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ABSTRACT

The throughput of a plant is a measure of major importance when assessing its ability to

compete successfully in the market place. Managers often rely on changes in capacity and process

improvements as two major factors that impact throughput. In open networks of queues the optimal

allocation of resources to these two factors is difficult to determine without the support of appropriate

mathematical models. In this paper we attempt to quantify the tradeoffs between capacity and process

improvements, through variance reductions, and throughput.

We consider multiproduct manufacturing systems modeled by open networks of queues and

formulate the throughput characterization (TC) and variability reduction (VR) problems as nonlinear

programs. These formulations are based on the decomposition approach for estimating the work-in-

progress in open queueing networks. The TC (under some mild assumptions) and VR programs are shown

to be equivalent to convex programming problems. We present and analyze greedy-type heuristics that

facilitate the derivation of tradeoff curves for these problems. The implications of the assumptions made in

developing the heuristic for the TC problem are also examined.
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1. Introduction

The throughput of a plant is a measure of major importance when assessing its ability to

compete successfully in the market place. Managers often rely on changes in capacity and process

improvements as two major factors that impact throughput. In open networks of queues the optimal

allocation of resources to these two factors is difficult to determine without the support of appropriate

mathematical models. In this paper we attempt to quantify the tradeoffs between capacity and process

improvements, through variance reductions, and throughput.

The importance of the relationships between performance criteria such as work-in-progress

(WIP), lead times, throughput, manufacturing costs, operation and capital investments has been emphasized

by many authors [Skinner [1974], Hayes and Wheelwright [1984], Bitran and Tirupati [1989a], Boxma

et. al. [1990]). These relationships are typically expressed in terms of tradeoff curves. These curves allow

managers to examine their firm's strategic objectives (high volume producer, fast supplier, low cost

producer, ...) against the investments required to support such objectives. Bitran and Tirupati, for example,

studied the tradeoff between WIP and capacity (expressed in terms of service rates) for a production facility

that manufactures semiconductor devices. The analysis (and also that of Boxma et. al. [1990]) assumes that

the throughput, product mix and technology are given. They, however, comment that the "... concept of

tradeoff curves is also useful in examining the impact of changes in throughput, product mix and

technology on WIP and lead times."

Most papers to date study the impact of capacity changes on WIP. However, process

improvements such as variability reductions also lead to lower WIP and higher effective throughput. The

qualitative importance of continuous process improvements to attain manufacturing excellence has been
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brought out by many authors (Imai [1986], Hall [1983], Schonberger [1982]). In this paper we study the

quantitative impact of variability reductions on WIP and throughput. Sarkar and Zangwill [1988] provide

exact analysis on variability reduction and throughput characterization in a cyclic production system. The

methodology of this paper, on the other hand, is based on approximate formulae and is applicable to more

general manufacturing environments.

We consider a production system that can be modelled as an open network of queues with

different product classes. That is, the production system consists of multiple workstations through which

products flow as per a markovian routing matrix. Each workstation is modelled as a GI/G/1 queue and

parametric decomposition methods are used to estimate the queue lengths at each station. The assumption

that the queueing network is comprised of single server stations is not essential. The methodology is easily

extended to multiserver stations. This requires the use of appropriate approximations for the expected

queue length at each station (Whitt [1983a, 1985], Bitran and Tirupati [1989b]).

The throughput characterization problem addresses the issue of service rate (capacity)

assignment to workstations in order to meet a target throughput level so that the initial WIP is not exceeded

and the cost of capacity assignment is minimum. In order to solve the throughput characterization problem,

we assume, initially, that the squared coefficient of variations (scvs) of the interarrival times and the

processing times at each of the workstations are independent of the capacity changes. With this condition,

a finite procedure for constructing the throughput-capacity tradeoff curve is developed. While this is

reasonable in networks with a large number of products, it is not difficult to construct examples in which

this assumption does not hold. The implication of this assumption and the development of tradeoff curves

without this condition are also discussed in this paper. Specifically, we propose an iterative scheme for the

general case and establish sufficient conditions for its convergence.

To study the impact on WIP and throughput, of reducing variabilities associated with external

arrivals and processing at each of the workstations an optimization problem is formulated. The formulation

attempts to prioritize different process improvement options in order to meet a WIP target. We present an

efficient heuristic to construct the WIP-variability tradeoff curve based on the formulation and discuss its

properties. We also show how variability reduction leads to increased effective throughput.
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This paper is organized as follows. In Section 2, we describe the model and related notation.

The impact of variability reductions on WIP is analyzed in Section 3. The throughput-capacity tradeoff is

described in detail in Section 4. The assumption that the scvs of interarrival and processing times are

independent of capacity changes is examined in Section 5. Section 6 contains the conclusions.

2. Model and Notation

The production system has J workstations. Each workstation is modelled as a single server

queue with general arrival and service time distributions. N product types are produced by the network.

After visiting the first station the products follow a markovian routing within the network. We treat the

different product types as one aggregate product with an aggregate arrival rate A. at workstation j. The

aggregate service time at workstation j has mean - and variance cr2. Computations of aggregate arrival

and service time parameters are discussed in Whitt [1983a].

The motivation for considering such model is described in depth in Bitran and Tirupati

[1989a] and other papers cited there. Since exact results for performance measures do not exist for open

network models, we employ the parametric decomposition approach to derive estimates. This method has

been used by many authors to analyze general networks (e.g., Whitt [1983a, b], Shanthikumar and Buzacott

[1981], Buzacott and Shanthikumar [1985], Bitran and Tirupati [1988]).

The parametric decomposition approach assumes that the product characteristics (mean and scv

of the interarrival times and the markovian routing for each aggregate product) are specified. Likewise, the

mean and scv of processing times at each station are known.

We associate an average monetary value (vj) with each aggregate job at station j to compute

the value of WIP. The average WIP at stations j is the product of vj and the mean number of jobs at the

station (Lj). The v's can be estimated in several ways. For example, they may be determined as a

weighted sum of per job WIP value for each product family. The weights are proportional to the product

arrival rate and the average waiting time for each product family. Albin [1986] describes an approximate

procedure to compute product family waiting times. The notation used in this paper is defined below:
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J: number of stations in the network.

3j: net arrival rate at station jo.

gj: capacity (service rate) at station j; ig is the initial capacity.

pj: average utilization at station j; pj = ,j~L. p5 is the initial utilization.

Lj: expected number of jobs at station j; L is the derivative of Lj with respect to tj.

vj: average WIP value for each job at station j.

Fj(g): investment function (cost associated with capacity bj) at station j; F(gt) is the derivative of

F/jj) with respect to trj (Fj(g') a 0).

W: total value of WIP in the network; W' is the initial value and WT denotes the target value.

scv: squared coefficient of variation; the scv of a random variable is the ratio of its variance to the

square of its mean.

ca: scv of the interarrival time at station j.

csj: scv of service times at station j.

The decomposition approach provides an approximation for the mean number of jobs at a

station j. We use the formula due to Kraemer and Langenbach-Belz [1976] and its modification by Whitt

[1983a]. This approximation is given by

2

L = Pi + 2(1 p) (caj + csj)g(pj, ca, csj) (2.1)2(1 - p)

where
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{2(1-ca,) ( if c1exp 3(caj + csj) p 

g (pj, caj, csj) =

1 otherwise

and the cas are determined by solving the following two systems of equations.

J
A= Ai + E Xjr, i = 1, 2, ....., J (2.2)

j=1

Xca, -z {,i(l - p2)rj ca
j=l

= , cai° + { rji(pPrjcsi + 1 -rji) (2.3)

i=1,th 2... J

with

R = routing matrix [rii] : rij is the probability that a job visiting station i will visit j after completion of

service at i.

X0 = total external arrival rate at station i.

ca ° - scv of the external arrival interval at station i.

Note that Xoi and ca? are related to the external product arrival parameters as follows:

P

p=l

cai = caXprpi/Xol
p=l
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where X, cap are respectively the external arrival rate and scv of interarrival times of productp, and

/p = 1 if product p arrives at station i first

= 0 otherwise

In our analysis we take X0 and ca ° as given.

3. Throughput and Variability Reduction

The reduction of (external) interarrival or processing time variabilities at the workstations can

be part of KAIZEN or continuous, incremental improvement approach (Imai [1986]). In this section we

examine this important approach by quantifying the results obtained through reducing variabilities.

The arrival and service variabilities encompass several different elements. The arrival

variability, for example, may include variations in market demand, order changes, product design changes,

unavailability of parts and so on. The service variability, on the other hand, may include factors such as

service time variations due to aggregation of products, disruptions (machine breakdowns), operator

experience and training etc. This section's focus is on reducing product and process variabilities related to

disruptions, unavailability of parts, release of products to shop floors and others. It is possible that certain

types of variability reductions lead to changes in the routing of products. For example, better process

control may lead to lower fraction of products visiting a rework station. In our analysis, in this section, we

have assumed that the variability reductions do not have any impact on the routing probabilities of

products. The methodology of this section is extended in Section 3.1 to analyze this case. Expressing

equation (2.3) in terms of variance of external interarrival time at station j, 8J2, and variance of processing

time at node j, o<, we have

Xicai - FXjr2(1 - p2)caj = XiSi + Xjrji(prjio2L2 + 1 - rji)
j=1 j=1

i = 1, 2...J (3.1)

The Bs are defined for nodes with external arrivals. Let E be the set of nodes that have external arrivals.
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We define 8i = 0 for ieE. (3.1) is a Leontief system and it is easy to see that

acal acai> o and A - for i, j = 1, 2,...,J and keE (with strict inequality for at least one i)

So, using (2.1), WIP tends to decrease as 6 and/or a are reduced. Alternately, suppose the initial WIP is WI

and some of the variabilities are reduced. Let cai, i = 1, 2, ...,J denote the solution to (3.1) at the reduced

value of the variabilities. Let (1 + 3)X be the mean arrival rate at each station i (i = 1, 2, ...,J), if

variances were reduced, but total WIP was kept the same. Then the value of (1 + 3) from the following

equation provides an estimate of the increase in effective throughput due to variability reductions:

ijL,((l + P)Xj, g,, ca, csj) = WI (3.2)

Since

W= vjLj(X, , cal, csj) and ca3 ca1 (with strict inequality for at least one j),
j=1

3 > 0 and the effective throughput increases as a result of variability reductions. Finally, by setting all 82

and 2 to zero in equation (3.1) and using the resultant cas in the left hand side of (3.2), we obtain an upper

bound on the WIP reduction or throughput increase achievable through variability reductions. Also, note

that 1 + < min .
j P

Example: We now present an example to highlight the tradeoffs between different variability reductions

and show that these can lead to substantial WIP reduction. Consider a slight variation of the real life

network model (Bitran and Tirupati 1988, 1989a]) of a semiconductor production facility. The facility is

represented by 14 machine stations and processes jobs of 10 product families. Station 14 is a rework

station associated with station 9. The network characteristics are described, in detail, in Appendix 3.
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QNA3.3 software (Segal and Whitt [1988]) was used to obtain the results reported in this example.

When the arrival rates of all 10 product types are taken to be equal to 0.1, the total WIP is

33.19. The utilization of each of the machines corresponding to this arrival rate is shown in Appendix 3. If

the service time variability of station 9 (which has the highest utilization) is completely eliminated, the WIP

is reduced by 11.8% to 29.26. Elimination of all service time variabilities, on the other hand, results in

48.8% reduction in the WIP.

While the above reductions are significant, the magnitude could be dramatic at even higher

utilization. For example, consider the same network with arrival rate = 0.1062 for all products. The total

WIP corresponding to this arrival rate is 219.75. Now if the service time variability of station 9 is

completely eliminated, the new WIP is reduced by 66.3% to 74.04.

Only node 1, in this example, has external arrivals. Since node 1 has relatively low utilization

we expect that the elimination of all arrival time variabilities would not lead to much improvement in the

WIP. Indeed this is the case. Elimination of all arrival time variability reduces WIP by 3.8%. However,

were the utilization of station 1 higher, the impact of arrival time variability reduction would be greater.

For example, if the mean service time of station 1 is 0.95 then reduction of all arrival variability would

imply WIP reduction of 10.85%.

Since ca ° > cs1 , in this example, and -a0 > a- (can be verified by differentiating (2.1)),

one might think that reduction in arrival variability would lead to greater reduction in WIP than an

equivalent reduction in the service time variability of station 1. But this may not be the case since the cas

of other nodes are also affected by these reductions and total effects need to be compared. For example, if

service time variability of node 1 is completely eliminated (at arrival rate = 0.1062), the WIP reduction is

2.4%, which is higher than the 1.8% reduction obtained through the arrival variability reduction. Note that,

in this example, the scv of arrival and service times are respectively 0.375 and 0.333.

In practice, often, variability reductions are accompanied by some costs. The costs could stem

from training labor, making labor available on time, controlling releases to the floor or process

improvements. The problem then is how to prioritize the cost expenditures. We next present a formulation

II
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that addresses this issue. In this problem a WIP cost target is to be achieved by reducing variabilities. The

objective is to minimize the investment costs associated with reductions of variabilities. The problem is

written as

J
(VR): min E Gj(c) + H() (3.3a)

j=1 ieE

subject to (2.2), (3.1)

vjLj < WT (3.3b)
j=1

=-a 
2 () 2 , 0i2 _ (61)2 (3.3c)

(3.3a) denotes the investment costs while (3.3b) is the WIP cost target constraint. G () and H()s denote

the investments required to bring the respective variates to the argument values. We assume that the

functions G(-) and H () are convex and differentiable. The convexity assumption is reasonable since it

models situations where variability reductions are achieved by employing cheaper options initially. The

differentiability assumption is not crucial to our analysis. This assumption, however, makes the analysis

simpler. The methodology holds for cases where variabilities are reduced in discrete amounts (as an

illustration see the discrete capacity option problem in Bitran and Tirupati [1989b]).

From (3.1) it is easy to see that the cas are linear functions of 82 and c9. Also, since each L is

jointly convex in caj and cs, (Appendix 1), using theorem 6.9 in Avriel [1976], each Lj is convex in

(62, 2). The problem (VR) is thus a convex programming problem. We now present a greedy heuristic

to solve (VR) as it facilitates the construction of the WIP-variability tradeoff curve. Note that the

throughput-variability tradeoff curve is easily derivable from the WIP-variability curve using equation

(3.2).
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At each iteration of the heuristic, we evaluate two priority indices, PI' and PI; as follows:

aw

PI = I ir E (3.4)

aw

aG,pl = j= 1, 2, .....J (3.5)

J
(Note: W _ vL)

j=l

Computations of PI' and PI' are relatively straightforward and discussed in Appendix 2. The station with

the highest PI (be it PI' or PI") is targeted for variability reduction at that stage. For example, if PIj yields

the maximum value, then 86 is reduced by a predetermined value A and the priority indices are recomputed.

(In our presentation we have assumed A to be the same for both 62 and 0 2. The methodology, however,

holds if 2 and a2 are reduced in different step sizes.)

The process is repeated until the desired WIP cost target WT is achieved or no further

improvement in variabilities can be made. In the latter case, there is no feasible solution and the heuristic

terminates.

Heuristic

Step 1: Initialization: 62 = (), 2 = (o.j)2 and the corresponding WIP = W'. Compute the priority

indices PI and PI, for iE E and j = 1, ..., J.

Step 2: If WIP < WT, or (j2 and aj2 < A) stop; else, go to step 3.

Step 3: Let
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j; =argmax {P1j, jEE and

j2 = argmax (PI;,j = 1, 2, ... J)

IfPI;; PI;, setSk = e - A.

If PIS' < Pl,-, set 9i = a - A.

Update ca, cs, PI', PI" and WIP; go to step 2.

Again, the heuristic converges in a finite number of steps because the variance is reduced by a fixed amount

at each iteration. Also, each iteration of the heuristic gives a point on the WIP-variability tradeoff curve.

When A is small, the tradeoff curve generated by the heuristic will be fairly close to the exact one.

3.1 Variability Reductions and Changes in Routing Probabilities

We have so far assumed that the variability reductions do not impact the routing probabilities

of the products in the network. Better product designs, process control and/or other quality improvements,

however, may lead to fewer visits to rework centers and hence, can have an impact on the routing of

products. In this section we examine a model in which the probability of visiting the rework stations

depend on the service time variance. The analysis presented here can, however, be applied to quantify

tradeoffs in other quality improvement investments that affect the product routing probabilities. Our main

objective is to show that the methodology presented thus far applies to this case.

For simplicity of exposition we consider a network with 2J nodes. Each station

j (j=l, 2, ... J) has a rework station associated with it. A product, after completing service at station j,

either goes to its rework station (with probability aj) or visits station i with probability (l-aj)rj. The

mean and scv of the service time at the rework node of station j are 0j and c Oj respectively. After

completing service at the rework node of station j, products visit station i with probability rji.

When equations (2.2) and (2.3) are examined for this system with rework, its analysis

decomposes into two parts. The cas for the J workstations can be obtained first by solving a linear system

of J equations. The ca value of station j can then be used to determine the ca value of the rework node
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associated with station j. We denote the ca of the rework node j by crj. So, the Lj for each station and

rework node is known. We note that the Xj for each station j is not affected by the values of ajs. Our goal

is to show that, under reasonable assumptions, each Lj is convex in [02 , 62). This will then imply that the

methodology discussed for the (VR) problem is applicable to this model.

The cas for the J stations, after some algebra, can be shown to satisfy the following relations.

(The Xjs are given by (2.2)).

hca - i 1 - l-aj)2 + aj2(1-p7)](1-p)}] caj

= XOic + + ri 1i - [(l-aj)2 + a(-p7)(1-P)}cs + 1 -r

i-1, 2, ... J

(3.6)

where

pi = oii (3.7)

i= ;i% [2(1-csj)aj - 2(1-csj)aj2 + (c-l)(LXO) 2aj + (1-cs,)(XOj)2a

(3.8)

Comparing (3.6) to (2.3) we observe that, as far as the computation of the cas is concerned, the ajs have the

"equivalent" impact of increasing the mean service time and the external arrival variabilities. To see this,

when the Xoi ca? and p terms in (2.3) are replaced by ica? + yi and r2 _ 1- ((1- aj)2 + cL~

(1 - p p2))(1 - p2), respectively, we obtain equation (3.6). Since yi-0 (see discussion below) and r p,

(3.6) is equivalent to a system with higher arrival variability and mean service times than the one given by

(2.3). The rework nodes, as one would expect, have the impact of increasing the cas of the workstations.
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One might also expect that the increase in the cas can be interpreted solely in terms of increased external

arrival variabilities at the nodes. But equation (3.6), interestingly, as explained above suggests that, as far

as computation of the cas matters, not only the external arrival variability at each node is increased but also

the mean capacity at each node is reduced. In the discussion above we have implicitly assumed that the is

are non-negative. This is reasonable because 0 and cO for rework stations, which may involve considerable

manual operations, tend to be large as compared to the equivalent values at the corresponding station. High

cOs (and since cs is typically less than 1 for manufacturing systems) imply yi _ 0. From Equation (3.6) we

see that the relationship between the cas and as is complex. However, Bitran and Tirupati [1989a] have

shown that, for networks with large number of products, the cas are insensitive to capacity changes (see

sections 4 and 5 for more discussion). Thus, for networks with large number of products, the impact of

capacity variations in (3.6) can be ignored and system (3.6) can be approximated by

kcai - ,jrJi'(l-p)ca, = )oica° + Yi + YXjri {ripcsj + -rji}.

(3.9)

i = 1, 2..J

Equation (3.9) allows us to better understand the impact of the xaj's on the cas. From (3.9), the cas are

linear functions of the yis. The yis are related to as as in (3.8) and each as is a function of the ai2. We now

study the relationship between the yis and the o2s. From (3.8) we see that if the cOs are large and each aj is

convex in ac2, then each Yi is convex in the o2s. Since, from (3.9), the cas are linear in 7s, 62s and a2 s, they

are convex in (a 2 , 82). The convexity of the cas implies that Lj for each workstation j is convex in

[a 2 , 82) (the proof is the same as for the (VR) problem).

The WIP of each rework node j is given by the following expression.

; (p) (crj + cOj)g(p., crj, cOj) (3.10)
PJ +2(1-p) p
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where

p = ajjo.

crj = aj(l - p2)caj + ajpcsj + 1 - aj, and

g () is defined in equation (2.1).

If the cOs are large, as we have assumed in the foregoing discussion, (3.10) suggests that

rework WIPs are relatively insensitive to the changes in crj. To see why, note that the crj and cOj terms

appear together, and crs are typically less than 1.0 for most manufacturing systems. One can, therefore,

assume that the WIP of rework stations is mostly affected by the changes in the pj or equivalently, aj.

Since, by earlier discussion, each aj is convex in 2, the WIP at each rework node j can be shown to be

convex in cj2. The result follows because (i) expression (3.10) is convex and increasing in pj (proven in

Bitran and Tirupati [1989a]), and (ii) pi is convex and increasing in ai. Since the WIP at each workstation

and the corresponding rework node is convex in (02, 2}) the methodology of the (VR) problem is

applicable for the case when the routing of products is affected by variability reductions.

We conclude this section with a numerical example. The station 9 of the example in

Appendix 3 has a rework node (station 14) with service time mean = 10.0 and scv = 2.0. Also, the initial ao

is 0.10. Now suppose that the service variability of station 9 is totally eliminated and this cuts the number

of visits to the rework node by half to 0.05. The new total WIP is reduced by 21.8% to 25.96 (from 33.19).

4. Throughput Characterization Problem

In this problem our objective is to determine a schedule of capacity additions to achieve a

target throughput. Specifically, we want to increase the throughput of all products by a factor (1 + T).

Initially, Xj = , gLj = !j and total WIP = W'. The throughput target is (1 + 13T)X5 for all j.

Operationally, the throughput target is achieved by increasing the mean arrival rate of the external arrivals

(Xoi) by a factor (l+pT). The Xis can be increased, for example, by increasing the batch sizes or

introducing a new product. It is assumed that the .oiS can be increased without affecting the ca ° or cs at

any node. At the end of this section we show that this assumption can be relaxed and the methodology
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applies to other cases. In our first formulation we assume that the throughput target is to be achieved with

minimum capacity additions cost and with WIP level below W'. The throughput characterization problem

can then be written as

(TC): min £ Fj(j) (4.la)
j=1

s.t. (2.2), (2.3)

ZviLj - W (4. b)
j=l

-> .5~ j = 1,2,.....J (4.1c)

Ji _ (1 + f5T)Xj j = 1,2,...J (4.d)

Some Modelling Assumptions

The cost functions Fjij)s, as in Bitran and Tirupati [1989a], are assumed to be monotonically

increasing, convex and differentiable in Ct The capacity increases in the model are achieved by increasing

the jis. We assume that the mean and standard deviation of the service time vary in the same proportion,

and hence, the css remain constant. When this is not the case, the results of this paper will apply as long as

the variation in the css is such that the approximation to establish queue lengths (Lj) is convex in j.

The functional relationship between capacity changes and the scvs of arrivals, cas is complex.

The system of equations (2.3) is nonlinear and not easy to analyze. However, Bitran and Tirupati [1989a]

have shown that in many situations, especially when the number of products is large (>8 or so), the

sensitivity of the cas to capacity changes is small. Hence, we make the assumption that the scvs cas are

invariant with capacity. (This assumption is relaxed in Section 5.) As a result of this assumption, systems

(2.2) and (2.3) can be solved initially and the vectors cas and css can be treated as known parameters in

(TC). Furthermore, using results from Bitran and Tirupati [1989a], (TC) reduces to a convex programming
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problem. We propose a greedy heuristic for this resultant convex program as it readily provides the

tradeoff curve.

In the heuristic we define a priority index (PI) for each station. PI is defined as the ratio of

marginal benefit (improvement in throughput) to the marginal cost of capacity addition. At each iteration,

we increase the capacity by an increment A at the station with the highest PI. The procedure is repeated

until the throughput target is achieved. (The capacity increment A is chosen to balance accuracy needed

and the computational requirements). At each iteration, we increase the capacity of the station with highest

PI and compute the resultant throughput, 1 + , of the system by solving the following equation for :

' vX)j (1 + )2 Vj(Xjl) 2(ca + csj)
t1 + {3) la + 

i=l i 2 j c 1 i j(ij - (1 + )

(1 + +{, +j( )23)-(C1 + Sj) 2 ) 
+ cs,) 3 (ca, +csj) W; (4.2)

2 :ca <1 igj - (1 + )X-)

If B3 > AT we stop with a solution. The left hand side of (4.2) (henceforth referred to as I(3, g)) is

monotone in and thus, (4.2) can be solved for using binary search or other efficient techniques.

Furthermore, using (4.2) we compute the marginal improvement in throughput with respect to the capacity

gj:

(4.3)
aLj oar an

It is easy to show that - > 0 implying is strictly monotone in the !Ps.

Greedy Heuristic for the Throughput Characterization Problem

Step 1: Initialization.

13 = = X, gj = gA and the corresponding WIP = W'

Compute the priority indexed Pi = a at the current value of B and f3 for each station j.
'~ aL

II
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Step 2: If > T, stop; else, go to Step 3.

Step 3: Let j = argmax {Pij, j = 1, 2, ... J} and set gj- = j- + A.

Update PIj and 3. The new P is the maximum value of 3 satisfying I(3, t) - W'. Go to Step 2.

The heuristic converges in a finite number of steps. This can be seen as follows. For a conveniently small

A, the reduction in WIP at any iteration due to capacity increment is greater than or equal to Ar where

aLi
r = min ---. The derivative is evaluated at h = X, and gL = ~ where i is an upper bound on j. Now,

if 3 is increased by e, at any iteration, the WIP increase (for small ) is less than r2 A e. a where the

derivative is evaluated at P = T and X = j for all j. Since the WIP increment due to change in and

WIP decrement due to capacity increase must match in order for the WIP to equal W, we have

e r A/r 2. That is, at every iteration, goes up by more than a finite amount implying finite

convergence. Note that the heuristic produces an approximate tradeoff curve. Each iteration gives a point

on the curve and by choosing A sufficiently small we can approximate the tradeoff curve reasonably well.

In fact, using Kuhn-Tucker conditions, it is possible to show that the solution obtained from the heuristic is

optimal in (TC) as A-O. Since

(1) I (3, t) is convex and increasing in P (the proof is straightforward and omitted),

(2) I(3, A) is convex and decreasing in gij, and

(3) Fj(tLj) is convex and increasing in ij,

the priority index PIj is monotonically decreasing in jt for p < 1. Using this result and optimality

conditions of problem (TC) we can show that 7ij - A -<_ ! < ° , where At; and j are the capacity of

station j corresponding to the optimal and heuristic solutions respectively. Finally, using weak duality

results, we can prove the following result that characterizes the performance of the heuristic.

Proposition: Let Z and W be the approximate values of the objective function and WIP obtained

respectively by the heuristic. Also, let Z* be the optimal value of the objective function. Then
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0 Zo -Z* e
z* - Zo -

where

= u°(W - W ° ) + a {F; ) + Uov.,L;(j) with

u° =max ai(1o o)
i ali

We conclude this section by commenting on alternate formulations and variations of the throughput

characterization problem.

In formulation (TC) we put a limit on WIP costs and minimize the capacity investment costs.

We could alternately formulate a problem in which WIP and investment costs are minimized

simultaneously. We must, however, take care to model the one-time costs (such as training) and the

variable costs (such as skilled labor, overtime) within the capacity addition costs. Let a denote the

amortization factor to distribute the capacity addition costs over time. Then the alternate formulation is

written as

J J
minimize S =a Z Fj(ij) + F vjLj (4.4)

j=1 j=l

subject to (2.2), (2.3), (4.1c) and (4.1d).

Again (4.4) is a convex programming problem (under the assumptions of (TC)). The earlier heuristic, with

modified definition of PI; = t j could be used to derive the throughput-capacity tradeoff curve.

Since in practice it is quite common for managers to specify a WIP target level as it allows for better

monitoring and improvement opportunities, the throughput characterization problem was described in terms

of (3.1).
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In the throughput characterization problem we assume that the throughput of all products (and

hence, Xs at all stations) are increased by the same factor. Our methodology, however, is easily extended to

cases where the throughputs of different products are to be increased by different factors. This may arise,

for example, when a new product or model of a product is introduced to the manufacturing system. In such

situations different throughput factors allow to examine tradeoffs across product lines or product mix.

To roughly assess the throughput implications of capacity changes and process improvements,

we again consider the example in Appendix 3. If the mean capacity or service rates of all stations are

increased by 10%, the throughput of product 7, for example, can be increased by 138% without affecting

the total WIP in the network. Alternatively, the 10% capacity improvement also translates to throughput

increase of 11.2% for each of the 10 product types for the same total WIP in the network.

For the preceding analysis we assumed that the Xis can be increased without affecting the ca °

or cs at a node. Whether this assumption holds would depend on the specific product release process to the

job shop. The methodology above, however, applies to cases where this assumption need not hold. We

conclude this section by pointing out some of these examples. Consider a queueing network in which

(i) products arrive at stations in fixed size batches, (ii) jobs are processed individually at each station, and

(iii) there is no service variability. Suppose that the throughput is increased by making the batch sizes

bigger. Specifically, the batch size of product j is increased from bj to (l+)bj. The WIP at station j is

then approximated by

WIPj = b(l+0) L((l+P)j, j, cai) + bp(l+) + 1i

For this system the ca°s are unaffected and accordingly the cas do not depend on . We can also show that

WIPi is convex and increasing in . This implies that the I(O, Cg) [see equation (4.2)] is convex and

increasing in 3 and the methodology applies. The throughput can also be increased by adding new products

(without altering the batch sizes). As long as the changes in throughput make the cas increasing and

convex in 3 it can be shown that the procedures developed in this section are directly applicable.
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5. Throughput Characterization - Relaxation of Assumption

In solving the throughput characterization problem in Section 4, we, as in Bitran and Tirupati

[1989a], made the assumption that the cas are insensitive to the capacity changes. This assumption, while

reasonable in large networks, does not hold in many situations. In this section we relax it. For expositional

simplicity, we consider the relaxation of this assumption in the WIP "targeting problem". The implications

and analysis are identical for the throughput characterization problem. Algebraic manipulations for the

targeting problem are somewhat simpler than the throughput characterization problem. The targeting

problem (see Bitran and Tirupati [1989a] for detailed discussion) addresses the issue of capacity assignment

to workstations in order to meet a target WIP-level while attaining minimal capacity costs. Specifically,

(TP): V = min I Fj(j) (5.1a)
j=l

s.t (2.2), (2.3),

IvjLj < WT (5.lb)
j=1

j = 1,2 ..... (5.1c)

Bitran and Tirupati conjectured that their greedy algorithm could be modified to solve for the case when the

cas vary with capacity. In this section we propose an iterative scheme for the general case and establish

sufficient conditions for its convergence.

The functional relationship between the ts and cas (system (2.3)) is complex. Consequently, it

is not clear that (5.1) or (TP) is a convex programming problem. Thus, unless specified, in this section we

search for a local solution to (TP). But, note that when the cas are given, (5.1) is a convex program. The

iterative scheme uses this fact. Finally, the capacity-WIP tradeoff curve is constructed using the final

values of the cas from the iterative algorithm.
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Iterative Scheme to Solve (5.1)

Step 0: Initialization: choose initial ca° for all j.

Step 1: Solve

J
V(ca) = min Fa j )

j=1

(5.2)

s.t. (5.lb) and (5.1c)

for current values of cas.

Any efficient techniques for Convex Programming Problems may be used here. Let t(ca) denote

the optimal capacities corresponding to the given cas.

Step 2: Recompute the cas using (2.3) with the new values of capacities from step 1.

Stop, if the new and the last cas values are "close;" else, go to step 1.

We now discuss the convergence properties of this iterative scheme. First, note that the system of

equations (2.3) can be abstractly represented as

ca = G(sum ... ri j)

with G :R -- R J. Then, the iterative scheme can be summarized as:

ca*+l = GOll (cak), 2 (cak), ..., IjL(cak)) (5.3)

Using results from Ortega and Rheinboldt [1970], a sufficient (and essentially necessary) condition that the

iterative scheme (5.3) converges is that the spectral radius of the Jacobian of the mapping G at the solution

points is less than 1. That is,
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p(G'(ca')) < 1 (5.4)

where G'(ca ) is the Jacobian matrix of the mapping G at ca' with elements G.i. Using (2.3), the

expressions for Gijs are obtained as follows.

;krki_ a,
,G, = 2 , C (cak- csk) - and

k=1 Ak acai

(5.5)

Gc' = Ljrj2.(l - p2) + 2 J (cak- Csk) - ij
k.,i k L kcaj

While (5.4) and (5.5), evaluated at the solution points, together specify the most general sufficient

condition, they require knowledge of A* and ca and hence, are not verifiable using the initial network data.

In what follows we derive apriori sufficient conditions that guarantee convergence of the

iterative scheme. We restrict the value of caj between 0 and 1 since that reflects typical manufacturing

situations. (A similar analysis can be performed when the cas are - 1). We seek conditions that guarantee

I G;j I < 1, at the solution points, apriori ( IG o [ < 1 implies (5.4); see the discussion below). An
i j

upper bound on I G I is established as follows. First, note that This is because any increase
aca -

in caj increases Lj and thus, the level of 11k should either increase or stay the same in order to achieve the

desired WIP target. Second, equation (5.lb) is used to characterize the relationship among the -- s. A

change in caj implies changes in I(ca) of (5.2). Since (5.lb) holds, the changes can not be arbitrarily large.

Specifically, differentiating (5. lb), we have

III
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2 (1-ca4) I-pt

k=1 P 3 4+ P

+ (cak + cskX 2 - Pk)

2l(1 - pk) 2

(1 - cak)pk
3 gk(l - Pk)J

2 (1-cak) (l-p)
3 c + at Pk

acaj

2
vp(l + csj) 1 3

3(caj + cs;) 

(5.6)

We now provide a bound on the quantity

Xkrkik I cak -cskI
Xij- Z= 

aca,
acaj

which appears in equation (5.5). One such bound is obtained from the objective value of the following

optimization problem:

mr2aip2 I cak - csk I
maximize 

aLk
acaj

(5.7)

subject to (5.6)

Solution of (5.7) yields

2(1 - pj)

(I-ca) (C Pi)

Ca +SJ Pi
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v+ jpj(l + ci ) e 3 ca + j pi 
3(caj + csj) 

2 (1-a) (I-P)

X,ripk I cak -csklI e 3 C* + Pa

2 (1-a) 0-PA) 2(Ca 
3 ca+ +Cs O Pk P(cak + csk)( 2 - Pk)

+
2(1 - p)"

(1 - cak)pk
+ 3(1 - p) 

(5.8)

From Ortega and Rheinboldt, if T I G I < 1 then p(G') < 1. From (5.5) and the definition of xi;
i

IG'I < 2 Xi + Xjr2i(1 - p2 ).
i x Ih

So, if

· r2i (1 - p2 )

j=l1 i

holds for all i at the solution point then I G, I < 1 and the iterative method converges. Combining

(5.8) and (5.9), a sufficient condition for convergence is that, at solution points, the following must hold

2
vip

2(1 - p)

max
A I

VkAP e

2 
A, j=l

(5.9)

[
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2,r pk I cak - csk I

2 (1-ca) (I-pa)
3k e caj, +csk pk +

2 (1-ca) (-p&)
e3 ca, +c*- Pk
e

Pk(cak + cs,)( 2 - ph)

2(1 - p) 2

(1 - cak) 
3(1 - Pk)

J
- I Xjr2,(1 - p)

j=l

2

,j, jpi 2(1 - p)
(1 + csj) 1

3(caj + csi) |

2 (I-caj) (1-p;)
3 caj +Csj pj

i=1, 2...,J

(5.10)

Examining (5.10) we see that a verifiable sufficient condition is

max

0 <Pk < Pk 1
0 < cak < 1

2 (1-ca4) (I-pk

Pk I cak -csk I e 3 Ce +s. Ph
2 (I-ca&) (-pa)

e 3 ca' + P + P + Pk (cak + CSkX2 - Pk)
2(1 - pk)2

)

1 - cak

3(1 - Pk)

( + cs/) } 2 (-s)
+ 3(1 + cs e 3 e jp

i=1, 2,... J

(5.11)

Since (5.11) implies (5.10), this is a sufficient condition. In deriving (5.11), we used the following facts

(i) p; P,

(ii) the denominator in the right hand side of (5.10) is monotone increasing in p's, and

(iii) the left hand side of (5.11) is an upper bound on the left hand side of (5.10).

max
k

~r 
max-

k vk

j=

1 P

j=1 21-p)
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To recapitulate, if (5.11) holds then the iterative scheme to solve (TP) described earlier

converges. The right hand side of (5.11) is known from the initial network data. Computing the left hand

side of (5.11) requires solution to the two-variable inner optimization problem which can be obtained

through numerical enumeration or other efficient techniques.

6. Conclusions

In this paper we have considered manufacturing systems modeled by open networks of queues

and examined the tradeoffs between WIP, throughput, capacity and process improvements through

variability reductions. We presented the throughput characterization (TC) and variability reduction (VR)

problems. The (TC), under some mild assumptions, and (VR) problems were shown to be equivalent to

convex programming problems. Greedy-type heuristics that facilitate the derivation of tradeoff curves were

presented and analyzed for both problems. Finally, the implications of the assumptions made in developing

the greedy procedure for the (TC) problem were also examined.
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Appendix 1

Convexity of Lj

To prove that Lj is jointly convex in caj and csj we assume that cai 1 (the result is obvious

when ca > 1). We have that

P (ca] + csj) 32 (ica)i (pj)
Lj = pj + j) e 3 ca + p

For notational simplicity we will prove the convexity of L in x and y where

..S (1-X)
L = a(x+y) e +Y

Denoting the derivatives of L with respect to x and y by Lx and Ly respectively, we have

+ a(x +y) -(x +y) - ( -x) e .y(x+y)2 e

+

a+ (l+y)e -+y
+y

a(x+y) { -(l-x) [ (x+y)2 e [ · +r af3(1~x)]

Lx= [a

LY= [

Also,



A1.2

L _ a= 2 (l+y)2

(x+y)3

L _ a132(1-x) 2

= (x+y) 3

(l-x)

e

eZ1-x)

e

L = a3 2(1-X)(l+Y) e- -)
(x+y)3

Hence,

LL- LI
(x+y)3

- P(I-) C l+y2 (I+y)(l-x)

e XI
_(1+y)(1-x) (1_x)2 I

Since matrix A is positive semi-definite, L is jointly convex in x and y.



Appendix 2

Derivation of PI and PI

Step 1: Compute the inverse of the following matrix:

-X1 - r (l-p)

- r22 (1-p 2)

- 3 r2 (l-p3) -'

-A3r22(1-p 2 ) ...-A2r2 (-p)

Denote the inverse of this matrix by A A ((aij)). Note that the above matrix has Leontief structure

and many efficient techniques are available to compute A.

Step 2: Compute (i) cas at the current value of 82 and 02 using (4.1), and (ii) aL-, -.
acai ' acs

acai
Step 3: Compute as for i, = 1, 2, ... J and keE.

Note that

acai JO if~aca " aca_ I i
i j=" ;Qk if

ki

k=i

and thus

�( � �_1__1_1__1__1________-�-
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aca 
2= aik Xka8

Step 4: Compute a for i, k = 1, 2... J

From (4.1c)

acai

.- id - jr (1
J

and consequently,

acai J
E aij3,rk for i,

ko~ j=l
k=1, 2, ... J

Step 5: Compute PI' and PI.

Since

aw j aLj J
_5if j=1 k j=l

xj
/a 

acs _
Ia

DCF2

aLj
= vI j acaj

1

o
lk2

and all other quantities in the right hand side are known (Steps 2-4) above), a 2 ,
areknown. Finally,

are known. Finally,

PI and PI" are computed using (4.4) and (4.5).

III

- ) aC2a = 3r 
2

aLj acaj
vj -

i aca, a8

acaj

ao2
aLi acsj
acs* aak ~

if j k

if j=k.



Appendix 3
Data for the Network Example

Number of stations = 14
Number of products = 10

TABLE I
Product Routing Characteristics

Number of
Product Operations Routing Sequence*

1 7 1,2,4,2,9, 10, 11 with prob 0.9
8 1,2,4,2,9, 14, 10, 11 with prob 0.1

2 8 1,2,5,2,8,9, 10, 11 with prob 0.9
9 1,2,5,2,8,9, 14, 10, 11 with prob .1

3 8 1,2,6,4,2,9, 12, 11 with prob 0.9
9 1,2,6,4,2,9, 14, 12, 11 with prob 0.1

4 8 1,2,7,4,2,9, 10, 11. with prob 0.9
9 1,2,7,4,2,9, 14, 10, 11 with prob 0.1

5 8 1,2,4, 12,2,9,2, 13 with prob 0.9
9 1,2,4, 12,2,9, 14,2, 13 with prob 0.1

6 8 1,2,5, 12,2,9,7, 13 with prob 0.9
9 1,2,5, 12,2,9, 14,7, 13 with prob .1

7 8 1,2,6, 12,2,8,2, 13
8 12 1, 2, 3, 7, 4, 12, 2, 8, 6, 9, 2, 13 with prob 0.9

13 1, 2, 3, 7, 4, 12, 2, 8, 6, 9, 14, 2, 13 with prob 0.1
9 13 1,2,3,5,4,6, 12,2,8,2, 10,6, 13

10 13 1,2,3,6,2,4, 12,7,2,9, 11,5, 13 with prob 0.9
14 1,2,3,6,4, 12,7,2,9, 14, 11,5, 13 with prob 0.1

* The routing sequence for each product specifies the stations
visited by the product in order.

TABLE 2

Interarrival Times

(Note: The mean interarrival time is 10.0 for jobs in each product class in all cases.)

Product scv

1 0.333
2 0.500
3 0.333
4 0.333
5 0.250
6 0.500
7 0.250
8 0.333
9 0.250

10 0.500
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TABLE 3

Service Times

Station Mean scv

1 0.78 0.333
2 0.348 0.333
3 2.67 0.5
4 1.05 1.0
5 2.0 0.333
6 1.4 0.25
7 1.775 0.333
8 1.875 0.333
9 1.175 0.5

10 1.8 0.333
11 1.44 1.0
12 1.158 0.25
13 1.45 0.333
14 10.00 2.0

TABLE 4

Utilization of Stations under A = 0.1

Station Utilization

1 0.78
2 0.87
3 0.80
4 0.74
5 0.80
6 0.84
7 0.71
8 0.75
9 0.94

10 0.72
11 0.72
12 0.81
13 0.87
14 0.80


