
The Software Factory: An Entry for the
Encyclopedia of Software Engineering

Michael A. Cusumano

Massachusetts Institute of Technology
Sloan School WP#BPS-3268-91

Draft: March 29, 1991

INTRODUCTION

The story of the "software factory" within the field of software engineering is
the story of how companies have attempted to push forward the state of programming
practice in order to move beyond loosely organized craft or job-shop modes of
operation that treated each project as unique to a more structured process and
organization for multiple projects. Factory-like approaches have tended to emphasize
standardization of development methods and tools, systematic reuse of program
components or designs, some divisions of. labor and functional departments, and
disciplined project management as well as product quality control. Many firms, led by
IBM in the United States, have introduced these and other concepts for large-scale
programming operations, but in varying degrees. This discussion focuses on the
specific origins of the term "factory" as used in software and the histories of several
companies that have explicitly used this term to describe thei r approaches to managing
software development: System Development Corporation (SDC) in the United States,
and then Hitachi, Toshiba, NEC, and Fujitsu in Japan.'

EARLY FACTORY CONCEPTS

The earliest public proposals for the introduction of factory-type methods,
tools, and organizations to software development appeared in the late 1960s, as
outgrowths of comparisons of programming with established engineering and
manufacturing processes. An engineer at General Electric, R.W. Bemer, made
numerous suggestions that culminated in a 1968 paper encouraging GE to develop a
"software factory" to reduce variability in programmer productivity through
standardized tools, a computer-based interface, and an historical database for
financial and management control. GE's exit from the computer business in 1970 ended
the company's commitmentto commercial hardware and software production, although
Bemer provided the industry's first working definition of what might constitute a
software factory:

[A] software factory should be a programming environment residing
upon and controlled by a computer. Program construction, checkout and
usage should be done entirely within this environment, and by using the
tools contained in the environment... A factory...has measures and
controls for productivity and quality. Financial records are kept for
costing and scheduling. Thus management is able to estimate from
previous data... Among the tools to be available in the environment
should be: compilers for machine-independent languages; simulators,
instrumentation devices, and test cases as accumulated; documentation
tools -- automatic flow-charters, text editors, indexers; accounting
function devices; linkage and interface verifiers; code filters (and many
others) (Bemer, 1969: 1626-1627).

While Bemer focused on standardized tools and controls, Dr. M.D. Mcllroy of
AT&T emphasized another factory-li ke concept - - systematic reusability of code when
constructing new programs. In an address at a 1968 NATO Science Conference on
software engineering, Mcllroy argued that the division of software programs into
modules offered opportunities for "mass production" methods. He then used the term
"factory" in the context of facilities dedicated to producing parameterized families of

'This article is a summary of Cusumano, 1991.

software parts or routines that would serve as building blocks for tailored programs
reusable across different computers (Mcllroy, 1969). But reception to Mcllroy's ideas
was mixed: It seemed too difficult to create program modules that would be efficient
and reliable for all types of systems and which did not constrain the user. Software
was also heavily dependent on the specific characteristics of hardware. Nor did
anyone know how to catalog program modules so they could be easily found and reused
(Horowitz and Munson, 1984). Nonetheless, by the late 1960s, the term factory had
arrived in software and was being associated with computer-aided tools and
management-control systems, as well as modularization and reusability.

THE U.S. FACTORY PIONEER: SDC

One of the U.S. leaders in the custom software field, System Development
Corporation, formerly a part of the Rand Corporation and in 1991 a Unisys division,
established the first U.S. software facility called a factory in 1975-1976. SDC had
been separated from Rand in the 1950s to develop the SAGE missile control system for
the U.S. Department of Defense. It later took on other real-time programming tasks
as a special government-sponsored corporation, but went public in 1970. Top
management then had to control software costs and launched a process-oriented RED
effort in 1972 to tackle five problems SDC programmers continued to encounter project
after project: (1) Lack of discipline and repeatability or standardized approaches to
the development process. (2) Lack of an effective way to visualize and control the
production process, as well as to measure before a project was completed how well code
implemented a design. (3) Difficulty in accurately specifying performance
requirements before detailed design and coding, and recurrence of disagreements on
the meaning of certain requirements, or changes demanded by the customer. (4) Lack
of standardized design, management, and verification tools, making it necessary to
reinvent these from project to project. (5) Little capability to reuse components,
despite the fact that many application areas used similar logic and managers believed
that extensive use of off-the-shelf software modules would significantly shorten the
time required for software development (Bratman and Court, 1975 and 1977).

After several years of R&D work, a team of SDC engineers, led by John B.
"Jack" Munson, constructed a detailed factory plan that consisted of three elements:
an integrated set of tools (program library, project databases, on-line interfaces
between tools and databases, and automated support systems for verification,
documentation, etc.); standardized procedures and management policies for program
design and implementation; and a matrix organization, separating high-level system
design (at customer sites) from program development (at the Software Factory). The
first site to utilize the factory system, which SDC copyrighted under the name "The
Software Factory," was a facility of about 200 programmers in Santa Monica,
California. SDC thus continued to have "program offices" at each customer site, with
program managers that maintained responsibility throughoutthe life-cycle for project
management, customer relations, requirements and performance specifications,
systems engineering, and quality control and assurance. To build the actual software
and test it, however, program managers that wanted to use the factory (its usage was
not mandatory) had to transfer system specifications to what was essentially an
assembly line of three groups within the new software factory, which served SDC's
System Division: Computer Program Design, Computer Program Development, and
System Test and Verification (Figure 1).

2

SDC gave the name Factory Support System to the "basic structural and control
components" designed to facilitate the factory methodology. This tool set, written in
a high-level language to ease portability, ran on an IBM 370 mainframe computer and
used the facilities of I BM's operating system to automate procedures for keeping track
of program development and collecting data (Figure 2). Tools included compilers and
other basic programs that worked with the operating system, as well as Top-Down
System Developer (TOPS), a modeling tool that helped outline and verify designs as
well as describe much of the control and data interface logic in the actual coding
language; Program Analysis and Test Host (PATH), which analyzed a source program
and inserted calls to a recording program at appropriate locations, helping developers
find information about the structure of the program to aid in testing; Integrated
Management, Project Analysis, and Control Techniques (IMPACT), which utilized
production information on milestones, tasks, resources, system components, andtheir
relationships to provide schedule, resource computation, and status reports at the
individual components level or summarized at any module or task hierarchy level.

It took a year and a half during 1975-1976 for the R&D team to identify
standards and procedures -- general rules and specific guidelines -- that might be
applied toa variety of software projects. They based their process around a life-cycle
model of software development covering the major activities, events, and product
components common to all projects. The methodology, codified in what SDC called the
Software Development Manual or SDM, called for structured design and coding, top-
down program development, and program production libraries. In addition, SDM
outlined a managementand control process, providing guidelines for planning, project
control, review and evaluation procedures, and quality assurance. The R&D team in
part borrowed from existing U. S. military standards, but established most of the SDM
methodology by examining previous projects SDC had done through written records
and interviewing personnel to determine what had worked well and appeared to
represent "best practice" within the company. According to two of the key factory
architects, Harvey Bratman and Terry Court, this effort was critical to creating a
common language and methodology that made the factory more than just a building with
programmers working from a common pile of tools.

Approximately 10 projects went through the SDC Software Factory between 1976
and 1978, including systems for weather-satellite control, air defense, and
communications for the Los Angeles Police Department. SDC managers claim that all
the projects, with the exception of the system for the L.A. Police, came in on time and
within budget, and with fewer defects and problems than SDC usually experienced
with large systems. The company history even described the factory projects as, for
the most part, "accurate, timely, and on budget," and models of "optimum software
development" (Baum, 1981: 205, 224). In fact, the factory worked so well that SDC's
chief executive, George Mueller, directed all divisions to adopt the methodology as a
corporate standard, and in 1978 he promoted Munson to oversee this transfer.

After Munson left, however, the factory fell gradually into disuse. Tools were
not very portable among different projects; program managers preferred to build
their own software, rather than hand over specifications to the factory; and
specifying the L.A. Police system, which was an unfamiliar application for SDC
engineers, took a year or more longer than scheduled, leaving factory programmers
idle as the number of other new projects coming into the facility declined. Future jobs
also went back to the project system, rather than using the factory structure for
program development. The factory methodology remained through the SDM manual,

3

although SDC dispersed the factory personnel among different projects and sites.
SDC also updated the manual every few years and continued to use it through the late
1980s, while concepts from the factory methodology spread to other firms after the
U.S. Department of Defense contracted with SDC in 1976 to devise guidelines for
military-use software procurement. SDC completed a first set in 1979, with the help
of the U.S. Department of Defense and an offshoot of MIT's Lincoln Laboratories,
Mitre Corporation. The government subsequently published these procedures as a
16-volume set of guidebooks on software acquisition and management (Baum, 1981:
222). SDC also influenced factory initiatives underway or soon to appear in Japan.

JAPANESE FACTORY EFFORTS

Hitachi

Hitachi boasted of the two largest software factories in Japan (Table 1). The
original Software Works, with approximately 4000 personnel in 1991 (including
approximately 2000 assigned from Hitachi subsidiaries and subcontractors), built a
rangeof basic softwa re for Hitachi mainf rames, including operating systems, language
compilers, and database systems. The Information Systems Works (separated from the
original factory in 1985) in 1991 housed 7000 software developers (including at least
4000 personnel from subsidiaries and subcontractors) in two 31-story towers. This
facility, unlike someotherJapaneseapplications softwarefactories, combined systems
engineers (those who designed the systems) with programmers that built the actual
software, and concentrated on customized business applications such as for financial
institutions, securities firms, inventory control, management information,
accounting, and personnel management.

By founding its Software Works in 1969, Hitachi was the first company in the
world to apply the term factory (actually, its Japanese equivalent, kojo, translated
either as "factory" or "works") to an actual software facility (Hitachi, 1979). A
history of independent factories for each major product area prompted executives in
the computer division to create a separate facility for software when this became a
major activity. The factory represented a deliberate attempt to transform software
from an unstructured "service" to a "product" with a guaranteed level of cost and
quality, using a centralized organization to achieve productivity and reliability
improvements through process standardization and control. Management saw a need
to offset a severe shortage of skilled programmers in Japan and deal with numerous
complaints from customers regarding defects in the software Hitachi was providing
(most of which, along with the hardware, Hitachi was importing from RCA until 1970).
It was also important that all Hitachi factories had to adopt corporate accounting and
administrative standards; these forced software managers to analyze the software
development process in great detail and experiment with a series of work standards
and controls that led to the current factory organization.

Managers concentrated initially on determining standards for productivity and
costs in all phases of development, based on data collected for project management and
quality control. Hitachi then standardized design around structured programming
techniques in the early 1970s, and reinforced these with training programs for new
employees and managers. This approach reflected an attempt to improve average
skills through a standard process, rather than specify every procedure to be
performed in each project and phase of development.

4

Yet Hitachi managers underestimated how difficult implementing factory
concepts such as reusability and process standardization would be. Two examples
illustrate this. First, their attempt in the early 1970s to introduce a "components
control system" for reusability failed, because of the lack of knowledge about how to
produce reusable modules. Managers changed their priorities and decided to find a
way to standardize product designs, and then worry about components. A survey of
the programming field suggested that structu red design and programming techniques
would help standardize software design and coding. A committee then spent several
years studying these techniques (as they were evolving) and analyzing programs
Hitachi had already written. This was truly a pioneering move, because it would be
several years before articles in industry jou rnals began discussing structured design
and programming widely and companies such as I BM adopted these practices for their
internal standards.

Hitachi also failed to introduce one standardized process for both basic software
and custom applications software. At the start of the factory, a committee for work
standards took on the task of establishing procedures for all activities, based on a
life-cycle model of development. They met almostweekly, studying available materials
on software development and examining practices within Hitachi, and completed a
first-cut set of standards by the end of 1970, referred to as the Hitachi Software
Standards (HSS). These covered product planning, design and coding methodology,
documentation and manuals, testing, and any other activities necessary to complete
a software product. Although Hitachi managers clearly recognized these procedures
and standards would have to evolve as personnel and technology changed, and they
made provisions to revise performance standards annually, drawing up the
procedures helped them identify best practices within the company and within the
industry for dissemination to all projects and departments. Struggling with work
standards also helped the committee recognize the need to distinguish between basic
systems and applications software, rather than continue trying to impose similar
controls and expectations on all types of software development. Hitachi started
developing separate standards for applications during 1971-1972 and completed an
initial set by 1975 now termed Hi PACE (Hitachi Phased Approach for High Productive
Computer System Engineering). This standardized formats for proposals, designs,
and program construction, as well as aided in developing tools for design automation .

By the late 1970s, Hitachi had succeeded in organizing its software factory
around a combination of manual engineering and factory techniques -- structured
design and coding coordinated with data collection and standard times for each
activity, detailed documentation, design reviews independent of project personnel,
rigorous defect analysis, and other elements. Only at this point, after spending
years studying and standardizing the development process, was Hitachi management
ready to invest heavily in computer-aided tools, relying on engineers mainly from the
Software Works and the Systems Development Laboratory, part of the central
laboratories.

The tools Hitachi devised supported major functions and activities. For basic
software, during the late 1970s, Hitachi introduced CASD (Computer-Aided Software
Development System) to facilitate design, coding, documentation, and testing, and
then CAPS (Computer-Aided Production Control System for Software) for manpower
estimation, process flow control, and quality control (Shibata and Yokoyama, 1980;
Kataoka et al., 1980). Both have also been continually evolving. For custom

5

applications, in the late 1970s, Hitachi began developing another set of tools under the
label I CAS (Integrated Computer-Aided Software Engineering System) (Kobayashi et
al., 1983). The most important consisted of the SEWB (Software-Engineering
Workbench), which supported both systemdesign and programmingon advanced work
stations, and EAGLE (Effective Approach to Achieving High Level Software
Productivity), which ran on Hitachi mainframes and helped programmers build
software from reusable modules as well as structure new designs and code for reuse.
HIPACE continued to serve as the basic methodology used with these tools.

Performance improvements were impressive. While direct productivity data is
unavailable, sales per employee at the Software Works, combining systems and
applications programs, doubled afterthefirstyearof founding the factory in 1969 and
overall rose 12-fold between 1969 and 1984. The percentage of projects delivered late
to the Quality Assurance Department dropped from over 72% in 1970 to a low of 6.9% in
1974 and averaged about 12% between 1975 and 1985. Defects reported by users per
month for each computer in the field also dropped from an index of 100 in 1978 to 13 in
1983-1984 (Cusumano 1991: 184-191).

Toshiba

Toshiba created a highly disciplined factory around focused product lines,
using a centralized software facility to develop real-time process control software for
industrial applications (Matsumoto 1981, 1984, 1987) . The decision to establish a
software factory stemmed from rapid increases in actual and projected demand,
beginning around 1975, for industrial control systems relying on a new generation of
relatively inexpensiveminicomputers. Typical of the changing demands Toshiba faced
as sales of its control minicomputers rose were orders from Japanese power-utility
companies to develop automated thermal-power generating stations. These used
enormous and growing amounts of software; the typical power-generation control
system rose from a few hundred thousand lines of code in the mid-1970s to two million
by the early 1980s, necessitating years of development and hundreds of new
programmers. Furthermore, to achieve safe and untended operation, the hardware
and software for these and many other control systems had to be nearly free of defects
or at least highly tolerant of system faults.

An RD group responsible for industrial systems software in Toshiba, led by
Dr. Yoshihiro Matsumoto, introduced an organization and process in 1977 integrating
tools, methods, management and personnel systems with a physical layout for work
stations (Table 2). The strategy for utilizing this infrastructure centered around
four policies: (1) standardize the development process, to reduce variations among
individuals and individual projects; (2) reuse existing designs and code when
building new systems, to reduce redundant work and maximize productivity; (3)
introduce standardized and integrated tools, to raise the performance levels of the
average programmer; and (4) provide extensive training and career-development
tracks for programmers, to relieve the shortage of skilled engineers.

Perhaps the most delicate feature of Toshiba's Factory was its organizational
structure, a matrix imposed over product departments from several operating groups
and divisions, all located on one site, Toshiba's Fuchu Works. Established in 1940 and
set on 198 acres in the western outskirts of Tokyo, the Fucnu Works in 1991 had at
least 8000 employees working primarily in four areas: Information Processing and
Control Systems, Energy Systems, Industrial Equipment, and Semiconductors

6

(Printed Circuit Board Division). Operating departments within the divisions
corresponded roughly to 19 product lines, including systems for information and
control in public utilities, factories, power-generation plants, and various industrial
and transportation equipment. Each department contained sections for hardware and
software design as well as for manufacturing, testing, quality assurance, and product
control.

Similarities in the typeof software the Fuchu Works built from project to project
allowed Toshiba to deliver "semi-customized" programs that combined reusable
designs and code with newly written modules, rather than writing all software from
scratch. Toshiba also relied heavily on a standardized tool and methodology set, the
Software Engineering Workbench (SWB), developed gradually after 1976and modelled
after AT&T's UNIX Programmers Workbench. Toshiba utilized its customized version
of the UNIX operating system as well as a full complement of tools for design-support,
reusable module identification, code generation, documentation and maintenance,
testing, and project-management. Important features of the Toshiba methodology
were the design of new program modules (ideally limited to 50 lines) for reusability,
the requirement that programmers deposit a certain number of reusable modules in a
library each month, and the factoring in of reuse objectives into project schedules and
budgets (Matsumura et al., 1987).

Softwa re productivity at the Toshiba Softwa re Factory rose f rom 1390 delivered
equivalent-assembler source lines or EASL per person per month in 1976 to over 3100
in 1985, while reuse levels (lines of delivered code taken from existing software)
increased from 13% in 1979 to 48% in 1985. The 3130 lines of EASL source code per
month per employee translate into approximately 1000 lines of Fortran, the most
common language Toshiba used in 1985 -- considerably more than the 300 lines or so
of new code per month commonly cited for U. S. programmers making similar real-time
applications. Quality levels (defined as the number of major faults detected after final
testing) also improved dramatically after the opening of the factory, ranging from 7
to 20 per 1000 lines of delivered code converted to EASL to .2 to .05 in 1985 (the range
depended on quality-control practices as well as the reliability requirements and the
amount of testing customers contracted for) (Cusumano, 1991: 240).

Toshiba data indicated that reusability was the major reason for productivity
and quality improvements. The organization Toshiba created to promote reuse and
overcome short-term concerns of project managers and development personnel (such
as the longer time required to write and document reusable software) relied on
Software Reusing Parts Steering Committees and a Software Reusing Parts
Manufacturing Department and Software Reusing Parts Center. The factory formed
a steering committee for different areas (with different members, depending on the
application) to determine if customers had a common set of needs suitable for a
package, and then allocated funds from the Fuchu Works' budget for these special
projects. Some packages were usable in different departments, although most served
specific applications. The Reusing Parts Manufacturing Department and Parts Center
evaluated new software (and documentation) to make certain it met factory standards;
after certification, engineers registered the software in department or factory reuse
databases (libraries). Registered items required a key-word phrase to representthe
functionality of the part or correspond to a specific object, as well as reuse
documentation that explained the part's basic characteristics.

Management also relied on an integrated set of incentives and controls to

7

encourage project managers and personnel to take the time to write reusable software
parts and reuse them frequently. At the start of each project, managers agreed to
productivity targets that they could not meet without reusing a certain percentage of
specifications, designs, or code. Design review meetings held at the end of each
phase in the development cycle then checked how well projects met reuse targets, in
addition to schedules and customer requirements. At the programmer level, when
building new software, management required project members to register a certain
number of components in the reuse databases, for other projects. Personnel received
awards for registering particularly valuable or frequently reused modules, and they
received formal evaluations from superiors on whether they met their reuse targets.
The SWB system, meanwhile, monitored reuse as well as deviations from targets at the
project and individual levels, and sent regular reports to managers.

NEC

The first step toward a factory structure for software development at NEC
consisted of founding the Basic Software Development Division at its Fuchu Works in
1974, thereby separating organizationally operating-systems development from
hardware development. NEC subsequently established other organizations at Mita,
Tamagawa, and Abiko, all within the Tokyo metropolis or suburbs, for its other
software needs. It also dispersed programming work throughout Japan through
numerous subsidiaries and satellite offices (Fujino, 1984). However, the separation
and separate histories of these facilities gradually presented greater problems for
managers pursuing standardization and common goals such as quality improvement
throughout the NEC group. Table 3 and the discussion below summarizes the key
initiatives NEC managers adopted to create a more effective multi-product, multi-
process factory network.

The Software Strategy Project, started in 1976, attempted to integrate
programming operations on a group-wide basis (including all in-house divisions and
subsidiaries, rather than just the computer division). The objective was to introduce
standards for tools, procedu res, and methodologies for all phases of development and
all aspects of management. Yet it took several years of trial and error to accomplish
this while allowing individuals, projects, and divisions sufficient flexibility to tailor
standards to the needs of their products and customers. When the Software Strategy
Project ended, managers who worked on the effort, led by Dr. Yukio Mizuno, noticed
another weakness in NEC's structure for managing software development: the lack
of permanent staff to explore and follow through on key issues or technologies. Thus,
to insure continuity and proceed beyond the Software Strategy Project, NEC in 1980
established the Software Product Engineering Laboratory to lead the company's
efforts in software engineering R&D, making this organization part of NEC's central
research laboratories. The Software Factory Design Project, started in 1986 under
the auspices of the laboratory, developed guidelines for designing actual software
factories, from higher-level concepts, such as tool and methodology standardization,
to smaller details, such as how to arrange programmers' work spaces or recreation
areas.

NEC's Software Quality Control (SWQC) Program dates back to 1978, when a
handful of NEC managers established a software quality-control study group. Several
specific conclusions came out of their reviews. First, research in software
development indicated a strong correlation between quality and productivity,
reflecting the manpower needed to fix defects. Hence, they concluded that any

8

III

revolution in software productivity would require correspondingly dramatic
improvements in quality-control practices. Surveys of NEC projects also supported
the observation that "human factors," i.e. differences in programmer skills and
experience, seemed to be the most important elements influencing individual
performance, and that NEC had to address training more seriously if it were to make
major advances in productivity or quality (Mizuno, 1983). NEC management then set
up a quality-control program that focused on motivation, teamwork methodologies,
training, and other factors affecting individual performance. Since evidence from
manufacturing departments indicated that bringing employees together in small
groups helped solve quality problems, NEC imported the concept of quality circles.
Next, in 1981, NEC created a formal, company-wide organization covering all aspects
of software production, management, services, sales, and training, under the SWQC
(Software Quality Control) Program.

The Software Problem Strategy Project, another three-year effort launched in
1982, attempted to encou rage more standardization in development and quality-control
practices, explore various productivity-improvement measures, and establish or
formally designate a series of software factories to serve NEC's different product
divisions. Under this project, NEC executives decided to act in three areas. First,
they carried out a "software production mapping" that consisted of constructing a
logistical and organizational layout of programming operations within NEC by product
(basic software, industrial systems, business applications, transmission systems,
switching softwa re, and microcomputer softwa re), to determi ne which softwa re houses
NEC's product divisions were using to assist in development and whether divisions
needed more help, such as new subsidiaries that might serve as additional software
factories. Second, they formalized and systematized procedures for managing
software subcontractors. Third, they launched another effort to improve and link
software productivity and quality-assurance measures by establishing a Software
Productivity Committee to study documentation control, quality control, software
productivity and quality measurements, cost estimation, personnel education, project
management, support tools, and production environments.

Although NEC has not released as much performance data as Hitachi or Toshiba,
NEC did report major improvements in productivity through reusability in business
applications programming as well as significant gains in quality (Matsumoto et al.,
1987). The SWQC Program, for example, claimed to have achieved declines in defects
reported for transmission control software from an average of 1.37 faults per 1000
lines of code to 0.41. In minicomputer operating-system software, the decline in
defects was from 0.35 per 1000 lines to 0.20 (Mizuno, 1983: 71).

On the other hand, the centralized laboratory for softwa re-engi neeri ng process
R&D did not work quite as well as NEC managers had hoped. Some laboratory
researchers had become too "academic" in orientation while engineers and SWQC teams
in the product divisions seemed to be doing more useful applied studies. To encourage
more practical research that better met the needs of divisions, but without eliminating
all basic research, a 1987 reorganization moved the basic researchers to NEC's Central
Research Laboratories. This involved no organizational change, since the Software
Product Engineering Laboratory had been a part of the central labs. However,
physically removing the more academic researchers left a group more concerned with
applications of new methods and tools. Management tnen expanded the number of
applied researchers and divided them into four areas under the umbrella of a newly
created C&C [Computers and Communications] Software Development Group.

9

The Software Planning Office took charge of running the company-wide
software quality-control effort. The Software Engineering Development Laboratory
conducted research on tools and integrated development environments, as well as
software-engineering management, and established a consulting department to help
transfer technology or assist operating divisions and subsidiaries. The C&C Common
Software Development Laboratory developed basic-software packages for
microcomputers, while the C&C Systems Interface Laboratory worked on compatibility
and network technology.

Fujitsu

Fujitsu established a basic software division within its hardware factory in the
mid-1970s that closely resembled Hitachi's Software Works in practices and
organization except that Fujitsu kept basic hardware development on the same site as
basic software development. An important characteristic of Fujitsu's development
approach and organization was the gradual integration of controls for product,
process, and quality. Direction of Fujitsu's efforts in these areas, as at NEC, came
from the Quality Assurance Department in the Numazu Works's Software Division.

According to a chronology the department prepared, these efforts fell into
three main phases: prior to 1970, when Fujitsu had no set procedures and managers
allowed programmers totest software attheirown discretion; 1970-1978, when Fujitsu
set up its first product and process standards and formal systems for inspection and
quality control; and after 1978, when Fujitsu began placing more emphasis on
structured design and programming techniques and established the procedures that
formed the basis of its current practices. Distinguishing the last phase was a
broadening of the Quality Assurance Department's concerns to include not simply
testing and documentation conformance, or product evaluation, but analysis of the
development process itself. Like Hitachi, Toshiba, and NEC, these practices brought
major improvements in quality as well as productivity, with, for example, the number
of defects in all outstanding basic-software code supported by Fujitsu dropping from
0.19 per 1000 lines in 1977 to 0.01 in 1985 (Yoshida, 1985: 49, updated).

In applications, Fujitsu's decision to create a software factory stemmed from the
same need SDC as well as Hitachi, Toshiba, and NEC had encountered: to produce a
variety of nominally different programs more efficiently, primarily sold with the
company's own hardware and basic software. Management began cautiously. First,
it experimented with a centralized organization by setting up a Software Conversion
Factory Department in 1977, with approximately 100 personnel. This modified
programs customers wanted to run on new machines, which were not compatible with
Fujitsu's previous architectures, as well as software originally written for other
companies' machines foroperation on Fujitsu hardware. Managers believed conversion
work was fairly straightforward and that centralization of personnel and equipment
would foster standardization and thus dissemination of good methods and tools,
making tasks easier to manage and resulting in higher productivity and quality. This
seemed feasible especially since, in coordination with the factory establishment, a
team of Fujitsu engineers defined a set of structured design and programming
techniques as well as detailed procedures for project management, called SDEM
(Software Development Engineering Methodology), and introduced support toots for
programming in Fortran, called SDSS (Software Development Support System), which
Fujitsu quickly replaced with tools for COBOL programming (Murakami et al., 1981).

10

The conversion factory worked well enough to expand the facility to include
program construction by adding another 200 personnel and charging them with
turning requirements specifications received from systems engineers into code. Prior
to this, Fujitsu had managed systems engineering and program construction in
integrated projects, with no separation of these two functions. But the process for
new development did not work smoothly for all projects. Much like SDC had
experienced a few years earlier (but without publicizing this), Fujitsu managers
found that many projects depended on close interactions with customers and
knowledge of very different requirements, or that writing the application program
required access to proprietary information which customers, for security reasons,
preferred not to give Fujitsu personnel unless they worked at the customers' own
sites. On other occasions, Fujitsu needed to provide programming services at
locations around Japan, again departing from the centralized factory model. In
addition, as Fujitsu improved the tools and reuse databases available in the factory,
less-experienced programmers became better able to build complete systems on their
own, making separation of work and use of more skilled engineers unnecessary.

Rather than abandoning the objective of streamlining software development
through a factory approach, Fujitsu improved its system gradually, recognizing that
different projects had different optimal processes. The major change consisted of
expanding the scope of work in the factory departments to let factory personnel do
detailed design and eventually systems design for projects where it was difficult or
unnecessary to separate these tasks, either for logistical reasons or because factory
engineers had the expertise to design and build systems on their own.

Fujitsu introduced other changes. One encouraged systems engineers outside
the factory, who initially did surveys and project planning, systems design, and a
program's structural design, to leverage their expertise more widely not only by
letting the factory personnel do more work but by writing software packages to cover
the needs of many users -- with a single design effort. Any packages or pieces of
them that Fujitsu could deploy for custom jobs, as is or modified, reduced the need to
write new software. In addition, to spread the burden of programming more widely,
Fujitsu management established or engaged more subsidiaries and subcontractors, as
well as leased methods, tools, and training services to customers of Fujitsu hardware,
beginning with SDEM in 1980. Fujitsu also continued to refine the factory's methods
and tools as the technology and customer needs evolved.

The Systems Engineering Group consisted of three main areas with several
divisions, departments, and subsidiaries, as well as a research institute. One area,
the Common Technology Divisions, included the SE [Systems-Engineering] Technical
Support Center, the Applications Software Planning Division, and the Office
Computer Systems Support Division. The SE Technical Support Center housed the
Softwa re Factory Department and a portion of its 1500 to 2000 associated prog rammers,
as well as other departments for Systems Development Engineering (technology
planning and transfer), Information Support (product information for customers),
Systems Engineering Support Services (tools and methods), and the Japanese SIGMA
project (a joint company and government effort started in 1985 by Japan's Ministry of
International Trade and Industry in an attempt to disseminate, through a national
communications network and standardization around Unix as a programming
environment, the same type of work stations, support tools, and reusable-software
techniques that factories such as Toshiba's relied on). The factory built about 20%

11

of new applications done in the Systems Engineering Group as well as handled about
75% of all program conversion work (modifying software to run on new Fujitsu
machines). Most of the remaining jobs, approximately 800 small projects per year in
the late 1980s, went to approximately three dozen subsidiaries as well as
subcontractors outside the factory. A second area consisted of departments with
systems engineers specializing in particular industry applications (finance,
insurance, securities, manufacturing, distribution, NTT, scientific, technical,
government), so that they had adequate knowledge to specify customer requirements
and accurate system designs. The third area, functionally specialized departments of
systems engineers, designed management information systems, "value-added
networks" for different on-line services, personal-computer systems, and software
for new telecommunication firms (the new common carriers or NCCs).

RECENT EUROPEAN EFFORTS

Several research projects supported by the Japanese government during the
1970s and 1980s funded development of tools that made their way into or at least
resembled systems used at Hitachi, Toshiba, Fujitsu, and NEC (Cusumano, 1991).
The Japanese software factories, however, primarily resulted from initiatives at
individual firms, although the Sigma (Software Industrialized Generator and
Maintenance Aids) Project, which lasted from 1985 to 1990, attempted to build and
disseminate Unix-based tools that also promoted a factory-like environment, albeit
with limited success. The situation in Japan contrasts with Europe, where cooperative
R&D programs during the 1980s and early 1990s aimed more explicitly at developing
"software factory" tool sets and programming environments.

The European Strategic Program for Research and Development in Information
Tecthnologies (ESPRIT), begun in 1984, probably attracted the most attention in
Europe, spending $1.5 billion on more than 200 projects. The research included 47
projects devoted to software technologies -- knowledge engineering and expert
systems, advanced computer architectures, and improved user-machine interfaces,
similar to Japan's Fifth Generation Computer Project, as well as applied tool and
methodology development, similar to Japan's Sigma Project. Several groups worked
on method and tool integration as well as reuse technology for a software-factory
environment, with the PCTE (Portable Common Tools Environment) based on UNIXV.
The main firm behind this initiative, Bull of France, offered PCTE on its work
stations. Other firms followed, including GEC and ICL in the United Kingdom,
Nixdorf and Siemens in Germany, Olivetti in Italy, and Sun Microsystems in the United
States.

Another cooperative program, the EUREKA (European Research Coordination
Agency) Software Factory Project (ESF), worked on developing a tool set and
integrated environment resembling PCTE but tailored for specific applications such
as real-time software development and complex business programming. The
development group consisted of Nixdorf, AEG, ICL, and several other firms in
Germany, the United Kingdom, Norway, and Sweden. Individual countries had other
efforts exploring similar tools and techniques, with perhaps the largest consisting of
Britain's Alvey program, modeled after the Fifth Generation Project in objectives but
resembling ESPRIT in organization, with 2000 researchers from universities and
companies working on 200 separate projects (Toole, 1989).

12

CONCLUSION: EVOLUTION TOWARD FACTORY PRACTICE

This review of factory efforts at major software producers in the United States
and Japan as well as Europe demonstrates that, whether or not companies adopted the
factory label, industry participants clearly attempted to move beyond craft practices
and closer to more systematic engineering and manufacturing-like processes or
organizations. These included recycling reusablecomponents as well as standardizing
methods and tools, and thus managing software development more systematically, and
with less relianceon highly skilled people, at least for similar projects. Thetransition
to this kind of process required years of effort and passage through overlapping
phases comparable to what firms in other industries encountered as they grew and
formalized operations.

In software, the initial motivation required an unusual conviction on the part
of key engineers, division managers, and top executives that software was not an
unmanageable technology. This led to an initial phase of creating formal
organizations and control systems for managing software development, rather than
continuing to treat programming as a loosely organized service provided more or less
free to customers primarily to facilitate hardware sales. Imposing greater structure
on the development process while effectively accommodating different types of
software also demanded a product focus for facilities or departments to limit the range
of problems managers and programmers faced. IBM and Hitachi led in these efforts
during the 1960s, whereas SDC's factory encountered problems in managing a variety
of projects and ultimately ceased operating.

Subsequent phases of evolution in factories that continued to structure the
development process were comparable at Hitachi, Toshiba, NEC, and Fujitsu (as well
as at IBM, which did not use the factory label), as summarized in Table 4. All moved
through periods of tailoring methods, tools, control systems, and standards to
different product families; developing tools to mechanize or automate aspects of
project management, code generation, testing, documentation generation; refining
their development tools and techniques as well as extending them to subsidiaries,
subcontractors, and customers; pursuing greater levels of integration among tools
through engineering workbenches as well as adding new functions, such as to support
reuse, design, and requirements analysis; and gradually increasing the types of
products under development as well as paying more attention to issues such as
product functionality and ease of use. Throughout, software factories and factory-
like initiatives reflected long-term management commitments and integrated efforts --
above the level of individuals or individual projects -- to standardize, structure, and
support software development along the lines suggested by software-engineering
literature since the late 1960s and early 1970s.

13

Table 1: MAJOR JAPANESE SOFTWARE FACTORIES

Key: BS

App
RT
Tel

Notes:

Est.

= Operating Systems, Database Management Systems, Language
Utilities, and Related Basic Software

= General Business Applications
= Industrial Real-Time Control Applications
= Telecommunications Software (Switching, Transmission)

All facilities develop software for mainframes or minicomputers.
Employee figures refer to 1988 or 1989 estimates, based on company
interviews and site visits.

Company Facility/Organization
1991

Estimated

1969 Hitachi Hitachi Software Works 4000

1976 NEC Software Strategy Project
Fuchu Works 3000
Mita Works 3000
Mita Works 2000
Abiko Works 2000
Tamagawa Works 2000

1977 Toshiba Fuchu Software Factory 2500

1979 Fujitsu Systems Engineering Group 5000
(Kamata Software Factory 2000)

1983 Fujitsu Numazu Software Division 4000
(Numazu Works est. 1974)

1985 Hitachi Information Systems Works 7000

Source: Cusumano, 1991: 7, updated.

14

Table 2: ELEMENTS OF THE TOSHIBA SOFTWARE FACTORY

Combined Tool, Methodology, and Management Systems

- - Project progress management system

Cost management system

Productivity management system

Quality assurance system with standardized quality metrics

A standardized, baseline management system for design review,
inspection and configuration management

Software tools, user interfaces and tool maintenance facilities

Existing software library and maintenance support for this

Technical data library

Standardized technical methodologies and disciplines

Documentation support system

Persor nel Systems

Quality circle activities

Education programs

Career development system

Physical I nfrastructure

Specially designed work spaces

Source: Matsumoto, 1987: 155.

15

III

Table 3: NEC SOFTWARE FACTORY IMPLEMENTATION

YEAR INITIATIVE FOCUS/OUTCOMES

1974 Basic Software Development Organizational separation of
Division software from ha rdwa re development

1976-1979 Software Strategy Project Standardization of data collection, tool
and structured-programming
methodology for basic and applications
software throughout the NEC group,
with the objectives of raising
productivity and quality

1980 Software Product Centralization of process and
Engineering Laboratory tool R&D for dissemination to divisions

and subsidiaries

1981 Software Quality Control Establishment of a group-wide
(SWQC) methodology, training program, and

control measures for improving
software quality, including quality
circle activities

1982-1985 Software Problem Strategy 1) "Mapping" of software
Project development activities

2) Subcontracting management
3) Software productivity improvement

1986 Software-Factory Design Establishment of Hokuriku Software
Project Development Center, based on

ergonomic principles and other
softwa re-factory concepts

1987 C&C Software Development Reorganization of the Software
Group Product Engineering Laboratory and

expansion of applied research

Source: Cusumano, 1991: 288.

16

Table 4: PHASES OF FACTORY STRUCTURING IN SOFTWARE

Phase I:
(Mid-1960s
to Early
1970s)

Formalized Organization and Management Structure
Factory Objectives Established
Product Focus Determined
Process Data Collection and Analysis Begun
Initial Control Systems Introduced

Phase I I: Technology Tailoring and Standardization
(Early Control Systems and Objectives Expanded
1970s Standard Methods Adopted for Design, Coding, Testing,
to Early Documentation, Maintenance
1980s) On-Line Development Through Terminals

Program Libraries Introduced
Integrated Methodology and Tool Development Begun
Employee Training Programs to Standardize Skills

Phase Ill: Process Mechanization and Support
(Late Introduction of Tools Supporting Project Control
1970s) Introduction of Tools to Generate Code, Test Cases,

and Documentation
Integration of Tools with On-line Databases and Engineering Work

Benches Begun

Phase IV: Process Refinement and Extension
(Early Revisions of Standards
1980s) Introduction of New Methods and Tools

Establishment of Quality Control and Quality Circle Programs
Transfer of Methods and Tools to Subsidiaries, Subcontractors,

Hardware Customers

Phase V: Integrated and Flexible Automation
(Mid-1980s) Increase in Capabilities of Existing Tools

Introduction of Reuse-Support Tools
Introduction of Design-Automation Tools
Introduction of Requirements Analysis Tools
Further Integration of Tools Through Engineering Work Benches

Phase VI: Incremental Product/Variety Improvement
(Late Process & Reliability Control, Followed By:
1980s) Better Functionality & Ease of Use

More Types of Products

17

III

Figure 1: SOFTWARE FACTORY ORGANIZATIONAL PRINCIPLES

CONTROL

PrIor office
*Program maN*gment a1sura-I
· Program ooNtrot
*Syete~ *mgilroeriug

i I* Cowfiguretione eMgmeP nt

STANDARD I/F
PROCDURES

INPLENENTATION

Software Factory Organizational Principles. I/F = Interface. (Source:
Bratman and Court, "Elements of the Software Factory," p. 127. Copyright C
1977 System Deve t)pment Corporation [Unisys Corporation]. Reproduced with
permission.)

Source: Bratman and Court, 1977: 127.

Copyright (c) 1977 System Development Corporation [Unisys Corporation].
Reproduced with permission.

I
I
II
II

II
J_ -

Figure 2: SDC SOFTWARE FACTORY ARCHITECTURE

Software Factory Architecture. FACE = Factory Access and Control
Executive; IMPACT = Integrated Management, Project Analysis, and Control
Techniques; LEL = Link Editor Language; OP = Operational Program; PATH
= Program Analysis and Test Host; TOPS = TopDown System Developer.
(Source: Bratman and Court, "Elements of the Software Factory," p. 129. Copy-
right C 1977 System Development Corporation [Unisys Corporation]. Repro-
duced with permission.)

Source: Bratman and Court, 1977: 129.

Copyright (c) 1977 System Development Corporation [Unisys Corporation].
Reproduced with permission.

Libr

~bdaVei
no&

(COI·ntl)

REFERENCES

C.Baum, The System Builders: The Story of SDC, Santa Monica, Cal., System
Development Corporation, 1981.

R.W. Bemer, "Position Papers for Panel. Discussion -- The Economics of Program
Production," InformationProcessing68, Amsterdam, North-Holland, 1626-1627,1969.

H. Bratman and T. Court, "The Software Factory, " IEEE Computer, 28-37 (May 1975).

H. Bratman and T. Court, "Elements of the Software Factory: Standards, Procedures,
and Tools," in Infotech International Ltd., Software Engineering Techniques,
Berkshire, England, Infotech International Ltd., 117-143, 1977.

M. Cusumano, Japan's Software Factories: A Challenge to U.S. Management, New
York, Oxford University Press, 1991.

K. Fujino, "Software Development for Computers and Communications at NEC," IEEE
Computer, 57-62 (November 1984).

Hitachi Ltd., Sofutouea Kojo 10 nen no ayumi (A 10-year History of the Software
Works), Yokohama, Hitachi Ltd., 1979.

E.Horowitz and J.B.Munson, "An Expansive View of Reusable Software," IEEE
Transactions on Software Engineering SE-10, 5, 477-487 (1984).

M. Kataoka et al., "Sofutouea kaihatsu shien shisutemu (CASD shisutemu)"
[Computer-aided Software Develc sment System [CASD System], Hitachi hyoron 62,
12, 37-42 (December 1980).

M. Kobayashi et al., "ICAS: An Integrated Computer Aided Software Engineering
System," IEEE Digest of Papers--Spring '83 COMPCON, 238-244, 1983.

M. Matsumoto et al., "Joho shisutemu-kei sofutouea togo seisan shisutemu"
(Integrated Software Life Cycle System for Information Systems), NEC gijutsu 40, 1,
19-24 (1987).

Y. Matsumoto, "SWB System: A Software Factory," in H. Hunke, ed., Software
Engineering Environments, Amsterdam, North-Holland, 305-318, 1981.

Y. Matsumoto, "Management of Industrial Software Production," IEEE Computer, 59-
71 (February 1984).

Y. Matsumoto, "A Software Factory: An Overall Approach to Software Production,"
in Peter Freeman, ed., Tutorial: Software Reusability, Washington, D.C., IEEE
Computer Society Press, 155-178, 1987.

K. Matsumuraetal., "Trend Toward ReusableModule Component: Design and Coding
Technique 50SM," Tokyo, Proceedings of the Eleventh Annual international Computer
Software and Applications Conference - - COMPSAC, IEEE Computer Society Press,
October 7-9, 1987

20

III

M.D. Mcilroy, "Mass Produced Software Components," in P.Naur and B.Randell,
ed s ., Software Engineering: Report on a Conference Sponsored by the NA TO Science
Committee, Scientific Affairs Division, NATO, Brussels, 151-155, 1969.

Y. Mizuno, "Software Quality Improvement," IEEE Computer, 66-72 (March 1983).

Y. Murakami et al., "SDEM and SDSS: Overall Approach to Improvement of the
Software Development Process," in H.Hunke, ed., Software Engineering
Environments, Amsterdam, North-Holland, 281-293, 1981.

K. Shibata and Y. Yokoyama, "Sogo sofutouea seisan kanri shisutemu 'CAPS"'
(Computer-aided Production Control System for Softwa re 'CA PS'), Hitachi hyoron 62,
12, 37-42 (December 1980).

G.Toole, "ESPRITand European SoftwareCapability," Cambridge, MA, M. I.T. Sloan
School of Management, Unpublished Master's Thesis, May 1989.

T. Yoshida, "Sofutouea no keiryo-ka" (Quantifying software), Joho shori, 26, 1, 48-
51 (1985).

21

