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Summary

An experiment with a simulated economy demonstrates that the decision-making processes of

human subjects can produce deterministic chaos. Participants managed a commodity production-

distribution system to minimize costs. Performance, however, was systematically suboptimal.

Econometric estimation of subjects' decision rules identifies the sources of poor performance.

Simulation of the estimated rules reveals nonlinear phenomena including chaos, hyper-chaos,

quasiperiodicity, mode-locking, and coexisting stable and unstable solutions. The results show the

applicability and importance of modem nonlinear dynamics in models of human systems.
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The prevalence of deterministic chaos and other nonlinear phenomena in physical,

chemical, and biological systems has prompted speculation that these dynamics may occur in

human systems as well1-3 . Indeed, numerous models have shown how economic systems might

produce chaos4 -7. But the significance of these theoretical developments hinges on whether the

chaotic regimes lie in the realistic region of parameter space. Further, the decision rules postulated

in these models have not been tested experimentally. Despite intriguing efforts to identify chaos in

economic time series8 ,9, it is difficult to resolve such issues by empirical means alone 10, 1. Data

series are often unavailable, or too short relative to the frequencies of interest. Measurement error

and process noise in social and economic data further complicate empirical analysis. A

complementary approach is based on laboratory experiments in which models provide a simulated

environment for the study of decision-makingl 2 . We report here the results of one such

experiment which demonstrates that the decision-making processes of human subjects can produce

deterministic chaos in a common economic context.

The experiment simulates an industrial production-distribution system. Such systems offer

firms flexibility through a decentralized network of inventories which buffer differences between

the demand for and production of goods. Production-distribution systems have long been

associated with business cycles and other fluctuations in industrial economies13,1 4 . The

experiment here, the 'Beer Distribution Game,' is a role-playing simulation of a typical production-

distribution system. Developed at MIT to introduce students of management to economic

dynamics and computer simulation, the game has been widely used for thirty years 15.

The experiment is conducted on a board which portrays in a simplified fashion the pro-

duction and distribution of beer (Fig. 1). Beer is represented by markers which are manipulated by

the players as the game proceeds. Each brewery consists of four sectors: retailer, wholesaler,

distributor, and factory (R, W, D, F). One subject manages each sector. Customer demand is

represented by a deck of cards. Each simulated week customers order beer from the retailer, who

ships the beer requested out of inventory. The retailer in turn orders from the wholesaler, who

likewise ships out of inventory. Similarly, the wholesaler orders and receives beer from the
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distributor, who orders and receives beer from the factory. The factory brews the beer. At each

stage there are shipping and order receiving delays. Each week the subjects must decide how

much to order from their immediate supplier (factories decide how much beer to brew).

Subjects seek to minimize cumulative costs over 36 simulated weeks. Inventory holding

costs for each sector are $.50/case/week, and backlogs (negative inventories) cost

$1.00/case/week. Subjects must therefore keep their inventory low while avoiding backlogs. Due

to the order receiving and shipping lags, a substantial supply line of unfilled orders may build up.

The lag in receiving beer may vary: if the wholesaler can cover the retailer's orders, the retailer

quickly receives the beer desired. But if the wholesaler has run out, the retailer must wait until the

wholesaler can restock. Although the experimental system is simplified, it nevertheless captures

many features of real economies, including multiple feedbacks, nonlinearities, and time lags.

Nonlinearities arise from nonnegativity constraints on orders and shipments: shipments normally

equal incoming orders, but if inventory is depleted, shipments must equal zero, and the unfilled

orders remain in the backlog for future delivery. The production-distribution structure has been

validated for a variety of industries 13,16 ,17.

The experiment follows standard protocols 18,1 9 and is detailed in ref. 20. Subjects were

graduate and undergraduate students at MIT and senior executives from a number of U.S. firms

(N=44). Each trial begins in equilibrium. Each inventory contains 12 cases. Customer demand is

initially 4 cases/week. Equilibrium is disturbed by an unannounced step increase in customer

demand to 8 cases/week in week 5.

Results are summarized in Table 1; Fig. 2 shows a typical trial. The participants'

performance is significantly suboptimal. Total costs averaged $2028, ten times higher than the

optimal costs of $204, a highly significant difference (t = 8.7, p<.00001). More interesting, the

results exhibit strong regularities, suggesting subjects used a common heuristic in ordering: 1.

Oscillation: Orders and inventories exhibit a large amplitude fluctuation. On average 21 weeks are

required to recover initial inventory levels. 2. Amplification: The variance of orders rises steadily

from customer to retailer to factory. Customer orders increase from 4 to 8 cases/week; responding
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to this disturbance, factory orders rise to a peak averaging 32 cases. 3. Phase lag: Orders tend to

peak later as one moves from retailer to factory. All three characteristics are well documented in

industrial economies13,14,16,21

We next estimate a model of the subjects' decision rule20 . Demand uncertainty and large

backlog costs mean subjects should maintain a small but positive inventory. To do so subjects

should order enough to (i) meet expected demand D e , (ii) correct discrepancies between the

desired stock S' and actual stock S, and (iii) ensure a steady flow of deliveries by maintaining an

adequate supply line of unfilled orders SL. (The supply line is the accumulation of orders placed

but not yet received.) Since order cancellations are not allowed, orders O must be nonnegative,

yielding

Ot= MAX(O, De t + a(S' - S t - 3SLt)) (1)

where a is the fraction of stock discrepancies corrected each period and 3 is the fraction of the

supply line subjects consider. Adaptive expectations are assumed for each subject's forecast of

incoming orders (exponential smoothing of demand D):

De t = ODt 1 + (1-0)Det.1 , 0<0<1. (2)

The adjustment term a(S' - S t - f3SL t) creates two negative feedback loops which regulate

inventories. Discrepancies between the desired and actual stock induce additional orders until

inventory reaches the desired value. Orders also slow once sufficient orders to restore inventory

have been placed in the supply line - depending on 3. If --=O, then orders placed are ignored until

they arrive, causing overordering and instability. If 3=1, then subjects fully account for the

supply line and do not double order. While 3=1 is optimal, a prior experiment showed <<1 for

many subjects in a similar task22 . Consistent with behavioral decision theory2 3-2 5, the rule utilizes

information locally available to the decision maker and does not presume managers have the

cognitive capability to solve for optimum performance.

1 ___1___1_1_1_____1____11111_-1_�_�
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The parameters were estimated for each participant by nonlinear least squares subject to the

constraints 0<0<1 and a, , S' >0 (table 2). The explanatory power of the proposed rule is

excellent: the mean R2 is 71%; R2 is less than 50% for only 6 of 44 subjects. A large majority of

the estimated parameters are significant, and the estimated parameters are systematically related to

performance2 0 .

Though the subjects' disequilibrium response is suboptimal, we expected that their

decision rules would be stable and swiftly return the system to a low-cost equilibrium. To test this

hypothesis we simulated the experimental system using each set of estimated parameters. Analysis

of variance showed no strong relations between subjects' position in the distribution chain and the

parameters of their decision rule. We therefore assume identical parameters for each sector,

reducing the dimension of the parameter space from 16 to 4. Thirty parameter sets (68%) do

indeed produce stable behavior. However, one periodic and three quasiperiodic solutions appear.

Ten (23%) yield chaotic behavior. The sizes and shapes of the chaotic attractors produced by

simulation of the parameters characterizing different subjects vary widely (Fig. 3): modest changes

in cue weights produce large changes in dynamics. Though the experiment is a difference equation

system, the continuous-time analog yields similar chaotic dynamics2 6.

To explore the structure of the parameter space, we set 0 and S' at representative values of

.25 and 17, respectively, and varied a and 0 over the interval [0,1]. The space (Fig. 4) includes

stable, periodic, quasiperiodic, and chaotic solutions. The unstable solutions arise from the

nonlinear coupling of several oscillatory feedbacks created by the multiple inventories and time

delays in the system. These oscillators are coupled nonlinearly through the availability of

inventory in the distribution chain. High frequencies are produced when there is sufficient

inventory so that orders can be filled by each sector's immediate supplier, e.g., when the retailer's

orders are filled out of the wholesaler's inventory. Low frequencies arise when inventories are

inadequate, forcing downstream sectors to wait for the factory to receive, produce, and ship the

orders.
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In general, larger values of a and smaller values of 3 are destabilizing (Fig. 4a). To the

extent a subject ignores the supply line of unfilled orders (:<1), a stock shortfall causes orders to

be placed each period even after sufficient orders are in the supply line, leading to excess

inventories and oscillation. Such overordering is exacerbated by aggressive stock adjustment

(larger a) since more is ordered in response to a given stock shortfall. However, the boundaries

between modes are not simple. Note particularly the narrow fjords of stable solutions which snake

between the periodic and chaotic solutions.

Fig. 4b magnifies a region of parameter space at the transition from stable to unstable

solutions. The alternating bands of periodic and aperiodic solutions arise from mode-locking

between the various sectors and resemble the Arnol'd tongues associated with a devil's

staircase2 7, 28 . The structure of the phase diagram is further complicated, however, by the fingers

of stable solutions which cut across the tongues. This complexity is caused by the coexistence of

stable and unstable solutions for the same parameter values; initial conditions determine which

solution is realized.

The Lyapunov spectrum ranks the system's Lyapunov exponents from largest to smallest

and indicates the steady-state mode of behavior. Positive exponents indicate that, on average,

nearby trajectories diverge and imply the system is chaotic; multiple positive exponents indicate

divergence in multiple dimensions of phase space, a phenomenon called hyperchaos. Negative

exponents indicate local convergence and imply stable or periodic behavior. Fig. 5 shows large

regions of parameter space exhibit higher-order hyperchaos (three positive exponents, indicating

nearby trajectories diverge along three dimensions of phase space), a behavior only rarely seen,

and to our knowledge, never before in a human system. Significantly, a and [3 for many of the

subjects fall in the regions of simple and higher-order chaos. The chaotic solutions exist in the

managerially meaningful region of parameter space.

It is common in the social sciences to assume that decision-making behavior and thus the

dynamics of human systems are, if not optimal, then at least stable. These results show that formal

rules which characterize actual managerial decision making can produce an extraordinary range of

6



Sterman, Mosekilde, and Thomsen

disequilibrium dynamics, including chaos, mode-locking, coexisting stable and unstable solutions,

and other highly nonlinear phenomena. Though complex relative to prior models of chaotic

dynamics, the experimental system portrays in a simple but realistic manner a structure found in all

modern economies. The experimental subjects, including experienced managers, produce costly

fluctuations similar to those observed in reality. Such complexity raises important issues for social

scientists. Policy interventions often imply changes in the parameters of a decision rule or model.

But if the 'policy space' contains fractal boundaries, changes on the margin may produce

unpredictable qualitative changes in behavior. Experience may not transfer to circumstances which

differ only slightly. Do robust principles of policy design exist in such systems? Does chaos slow

the discovery of cause and effect by agents in the economy and thus hinder learning or evolution

towards efficiency? Indeed, does learning alter the parameters of decision rules so that systems

evolve towards or away from the chaotic regime? While further development of theory and

experiment are required to answer these questions, the results show the importance and feasibility

of analyzing complex social behavior with the tools of modem nonlinear theory.
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TABLE 1 Summary of experimental results.

Customer Retailer Wholesaler Distributor

TIMING
Mean time to recover initial inventory
(weeks)

AMPLIFICATION
Mean Peak Order Rate (cases/week)
Standard Deviation of Order Rate

(cases/week)

PHASE LAG
Mean Date of Peak Order Rate (week)

N/A 24

8 15
1.6 3.6

5 16

23

19
4.8

16

22

27
6.7

21

16

32
8.5

20

TABLE 2 Summary of estimation results (N=44)

Parameter: 0 a P S'

Mean (std. dev.) 0.36 (0.35) 0.26 (0.18) 0.34 (0.31) 17 (9) 0.71 (0.22)
Median: 0.25 0.28 0.30 15 0.76
Minimum: 0.00 0.00 0.00 0 0.10
Maximum: 1.00 0.80 1.05 38 0.98

The ordering heuristic is given by eqs. 1-2. determines the speed of adjustment of the demand

forecast; a determines the response to inventory shortfalls; f is the fraction of the supply line

accounted for by the subjects; S' is the desired stock20 .

Factory
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FIG 1. 'Beer Distribution Game' board. Each simulated week, subjects: 1. Receive inventory

and advance shipping delays; 2. Fill orders; 3. Record inventory or backlog; 4. Advance the

incoming orders; 5. Place orders. Subjects make their decisions in step 5; steps 1-4 handle

mechanics and bookkeeping.

FIG 2. Typical experimental results. Top: customer orders increase from 4 to 8 cases/week in

week 5. Middle: The resulting orders placed by subjects (from bottom to top, Retailer,

Wholesaler, Distributor, Factory). Bottom: Effective inventory levels (Effective inventory =

Inventory - Backlog). Tick marks on y-axes denote 10 units. Note the oscillation, amplification,

and phase lag as the disturbance propagates from customer to factory.

FIG 3. Simulation of the decision rule with estimated parameters. Top: phase portrait showing

retailer inventory vs. wholesaler inventory for parameters of subject 4 (0, a, 3, S' = 1.0, 0.65,

0.40, 15). Middle: the same variables for system simulated with parameters of subject 21 (0, a,

3, S' = 0.55, 0.65, 0, 9). Both are 18,000 week simulations with first 8,000 periods deleted to

remove transient; flow is generally clockwise. Bottom: The parameters for subject 27 (0, a, , S'

= 0.2, 0.3, 0.05, 8), though stable, produce a long chaotic transient (Retailer orders shown).

FIG 4. Distribution of modes in the (a,) plane. a, The stock and supply line adjustment

parameters a and [3 are varied over the interval [0,1] in increments of .005, for 0 = 0.25 and S' =

17. Note the fjords of stable solutions separating regions of periodic and aperiodic behavior. b,

lOx magnification of the region 0.35<a<0.42, 0.02<1<0.12 (outlined area in a). Note the

complex distribution of periodic and aperiodic modes and the fingers of stable behavior which

penetrate the region of unstable behavior, indicating coexisting solutions.

FIG 5. Map of Lyapunov spectrum in the region 0Oa,3<l for the same values of 0 and S' as in

Fig. 4, showing signs of the three largest Lyapunov exponents for each point. The region

bounded approximately by a>.5 and [3<.5 contains modes with three positive Lyapunov

exponents, indicating higher-order hyperchaos.
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Appendix: Equations for Production-Distribution System

The equations are presented in the sequence of calculation used in the experiment and

simulations (Fig. 1). Initial equilibrium conditions are: all inventories = 12 units, all backlogs = 0,

all other variables = 4 units (orders placed, incoming orders, production delays, shipping delays,

and expected orders). Customer demand is initially 4 and rises to 8 in week 5. Subscripts denote

the sector of the distribution chain (Retailer R, Wholesaler W, Distributor D, and Factory F). The

computer programs for the simulations and parameter estimation are available from the first author.

Step 1: The contents of the shipping delay (D1) immediately to the right of each sector's

inventory (I) are added to inventory. The contents of the shipping delay on the far right (D2) are

moved into D1. Factories advance the production delays D1F and D 2 F in the same fashion.

Ij(t) = Ij(t- 1) + Dlj(t- 1) (Al)

Dlj(t) = D 2 j(t- 1) (A2)

Step 2: Retailers examine the top card on the Customer Order deck (CO); all others

examine Incoming Orders (IO). All sectors fill orders. The Shipment rate S must equal the new

orders plus any Backlog B from the prior period, to the extent inventory permits. The retailer's

shipments go directly to the customer and leave the system. Shipments of all others are placed in

the shipping delay D2 of the downstream sector (A4). Shipments also reduce inventory (A5).

SR(t) = MIN(CO(t) + BR(t- 1), IR(t)) (A3)

Sl(t) = MIN(IOll(t- 1) + Bl(t- 1), I(t)), I = W, D, F (A3')

D 2 k(t) = Sk+l(t), k=R,W,D (A4)

Ij(t) = Ij(t) - Sj(t) (A5)

Step 3: All sectors record inventory or backlog. The net change in backlog is the differ-

ence between incoming orders and shipments. Effective Inventory EI is inventory less backlog.

BR(t) = BR(t- 1) + CO(t) - SR(t) (A6)

1
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Bl(t) = Bl(t- 1) + IOl10 (t- 1) - Sl(t), 1 = W, D, F (A6')

EIj(t) = Ij(t) - Bj(t) (A7)

Step 4: Each sector advances the slip containing last week's Order O to incoming orders.

The factory puts last week's order in the top production delay D2 F.

IOk(t) =Ok(t-1 ), k=R,W,D (A8)

D 2 F(t) = OF(t- 1) (A8')

Step 5: Each sector places orders. First the Supply Lines SL are calculated. The supply

line is the sum of units in the two shipping delays, the backlog of the supplier (if any) and orders

placed the previous week. Since the factory is the primary producer, its supply line is simply the

contents of the production delays.

SLk(t) = Dlk(t) + D 2 k(t) + Bk+l(t) + IOk(t), k = R,W, D (A9)

SLF(t) = D1 F(t) + D2F(t) (A9')

Each sector's forecast of incoming orders (expected Demand) D e is formed by adaptive

expectations, with smoothing parameter 0.

D(t) = OjIOj(t- 1) + (l-0j)Dje(t- 1) (A10)

Finally, orders are the given by demand forecast adjusted by a fraction a of the difference between

the desired Stock S' and the effective inventory, including a fraction of the supply line. Orders

must be nonnegative.

Oj(t) = MAX(O,Dj(t) + aj(S j - EIj(t) - 3jSLj(t)))

2
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