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ABSTRACT

This paper examines the interrelationship between traditional imaging

techniques, expert systems, and neural networks. It begins with a discussion

of neural network concepts. Then, a new taxonomy based on the quality and

the complexity of a document is presented. Next, this paper analyzes the

impact of neural networks in the context of reading handwritten material,

using several examples. Finally, an architecture that utilizes contemporary

neural network and expert system techniques, in conjunction with classical

image processing, statistical and syntactic techniques, is described.

Keywords: Neural networks, expert systems, handwritten material, recog-

nition, syntactic approaches, structural approaches, courtesy amounts, au-

tomated reading.
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1 INTRODUCTION

The progression from printed material to unconstrained handwritten infor-

mation is accompanied by a concurrent increase in noise, entropy, and diffi-

culty of segmentation. In this paper, it is shown that increased complexity

can be overcome by utilizing technology, which complements, not displaces,

traditional imaging and expert system techniques. By optimal integration of

image processing, statistical and syntactic pattern recognition, and expert

systems techniques with newer neural network methodologies, one can in-

crease the ability and the accuracy for reading information without human

intervention.

Recognition of handwritten information is pertinent in many engineer-

ing, manufacturing, maintenance, and business applications. It has been

researched in the context of reading postal zip codes in addresses on let-

terst3]. We opted to concentrate on the problem of reading the amount,

expressed in numerical format, on checks. Fifty billion checks are processed

each year in the United States alone (28]. The amount written in figures

is called the courtesy amount; it consists of two portions - the dollar com-

ponent and the cents component. There are many styles for writing the

courtesy amount. While the account number on each check is printed in

machine-readable typefonts, the courtesy amount must be read by a human

operator and typed in. Systems involving multiple operators or batches must

be utilized to ensure appropriate levels of accuracy. If the amount field could

be read automatically, there is potential for reducing significant time and

costs, and enhancing productivity. So far, imaging techniques have been

largely utilized for storing images of checks and other documents in a bit-
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mapped mode on optical disks(28]. If such information could be processed

automatically, it would represent the next major step in automation.

Automated reading of handwritten material is not a trivial problem be-

cause of infinite variations of shapes caused by writing habits, styles, and

even the moods of the writer[38]. Fortunately, in the case of checks, one

must deal with numerals only, and the location of the field on a check is

known in advance, unlike the postal zip code on a letter. However, while a

certain error rate may be acceptable for reading zip codes, such a rate may

be unacceptable in a banking environment. Further, the use of 12 different

styles for writing the courtesy amount adds to the complexity of the prob-

lem. Conventional techniques for scanning cannot offer the desired accuracy

level. Further, it is very difficult to formulate rules for all the diverse styles

of writing courtesy amounts for various combinations of numerals. As such,

one turns to neural network techniques, which attempt to perform functions

that have so far been deemed to be beyond the scope of machines.

This paper first discusses fundamental neural network concepts. It then

focuses on traditional image processing techniques, including methods for

reducing noise and finding features. A new taxonomy for classifying docu-

ments is presented. The next section presents examples of design approaches

adopted by researchers who have combined traditional approaches with new

ones. This discussion is used to develop an architecture that utilizes contem-

porary neural network and expert system techniques, in conjunction with

classical statistical and syntactic techniques, to provide higher ability to

read handwritten material, along with increased accuracy and faster speed.
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Figure 1: A fully connected three-layer neural network

2 NEURAL NETWORKS

Artificial neural network technology encodes associations between features

or concepts in terms of relative strengths of synaptic connections between

neurons. Learning in neural networks involves the convergence of a set of

function parameters (weights) to values enabling the mapping (classifying)

of all possible inputs to their correct output values. This convergence is

achieved through supervised training with a large set of known input-output

pair samples, or through unsupervised learning in which homogeneous clus-

ters are self-organized from given input samples.

A typical neural network, shown in Figure 1, has three layers of pro-

cessing units, termed nodes, representing input features, internal represen-

tations, and output values respectively. In this example, a node at any layer

is connected to all nodes at the preceding layer and/or to all nodes at the
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succeeding layer. The state of the network at any instant is defined in terms

of the activations of the nodes and the weights connecting these nodes. For

the network shown in Figure 1:

xj = f(Z wjizi)
i=1

where rj denotes the activation (output) of a particular unit and wji is the

weight of the connection between xj and a node in the previous layer, zi .

The activation function, f, signifies the processing performed by a node on

its input. This function can be an identity function, a threshold function

(as in the case of Perceptron [24]), a logistic function (as in the case of

backpropagation units), or some other function.

By adjusting the weights, it is feasible to get the desired output vectors

for a given set of input vectors. Instead of manually adjusting the weights,

backpropagation is a technique used to optimize the weights by minimizing

the difference between the outputs and the corresponding target outputs

over the entire set of input-target pairs. The process begins with an assign-

ment of random values of weights, application of a set of input values, and

computation of the output values. These values are compared with the de-

sired output values, called target outputs, and the differences are computed,

squared, and added together. Backpropagation minimizes the sum of these

squares. Mathematically, if E denotes this sum, k denotes the output layer,

then:
E

Awkj OC 
Owkj

Applying the chain rule:

aE _ E ink
Oakj Oink Owk
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where in represents the inner product of the inputs with their corresponding

weights. Noting that = yj, applying the chain rule again, and solving,

one gets for the output layer:

aE OE ayk
Oink kYk in

1OY _ ain yk ink

ay,, = -(y -Ok) 9 ie =f,(ink)

For other layers:
OE _E Oinj

awji ainj Owji

Oinj 
YiOwji

OE E OE yj
J = inj Oyj Oin

Oyj
-inj= f ( i n j )

Therefore,
aE Oink OE

E Oin}Oyj y ~ --7 n w k j = Z5 5kwkj
E ink yj I,, n Wkj = 4Wk

So,

6j = f(inj) kkj
k

where unit j is not an output unit.

The above technique provides recursive computation of weights by com-

paring the actual output with the computed output, and propagating error

signals backwards through the network. Since corrections in the weights

are proportional to the error in the output, the magnitude of the correction

becomes smaller and smaller as the desired outputs are approached. This

asymptotic approach to the final solution implies that the learning process

becomes increasingly slower as the magnitude of the error reduces. As such,
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neural networks that use the backpropagation algorithm can involve a sig-

nificant amount of training time, and a large number of training samples.

Strategies for overcoming this problem are discussed later in this paper.

Backpropagation is one of the techniques used to train a neural network

system to a particular problem environment. The learning process is depen-

dent on the training samples. In a sense, neural networks learn the rules

from these samples, unlike expert systems where human experts are critical

for imparting this training.

In the next section, the process of automated reading is analyzed with the

aim of identifying subprocesses that could benefit most from the application

of evolving neural network technologies.

3 THE PROCESS OF AUTOMATED READING

Automated reading involves seven distinct processes. These processes, shown

in Figure 2, are described below [6,13,31,34]:

i. Scanning: This is an optical process that provides a raster image of the

document with sufficient spatial resolution and gray scale level to sup-

port further processing. The issue of gray scale level is more important

for pictures and graphs, as compared to text. Also, while the optical

scanner can distinguish between a large number of gray levels, thresh-

olding mechanisms are employed to classify the scanned image into

a smaller number of categories, in order to reduce processing band-

width and memory requirements for other processes. However, this

thresholding reduces accuracy, and creates complications in several

situations.
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ii. Filtering: This process attempts to minimize the level of noise which

originated in the source document or was introduced during the scan-

ning process. Filtering enhances the quality of the image for easier

recognition. In order to reduce the problem of varying thicknesses of

lines in the handwritten material, "skeletonization" can be performed

to make all line thicknesses uniform.

iii. Storage: The storage of information in a bitmap format requires a

significant amount of memory. Even a single 8 1/2" x 11" sheet of

paper scanned at 300 d.p.i., in single color and using a single threshold

(black-white only), requires 1 MByte of memory space. Compression

of data can reduce this requirement, but data in compressed form

cannot be readily used for detecting and identifying patterns in the

stored information.

iv. Location: This is the process of determining the location of the ma-

terial that needs to be read. Further, information of different types

(i.e., alphanumeric text, graphs, and pictures) must be distinguished

and processed separately. Baseline drift correction techniques help to

orient the courtesy amount relative to a horizontal scale in the case of

checks.

v. Segmentation: This is the process of isolating one character from its

immediate neighbors. In the case of continuous handwritten material,

this is usually the most difficult process to accomplish. Even in the case

of typed and printed material, adjacent characters spread into each

other because of tight kerning, inadequate resolution of the scanner,

poor quality of the document, or high brightness threshold. Defining a
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set of criteria for distinguishing between adjacent characters is difficult

because of the many ways in which characters merge together and the

fact that merged characters frequently contain misleading strokes.

vi. Recognition: Recognition of a character is based on defining and en-

coding a sequence of primitives that can represent a character as ac-

curately as possible. In the template matching technique, the bitmap

that constitutes the image of the character is compared with a succes-

sion of stored templates. Recognition of handwritten material gener-

ally uses the feature extraction technique in which one utilizes aspects

such as pronounced angles, junctions and crossings, and properties of

slope and inflection points. The choice of features is governed by their

resilience to topological transformations, projective transformations,

and translations.

vii. Postprocessing: In postprocessing, the goal is to decipher "rejects"

and to correct "errors" using techniques such as contextual analysis

and dictionary lookup methods.

The above set of seven processes do not occur necessarily in the sequence

stated here. In fact, multiple processes can occur in parallel with each other.

The different processes collectively determine the overall capability of the

automated recognition. With respect to performance evaluation of alterna-

tive design approaches, there is no reliable way of modelling the accuracy

of a reading machine except by comparison with a standard set of norms.

The impracticality of statistical modelling is due to the fact that the pattern

generating process and its multivariate statistics are influenced by a number

of barely controllable, application-dependent parameters.
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One taxonomy that attempts to predict the likelihood for automated

reading of a n m set of documents is described by Gupta et. al. in [11].

Documents are classified, based on their quality, into three classes: (i) Low

noise documents; (ii) Medium noise documents; and (iii) High noise docu-

ments. After carefully examining a large number of documents from differ-

ent fields, a five-class system was proposed for classifying documents based

on their complexity, with Class 1 representing straight basic text-only docu-

ments, and Class 5 representing integrated documents with text and images,

but no handwritten material. The evolution of technology and the capabil-

ities to deal with an increasing range of documents is shown in Figure 3.

Handwritten information is even more difficult to read than Class 5 doc-

uments, motivating the use of newer technologies to mitigate some of the

difficulties.

4 NEURAL NETWORK APPROACHES TO READING HAND-

WRITTEN MATERIAL

One of the landmark models that employs neural network technology for

pattern recognition is Fukushima's Neocognitron model 8]. In this model,

shown in Figure 4, pattern matching is achieved via nonsupervisory learning

techniques (clustering methods). Weights between input and simple cells

are modified such that the simple cell is trained to respond most strongly

to patterns occurring most frequently in its receptive region. Translation,

distortion, and slight rotation invariance are achieved via complex cells, each

of which receives the outputs of a set of simple cells in the same layer. The

firing of any simple cell in this set is sufficient to cause the complex cell
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Figure 4: Fukushima's Neocognition model [8]

to fire. This implies that the complex cell is less position sensitive than

any one of the simple cells. Multiple layers of simple and complex cells

are present, with each layer having a more abstract response (i.e., each

layer having fewer cells, and each responding to a larger neighborhood of

cells) than the previous layer. At the output layer, each complex cell is a

representation of a complete input pattern. This approach has been applied

successfully to several applications, including character recognition. The

one big disadvantage is that it requires a significant amount of computation

to perform simulations on a conventional sequential machine.

In addition to recognition, recent versions of the Neocognitron model can

segment digits[12]. Since feedback signals are sent back only from a unique

output cell, only the signal components corresponding to one recognized

pattern reach the recall layer, even when the input stimulus consists of two or

13
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more touching or overlapping digits. Therefore, t output of the recall layer

can be interpreted as the result of segmentation, where only the components

relevant to a single pattern are selected from the stimulus. Extensions of

the Neocognitron model include both fine and coarse recognition networks

[14]. The coarse network provides a focus of attention for the fine network.

In one example[14], an 80 by 80 pixel input map is divided into 14 by 14

overlapping partitions, each receiving input from a 15 by 15 portion of the

input map. Using a winner-takes-all inhibitory strategy in the top layer of

the coarse network, one node can be activated (focused on) at a time.

A model reminiscent of the Neocognitron model has been utilized by

designers at AT&T, in conjunction with traditional backpropagation (see

Figure 5), to recognize postal zip codes [3,17]. Three hidden layers are

used, with local averaging and subsampling between layers. These layers

are designed to extract features of increasing complexity and to increase

invariance with respect to distortions and translation of the input. The first

hidden layer (H1) is composed of 12 groups of 64 units arranged as twelve

independent 8 by 8 feature maps, each responsive to a different feature.

Each unit of a feature map takes data from a 5 by 5 pixel area of the input

image, with overlap of the receptive fields of the feature map. The second

hidden layer contains 16 units arranged in a 4 by 4 plane. Each unit in H2

combines local information coming from 8 of the 12 feature maps in H1. Its

receptive field is composed of eight 5 by 5 neighborhoods centered around

units that are at identical positions within each of the eight maps.

As stated earlier, the backpropagation method of training tends to be

slow. AT&T has speeded up the training process by using local connections

and constraining weights corresponding to the same feature in alternative
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areas of the image to be equal. This approach is similar to the traditional

image-processing notion of a convolution filter smeared across the whole

image to detect features such as edges. In the neural implementation, the

filter coefficients are trained to extract (in the hidden layers) features of the

size-normalized input pixel fields, which are useful in the recognition of the

digits in the output layer. Because of constrained weights and local con-

nections, there are fewer free parameters. Still, the learning of the weights

using backpropagation required 30 passes through the training set, involving

3 days effort on a SUN Sparc Station equipped with special neural simula-

tors. By training offline and then programming the parameters on digital

signal processing chips, it is possible to achieve recognition speeds of 10-12

digits per second. A 1% error rate was achieved, with 9% of handwritten

zip code samples being rejected [3].

The Neocognitron model also forms the basis for a remittance processing

system developed by Nynex [8], and shown in Figure 6. In the Neocogni-

tron model, the maximum output node can be found, but it may be with

relatively low confidence. In the Nynex model, efferent connections are de-

termined not only by the maximum output detector, but also by expected

outputs and probabilistic update rules. Nynex uses various expected inter-

pretations, each with its own initial probability based on apriori statistics,

such as the amount of the bill, the amount of the previous bill, and the sum

of these amounts. The probabilistic update rules are used to update the

certainty values associated with the probability weightings of the expected

interpretations. These updated values help determine the output cell used

for feedback control, achieving faster convergence and handling more de-

formed inputs than if a maximum output detector alone was used.

16
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Figure 6: Nynex model (20]

This type of feedback control reinforcement is similar to adaptive reso-

nance convergence in Grossberg's Adaptive Resonance (ART) model [10,361.

ART is able to self-stabilize its learning in a real-time unknown input envi-

ronment while remaining plastic (changeable when a sufficiently novel input

is presented). The stability and the plasticity are achieved, in part, through

an exchange of efferent and afferent information between layers. This leads

to a resonance in neural activity where features common to both the input

and the expected model (digit) are reinforced. A gain control mechanism

prevents efferent information alone (without any input) from causing neu-

ral activation. The two-thirds learning rule used in this system activates a

neuron if at least two of the three (input, efferent, attentional gain) signals

are present. Self-scaling is achieved, with small individual features being

automatically given less weight than more complex input features. An ori-
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enting subsystem acts as a novelty detector, developing a new cluster for a

sufficiently novel input vector, and controling the coarseness of categories.

This is done by sending an inhibiting reset wave to a category which did

not match the input well (i.e., if a "vigilance parameter" value is exceeded),

enabling a new neuron to become active.

In the Nynex system, a rule-based expert system propagates certainty

factors of the rules and their condition elements in a manner similar to the

Emycin and M1 Expert System shells, and selects the output cell with the

highest certainty for the purpose of feedback reinforcement. The processing

is iterative, with convergence to a symbol indicating that its certainty has

exceeded a certain threshold. The concept of a blackboard expert system

architecture is utilized with independent knowledge sources being accessed

depending on what is posted in a shared global data structure consisting

of the candidate input, output, or intermediate level interpretations of the

digits. By using a blackboard architecture, this system is more adaptive to

variations in unconstrained handwriting than a task stack in which tasks

are planned in a set sequence. The current version of the Nynex system can

deal with fractional cents amounts in the courtesy number by locating the

sign in expressions such as 32/xx, ignoring the denominator, and classifying

the digits in the numerator. Two hundred features have been used. Palm

trees and other background features of checks can be easily ignored with the

Nynex system (47].

Unlike AT&T and Nynex who have based their designs on models rem-

iniscent of the Neocognitron model, Nestor, Inc. has patented a restricted

coulomb energy training method which is claimed by Nestor to eliminate

the long training time and large training set requirements inherent in gra-
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dient descent paradigms [27]. Their Neural Learning System (NLS) scales

well, and is able to define mappings supporting an arbitrary degree of non-

linear separability. Because of the low connectivity and the use of integer

arithmetic, off-the-shelf hardware such as transputers can be used [52]. In

the patented version of the Nestor system, which has recently been applied

to reading applications where segmentation is not an issue, three layers are

used as shown in Figure 7. The weights connecting the first layer and the

middle layer are fixed, and may be thought of as the centers of circular

(or hyperspherical) subclusters, representing the prototype feature vector

for the subcluster [27,30]1. On receipt of error signals caused by a new in-

put pattern, weights are not adjusted; instead either the thresholds (radii)

defining the subclusters are modified or new hidden nodes (i.e. subclusters)

are dynamically formed (cell commitment). If the system, in supervised
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learning, is given an input of a particular class which does not fall within a

subcluster belonging to that class, a positive error signal commits a new cell

and all inputs within a certain radius of the given input to that particular

class. The threshold (radius) is lowered in response to a negative error signal

indicating intersection with another class.

A detailed comparison of the three approaches considered above (AT&T,

Nynex, and Nestor), as well as two other approaches (HNC and Neurogen),

is presented in Table 1. This table contains all the data that the companies

were willing to release for publication at this stage.

5 ADAPTIVE TECHNOLOGIES

The seven processes involved in automated reading possess some underlying

commonalities. In the scanning stage, the image is captured using image

scanners or video cameras, and colors and intensities are selectively filtered

and encoded; in the noise reduction stage, area-dependent thresholding is

applied to filter noise; in the storage stage, the image is compressed; in the

location stage, only one portion is selected for further processing; and this

process continues. Noise reduction, compression, segmentation, interpola-

tion of data, template matching, and recognition are all filtering operations.

In the case of handwritten material, since the relevant statistics of the recep-

tive field filter windows are unknown and the variance is large, it becomes

desirable to use adaptive filtering techniques.
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AT&T Nynex

Input
pixel field dimensions

Constraint problems handled
segmentation
skeltonization
image shift
rotation
skewing
scaling
zero/one bit map
gray scale bit map

cents

no

00
xx

decimal
/ notation

variable variable variabl variable variable

yes
not needed
partial
partial
yes
yes
yes.

yes

n/a
n/a
n/a
n/a
n/a

yes
yes
yes
partial

yes
yes
yes
yes

no

no

partial
partial
partial
partial

yes
no

yes yes
yes no
yes yes
yes yes
yes yes
yes yes
yes yes
yes yes

no no yes no
yes yes yes no
yes no yes no
yes yes yes yes
yes no yes no

Network Architecture
Number of units
Number of connections
Modularity

preprocessing network
feature mapping
convolution network

averaging net
postprocessing

decision system
expert system

variable
variable
yes
yes
yes
yes
yes
no
no
no

n/a variable
n/a variable
yes yes
no yes
no yes
no yes
no no
yes no
yes no

yes no

n/a variable
n/a n/a
n/a n/a
n/a n/a
n/a n/a
n/a n/a
n/a n/a
yes yes
n/a yes
n/a yes

Backpropagation model
fully connected
number of layers
number of input units
number of output units
number of hidden layers
transfer functions
adaptive weights
fixed weights
feed forward network
recurrent network

yes
no

6 (basic)
variable
10 (digit)
n/a
yes
yes
yes
mostly
some

Fukushima model
hierarchical
averaging/subsampling
unsupervised learning
RBCS
maximum detector
afferent connections
efferent connections

RBCS controlled

RCE model
unsupervised
supervised
recurrent

ART

no

no

no

n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a

no

no

no

no n/a n/a
- n/a n/a
- n/a n/a
- n/a n/a
- n/a n/a
- n/a n/a
- n/a n/a
- n/a yes
- yes no
- n/a yes
- n/a no

no no

19 networks no
yes
yes
yes

no no
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AT&T

Pattern feature detection
horizontals
verticals
end points
corners
t-sections
+-sections
diagonals
direction of contrasts
arcs
features of features

Original architecture
Fukushima/backpropagation
Feature mapping networks
Fukushima/without max. detection

with RBCS & expert system

Nynex Nestor HNC

yes yes yes n/a
yes yes yes n/a
yes yes yes n/a
yes yes yes n/a
yes yes yes n/a
yes no yes n/a
yes no yes n/a
yes yes yes n/a
yes no yes n/a
yes no yes n/a
yes yes yes n/a

Neurogen

n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a

yes yes no n/a n/a
no n/a no n/a n/a
yes n/a yes n/a n/a

no n/a no n/a n/a

Expert system incorporation
for contextual information
using certainty factor calculus

Learning
training time
fixed
continuous(adaptive)
retrainable
stochastics
annealing

Output
winner take all
probabalistic
rejections

discarded
available
rate adjustable

Performance
percent rejected
error rate
number of classifications/sec

Hardware
External boards

no
no

no

3 days
yes
no
yes
no

no

secondary
primary
yes
n/a
yes
yes

7%
1%
10-30

AT&T
DSP-32C
SPARC
w/SNC
simulator
n/a
PC

Sun

Digital
IBM

yes
yes
yes

12 hrs
yes
no
yes
no

no

no

no
no

yes yes
yes yes
n/a n/a

2-12 hrs n/a 2-12 hours
no n/a n/a
no n/a n/a
yes yes n/a
no yes n/a
no yes n/a

no no yes n/a
yes yes yes yes
yes yes yes yes
no no yes yes
yes yes yes yes
yes yes yes yes

n/a

n/a
n/a

8% n/a
<1% n/a
n/a 50

n/a Transputer Anza-Plus
coprocessor

yes n/a available

n/a n/a
yes n/a

n/a

n/a
4 -120

DSP

n/s

if desired n/a
if desired - n/a

Software
source language
source code modifiable
system expandable

C++, lisp
yes
yes

C
no

yes

C C C
yes yes yes
yes yes yes

[ n/a = information not available; - implies not applicable]
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Further, traditional statistical and syntactic pattern recognition meth-

ods, based on application of Bayes' Rule, cannot merge supporting or con-

tradictory information from different sources or effectively deal with missing

information. They assume that, for a given class 'w', feature 'x' and specific

input distributions, the apriori probability P(w) and the class conditional

densities P(xlw) are known. These are used to find the aposteriori probabil-

ity P(wlx). The class conditional densities are hard to determine, unless one

assumes the form of the density function and then estimates the parameters

from known samples. Maximum likelihood methods assume the parameters

are fixed but unknown, whereas Bayesian methods assume that they are ran-

dom variables with apriori known distributions; Bayesian learning through

sample observations sharpens the density function, causing it to peak near

the true values of the parameters [4,5].

Since none of the standard ways of parametrizing unknown distributions

are suitable for handwritten information, nonparametric techniques such as

Parzen windows [9] and k-nearest-neighbors estimate techniques [4] become

more relevant. Nestor's neural network is more efficient than these tech-

niques[52], with classification performed in accordance with the class mem-

bership of nearest neighbors, the nearest prototype, or the nearest cluster

center. Increasing the number of features may improve performance up to a

certain point, but it also increases the cost and the complexity of the feature

extractor and classifier.

Other nonparametric techniques assume a certain form of the discrim-

inant function to separate the classes. In the Perceptron [24], a line is as-

sumed to separate the classes, and hidden internal neural network layers are

successively used to transform the original representation and to determine
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more complex separating boundaries. This process is continued until a final

representation is attained in which the desired separation can be achieved

with a hyperplane. The coefficients of the hyperplane are adaptable weights,

playing an analogous role to the Bayesian conditional probability estimates.

Neurogen, Inc. claims to possess a relatively linear digit recognition neural

network with no hidden layer. This network is claimed to learn faster than

backpropagation techniques, to offer stability, and to permit initialization

with zero-valued weights rather than the usual random weights.[41]

Overall, the performance of statistical techniques must be compared with

neural network techniques on a case-by-case basis. The Digit Recognition

Applications Group of AT&T initially used Parzen windows and k-nearest

neighbors, both of which are suited to parallel computer implementation

and require no learning time. Unlike other statistical classifiers, the Parzen

window method allows for continuous adaptation to additional inputs and

to a changing environment. The designers at AT&T found that only with a

high performance preprocessor and a large training database did the neural

network surpass these techniques. Once trained, the neural network gave

much faster classification and required less memory than the Parzen window

technique[3].

Further, with neural networks, the distributed representation of features

and other characteristics provides increased fault tolerance and classification

even when noise is present. Distributed representations usually occur within

localized modules [23], and efficiently utilize parallel hardware to implement

best-fit searches, such as in associative memory implementations. Unlike

traditional computer databases, the stored patterns do not exist anywhere.

Instead, weights are stored, and represent plausible microinferences which
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are applied to the input to reveal patterns that satisfy the largest number of

these constraints and contradict the least [23]. Distributed representations

can enable simultaneous application of many partially fitting rules (weight

constraints), each rule applied to the degree it is relevant[23]. This, in turn,

can enhance the overall capability to perform correctly in diverse situations.

6 TRADITIONAL TECHNIQUES AND NEW TECHNOLO-

GIES

It is pertinent to emphasize here that backpropagation and other gradient

descent methods are not radically new methods; instead they improve upon

conventional techniques since the number of operations in backpropagation

is proportional to the number of parameters rather than a square of the num-

ber of parameters. As such, neural networks enable optimization techniques

to be applied to syntactic and statistical problems which were previously

deemed to be numerically intractable.

Usually, statistical techniques are used to extract pattern primitives, de-

fined in terms of local properties, and syntactic techniques use these prim-

itives to recognize the whole pattern. Syntactic techniques by themselves

have difficulty dealing with noise. Also, syntactic techniques are compu-

tationally more expensive than statistical techniques. However, unlike sta-

tistical techniques, they provide structural description (called "explanation

facilities" in the terminology of expert systems), in addition to classifica-

tion. In the syntactic approach, local templates are related to each other

using context-free grammar rules which may be parsed using push-down au-

tomata methods. The templates are matched with the input digit, using
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inexact, error-correcting matching procedures such as relaxation. Relax-

ation and other constraint satisfaction techniques are beginning to utilize

artificial intelligence concepts to incrementally update the knowledge base,

minimizing inconsistencies and tolerating noise. The planning techniques of

expert systems become relevant for complex vision systems. Statistical and

syntactic methods may be combined together using stochastic grammars.

These grammnars are used when one pattern has two or more different struc-

tural descriptions making normal syntax analysis methods inapplicable. The

ambiguity can be handled using statistical information on pattern distortion

and noise and this is another area where expert systems and neural networks

can play an important role.

Further, when classes overlap, as when the number 'seven' is written

so that it looks like the number 'one', fuzzy set theory techniques can be

used, as an alternative to having an additional neural network, to perform

disambiguation. In [29], a fuzzy similarity relation between input digits is

defined based on the distance of the digits and of template models from eight

fixed points. Fuzzy set techniques provide a link between the statistical and

logic methodologies, implemented using contemporary expert system tools.

Historically, the thrust was on bottom-up processing, that is, combine

inputs to form intermediate representations, and combine these representa-

tions to recognize the digit. However, in recent years, there has been greater

interest in top-down control. Top-down neural network processing has been

proposed by Rumelhart and McClelland [33] who use feedback from the tar-

get levels to selectively enhance activation of units at a lower level, and by

Grossberg in his Adaptive Resonance (ART) models. The Nynex remittance

processing system uses top-down processing and expert system rule-based
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certainty factor propagation for utilizing knowledge of the expected courtesy

amount value possibilities, with corresponding application logic and meta-

knowledge for determining what amounts should be rejected by the system

and given to a human operator. For a check presented without a coupon,

the operator can specify the confidence thresholds, which determine the re-

ject rate. On the other hand, Nestor does not utilize external information

to establish confidence thresholds. Instead, it uses a different schema which

combines the outputs of 19 neural networks for digit recognition, in order

to select the correct output digit with greater accuracy.

One architecture for combining real-time parallel image processing with

symbolic and neural computation is presented by Roman in [39]. Here, ex-

pert system rules call up image-processing and neural network routines and

pass parameters from frame slots to the routines. Traditional, symbolic, and

neural constructs for blackboards, abstraction, invariance, constraint opti-

mization, confidence estimation, and explanation capabilities are discussed

in [39]. Although applied in the context of target recognition, these ideas

are applicable to handwriting recognition as well. Filtering, storage, loca-

tion, and segmentation can be speeded up using multi-stage pipelined image

processors such as the PIPE.

7 OPTIMIZATION OF ARCHITECTURE

In our opinion, traditional image processing techniques, expert systems, and

neural networks must be used in unison to enable courtesy amounts on bank

checks to be read at high speed and with high accuracy. Multiresolution

pyramid architectures, used in recent image processing approaches can be
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expanded to support cellular operations. Apriori knowledge (such as the ex-

pected amount and the various notations for the courtesy amount) should be

embedded in symbolic rules, frames, and uncertainty paradigms, resident on

interacting knowledge sources for the pyramid blackboard. This knowledge

can provide least commitment control strategies to guide the application of

inter- and intra-level image processing and relaxation operations.

While it may appear that neural network technology is a solution to all

pattern matching problems, this is not true. In the infant stage of this tech-

nology, there are severe restrictions on the capabilities of neural networks,

which can be overcome by selectively integrating it with established tradi-

tional signal processing, pattern matching techniques, and expert systems

techniques. Neural network pattern classifiers come in many varieties, some

of which were mentioned earlier in this paper. While the architecture and

learning mechanisms of these models varies significantly, they all provide a

training mechanism for "learning" a classification problem environment from

examples of the data provided. Once trained, these networks are expected

to classify any input within a given margin of error.

Our research into various neural network approaches reveals four facts.

First, the performance of all the components in the seven processes de-

scribed above plays an important role in the overall capability of the sys-

tem. Although, no one component makes the system, one poor component

can break it. Second, systems utilizing neural network technology generally

perform better than systems using traditional image processing techniques

alone, especially when the problem environment contains data which do not

fit a predefined set of possible inputs, such as in the case of handwritten

numbers. Third, no one neural network model appears to be inherently
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better than others to a significant extent; instead, technical superiority is

attained by carefully tailoring various types of network models based on

the needs of a particular problem environment. Fourth, the use of distinct

classification schemes in parallel and the use of a voting scheme for image

recognition increase the accuracy, the robustness, and the flexibility of the

pattern recognition system.

Based on the above, a powerful classification system can be implemented

with neural network models operating in parallel with other pattern classi-

fication techniques. Such a system offers the benefits of acceptable physical

size and high accuracy. Running multiple classification systems in parallel

permits for simultaneous design and production of several modules indepen-

dently, facilitates expandability, and most importantly increases accuracy of

classifications. The confidence of being correct increases when more than

one classifier confers on a given classification. As such, a pattern recognition

system can be optimized by utilizing multiple classifiers - neural network

and non-neural network classifiers - working in parallel on the same input.

Such a system, shown in Figure 8, involves two non-neural network recog-

nition methods - dynamic programming and hidden Markov processes, and

three neural network architechures - feature detection network, backpropa-

gation, and recurrent backpropagation. The detailed design is in progress,

and it is likely that additional classification modules would be utilized. In

our design, the tentative result is fed into a post-processing expert system

that incorporates context sensitive information. Also the idea of using an

expert system to influence the behavior of a classifying network directly is

being investigated.

In parallel with the above research activity, an enhanced structural tech-
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nique has been published in Wang and Gupta [37]. Current effort is focused

on extending this technique to utilize neural network technologies to auto-

matically optimize the size of the window used in this structural approach.

8 CONCLUSION

In the progression from recognition of printed material to recognition of

unconstrained handwritten information, global template-matching and rule-

based solutions become more complex, so that additional local information is

needed to provide acceptable levels of accuracy. Auxiliary data play a more

important role, and deterministic algorithms get replaced by heterarchical

blackboard mechanisms and self-organizing neural network learning systems

which range from simple arithmetic operations to automatic programming

paradigms that can learn complex logic operations.

By combining appropriate image-processing, statistical, expert systems,

and neural network approaches, it is feasible to enhance the capability for

reading handwritten materials. Higher accuracy is made possible by improv-

ing segmentation and noise reduction capabilities, eliminating redundancies,

identifying optimal feature combinations, defining operations invariant to

translations and deformations, and adding knowledge to the system. Specif-

ically, segmentation can be handled using image-processing and neural net-

work techniques; shift invariance by global transformations and gradually

increasing the size of the receptive fields in neural layers; noise problems by

using smoothing filter operations, statistical and relaxation techniques, and

distributed neural network representations; redundancy by skeletonization

algorithms, statistical and neural network principal components analysis
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methods, and automated knowledge acquisition algorithms; and feature ex-

traction by formulating expert system rules for representing knowledge of

the interclass variations or by the neural network itself. Using a combina-

tion of several technologies, it is now becoming feasible to automatically

read handwritten material, and research is continuing to achieve the high

accuracy needed for critical applications.
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