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Abstract

We propose a class of deterministic linear approximations to

mathematical programs with individual chance constraints. In these

approximations, we replace each chance constraint by a set of linear

inequalities. The linear inequalities approximate the chance constraint as

opposed to methods that approximate the variance of the chance constraint.

This allows us to provide near-optimal solutions of chance-constrained

problems that have random variables with arbitrary distributions; the

random variables can be dependent.

If the feasible region defined by a chance constraint is convex, we

show that the linear approximation is uniformly tighter than the constraint

it replaces: any solution to the approximation is feasible to the original

constraint. At the cost of doing more work, the number of linear

inequalities can be infinitely increased to make the approximation exact.

As examples, we present three simple methods from this class of linear

approximations. The computation results show that these approximations work

well when the number of random variables is small. The methods can

potentially be applied to production problems where planning is done on a

rolling horizon basis.
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Distribution-Free, Uniformly-Tighter Linear Approximations
for Chance-Constrained Programming

Gabriel R. Bitran and Thin-Yin Leong

1. Introduction

In this paper, we present a class of linear approximations to chance-

constrained problems where the random variables have arbitrary

distributions. We focus on chance-constrained linear programs (LP) with

stochastic technology coefficients--coefficients on the left-hand-side of a

constraint. However, the method can also be applied to mathematical

programs that have chance-constrained nonlinear inequalities with

stochastic or deterministic resource parameters, the right-hand-side

parameter of a constraint. These problems appear in service constrained

applications that have uncertainties in the yield or demand. The broad

classification of these applications are problems (a) with carry-over

resources (inter-period constraints), (b) with portfolio selection (intra-

period constraints), and (c) with both carry-over resources and portfolio

selection.

Applications of the first type can be found in the areas of

production planning and inventory control; facility location planning;

project planning (PERT); financial investment planning; cash management;

cost-volume-profit analysis; and environmental, public services, and

utilities (hospital staffing, reservoir capacity, rail-road system, solid

waste system) planning. Portfolio-selection applications include problems

in investment portfolio management, activity analysis and technology

planning, capital budgeting, animal and human dietary planning, and

material composition selection. The lists are not intended to be

comprehensive but illustrates the variety of applications. For more
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applications and detail of specific problems, see [Hogan, Morris, and

Thompson 19813.

In general, chance-constrained programs with random technical

coefficients are hard to solve. To make the problem tractable, it is

typical to assume that the random coefficients are normally distributed. We

propose, in this paper, a new alternative approach. The method relaxes the

assumptions needed for the probability distributions of the random

coefficients. Our main goal is to derive an approach that is intuitive and

allows easy extraction of a problem's structural properties for building

simple effective heuristics.

In this paper, we present three simple methods from our class of

approximations. These methods are particularly suited to problems with a

small number of random coefficient in a chance constraint. However, in

some problems, the structural properties of the problem may permit large n.

For example, in production/inventory problems, the service constraints for

the planning horizon have a block triangular structure. The chance

constraints with few variables are the service constraints for the more

immediate periods; the periods further into the horizon have more

variables. Thus when the planning is done on a rolling horizon basis, the

large errors for the periods further away are not important as long as the

nearer periods are well approximated. Examples of applying the methods

appear in our earlier work: [Bitran and Leong 1989a], --- 1989b], [---

1989c].

The paper is organized as follows. Section 2 reviews the work of

other researchers. Section 3 describes the general principle of our

approach and illustrates it with some examples. In section 4, we

recapitulate the equations used in the major alternative approximations and

test our method against them. We report the results in section 5 with
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comments on extensions and future research. In the last section, we

conclude with a short summary.

2. Literature Review and Important Results

(For a quick tutorial on stochastic programming problems and chance-

constrained programs, we refer the reader to the introductory comments in

[Hillier 1967] and the references mentioned there. Greater details on the

subject can be found in stochastic programming texts like [Sengupta 1972],

[Vadja 1972], [Kall 1976], and [Dempster 1980].)

Under the condition that the joint distribution function of the

random variables is continuous, Symonds [1967] proved that the feasible

region of a chance-constrained program can be replaced by a deterministic

equivalent. He also provided results for linear chance-constrained problems

where only the resource vector is random. Problems with random resource are

quite well covered in the literature. In fact, most of the research on

chance-constrained problems has centered on the cases where only the

resource is random. The reader is directed to see [Charnes, Cooper, and

Symonds 1958] and [Charnes and Cooper 1963] for more details. In a LP with

stochastic technology coefficients, a chance constraint comprises a linear

combination of random variables. The weights used for combining the random

variables are the decision variables of the program. Hence in general,

before solving the program, the probability of violating the resource

capacity is difficult to evaluate.

To simplify the discussion, without loss of generality, we assume

that the resource parameter is deterministic. Problems with stochastic

resource parameters in the chance constraints can be transformed by

multiplying the parameters with dummy decision variables, thus converting

them into technology coefficients. Adding new constraints to the problem,
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we set the value of these dummy variables to one. Now consider the chance-

constrained linear inequality

Prob(Eni= 1 ai xi b) > . (1)

ai, i=l,..,n, are the random technology coefficient variables with

continuous joint distribution; xi, i=l,..,n, are the decision variables; b

is the deterministic resource parameter; and a e [0,1, the service

performance target, is the probability that ni= 1 ai xi b is satisfied.

The random variables ai, i=l,..,n, are assumed to have finite mean Eai]

and finite variance V[ai = oi2.

By Symonds' theorem, constraint (1) has a deterministic equivalent

g(x) < b, (2)

with vector x _ (x1,..,xn). In general, g(x) is a nonlinear function and

can be written as

g(x) = E[Eni=1 ai xi] + za (V[Eni=1 ai xi])1/2, (3)

where za = z(x), the safety factor, is a function of the service target a

as well as the decision vector x. When ai, i=l,..,n, are independent and

normally distributed, (3) becomes

g(x) = Eni=1E[ai] Xi + Z [Eni=1 i2 xi2]1/2 . (4)

Here Z is the "one-tail" normal variate for a and depends on a only. This

value can be obtained easily from the tables in most basic statistics

texts. () is true because a linear combination of normal random variables

is also normally distributed.

The representation in (4) is also applicable to the class of stable

probability distributions (see [Allen, Braswell, and Rao 1974]). Stable

distributions are distributions, completely specified by their means and
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standard deviations, such that a linear combination of random variables

with a common stable distributional form has the same distributional form.

It is not necessary for the random variables to be identically distributed.

Their means and variances may be different but they must be from a common

distributional form. The class of stable distributions include the normal,

Poisson, Chi-square, and binomial distributions. Though not as readily

available as the normal variate, the safety factor for the other stable

distributions can be computed or found in published tables. Again, the

safety factor for stable distributions is independent of the decision

variables: the safety factor is a function of a only.

CONDITION Cl: Random variables ai, i=l,..,n, share a common stable

distributional form. 

When condition C1 is true and the random variables are dependent, za

is still a function of a only. However, in general, since za may be

dependent on x, g(x) is difficult to evaluate and usually cannot be

expressed in closed form.

THEOREM1 Kataoka 19631: A chance-constrained linear inequality under C1

and with za 0 is convex. ·

Theorem 1 is the main published result on the convexity of a chance-

constrained linear inequality. Little is known to date about the convexity

of (1) when the random variables are of other distributions. Hillier 1967]

mentioned that for arbitrary distributions, under fairly weak conditions,

the central limit theorem may permit the normal approximation. Charnes,

Cooper, and Thompson [1963] suggested that a mixture of normal

distributions can be used to approximate distributions of fairly arbitrary

shapes. Under this approximation, the term ni=l ai Xi in (1) is again a

normal random variable. Za, the safety factor for the normal distribution,

is non-negative when a 0.5. Therefore, using theorem 1, we can argue that
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for a 0.5, (1) is usually convex. Our simulation experiments, on common

distributions, indicate that for a close to 1, (1) is convex. We did not

find any general theoretical result on the neccessary conditions for

convexity of (1). Some work in this area has been done by Prekopa

[1971,1974]. This remains an interesting research question for further

study.

ASSUMPTION A: The feasible region of (1) is convex. ·

We will assume Al to be true for the rest of this paper. This condition has

been assumed to be true in almost all the work we came across. Hence the

assumption we make is no more restrictive than those that have been made

(see for example, [Hillier 19673 and [Seppald 19713).

The usual approach taken by previous studies, after assuming Cl and

convexity (Al), is to solve the chance-constrained problem with nonlinear

programming methods. The nonlinear programming methods usually linearize

the problem and search along subgradients. An example of this is Kelly's

[1960] cutting plane method. This method solves chance-constrained

programs, in multiple passes, as linear programs. A linear program is first

solved without the chance constraints. At each subsequent iteration, a

hyperplane tangent to each chance constraint is defined using the preceding

iteration's solution and its partial derivatives. These are introduced into

the program as additional linear constraints. Prekopa 1988] summarizes the

numerical approaches available for solving chance-constrained problems.

These nonlinear programming methods tend to be complicated: they require

partial derivatives, multiple-pass techniques, and non-standard computer

codes. Moreover, they are usually restricted to cases under condition Cl.

Allen, Braswell, and Rao [1974] developed methods for approximating a

chance-constrained set using information derived from sample data only.

This approach is based on Wilks's [1963] work on the use of statistically

6
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equivalent blocks to construct 1Oa% tolerance regions. The level of

confidence of satisfying the chance constraints can be determined from the

size of the sample. In addition to the type-one error information implicit

in the chance-constraints, this approach gives the decision-maker type-two

error information. The paper compared the percentages of empirical

constraint satisfaction of the actual feasibility region by (a) assuming

stable distribution, (b) using a safety factor derived from Chebyshev's

inequality, (c) using a simple linear approximation, and (d) using a

hyperspherical approximation. Charnes, Kirby, and Raike [19701 studied this

further and developed the "acceptance region theory".

Allen, Braswell, and Rao's approximations are not uniformly tighter

than the original constraint; the solutions to their approximations are not

necessarily feasible to the original problem. However, since the uniformly-

tighter characteristic is important in many practical applications of

chance-constrained programs, Hillier [1967] and later Seppald [1971, 1972]

devised approaches that satisfy that condition. Both methods require

condition C1. In this section, we give a brief sketch of these two methods.

We provide their technical detail in section .

Hillier restricted his study to cases where the decision variables

are (a) 0-1, (b) 0 or 1, or (c) bounded. He approximated the variance term

in (3) with a separable nonlinear function. The separability property of

the approximation makes it easier to apply nonlinear programming

techniques. The nonlinear approximation can also be further approximated

with a piecewise-linear function using a standard approach in separable

convex programs ([Bradley, Hax, and Magnanti 1977]). The piecewise-linear

approximation is uniformly tighter than the nonlinear approximation; in

turn, the nonlinear approximation is uniformly tighter than the chance

constraint.

7
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Despite the set-back of not getting the exact optimal solution,

Hillier expounded on the value of linear approximations. The advantages he

listed are (a) the relatively high efficiency of solving linear programs,

(b) the ability to do sensitivity analysis, and (c) the availability of

linear duality theory for analyzing the solutions for managerial

implications. The service levels in the chance constraints may be initially

selected by managerial policy. After solving the problem, the service

levels should be re-evaluated against their corresponding optimal dual

variable values. These give a measure of the costs of maintaining the

corresponding service levels and hence provide guidance for revising them.

Seppdla [1971] relaxed the restrictions, on the decision variables,

required by Hillier. Focussing, as in Hillier's approach, on the variance

term of the deterministic equivalent (3), Seppdla introduced new variables

to break this nonlinear variance term into simpler nonlinear functions.

Each nonlinear function is a function of two variables only. He then

approximated each of these by piecewise-linear segments. The resulting

linear approximation is uniformly tighter than the chance constraint. In

this, as well as Hillier's approach, the decision-maker can choose the

number of linear constraints to use to replace the chance constraint. As

the number of linear constraints increases, the error of Seppdla's solution

from the optimum approaches zero. For Hillier's method, the error will

decrease with more linear constraints but may not go to zero.

In a recent paper, Olson and Swenseth [1987] suggested the simple

approximation of replacing each random coefficient ai, i=l,..,n, in (1) by

the sum of its expected value and its standard deviation multiplied by a

safety factor, shown below:

g(x) = ni=l(E[ai] + Za ai) Xi . (5)

8
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Assuming Cl and with the means and the variances given, this approximation

is the same as Allen, Braswell, and Rao's [1974] linear approximation. As

an illustration, Olson and Swenseth solve Van de Panne and Popp's [19631

cattle-feed mix problem--assuming independent normal distributions--and

showed that the errors are small.

The details of this approximation is given later. Briefly, this

linear approximation consists of only one inner-linearization hyperplane.

For the convex case (Al), the hyperplane defines a half space that

guarantees feasibility to (1). Since the feasible region defined by a

chance constraint is nonlinear, in the worst case the gap from optimality

can be very large. This is particularly so when the magnitudes of the

variances relative to the means of the random variables are huge. The

coefficients of variation (COV) in the cattle-feed mix problem are

extremely small--less than 0.01--and hence the excellent results.

In cases where condition Cl is not true, both Hillier and Seppdlg

suggest that the Chebyshev's inequality be used to obtain the safety

factor. However, the Chebyshev's inequality is known to give safety factors

with magnitudes much larger than they need to be and thus the

approximations tend to constrict excessively the feasible region (e.g. see

Allen, Braswell, and Rao [19741). They are particularly bad when the random

variables have finite supports (for example, ai 0 or ai [0,1]). In the

literature we have encountered, most test cases have small COV's. However,

in some applications the COV's can be large: Albin and Friedman [1989]

reported that the distributions of defects in integrated circuit

fabrication have COV's larger than 1.

3. Description of the method

Unlike Hillier and Seppdl& who linearize the variance term in (3), we
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linearize g(x) in (2). This way, we do hot have to deal with z explicitly.

Our method constructs hyperplanes, each formed by connecting selected

points on the boundary of (2). The hyperplanes approximate the feasible

region of (2). The main principle in our approach is to make some "guesses"

about the relative magnitudes of the decision variables. For each guess,

g(x) becomes a function with one random coefficient and one decision

variable. Specifically, we "guess" that x i = si w, i = 1,..,n, for a

selected deterministic vector s (sl,,s n and decision variable w. In

this case, (1) becomes

Prob( w ni=1 ai i b) a. (6)

Constraint (6) can be re-written as linear inequality

(s) w < b (7)

where fractile (s) = F-l(Eni=1 ai si; a) is a deterministic coefficient,

F(u;v) is the cumulative density function of random variable u evaluated at

v, and F-l(u;.) is the inverse function of F(u;v).

Vector s corresponds to a ray from the origin. With each vector s,

the evaluation of (7) gives us a point on the boundary surface of (2). We

repeat the process for a set of selected rays to get a set of points on the

boundary of (2). We then connect adjacent points to form hyperplanes. The

hyperplanes are introduced into the problem as linear inequalities (linear

constraints). These linear inequalities replace the chance constraint (1)

in the problem.

Geometrically, the linear inequalities form a polyhedron that has

extreme points touching the boundary of the feasible region. Consequently,

if the feasible region formed by (2) is convex, it "contains" the

polyhedron. Therefore when (2) is convex, the set of linear inequalities is

uniformly tighter than (2). The extreme points are the same points at which

the selected rays from the origin intersect the boundary of the feasible
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region. Figure 1 illustrates the polyhedron formed by the extreme points in

a convex chance constraint in R2.

Figure 1. Linear Approximation of a Chance Constraint.

With an infinite number of rays, the linear inequalities reproduce the

chance constraint (1). In practice, only a few "well-chosen" rays are

needed to give solutions with small relative errors from the optimal value.

EXAMPLES

All our linear approximations have the form

Eni=l Qik Xi b, k=l,..,K, (8)

where 2ik, i=l,..,n, are deterministic coefficients. For each k, Eni=l Qik

Xi = b defines a hyperplane and -Qik, i=l,..,n, are obtained by solving a

system of equations; each equation corresponds to an extreme point (of the

polyhedron) that rests on the hyperplane. This effort is done once only for

each approximation; they are not solved each time the approximation is

used. (Details are presented in the appendix.)
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In this study we provide, as examples of the general approach, three

approximations: (RAY1). (RAY2), (RAY3). The rays used in these

approximations are the decision variable axes and the centriod rays, rays

in the center of the cone formed by subsets of the axes. Allen, Braswell,

and Rao [1974] and Olson and Swenseth's [19871 methods are special cases of

(RAY1); the rays used in (RAY1) are the decision variable axes only.

We define the unit vector e i = (sl,..,sn ) where sj = 1 for i = i and

sj = 0 otherwise. Below, we provide the approximations.

(RAY1)

(RAY2)

For n = 3, for example, matrix Q = [Qik ]

(1,1,1)-(0,1,0)-(0,0,1) (0,1,0) (0 ,0,1)

= (1,0,0) 0(1,1,1)-0(1,0,0)-(0,0,1) ,(0,0,1)

(1,0,0) (0,1,0) 0(1,1,1)-0(1,0,0)-(0,1,0)

For (RAY3), we construct unique sets {t(i,k), i=l,..,n), k=l,..,K.

By itself, each n(i,k) is also a set such that (i-l,k) c n(i, k),

i=l,..,n, with (n,k) = {1,..,n) and (O,k) = {} for all k. Note that there

can be n! unique sets of {t(i,k), i=l,..,n} and hence K = n!.

12

gRAY1 (x ) = i ni=l ik Xi, k=l,..,K=l,

where ik = (ei), k=l,..,K=l.

gRAY2(x) = ni=l ik Xi, k=l,..,K=n,

where Qik = (Enj=1 ej) - Enj=1 (ej) + (ei ) for i = k

and ik = (ei) otherwise.
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(RAY3)

gRAY3(x) = Eni=l ik Xi, k=l,..,K =n !,

where Qik = (Eren(j,k) Sr) - O(ret(j-l,k) Sr)

with j such that i = (ji,k)\n(j-l,k). (\ is the set subtraction operation.)

Now for n = 3,

4(1,,1)-4(0,1,1) (0,1,1)-(0,0,1) 4(0,0,1)

0(1,1,1)-4(0,1,1) C(0,1,0) 4(0,1,1)-(0,1,0)

O(1,0,1)-%(0,0,1) O(1,1,1)-(1,0,1) ~(0,0,1)

(,,0(1101) ~(1,,1)-0(1, 0,0)

(1,1,0)-4(0,1,0) 4(0,1,0) 4(1,1,1)-4(1,1,0)

4(1,0,0) 41,1,0)-(1,0,0) O(l,1,1)-C(1,,0)

(RAY1), (RAY2), and (RAY3) are by no means the only approximations

possible using our methodology. There can be numerous variations by using

different rays and constructing different hyperplanes from them. Moreover,

an iterative multi-pass approach may be devised to generate the rays based

on previous iterations solution. We leave this challenge for future

research.

FRACTILES

When the joint probability distribution of the random variables are

known, the fractiles (s) may sometimes be obtained as closed-form

expressions. Alternatively, at a level of confidence that corresponds to

their sample sizes, the fractiles can be extracted from Monte-Carlo

simulation (Levy [1967]) or sample data. If the form of the distribution is

known but not the exact distribution, the fractiles may be estimated using

statistical approximation methods (Bache [1979], Cornish and Fisher [1937],

Fisher and Cornish [1960]). These methods can make use of the sampling

13
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information beyond the first two moments. When the sample data only is

available, distribution-free or non-parametric methods (Allen, Braswell,

and Rao [1974], Wilks [1963]) may be used.

4. Comparative Experiments

We compare our method against those by Hillier, Seppala, and Olson

and Swenseth. Before proceeding, we sketch how these methods approximate

g(x) for the test conditions we are using. Following that, we describe the

test conditions and then state the comparison criterion.

g(x) _ F (Eni=1l ai xi; a)

Normal distribution:

g(x) = ni=1 E[ai] Xi + Za [Eni=1 i2 xi2 11/2.

Uniform distribution and xi e 0,1, i=l,..,n:

g(x) = m - (m!(1-a))1/m where m = Eni= 1 xi.

For xi e 0,11, g(x) for the uniform distribution case can be derived using

geometry.

(HILL)--Hillier

(a/(l-a))1/ 2 is the one-sided Chebyshev's inequality safety factor.

Approximation gHILL(x) given above is only the nonlinear approximation of

14

Normal distribution and xi e [0,1], i=l,..,n:

gHILL(X) = Eni=1 E[ai] Xi + Za [Eni=1 (02 - oi2 + oi2 xi2 )"/2 - (n-1)e]

Uniform distribution and xi e (0,1, i=l,..,n:

gHILL(X) = Eni=lE[ai] xi + (a/(1-a))1/2 [Eni=1 ( - (e2 - ai2)1/2) xi

+ Eni=1 (2 - ai2)1/2 - (n-1)6]

where e = (Eni=1 ci2)1/2.
--



Hillier's method. For the comparison tests, we did not linearize it. The

reader will realize that, for our comparison criterion, the result using

gHILL(x) will be an upper bound on the linearized version.

(SPLK)--Seppdla

Normal distribution and xi > 0, i=l,..,n:

gSPLK(X) = Eni= l E[ai] xi + Za Yn

where Yi = Max {rik Yi-1 + ik xi, k=1,..,K} with y = 0,

tik (1 + i2 ti,k1 2 )1/2 - ti,k-l (1 + i2 tik 2 )/2
rik =----------------------------

ti - ti,k-l1

(1 + i2 ti,k2) 1/2 - (1 + oi2 ti,k-12)l/2
Sik =

ti - ti,k-l1

and tik = TANGENT[(k/K)(n/2)3/i1/2 , i=l,..,n, k=l,..,K.

Uniform distribution and xi 0, i=l,..,n:

Same as above except replace Za by (a/(1-a))1/2.

We consider the instances where K = 3 and 6 which we label (SPL3) and

(SPL6) respectively. Seppala's approach replaces each chance constraint

with O(nK) linear inequalities.

(OLSW)--Olson and Swenseth

Normal distribution and xi 0, i=l,..,n:

gOLSW(x) = Eni= 1 (ECai] + Za ai) xi.

Uniform distribution and xi 0, i=l,..,n:

gOLSW(x) = ni=1 (E[ai] + (a/(1-a))1/2 i) Xi.

(OLSW) is the same as (RAY1) under condition C1 and if z is available.

(RAY1, RAY2, and RAY3)

The approach we propose in this study leads to a class of approximations.

For the purpose of comparison, we use only (RAY1), (RAY2), and (RAY3).

15
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Under the normal distribution, (s) = i=1 E[ai] i + Za [ni=1 i2

si211/2; and for the uniform distribution case with i e {0,11, (s) = m -

(m!(1-a))l/m where m = Eni=1 Si. With the expression for ¢(s) given,

approximations (RAY1), (RAY2), and (RAY3) are completely defined.

For simplicity of conducting the experiments, we test only cases

where the random variables are independent identically distributed. (All

the methods tested can be used for dependent and non-identically

distributed random variables. In the future, we hope to perform extensive

experiments on these cases and report our findings.) First, we evaluate

cases where ai, i=l,..,n, are normally distributed with xi [0,1],

i=l,..,n. Here, we examine how well our methods compare against the other

methods in the conditions specified for those methods. Since the conditions

are those that the other methods were derived under, we can expect our

methods to do no better than these methods. Then we compare the methods

when ai, i=l,..,n, are uniformly distributed with xi e (0,1}, i=l,..,n.

Here, we test for the situation of a non-stable distribution for which the

exact analytical form of g(x) is known. We would expect the other methods

to do poorly under non-stable distributions since they were intended for

such conditions and have to use the Chebyshev's inequality.

In general, the conditions are specified to keep the tests simple or

to replicate the conditions that were originally intended for the other

methods. The test input data are generated as follows:

(a) For the normal distribution cases, we let E[ai = 0.5, i=l,..,n, and

pick variance i2 = 2, i=l,..,n, from a uniform distribution in [O0,VA]. We

examine cases where VA = 10-B, B = 0,..,4. The maximum coefficient of

variation (COV), in each case of B, is VA/0.5. Overall, the COV ranges

from 0 to 2. The values of decision variables xi, i=l,..,n, are sampled

16



from a uniform distribution in [0,1]. We tested cases where n = 2, 4, and

6.

(b) For the uniform distribution cases, we sample ai, i=l,..,n, from a

uniform distribution in [0,1]. Hence, E[ail = 0.5, i=l,..,n, and variance

oi2 = 2 = 1/412 and COV (1/412)/0.5 = 0.58. To obtain xi {0,1}, we

sample from a uniform distribution in [0,13. We then let xi
= 0 when the

sampled value is less than 0.5; and xi = 1 otherwise. We evaluated the

cases where n = 2, 4, 6, 8, 16, and 32.

The criteria of comparison is the relative error that the values of

the approximation deviate from g(x): relative error of method h - (gh(x)-

g(x))/g(x). Since all the methods to be compared are uniformly tighter than

(1), g(x) < gh(X) < b, h {HILL, SPL3, SPL6, OLSW, RAY1, RAY2, RAY3}.

Therefore, the relative error is non-negative; it is a measure of how

constricted approximation h is when (1) is binding and the sampled value of

x is the optimum solution. We replicated each set of test conditions 15

tipes and compute their average and standard deviation.

5. Results and Comments

First, we note that our three approximations have different

computation requirements. (RAY1) replaces each chance constraint with one

linear inequality; (RAY2) uses n linear inequalities and (RAY3) uses n!

linear inequalities. (RAY1) and (RAY3) represent examples of the extreme

types of our class of approximations. (RAY3), especially, will be difficult

to implement for n larger than 6; it took about 50 seconds to evaluate one

chance-constrained approximation on a IBM-PC compatible 80286 class machine

when n = 6. (RAY1), (RAY2), and other methods took a negligible amount of

time--typically less than 1 second per evaluation of g(x). Second, the

result of (RAY3) dominates that of (RAY2) and the result of (RAY2)
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dominates that of (RAY1). This is because (RAY3) is uniformly tighter than

(RAY2) and (RAY2) is uniformly tighter than (RAY1). We can therefore use

the results of one approximation as a bound to another.

The comparisons outcome is tabulated in figures 2a through 3b. Figure

2a tabulates the average and standard deviation of the relative errors for

the normal distribution cases. These results are graphed in figures 2b

through 2d, for n = 2, 4, and 6 respectively. For maximum-COV less than

0.5, (RAY2) does as well as (HILL) and (SPL6), but it gets progressively

worse as n becomes larger. The average relative errors in such cases are

about 5% or less. Since (SPL6) uses 6 times more constraints than (RAY2)

and (HILL) is only the nonlinear approximation part of Hillier's method,

the comparable results among the three methods suggest that our methods

perform well for small n.

[INSERT FIGURES 2a THROUGH 2d HERE]

For the uniform distribution cases, figure 3a tabulates the results

while figure 3b presents it graphically. In these cases for n up to 6,

(RAY3) is exact. We did not test (RAY3) beyond n = 6 since the computation

effort is too much. (RAY1) and (RAY2) performed equally well and are about

an order of magnitude better than (HILL) and (SPL6) when n is less than 6.

They dominate the other methods up to n = 16. The methods, except for

(OLSW), have about the same size of errors when n is larger than 16.

(OLSW), on the whole, demonstrated to be an inferior method.

[INSERT FIGURES 3a AND 3b HERE]
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The results of both the normal and uniform distribution cases show

that the average relative errors become worse with larger n. As such, we do

not recommend using any of the methods, ours included, for COV's larger

than 0.5 when n gets beyond 12; the average relative errors then goes up to

more than 50%. As mentioned in the introduction of this paper, large n may

be permitted in production/inventory problems because of its block

triangular structure. When the planning is done on a rolling horizon basis,

the large errors for the periods further away are not important as long as

the nearer periods are well approximated. This is the case when a method

like (RAY2) is applied. In fact, (RAY1), (RAY2), and (RAY3) are exact for n

1, the first period problem.

The number of random coefficient, n, may also be large when the

capacity constraints limit the number of non-zero decision variables, of

those in the chance constraint. (An example of this is where there are many

alternative processes of producing a product and only a few are permitted.)

In these cases, the "effective" number of random coefficients in the chance

constraint will be small. Again, (RAY2) should perform very well there.

EXTENSIONS AND FU _RE RESEARCH

We have assumed zero-order decision rules (see Charnes and Cooper

[1963); all the decision variables to be determined before the value of

any random variables are known. The linear formulation of our method can be

adapted easily to give solutions for linear decision rules. A linear

decision rule for a decision variable is a linear combination of the random

variables that will be realized before that the decision variable needs to

be determined. Therefore for problems with sufficient stationarity, we can

solve the problem once, replacing all decision variables by the decision

rules, to obtain the parameters for the decision rules. As the value of
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random variables become known, we apply the decision rules to get the

values of the decision variables, without resolving the linear program.

The chance constraints we have examined are for linear inequalities--

that is, the term inside of Prob(.) in (1) is a linear function. Our

approach does not restrict us to linear inequalities; we can have nonlinear

inequalities or situations where ai = ai(x), i=l,..,n, are functions of x.

In production problems with stochastic yield, the last situation

corresponds to the case where the yields are not independent of the lot

size; a problem that has chance constraint like constraint (1) corresponds

to the case where the yields are independent of the lot size.

For future research, we suggest to consider the following: (a)

examine how the relative errors can be parametrically bounded, (b) provide

a multi-pass e-optimal iterative approach, (c) consider problems with joint

chance constraints, (d) provide theoretical results on the convexity of the

feasible region.

6. Summary and Conclusions

We provided a class of linear approximations for problems with

individual chance constraints that have random variables with arbitrary

distributions. In our method, we linearized the nonlinear deterministic

equivalents of chance constraints when the deterministic equivalents may

not have closed-form expressions. The linear approximation is uniformly

tighter than the chance constraint when the feasible region defined by the

latter is convex. Therefore under convexity, the solutions generated by our

approximations will satisfy or do better than the service target specified

by the chance constraint.

Our method gives linear inequalities that retain the original

decision variables. This make it easy to extract heuristics or apply higher
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order decision rules. The resulting programs are linear programs which

permit the use of standard LP codes, perform sensitivity analysis, and have

both primal and dual solutions. The coefficients in the approximating

linear constraints can be extracted from assumed distributions or sample

data. We do not restrict the distributional form of the random variables,

disallow their dependencies on each other or require their partial

derivatives.

The user has the option of trading-off the amount of computation

effort against the accuracy of the solution by selecting the number of

linear inequalities. In the simulation tests, when the number of random

variables are small, applications of our approach with very few

inequalities compare very well against the existing methods for both the

normal and the uniform distributions.

The authors are grateful to Steve Gilbert for his comments on an

earlier version of this paper.
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APPENDIX

Probability of the event argument.

Expectation function.

Variance function.

Cumulative density function of any random variable u evaluated at

v, and F-l(u;.) is its inverse function.

Number of decision variables in the chance constraint.

Random technology coefficients with finite mean E[ai] and finite

variance oi2, i=l,..,n.

Resource parameter.

Decision variables, i=l,..,n.

Service performance target; probability target for satisfying.the

chance constraint. (Typically, a e [0,11 is close to 1.)

(S1,..,s n ) = F-1(Eni=l ai i; a) where i > 0, i=l,..,n.

Safety factor with service target a.

Safety factor for normal distributions: one-tail normal variate

for a.
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NoQtation.

Prob(.):

E[.]:
F(u;v):

F(u;v):

b:

xi:

a:



Sstm_ fEations t solve to obtain matrix _ F ik]

Prob(Eni=l ai x i ni= 1 Qik xi, k=l,..,K) > a (al)

and En i= Qik Xi < b, k=l,..,K (a2)

=> Prob(ni=l ai X i < b) a. (a3)

Since (a2) replaces chance constraint (a3) in the linear program

approximation, to approximate (a3) we need only focus on (al). We determine

Pik, i=l,..,n and k=t,..,K by solving a system of equations, one for each

k.

Note that in inequality (al), the absolute value of vector x is not

important; we need only to know the relative values among its components

x i, i=l,..,n. ni= 1 ik Xi = b, k=l,..,K, are a set of hyperplanes. We let

{Slk,...,Sn kI be the set of rays such that hyperplane k, k=l,..,K, is

formed by the points at which these rays intersect the boundary of (a3).

Each Sik, i=l,..,n and k=l,..,K, is a vector of dimension n.

The extreme points of the polyhedron that form hyperplane k,

k=l,..,K, correspond to the fractiles (Sik), i=l,..,n. (Recall that for

any vector (sl,..,sn), (sl,..,sn )
= F-1(Eni=l ai i; a), i=l,..,n.)

Therefore, Prob(Eni=l ai wi Eni=1 Qik wi) >2 for all w _ (wl,..,wn) =

Enj=1 j Sik, k=l,..,K, where Enj= 1 ,j = 1 and 0 ! pj < 1, j=l,..,n.

Hence, the system of equation to solve to obtain is

Slk _Qk -(Slk)
· = : , k=l, .. ,K. (a4)

L Snk nk _ (Snk)

For n=3, we present the following examples:
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o1 [2(1 1 1)=

O O 1 3] [( O 1)

1 O O Q12 (1 0)
1 1 1 Q22 (1 1 1)
O O 1 (32 (0 0 1)

1 0 Q13 ¢(1 0 0)
0 1 0 23 = (0 1 0)

~ [ I ooi 
1 1 Q33 (1 1 1)

1 1 Q1 (1 1 1) 1 0 0 14 (100)

O 1 1 Q21 = 0 (o1 1) 1 1 1 24 = 1 1 1)
O O 1 Q3 lj 00 1) . 1 0 1 3J L(1 1)

11 1 1[012 ( 1 1) 11 FQ151 ( 1 0)

o o 1 2 (O 1 0) o 1 (O 1 0)

o 11 =2 (o 1 1) 1 1 o 2 l(1 1 1) 

o 131 3 (1 0 1) 1 0 11 0[(1 O 0)
1 1 1 IQ231 = 4 (1 1 1) 1 1 0 26 = (1 1 0)

0 0 1 33 0 1) 0 0 1 Q36 0 1)J
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RELATIVE ERROR'S
Averages for the Normal distribution

n Max.-COV HILL SPL3 SPL6 OLSWI RAY1 RAY2 RAY3
2 0.02 1.43 0.22 0.21 0.51 0.51 0.08 0.08

0.06 0.75 1.19 1.10 1.561 1.56 0.29 0.29
0.20 3.57 2.22 1.57 3.17 3.17 0.80 0.80
0.63 5.23 5.58 3.17 9.71 9.71 1.68 1.68
2.00 17.66 3.49 0.96 19.44119.44 2.98 2.98
0.02k 0.18 0.53 0.52 0.89 0.89 0.51 0.11
0.06 0.64 2.09 1.93 2.631 2.63 1.76 0.37

0.20 2.55 5.37 4.19 7.201 7.20 4.44 0.99
0.63 6.67 9.06 3.80 20.55t20.55 11.65 2.70
2.00 13.85 5.86 1.37 36.75136.75 22.06 5.72

6 0.021 0.21 0.67 0.64 1.08 1.08 0.80 0.80 0.11
0.-06 0.76 2.39 2.16 3.04 3.04 2.18 0.38
0.20 1.93 7.51 5.67 10.21 10.21 7.12 1.11
0.63 3.13 12.00 5.39 25.98 25.98 16.27 2.48
2.001 9.44 5.33 1.42 60.96 60.96 45.72 6.34

RELATIVE ERROR'S
Standard Deviations for the Normal distribution
n Max.-COV HILL SPL3 SPL6 OLSW! RAY1 RAY2 RAY31

2 0.02 3.76 0.21 0.21 0.22 0.22 0.05 0.05!
0.06 0.97 0.64 0.60 0.67 0.7 0.17 0.17
0.20 6.45 1.47 1.22 1.82 1.82 0.40 0.40
0.63 10.93 3.41 2.03 4.87 4.97 0.95 0.95

2.00 27.43 2.16 0.90 7.38 7.38 1.42 1.42
4 0.02 0.25 0.27 0.26 0.311 0.31 0.28 0.07

0.06 0.58 0.91 0.80 1.02 1.02 1.00 0.17
0.20 3.09 2.36 1.71 3.23 3.23 2.34 0.45
0.63 6.49 2.69 1.95 6.68 6.68 5.81 0.99
2.00 11.72 4.25 1.09 10.071 10.07 11.00 2.10

6 0.02 0.23 0.44 0.42 0.501 0.50 0.37 0.07
0.06, 1.00 1.20 1.07 1.341 1.34 0.92 0.22
0.20 1.55 2.57 1.73 3.69 3.69? 2.78 0.581
0.63 4.13 3.49 1.96 10.76 10.74 6.49 0.97
2.00 7.93 3.46 1.95 14.55 14.55 15.79 2.57

Figure 2a. Results of Tests under Normal Distribution.
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Figure 2b. Results of Tests under Normal Distribution.
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NORMAL DISTRIBUTION, n=4
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Figure 2c. Results of Tests under Normal Distribution.
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NORMAL DISTRIBUTION, n=6

Figure 2d. Results of Tests under Normal Distribution.
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RELATIVE ERROR'S
Averages for the Uniform distribution

n HILL SPL3 SPL6 OLSW! RAY1 RAY2 RAY3
2 79.75 85.30 81.20 91.42 3.42 0.00 0.00
4 81.41 87.85 75.54 106.75 11.70 7.88 0.00
6 71.89 92.30 72.90 121.80 19.84 17.42 0.00
8 63.55 94.86 70.50 131.94 25.32 25.32

16 44.46 86.65 52.26 158.953 39.91 39.91
32 28.49 72.46 36.13 171.52! 46.70 46.70 ----

RELATIVE ERROR'S
Standard Deviations for the Uniform distribution

n HILL SPL3 SPL6 OLSW RAY1 RAY2 RAY3
2 9.16 0.91 6.29 10.88 5.88 0.00 0.00
4 25.63 3.28 9.83 20.63 11.14 9.33 0.00
6 27.21 5.67 10.48 18.23 9.85 9.98 0.00
8 12.23 3.78 8.06 12.06 6.52 6.52
16 11.82 11.05 13.10 8.47 4.58 4.58 ----
32 5.09 8.56 7.54 1.97 1.06 1.06

Figure 3a. Results of Tests under Uniform Distribution.

31

I---�-��� ^" -^^--^11-`-11"-�-1-��_���---�--�--�---.



UNIFORM DISTRIBUTION

Relative

Error %

100.00 .

1000.00

I HILL

C SPL6

OLSW

RAY1

-* RAY2

----

., _-

t/:~Y

1.00

0 4 8 12 16 20 24 28 32

n

Figure 3b. Results of Tests under Uniform Distribution.
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