiment but as a

fundamental strategy for offsetting shortages of skilled personnel and

overcoming problems posed by defects or customer demands for unique products.

A serious commitment from top managers proved necessary, because of the need

to allocate time and engineering resources to study many projects, build tools,

train personnel, or develop reusable designs and code. It also consumed time

and money to institute policies, controls, and incentives necessary to manage

not one project at a time but a stream of projects over years, even at the

expense of product innovation or development costs for a given project.

Product-Process Focus and Segmentation: Successful factory approaches focused

at the facility or division level on particular types of software products and

gradually tailored processes (methods, tools, standards, training) to those

product families and particular customer segments, with alternative processes

(off-line projects, subsidiaries, subcontractors, laboratories) available for non-

routine projects. This product and process focus proved necessary to overcome a

major obstacle: the need for personnel to cultivate functional skills in software

engineering, such as good tools and techniques for design and testing, but, of

equal or greater importance, to accumulate knowledge of particular applications

-- critical to understanding and specifying system requirements prior to building

actual programs. Process segmentation supported this as well as allowed

21

managers to channel similar work to specialized groups while sending new or

non-specialized jobs, for which the organization had no special accumulation of

skills or investment in tools, outside the factory.

Process/Quality Analysis and Control: Accumulating knowledge about products

as well as discovering the most appropriate tools, methods, or components

required extensive investment in data collection and analysis on the development

process for each product family. Achieving greater predictability in cost and

scheduling, as well as in quality (defect control proved critical because of the

high costs of fixing errors after delivery to customers), necessitated the

introduction of performance standards and controls for every phase of

engineering, testing, and project management. It remained unnecessary and

unwise to dictate the details of each task, since projects had to respond to

variations in system requirements and sometimes modify standards, tools, or

methods. However, firms could standardize personnel skills and product quality

through a product focus and a standard process, as well as training in standard

(but evolving) sets of tools, methods, and management procedures.

Tailored and Centralized Process R&D: Many software firms solved the problem

of differing product requirements and a rapidly changing technology by making

it the responsibility of each project to develop its own tools and methods. The

drawback of this approach lay in the lack of potential to exploit scale and

scope economies. Projects operating independently might built nearly identical

tools needlessly, for example, or curtail expensive tool and methodology

research to meet short-term budgets. On the other hand, firms that centralized

process R&D ran the risk of producing tools and methods unsuited to the needs

of diverse projects. Factory approaches in general established organizations for

22

III

centralized tool and methodology R&D, above the level of individual projects;

this also raised the potential for all projects to have equal access to good tools

and techniques. To accommodate the needs of different product types, firms

tended to centralize process R&D at the product-division or facility level,

rather than at the corporate level, or use other measures, such as joint

research between central laboratories and factory engineers, to encourage the

introduction of tools and methods that actual developers found useful.

Skills Standardization and Leverage: Too much standardization of tools,

methods, and procedures had the potential to constrain an organization and

individual projects from meeting the needs of different customers or design

efforts. In particular, developers and managers needed some discretion to

tailor process technology to unforseen requirements or changes. Yet, even

without creating a fixed process for software engineering, as occurred in

rigidly controlled mass-production factories, some standardization at least

of skills, primarily through extensive training of all new recruits in a set

of standardized methods and tools, proved useful in an industry short of

experienced engineers and managers. Training in a standard process based on

knowhow gained from individual projects or from R&D helped the organization

accumulate and leverage skills across many projects systematically.

Objectives included the improvement of capabilities for process and quality

standardization as well as higher average levels of productivity, especially

from new or less experienced personnel.

Dynamic Standardization: All Japanese software factories, in addition to

imposing standards for personnel performance, methods, tools, products, training,

and other elements of operations, formalized the process of periodically

23

reviewing and changing standards. Japanese facilities in the late 1980s continued

to refine tools and techniques popular in the 1970s, although with modifications

such as a stronger emphasis on building new systems around reusable

components or designs. But the policy of reviewing and revising standards for

practice and performance insured that Japanese organizations moved forward

with the technology, at least incrementally, and retained the ability to adapt to

evolving customer needs. As long as computer hardware and software

programming did not change radically, this approach provided an effective

balance of efficiency and flexibility. User and producer investments in current

hardware and software assets probably precluded radical changes for most

segments of the software industry, although R&D organizations also provided a

mechanism to monitor changes in the industry as well as generate in-house new

technologies.

Systematic Reusability: One of the major obstacles to improving productivity

and quality, as well as to accumulating knowledge of particular applications,

continued to be the unique or customized designs of many software products.

This characteristic prevented many software firms from exploiting a strategy

commonly used in other engineering and factory processes: mass production of

interchangeable components. Craft or factory producers may at any time reuse

elements such as requirements specifications, detailed designs, code, tools, or

documentation, if individuals remember what software they or other groups had

built in the past. But factory approaches took this strategy a step further by

planning and devising tools, libraries, reward and control systems, and training

techniques to maximize the writing of reusable software and the systematic

reuse of components across different projects. Design for reuse in particular

constituted an investment in an ever-expanding inventory of reusable parts. But

24

III

reuse proved especially difficult across different kinds of software, thus making

reuse more likely within facilities focused on similar products. Again, the extra

time and money often needed to design parts for general applications (rather

than for a specific customer or function) required management planning,

controls, and incentives above the level of the individual project.

Computer-Aided Tools and Integration: Like many engineering departments and

large factories in other industries, all the software facilities described in this

book relied heavily on mechanization and automation -- specialized programs

and databases, sometimes called computer-aided software-engineering (CASE)

tools, for all phases of product development, project management and data

collection or analysis, reuse support and quality control. Good tools captured

expertise, reinforced good practices, allowed personnel to spend less time on

routine tasks (such as filing reports or coding well-structured designs), and

made it possible for relatively unskilled personnel to build complex, and

primarily unique or customized, systems. However, in Japanese factories, major

tool efforts came relatively late to the factory process and seemed of secondary

importance. Companies first strove to establish a standard engineering

methodology for each product family, and only then introduced tools to support

this methodology. To make tool usage more efficient and coordinated with an

integrated process, Japanese facilities also paid considerable attention to

integrating tools with each other as well as with standardized methods,

reinforcing both through training programs, and pursuing better tools and

methods continually through some form of RD organized above the project

level.

Incremental Product and Variety Improvement: As in other industries; Japanese

25

software producers first concentrated on process and quality control and then

on improvement, in response to the challenge of producing software more

efficiently and guaranteeing product reliability to customers. Only after

demonstrating high levels of productivity and quality by the mid-1980s did

Hitachi, Toshiba, NEC, and Fujitsu turn gradually to upgrading product designs

and performance. They also spent increasing amounts of time in design rather

than in routine tasks such as coding, and expanded the variety of products they

produced in a single facility. This rise in skills and attention to product

development, which bode well for the Japanese as future competitors in

software, also drew on accumulated skills in process engineering and

management. Indeed, building large complex systems efficiently and reliably

required effective organization and management, suggesting that the assumption

of a fundamental incongruence between efficiency in process and flexibility in

products did not always hold.

* * *

The quest for an absolute answer to whether software development is or

should be managed more like an art or craft rather than like science,

engineering, or manufacturing is probably moot. This is because the nature of

software development, and the optimal process or organization, seems to depend

on the specific tasks at hand. To the extent these tasks differ with product

types, market segments, and competitive positioning, the appropriateness of

managing software through a factory process or not becomes a strategic choice

subject to management discretion. The most relevant concern for Japanese

managers has not been how to label software but how to understand and

improve its development. For this latter task -- improving the development

process -- Japan's factory efforts offered cause for reflection and presented a

26

III

serious challenge to the belief, once common in U.S. and European firms, that

loosely structured craft or job-shop approaches constituted the most suitable

process for all software development.

In other industries, rigid automation and control, such as in the plant Ford

used to produce the Model-T car, were revolutionary but temporary steps in a

movement beyond the craft or job-shop stage. The current trends in

engineering and manufacturing, led by Japanese firms such as Toyota, leaned

toward more versatile machinery and production practices, and even relatively

skilled workers. On the surface, these seemed like steps backward from the

Model-T era, and movements closer again to the higher variety, smaller

production volumes, and higher skill requirements of craft or job-shop

production. In reality, companies had come to recognize that combinations of

efficiency and flexibility allowed them to meet various and changing customer

needs more effectively than simply maximizing one dimension (Exhibit 7).

Japanese software factories represented an attempt to move software

development beyond craft practices, such as by standardizing tools, basic

methods, and reusable components, but still allowing design engineers and

programmers the discretion they needed to build unique or tailored programs.

It thus seems a mistake to interpret the software factory as an overly

rigid mode of organization operating within the wrong paradigm, or even as a

facility requiring a certain size or centralization of operations. To understand

the true origin and character of these facilities, it is useful to recall a

comment by NEC Vice-President Yukio Mizuno, who stated that the software

factory was essentially a concept, not a thing: a philosophy that at least some

software could be produced in a manner more akin to engineering and

manufacturing than craft or cottage-industry practices. 14 While Hitachi,

Toshiba, NEC, and Fujitsu did not reinvent product designs or even the

27

fundamental process technology employed in their own factories, they put

together the ideas, techniques, tools, and people -- the technology and the

organizations -- that made the factory concept work, and work better than ad-

hoc approaches used earlier.

Japanese factories also reflect a need for software managers to adopt more

of a strategic and contingency perspective -- like their counterparts in other

industries have done for many years. The factory approach might not be

appropriate for every market segment and competitive position. At the same

time, the experience of the Japanese supports another view that departs

strongly from those who would insist software development forever remain an

art or craft: Not only are more structured approaches possible to introduce,

but by not pursuing process refinements, managers may be wasting human and

capital resources, as well as an opportunity to improve the competitive

capabilities of the firm.

The software factory thus reflected neither narrowness of mind nor lack

of imagination, but a desire to leverage existing skills and affect history, to

move forward the state of a most vexing process technology. At the very

least, the type of disciplined data-collection and analysis of past and current

projects conducted routinely in Japanese software facilities provided an

accumulation of knowledge essential for continual improvement. This approach

proved essential to progress in managing this technology, as eloquently stated in

a 1980 essay on the state of the computer industry: "People built bridges that

stayed up and airplanes that flew, long before scientists discovered the

underlying mathematical principles and structures. If we want to make further

progress in software, we must go back to study what can be done and what has

been done, until we find out how to do it well....,,15

28

111

-Exhibit 1: MAJOR JAPANESE SOFTWARE FACTORIES

Key: BS

App
RT
Tel

= Operating Systems, Database Management Systems, Language
Utilities, and Related Basic Software

= General Business Applications
= Industrial Real-Time Control Applications
= Telecommunications Software (Switching, Transmission)

Notes: All facilities develop software for mainframes or minicomputers.
Employee figures refer to 1988 or 1989 estimates, based on company
interviews and site visits.

1988-1989
Est. Company Facility/Organization Products Employees

1969 Hitachi Hitachi Software Works BS 5000

1976 NEC Software Strategy Project
Furhu Works BS 2500
Mita Works RT 2500
Mita Works App 1500
Abiko Works Tel 1500
Tamagawa Works Tel 1500

1977 Toshiba Fuchu Software Factory RT 2300

1979 Fujitsu Systems Engineering Group App 4000
(Kamata Software Factory 1500)

1983 Fujitsu Numazu Software Division BS 3000
(Numazu Works est. 1974)

1985 Hitachi Systems Design Works App 6000
(Systems Engineers 4000)
(Programming Personnel 2000)

Source: Company data, site visits, and manager interviews.

29

Exhibit 2: U.S.-JAPAN SOFTWARE PERFORMANCE

Note: Expressed in Means, with Medians in Parentheses ()

U.S. Japan
(n=24) (n=16)

Average Project Size (Source Lines of Code)

343,000 433,000
(124,100) (163,700)

Mean Productivity (Fortran-Equivalent SLOC/Work-Year)

7,290 12,447
(2,943) (4,663)

Code Reuse (% of Delivered Lines)

9.71 18.25
(3) (11)

Failures/1000 SLOC During First 12 Months After Delivery

(n=20) (n=11)

4.44 1.96
(.83) (.20)

Source: Michael A. Cusumano and Chris F. Kemerer, "A Quantitative Analysis of
U.S. and Japanese Software-Engineering Practice and Performance,"
Sloan School of Management, Working Paper #3022-89, May 1989.

30

111

Exhibit 3: Product-Process Strategies for Software Development

Product Type Process Strategy Organization Type

HIGH END:

Unique Designs Meet Customer Require-
(Full Custom, ments & Functionality
"Invention")

High-Priced Hire Skilled Workers CRAFT-ORIENTED
Premium To Design, Build Needed
Products Tools & Methods JOB SHOP

Small To Medium- No Organizational Skills
Size Systems To Perform A Series Of

Similar Jobs Or Do Large
Jobs Systematically

MIDDLE:

Partly Unique Balance Customer Needs
Designs & Functionality With
(Semi-Custom) Production Cost, Quality

Medium-Priced Skilled Workers Mainly SOFTWARE
Products In Design, Standard

Development Process FACTORY

Small To Large- Organizational Skills
Sized Systems Cultivated To Build Large

Systems And Reuse Parts,
Methods, Tools, And People
Systematically

LOW END:

Unique, Mass- Maximize Application
Replicated Designs Functionality For
(Scale Economies) Average User Needs

APPLICATION-
Low-Priced Products Hire Highly-Skilled
(Packages) Workers Knowledgeable ORIENTED

In Application
PROJECT

Small to Medium- No Organizational Skills
Sized Systems To Develop Large Products

Or A Series Of Similar
Products Systematically

31

Exhibit 4: JAPAN-U.S. HARDWARE AND SOFTWARE COMPARISON, 1987

Notes: Japanese Yen converted at $1.00 = 125 Yen
NA = Not Available
Custom Software/System Integration for Japan includes consulting ($.67
billion); for the U.S. market, this category refers to contract
programming and design

Japan U.S.
Total Market $34.1 $70.4

Software Revenues/Total Market 38% 35%

Hardware Shipments $21.0 100% $45.6 100%

Large Systems 8.7 41 9.1 20
Medium Systems 3.1 15 8.7 19

Small Systems 5.0 24 8.2 18
Personal Computers 4.2 20 19.6 43

Software-Vendor Revenues $13.0 100% $24.8 100%

Total Packages 1.4 11 13.1 53
Types:
(Systems/Utilities) NA -- (5.0) (20)
(Application Tools) NA -- (3.7) (15)
(Application Packages) NA -- (4.5) (18)

Custom Software/System Integration 10.1 78 9.6 39
(Custom Software Only) (7.9) (61) NA --

Facilities Management/Maintenance 1.4 11 2.1 8

Miscellaneous Data:
1987-1992 Compound Annual Growth 17% 20%
Estimate for Software Revenues

Annual Growth in Supply 13% 4%
of Programmers

Typical Wait for Customized 26 40
Programs in Months (ca. 1984)

Computer Makers as Suppliers:
of Basic Systems Software 70% 45°6
of Applications Software 15% 5%

Sou rces: International Data Corporation, "Japan Computer Industry: Review
and Forecast, 1987-1992," January 1989; and International Data
Corporation, Computer Industry Report: The Gray Sheet, 16
December 1988, p. 3; and others.

32

III

Exhibit 5: PHASES OF FACTORY STRUCTURING IN SOFTWARE

Phase I:
(Mid-1960s
to Early
1970s)

Phase I I:
(Early
1970s
to Early
1980s)

Phase I I l:
(Late
1970s)

Formalized Organization and Management Structure
Factory Objectives Established
Product Focus Determined
Process Data Collection and Analysis Begun
Initial Control Systems Introduced

Technology Tailoring and Standardization
Control Systems and Objectives Expanded
Standard Methods Adopted for Design, Coding, Testing,

Documentation, Maintenance
On-Line Development Through Terminals
Program Libraries Introduced
Integrated Methodology and Tool Development Begun
Employee Training Programs to Standardize Skills

Process Mechanization and Support
Introduction of Tools Supporting Project Control
Introduction of Tools tc Generate Code, Test Cases,

and Documentation
Integration of Tools with On-line Databases and Engineering Work

Benches Begun

Phase IV:
(Early
1980s)

Phase V:
(Mid- 1980s)

Phase VI:
(Late
1980s)

Process Refinement and Extension
Revisions of Standards
Introduction of New Methods and Tools
Establishment of Quality Control and Quality Circle Programs
Transfer of Methods and Tools to Subsidiaries, Subcontractors,

Hardware Customers

Integrated nd Flexible Automation
Increase in Capabilities of Existing Tools
Introduction of Reuse-Support Tools
Introduction of Design-Automation Tools
Introduction of Requirement-Analysis Tools
Further Integration of Tools Through Engineering Work Benches

Incremental Product/Variety Improvement
Process Reliability Control, Followed By:
Better Functionality Ease of Use
More Types of Products

33

Exhibit 6: ELEMENTS COMMON TO THE FACTORY APPROACH

Across a Series of Similar Projects

OBJECTIVES:

Strategic Management and Integration
Planned Economies of Scope

IMPLEMENTATION:

Commitment to Process Improvement
Product-Process Focus and Segmentation
Process-Quality Analysis and Control
Tailored and Centralized Process R&D
Skills Standardization and Leverage
Dynamic Standardization
Systematic Reusability
Computer-Aided Tools and Integration
Incremental Product/Variety Improvement

34

III

Exhibit 7: PRODUCTION-MANAGEMENT OBJECTIVES

FLEXIBLE
HARDWARE
FACTORY

Medium
Variety

Lower
Volume

Medium
Skill

CONTINUOUS IMPROVEMENT

EFFICIENCY & FLEXIBILITY

35

MODELT
FACTORY

Small
Variety

High
VoTume

Low
Skill

FLEXIBLE
SOFTWARE
FACTORY

Medium
Variety

Lower
Volume

Medium
Skiill

JOB SHOP/
CRAFT

Infinite
Variety

Batches
of One
Higihest
S k fl

OBJECTIVES:

Productivity

Reliability

Productivity

Reliability

Some Variety

Productivity

Reliability

Some Variety

-

I II I

I

I

NOTES

1. See H. Hunke, ed., Software Engineering Environments, Amsterdam, Nor-

Holland, 1981, Introduction; and Werner L. Frank, Critical Issues in Software,

New York, John Wiley and Sons, 1983.

2. For various data on software economics, productivity, and industry revenues,

see U. S. Department of Commerce, A Competitive Assessment of the U.S.

Software Industry, Washington, D.C., International Trade Administration, 1984;

and Robert Schware, The World Software Industry and Software Engineering,

Washington, D.C., The World Bank, Technical Paper No. 104, 1989.

3. Discussions of the U.S. preeminence in software and decline in other

industries can be found in numerous sources, such as U.S. Department of

Commerce and Schware cited earlier; and Michael L. Dertouzos, Richard K.

Lester, and Robert M. Solow, Made in America: Regaining the Productive Edge,

Cambridge, MA, MIT Press, 1989.

4. See, for example, U.S. Department of Commerce; Laszlo A. Belady, "The

Japanese and Software: Is It a Good Match?" Computer, June 1986, pp. 57-61;

and Electronic Engineering Times, "Software in Japan," 11 February 1985, p. 1.

5. This study was conducted jointly with Chris F. Kemerer, also on the faculty

of the MIT Sloan School of Management, during 1988-1989. Firms participating

in the survey consisted of Amdahl, AT&T, Computervision, Financial Planning

Technologies, Harris Corporation, Hewlett-Packard, Honeywell, Hughes Aircraft,

IBM, and Bell Communications Research in the U.S., as well as Fujitsu, Hitachi,

Hitachi Software Engineering, Kozo Keikaku, Mitsubishi Electric, Nippon

Business Consultant, Nippon Electronics Development, Nippon Systemware, and

NTT in Japan. Applications included basic systems, data-processing, scientific,

36

III

telecommunications, and real-time programs. Details of the research are

reported in Michael A. Cusumano and Chris F. Kemerer, "A Quantitative

Analysis of U.S. and Japanese Software-Engineering Practice and Performance,"

Sloan School of Management, Working Paper #3022-89, May 1989.

6. On this debate, see Frederick P. Brooks, Jr., The Mythical Man-Month:

Essays on Software Engineering, Reading, MA, Addison-Wesley, 1975; Oscar

Hauptman, "Influence of Task Type on the Relationship Between Communication

and Performance: The Case of Software Development," R&D Management 16

(1986), 127-139; and Martin Shooman, Software Engineering: Design, Reliability,

and Management, New York, McGraw-Hill, 1983. For a perspective on this

debate as it fits into studies of the history of technology in general, see

Michael S. Mahoney, "The History of Computing in the History of Technology,"

Annals of the History of Computing, Vol. 10, No. 2, 1988, pp. 113-125.

7. R.W. Bemer, "Position Papers for Panel Discussion -- The Economics of

Program Production," Information Processing 68, North-Holland, Amsterdam,

1969, pp. 1626-1627.

8. This discussion is based on vM.D. Mcllroy, "Mass Produced Software

Components," in Peter Naur and Brian Randell, eds., Software Engineering:

Report on a Conference Sponsored by the NATO Science Committee, Scientific

Affairs Division, NATO, Brussels, January 1969. The discussion of Mclroy's

address is on pp. 151-155. See also Ellis Horowitz and John B. Munson, "An

Expansive View of Reusable Software," IEEE Transactions on Software

Engineering, September 1984, pp. 481.

37

9. The initial structure and organization of the factory is described in Harvey

Bratman and Terry Court, "The Software Factory," Computer, May 1975, pp. 28-

37, as well as "Elements of the Software Factory: Standards, Procedures, and

Tools," in Infotech International Ltd., Software Engineering Techniques,

Berkshire, England, Infotech International Ltd., 1977, pp. 117-143.

10. See William G. Griffin, "Software Engineering in GTE", Computer, November

1984, pp. 66-72.

11. Kanji Iwamoto, et al., "Early Experiences Regarding SDMS Introduction into

Software Production Sites," NEC Research and Development, January 1983.

12. See Finn Borum, "Beyond Taylorism: The IT-Specialists and the Deskilling

Hypothesis," Copenhagen School of Economics, Computer History (CHIPS)

Working Paper, September 1987.

13. Wanda J. Orlikowski, Information Technology in Post-Industrial

Organizations, Unpublished Ph.D. Thesis Draft, Graduate School of Business,

New York University, November 1988.

14. Mizuno Yukio, quoted in "Sofutouea bijinesu no mirai" (Future of the

software business), Konpyuta, April 1986, p. 92.

15. Bruce W. Arden, ed., What Can Be Automated?, Cambridge, MA, MIT Press,

1980, p. 797.

38

