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1. Introduction

A software system is tested and times between failures are observed. How many faults

remain in the system? What is the waiting time to the next failure? To the occurrence

of the next n failures? Conditional on the observed history of the test process, knowledge

of properties of the time on test necessary to discover the next n faults is very useful for

making test design decisions.

Times between failures models of software reliability are designed to answer such

questions. Many versions of such models appear in the literature on software reliability

and most such models rely on the assumption that the failure rate is proportional to the

number of remaining faults or to some single valued function of the number of remaining

faults. Goel (1985) observes that this is a reasonable assumption if the experimental de-

sign of the test assures equal probability of executing all portions of the code - - a design

seldom achieved in practice. The character of testing usually varies with the test phase:

requirements, unit, system or operational. The impact of such considerations have been

recognized by some authors: Littlewood's criticism of the Jelinski-Moranda assumption

that software failure rate at any point in time is directly proportional to the residual num-

ber of faults in the software is cited by Langberg and Singpurwalla (1985) in an excellent

overview paper. Only recently have some researchers come to grips with the implications of

replacing this assumption. In terms of counts of failures, it may be labelled an "equal bug

size" postulate (Scholz (1985). Littlewood (1981) and Singpurwalla and Langberg (1985)

do incorporate the assumption that different bugs may have different failure rates, but

the empirical Bayes (superpopulation) approach adopted by Littlewood and the Bayesian

approach adopted by Singpurwalla and Langberg "averages out" the effects of this as-

sumption. According to Scholz "...it was not recognized by some proponents of reliability

growth models that relaxing the equal bug size assumption also entails some complications

concerning the independence and exponentiality [of waiting times between failures]". He

and Miller (1986) are the first to investigate systematically (in the absence of a super-

* Supported by AFOSR Contract #AFOSR-89-0371. I wish to thank Nancy Choi and

Tom Wright for valuable programming assistance.
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population process or of a Bayesian prior for failure rates) the implications of assuming

that given an observational history, each of the remaining bugs in a software system may

possess different probabilities of detection at a given point in time. In contrast to most

times between failures models, for successive sampling - EOS models, times between fail-

ures are not independent. As Goel [1985] points out, independence would be acceptable

if "...successive test cases were chosen randomly. However, testing especially functional

testing, is not based on independent test cases, so that the test process is not likely to be

random".

Scholz presents a multinomial model for software reliability that is identical to Rosen's

characterization of successive sampling stopping times. (Rosen, 1972) The connection

seems to have gone unnoticed. The "continuous" model based on independent, non-

identically distributed exponential random variables suggested by Scholz as an approxima-

tion to multinomial waiting times is in fact in exact correspondence with a representation

of successive sampling in terms of non-identically distributed but independent exponential

order statistics. Scholz's approximation is in fact Ross's (1985) exponential order statistics

model which Ross treats Bayesianly. Gordon (1983) was among the first to observe that

successive sampling is representable in this fashion. Miller's study of such order statis-

tics is focused on similarities and differences between types of models derivable from this

particular paradigm.

Joe (1989) provides an asymptotic (large sample) maximum likelihood theory for

parametric order statistics models and non-homegenous Poisson models of fault occurrence

that, when the parameter is of fixed dimension, yields asymptotic confidence intervals.

He states that for the general exponential order statistics model, one cannot expect any

estimate [of the conditional failure rate] to be good because the ratio of parameters to

random variables is too big".

Successive sampling as described in the next section has been successfully used as a

model for the evolution of magnitudes of oil and gas field discovery and has its roots in

the sample survey literature. (Hajek (1981), for example.) In this application magnitudes

of fields in order of discovery are observed and used to make predictions of the empirical

frequencies of magnitudes of undiscovered fields. Logically tight theories of maximum

likelihood, moment type and unbiased estimation for this class of problems have been

developed by Bickel, Nair and Wang, (1989), Gordon, (1989) and Andreatta and Kaufman,

(1986). The problem of estimation of software reliability based on observation of times

between failures of a software system may be viewed as the dual to the problem of inference

when only magnitudes of population elements are observed. The principal purpose of this

paper is to establish connections between these two disparate lines of research and to lay out
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possibilities for applying methods of estimation developed for successive sampling schemes

to successive sampling as a model for software reliability. Our attention is restricted to
successive sampling of elements of a finite population of software faults in a software system;

that is,

(1) Individual faults may possess distinct failure rates that depend on covariates par-
ticular to the stage of testing and on other features of the software environment.

For a given fault, that fault's failure rate as a function of such covariates is called

the fault magnitude.

(2) Faults are sampled (a) without replacement and (b) proportional to magnitude.

Some recent studies of successive sampling schemes have assumed the existence of a su-

perpopulation process generating finite population magnitudes. We shall not.

The accuracy of model structure as a depiction of the physics of software fault occur-
rence depends in part on the validity of choice of definition for the magnitude of a fault.
Different definitions of magnitude may be required for different environments. Here we
shall assume that the appropriate definition of the magnitude of a fault for the particular
application considered has been resolved. It is NOT easy to resolve and considerable effort

must be devoted to defining operationally meaningful definitions of fault magnitudes. For
example, the effort in programmer time required to fix a fault could be adopted. (Program-

mer effort expended to correct faults is measured and recorded for six software projects

studied by the Software Engineering Laboratory at NASA-Goddard). Empirical work on

fault prediction by Basili and Perricone (1982), and Basili and Patniak (1986) provides an

excellent starting point. It is a subject for a different paper.

Following a formal description of successive sampling properties of successive sampling

schemes needed in the sequel, two distinct sampling (observational) schemes are examined
in section three. The first is a scheme in which both the time from start of testing to

time of occurrence and the magnitude of each fault in a sample of n faults are jointly

observed. With this scheme we can order faults observed from first to last and assign a

"waiting time" to each fault. In the second scheme magnitudes of faults in a sample of

n faults are observed along with the waiting time to occurrence of the last fault in the
sample; waiting times to occurrences of individual faults are not observed. The order in

which faults occurred is then lost.

Section 4 is devoted to properties of unbiased estimators of unobserved finite popu-

lation parameters for each of the two aftermentioned sampling schemes. The connection

between maximum likelihood estimation (MLE) and unbiased estimation established by

Bickel, Nair and Wang (1989) for a successive sampling scheme in which magnitudes alone
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are observed is developed for a scheme in which both waiting times to failures and mag-

nitudes are observed. The results of a Monte Carlo study of properties of both types of

estimators presented in Section 5.

Section 6 returns a principal interest of the software manager: conditional on observing

the history of the process up to and including the mth failure, what is the waiting time to
the occurrence of the next n - m failures? Successive sampling theory suggests a simple

point estimator of this waiting time, dependent on the waiting time z(m) to occurrence of

the first m faults and on the unordered set {yl,... , ym} of magnitudes of faults observed

in (0, Z(m)). A Monte Carlo study of its behavior suggests that this class of estimators of

returns to test effort measured in faults/unit time on test is worth further study.
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2 Successive Sampling

Let U = 1,2,...,N} denote the set of labels of N finite population elements and

associate with each k e U a magnitude ak > 0. A successive sampling scheme is charac-

terized by a permutation distribution of labels induced by sampling of AN = {al,..., aN}

proportional to magnitude and with replacement. The parameter AN (al,... ,aN) of

a finite population with label set U takes on values in the parameter space (0, oo)N.

Define for 1 < n < N, S, = (il,..., in), i l,...,inE U to be an ordered sample Sn of

size n with i th component ij and Sn = {il,...,in} C U to be an unordered sample of

size n. We distinguish a random variable from a value assumed by it with capital letter;
N

e.g., the random variable S assumes a values .n With rN = Z ak, a successive sampling
k=l

scheme is implemented via

n

P{Sn = n I AN} -P{i AN} = II aj/[rN - - - ai 1 ] (2.1)
j=l

N
with ai - 0; equivalently with pj = aj/rN, Z pj = 1 and

j=1

n

P{n I AN} = Pij /[1 -p -Pi -piJ_ (2.2)
j=l

The permutation distribution (2.1) of labels induces a distribution of magnitudes: setting

yj = aij, yj is the magnitude of the jth observation and with n = (l,., Yn) for n =

1,2,...,N,

P{Y = _n IAN} = P{ SnIAN} (2.3)

is the probability of observing magnitudes in the order yl first, y2 second, etc.

An alternative representation of (2.1) in terms of exponential order statistics (Gordon

(1983)) is as follows: let X 1 ,...,Xn be miid exponential random variables with means

one. Then

pI~~N=P< < ... XiN }(2.4)P{sn I AN} = P Xi < i2 < . i} (2-4)
ai ai2 aiN

Defining Zj = Xj/aj, Z(j) as the jth smallest of Z1,... ,ZN and U/sn = {k I k U

and k /Sn}, the probability that an unordered sample Sn is observed is

P{sn I AN} = P{max{Zi I jsn} < min{Zk I keU/sn}}

= S P{max{Zj I jeS} < Zk < min{Z I eU/ISn and e : k}}. (2.5)
keU/sn
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An integral representation of Pfs, I AN} suggested by (2.5) is, with a rN - E ak,
kEs n

Ps I AN} -P( ) = j e d [I (1 

= aj e- JJ (1 -ajx)dx. (2.6)
jfSn

We shall need derivatives of P(S, I a) with respect to a and in order to maintain consis-
tency of notation will call the rightmost integral in (2.6) P,+l(s, I a) as the density of
Z(,+l) conditional on S, = s, is just the normalized integrand of this integral:

Dn+l(Z I sn;a) = aeaz (1( - e-aiZ)/P+l((sn a) (2.7)
jeSn

for ze(O, oo) and zero otherwise. In a similar vein, the middle integral in (2.6) will be called
Pn(Sn a) as the density of Z(n) conditional on Sn = Sn is

Dn(Z sI n; a) = [ - t E aje-zaJ H (1 -e-zae)]/Pn(n I o). (2.8)

jEstn tLes
to6

From (2.6) we have

d d
d log P+l(sn I a)= - log P(sn I a)

which is equivalent to

1
E(Z(n+l) I s,; ) = -+ E(Z(n) I sn; a). (2.9)

a

The next two propositions record properties of marginal expectations of Y1 ,..., YN.

The first documents the intuitively obvious notion that when elements of A are distinct
from one another, the marginal expectation E(Yk) of Yk strictly decreases with increasing k.

Proposition 2.1: When elements of AN are distinct E(Y 1 ) > E(Y 2) > ... > E(YN).

Expectations E(Yk), k = 1, 2,... , N may be usefully expressed in terms of inclusion

probabilities 7rj(n) as follows: let 7rj(n) = P {jeSnIAN}.

6
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Proposition 2.2: For sample size is n = 1, 2,..., ,N, with 7rj(O) 0,

N

E(Yn) = [7rj(n)- 7rj(n - 1)]aj. (2.10)
j=1

We shall adopt H6jek bounds on the ajs and examine large N behavior in the following

uniform asymptotic regime:

(Al): For a positive constant independent of N, < ak < 1/e, kUN.

(A 2): As N -, oo, n/N = f - f (0, 1) with f bounded away from zero and one.

In order to simplify notation we eschew double subscripting of sequences. Henceforth,

N -, oo will serve as shorthand for (A 2 ). Gordon (1989) has established that under more

general conditions than (Al), (A 2) implies Z(n) Az(f) where z(fn) is the solution to

N
N e - aj z(fn) = 1-f, (2.11)

j=1

and Nmo z(fn) -+ z(f). An immediate consequence of (Al), (A 2 ) and (2.11) is that

for large N, z(fn) = 0(1) because - log (1 - f) < z(fn) < - log (1 - fn)/E and

-log (1-f fn) = 0(1).
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3. Likelihood Functions for Ordered

and Unordered Samples

Consider a sample of size n < N generated according to a successive sampling scheme

as defined by (2.1) and (2.2) and let ,) = (z(l),...,z(,)). When both Z, and Y, are

observed,

Prob{Z(n) edn) and YEn = yn I AN} = Prob{Z(n) e d(n) and S n = S I AN}

n

= e-c(S")z(n) H yje-i)Yj dz(j), Z(i) < Z(2) < .. < Z(n) (3.1)
j=l

Equivalently, with bj = yj + ... + y,, tj = z(j) - z(j-1), and tn = (tl,...,tn),

Prob{Tn e dtn and Y,n = Yn I N }

n

= I yje-(bj+a(sn))tj dtj, t,..., tn > (3.2)
j=1

Likelihood functions formed from (3.1) or (3.2) for purposes of inference about unobserved

elements U/sn of U (or about a(sn) rN - E aj) are not regular (see Kaufman (1989))
jesn

and so are not useful for maximum likelihood estimation. For example, (3.1) as a function

of a(sn) - is proportional to exp{-cYz(n)} and a maximizer of this function over ae(O, oo)

occurs at a = 0, irrespective of the observed sample.

If we condition on either the ordered sample or on the unordered sample, it is possible

to deduce a regular likelihood function with a corresponding efficient score function whose

expectation is zero.

3.1 Ordered Samples

To this end with Tn = (T1,T 2,... ,T,n) consider first

n

Prob{Tn Edtn I Yn = n;AvN} = H (bj + a(sn))e-(bj+"a(s))tidtj. (3.3)
j=l

Conditional on Y = y or equivalently on Sn = s, elements of U/Sn are fixed and the

closure of successive sampling under conditioning leads to a likelihood function

n

log £(a I n, yn) = -tj[bj + a] + log[b + a] (3.4)
j=l

8
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and corresponding efficient score function

d 1
da logL(a I tn = - Z() + E b,+a (3.5)

j=l

n

Conditional on S, = Sn, E(Z(n) I sn; a) = E [bj + a] - 1 , so (3.5) is representable as
j=l

da log (a I z(n); n) = -Z(n) + E(Z(n) I n; a) (3.6)

and a conditional MLE (CMLE) of a(sn) must be a solution of

Z(n) = E(Z(n) I n; a). (3.7)

The likelihood function (3.4) is regular as

daEZ(n) ln log £(a I Z(n); sn) = EZ(n) sln d- log C(a I Z(n)n) = 0. (3.8)

In addition

d2 n 1
da2 logl(a I z(n);) = - [b + = -Var(Z() I n;a) < (3.9)

for all a > 0, so log L is concave on (O, oo).

It is instructive to examine the special case a = a > 0, j = 1, 2,... ,N. Then (3.5)
n

becomes -Z(n) + >j [N- j + 1]-1, a familiar equation appearing in many studies of
j=

software reliability via the assumption that all faults are of equal magnitude.

For finite samples, the score function (3.7) may not possess a zero in (0,oo). As
n- n

E(Z(n) I n; a) is monotone decreasing from E b7 ' at a = 0 to zero as a - oo, E b1 >
j=1 j=1

Z(n) is both necessary and sufficient for existence of a unique a(z(); .)e(O, 00) such that

Z(n) - E(Z(n) I n; (z();s)) = O0. Namely,

n

Proposition 3.1: A unique zero in (0, oo) of (3.6) exists iff E b' > Z(n).
j=1

While use of (3.6). to define an estimator of a(s) may produce desultory results for

small examples (unacceptably large probability of no solution), in the uniform asymptotic

regime dictated by (A 2) a unique zero of (3.7) exists with probability one.
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A first consequence of (Al) and (A 2 ) is that o(sn) = O(N). A second is that

-e log(1 - fn)
Nfn

< a(
j= (s n ) + bj

1
< - log(l - fn),

and for some positive N = 0(1),

Nfn 1

Var(Z(n) Is.n) = (o(n) + bj)2

j=j (ce(s.) + bj) 2
N fN(1 - = O(N).NON(1- f)

Consequently, by Chebychev's inequality, for each possible sequence of realizations Sn of

_S n = 1, 2,..., the rv Z(n) I n converges in probability to lim
N-+oo

Nfn

E [°(Sn)+bj]-' = 0(1).
j=1

We shall examine the limiting behavior of E(Z(n) I n; a(sn)) in more detail later, but for
now the facts that a = O(N), E(Z(n) I n;o(sn)) = 0(1), and Var(Z(n)s.n) = O(N- 1 )
for each possible Sn = Sn suffice to guarantee existence of a unique solution to (3.7) with
probability one as N -- oc.

Since ac(s) = O(N) by assumption, it is convenient to define N = a(sn)/N and a

corresponding estimator A(Z(n); S) of N

Proposition 3.2: As N -- oo Z(n) = E(Z(n) Isn; NN) possesses a unique solution interior

to (0, oo) with probability one.

Proof: In terms of N,

E(Z(n) I n; N~N) =

N 

E I = 0(1).
j=1 N N

= E[+logn+ (n )]

(y = Euler's constant),
n

b diverges logarithmically as N -- oo.
j=1

As Z(n) I n converges

in probability to an atom of order one for each realizable sequence s, n = 1, 2,..., the
n

event E bj- 1 > Z(n) conditional on Sn = s obtains with probability one as N - oo. []
j=1

10
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Proposition 3.3: The estimator °-(Z(n), S) defined as zero if E (Yj+...+Yn)-l < Z(n)
j=1

and a solution to (3.5) if E (Yj + ... + Yn)-' > Z(n) is positively biased.
j=l

Proof: Temporarily let &(z, Sn) = &(z) for fixed .
n

As ca(z)= 0 for z > E bT -
j=l

and (3.7) obtains for 0 < z < Pn, defining Hn(z) = P{Z(n) < zlsn} for 0 < z < oo,

n 1

EZ~n) I (Z +b- I#nP{Z(n)j=l (Z(n)) + bj

Since by definition,

n

E(Z(n) n; ) = E + bj
j=a

> Pnlsn} +

zdHn(z),
o

we have

n

EZ(n) In E
j=l

1

a(Z(n)) + bj

_ __n 1 $00
- .i [/3.n - Z] dHn(z) < .

j= n--b

In addition, as [a + bj]- 1 is strictly convex in a on [0, oo), Jensen's inequality gives

+bj] -
n 1

< EZ(n)In E &(Z(n)) + bj

and (3.16) and (3.17) together imply that

(a(Z(n)) + bj] -1[Ezj= (n
j=1

(3.18)
n

< E[" + bj]-'.
j=l

Thus Ez(n)i (&(Z(n)) > a. As Ez(n)il.((Z(),s.n)) > a for each possible Sn = n,

Ez(n),,S(a(Z(n), Sn)) > a as was to be proved. []
For small samples the bias of O(Z(); s,) can be severe; in the example of Section 5

AN = (1, 2,. .. , 10), n = 4, and the bias in estimation of the sum of population magnitudes
rN = 55 computed by adding E Yj to (Z(), S) is about 26 %. We are led to consider

jSn

unbiased estimators and do so in Section 4.

11
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3.2 Unordered Samples

Consider an observational process that reveals magnitudes of the first n elements of

U generated by successive sampling as defined by (3.1) without regard to order and the

waiting time to observation of these n magnitude. That is, Z(,) = Z(n) and Sn = s, (or

equivalently a j I jsn}) are observed.

Then

Prob{Z() e dz and S. = Sn I AN} (3.19)

= Dn(Z sn; a(sn))dz x Pn(s I (Sn)) c e-(sn)zdz.

As in the case of an ordered sample of magnitudes, the likelihood function for a suggested

by (3.19) is not regular. However, the likelihood function for a corresponding to

e-a(sn)Zdz
Prob{Z(n) edz I sn;AN} = Dn(Z I n;la(s,)) c P(s (dz))d

P'(s I (sn))

is regular (Kaufman (1989)) and the efficient score function for

log (a I z(n); s) - -z(,) -log P(sn I a) (3.20)

using (2.9) is

do log (oa I z((n); Sn) = -z(() + E(Z(n) I s; a). (3.21)

In turn,
d 2

d 2 logL(a Z(n),Sn) = - Var (Z(n) I sn;) < 0

for 0 < a < oo, so if

E(Z(n) I s,; a) - (n) = 0 (3.22)

possesses a solution it must be unique. The efficient score function (3.9) is of the same

form as that for the ordered sample when all of Z(1), Z( 2),... Z(n) (or equivalently Tn) as

well as magnitudes Y1, Y2, .. ., Yn in order of occurrence are observed. The only difference

is that the expectation of Z(n) conditional on S, = s,, the unordered sample, replaces

the expectation of Z(n) conditional on the ordered sample S = sn.

We may interpret Var(Z(.)lsn; a) as expected Fisher information with respect to a

measure (the density of Z(n)) conditional on S, = s. Since

Var(Z(n) I s; a) = Es I snVar(Z(n)S; a) + VarEs I Sn(Z(n) S; a), (3.23)

12



we have that

Es_1. Var(Z(.) S; ct) < Var(Z(.) I s,; a) (3.24)

and inference based on observation of (Z(),S) is more efficient in the sense of (3.17)

than inference based on observation of (T,, Y) or equivalently of (T, S). One possible

explanation is that unordering of the sample as suggested by (3.14) is a form of Rao-

Blackwellization.

Paralleling our treatment of the case when Z(n) = z(n) and S = s are observed, for

large N we define an estimator (Z(n), S.) = &(Z(n), Sn)/N.

Proposition 3.5: As N - o, z(.) = E(Z(.)ls.;NN) possesses a unique solution

~(z(n),s.) interior to (0, cx) iff

1 (1e - aji)}dx > Z(.) (3.25)

and as N -- , (3.25) obtains with probability one.

Proof: The LHS of (3.25) is E(Z(.)Iss,;O). As a = NN -- oo, with s, fixed,

E(Z(n) s; a) , O. Since

j 1 - I (1 - e )}dx = O(logn), (3.26)

the LHS diverges logarithmically as N - oo. Each realizable Sn = s is a probability

mixture of n! events of the form S = , so as N - oo with n/N - fe(0, 1) and

f bounded away from 0 or 1, lim E(Z(n) I s;Ca(sSn)) = 0(1) and this implies that
N--oo

lim E(Z(,) s; a(s.)) = 0(1). [1
N--+oo
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4. Unbiased Estimation

Unbiased estimators of functions of magnitudes of unobserved elements U/s, of U are
intimately linked to CMLE's of such functions. The linkage appears most clearly when the

form of a CMLE for ca(s,) is studied in the asymptotic regime n/N -- f(O, 1), f fixed and

bounded away from zero and one, as N - oo. In this regime the CMLE is structurally

similar to Murthy's (1956) and Horvitz and Thompson's (1955) unbiased estimators of

finite population parameters. Bickel, Nair and Wang (1989) develop a precise theory of

large sample MLE for successive sampling that establishes this connection when successive

sampling of a fixed, finite number of magnitude classes is performed and magnitudes alone,

not waiting times, are observed.

When both waiting times Z. = zn and magnitudes Yn = y, are observed in a sample

Sn C UN of size n, it would seem natural to use 7rk(z(n)) 1 - exp{-Z(n)ak}, kEsn, as

an approximation to the unconditional probability Prob{keSn} rk(n) that k is in the

sample and then form a Horvitz-Thompson type estimator of some property of AN with

the rk(z(n))s. The resulting estimator is biased! However, if a value Z(n+l), of the waiting

time to the (n + 1)st observation is employed to approximate 7rk(n) as 1- exp{-z(n+l)ak},

the resulting estimator is unbiased. Since Z(n+l) is not observed in a sample of size n, this

approximation to 7rk(n) requires that the last observation in IYn = Yn be ignored and the

sample treated as of size n - 1. Alternatively, a correction for the (positive) bias created

by use of Z(n) in concert with yj I jsn} can be computed.

Theorem 4.1: For k e Sn, EsnE{[1 - exp{-akZ(n+l)}- 1 I So} = 1

Proof: With a = a(sn), IIn(y) = fn (1- e-a j ) and P(snIk#;a) _ Prob{S =
jESn

snlk first in s,,

1 ae
EZ(n+l) L - -ak Z(+l) 1 1-eakY II,(y)dy/P(s, I a)

(4.1)
P(sn I k#; a)

P(sn I a)

The right-hand side of (4.1) is a version of Murthy's estimator which has been shown by

Andreatta and Kaufman (1986) to have expectation 1/7rk(n). 0
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Corollary 4.1: Let h be a single valued function with domain AN and range (-oc, co)

or some subset of (-oo, oo). Define H = EjAN h(aj). Then when S, = s, and Z(n+l) =

Z(,n+) are observed

E h(ak)/(l - exp{-ak(,+l)}) -- H(sn; z(,+l)) (4.2)
kEsn

is an unbiased estimator of H.

Proof: As (4.2) has expectation equal to Murthy's estimator conditional on S, = s, and

Murthy's estimator is an unbiased estimator, (4.2) is unbiased.[]

The estimator H defined in (4.2) is a function of both s, and z(,+l) and is an

unordered function of s,. When all ak's are identical and equal to a and h is chosen

to be identically one for each kes,, H = n/(1 - exp{-az(,+l)}), a familiar MLE for N

conditional on knowledge of the parameter p = 1 - exp{-az(,+l)}. This is a special case

of Chapman's (1951) estimator for the number of trials of a binomial probability function.

When (sn, z(,)) is observed but z(,+l) is not, the bias of an unbiased estimator based

on 1 - exp{-z(n)ak} as an approximation to rk(n) can be unbiasedly estimated. The

ensuing correction for bias takes the following form:

Corollary 4.2: An unbiased estimator of H is

H(sn; Z(n)) = [1 e-z(n)ak ]h(ak) (4.3)

with

ake- kz()/(1 - e-akz()) (4.4)
jESn aee-ajZn) /(-e-a Z(n)

jfSn
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Proof: With a = ao(s.),

I0
0f

e-a/ x)
l_ a n.()P(s. I x)1 - -ak x

1 I JlP(sn I ) e ifJn
j Ak

aj e-aj 

(1 - e-aix)
hIi,.. (1

i e n (j At

- e-aj )dx

ak -akx H k (
(1 - e-akX) Ij (1

j~k

P(sn I k#; a) 1 0
P(sn I ) + P(s, I ) (1 _ e-akZ)2 ]j(1 - e-aj)dx

Dividing and multiplying the integrand of the integral in (4.5) by E aje-ajx/(1 - e - a j )

and summing (4.5) over kets,

(4.6)E Ez(.)1,,(1 - e-akZ(n))-I
kcs,

P(s I a; k#)
kesg P(sn I a)k~~s

+ 00 Pk(S, Za k

k s: 1 - e-akZ] Dn(Z I sn; )dz.kCEsn

The first term on the RHS of (4.6) is Murthy's unbiased estimator of N; the second term

is

(4.7)Pk(sn ; Z(n) )
E 1 - e-akZ() '
kes.

so with h(ak) 1, (4.3) is an unbiased estimator of N. The modifications necessary for

more general choice of h are obvious.[]

4.1 Asymptotic Equivalence

To set the stage for establishing the correspondence between unbiased estimation and

CMLE as N -* oo, examine the score function for the log likelihood when Z(n+l) = Z(n+l)

and Sn = Sn is observed in place of Z(n) = Z(n) and Sn = Sn. From (2.7) and (2.9)

d
dlogl(a I z(n+);sn) = -Z(n+l) + E(Z(n+l) I n; a)d=

1
= -Z(n+i) + - + E(Z(n) I ; a).a

(4.8)

16

Ez(.)l| (1 - e- a kZ(n) )- =

j00 C-X [ - e- a j )dx}

(4.5)
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As stated above Bickel, Nair and Wang (1990) show that when a fixed finite number
of magnitude classes are successively sampled, as N -- oo, unbiased estimators similar in
form to (4.2) constitutes an asymptotically efficient approximation to MLE. In the present
setting we have

Theorem 4.2: As N -- oo, CMLE of ac(s,) based on observation of (z(n+l),s,) is
asymptotically equivalent to unbiased estimation of a(s,) using the estimator defined in
Corollary 4.1.

Proof: As N - oo, E(Z(n+l) I s; ca) wn(a) where wn(a) satisfies

aje-aj wn(a)

E -aj (a)=a, (4.9)
jE8n

(Andreatta and Kaufman (1986)). Thus when Z(n+l) = Z(n+l), and Sn = s, are observed,
Wn(a) = Z(n+l) is a large N solution to the efficient score function for a CMLE of a(Sn).

Using (4.1) and (4.2) with a = (s),

EZ+ {k ak Z }= akP(snlk#; a) (4.10)

N
Murthy's unbiased estimator of rN - ak. Since

k=1

E[s akP(Sk(#,) =rN (4.11)

and
P(sn l k#; ) 1(412)

P(SnI ) N1-e n (a) -

as N - oo (op. cit. Theorem 5.1), CMLE of (sn) as N -+ oo using wn(ca) = Z(n+l)

yields

1 - eZ=(n+l)a;i= a(Z(n+1),Sn) (4.13)

or equivalently

aj
1 - e-(n+l)a j

= (Z(n+l),sn) + E aj rN(Z(n+l),Sn). (4.14)
je9n jESn

The estimator N(Z(n+l),s,n) of rN is of precisely the same functional form as the
unbiased estimator presented in Corollary 4.1 with h(ak) = ak, kes,. []
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5. Numerical Study

To illustrate small sample behavior of the three types of estimators presented here, a

monte carlo study of a successive sampling example from Hajek (1981) was done. In this

example, a successive sample of size n = 4 is taken from A 10 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

The range 1 to 10 of Ak values is small by comparison with applications of successive

sampling to oil and gas discovery in which the largest element of AN can be as large as 103

times the smallest. [The North Sea oil and gas data taken from O'Carroll and Smith (1980)

by Bickel, Nair and Wang (1989) varies from 12 to 3017 million barrels of recoverable oil

equivalent]. The small range of values of A 10 in Hajek's example provides a stringent test

of the performance of successive sampling estimators as the expectation of Y is only about

3.2 times larger than that of Y1o.

A computational scheme for computing inclusion probabilities based on an integral

representation of rk(n) was used to compute Table 5.1. [Andreatta and Kaufman (1990)]

It shows inclusion probabilities rk(n) for sample sizes n = 1, 2,..., 6 from A 10.

Table 5.1 here

Figure 5.1 is a graphical display of estimators examined in the study.

Figure 5.1 here

Results of a monte carlo study of properties of three of the four types of estimators

studied here appear in Table 5.2. Means, and standard deviations of unbiased, corrected

unbiased and maximum likelihood estimators for each of rN, c(sn) and N are based on

4,000 successive samples drawn from A 10.

Table 5.2 here

Monte carloed properties of these estimators for n = 4 in H/jek's example are:

(1) Unbiased estimation based on observation of s and z(n+l) leads to estimators of

rN, a(sn) and N with smaller standard deviation than that for corrected unbiased

estimation based on observation of s, and z(n). For example, while both unbiased

and corrected unbiased estimators of rN have monte carloed means within .43%

of the true value 1.000 of rN; the standard deviation of the former is .448 and of

the latter is .514.

(2) An ordered estimator of rN that is a solution of (3.7) based on (3.6) and obser-

vation of S_ and z(n) is positively biased - as proven in Proposition 3.3. The bias

is about 26%. An estimator of rN based on replacing Z(n) with z(n+l) in (4.2)

is negatively biased by about 5.5-7.5%. For this example, ordered estimation of

a(Sn) led to &(n) = 0 in 32 out of 4000 cases using Sn and Z(n) and 89 out of

18
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4000 cases using s, and z(,+l).

The behavior of these estimators for moderate sized samples is explored next in a

Monte Carlo study of samples of size n = 10 from a population of size N = 30 with ak =

magnitude of the k/(N + 1)st fractile of an exponential distribution having mean one,

k = 1,2,...,N.

Table 5.3 here

Monte Carloed properties of estimators for this second example are:

(1) Unbiased estimation of rN outperforms all other estimators studied here, producing

smaller standard deviation and less sampling bias (about .4%) . Unbiased estimation

of the successive sampling remainder yielded Monte Carlo averages & + bl = .4767 +

.5273 = 1.004.

(2) An ordered estimator of c was produced for each of 1000 trials, suggesting that the

probability of no solution to (3.7) [ b7l < Z(n)3 is less than .001 for this example.
j=1

Use of z(n) produced an ordered estimator with about 2% negative bias.

(3) While unbiased estimation of N over 1000 trials exhibits small bias (about .7%) the

standard deviation of an estimator of N of the form (4.3) is quite large - about one-half

of the true value of N = 30.

Prior to observing S, = s,, c(sn) = rn- j,,n aj is a rv so it is worthwhile document-

ing the behavior of &(Sn)-a(Sn), the difference between the successive sampling remainder

a(Sn) and its estimator. To this end a decomposition of mean squared error Es, (&(S) -

C(Sn))2 into its variance components Var(&(Sn)), Var(a(Sn)), COv(&(Sn), a(Sn)) is pre-

sented in Table 5.4. The variance components just cited are dictated by formula (5.1). If

X is a rv and X is a predictor of X then the mean squared error of is

MSE _ Var(X - X) = Var() - 2Cov(X, X) + Var(X). (5.1)

Table 5.4 here

In Table 5.4 we see that while the bias of &(S) is small in both examples, Var(&(Sn)-

a(Sn)) is a very large fraction of Var(&(Sn)).
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6. Prediction of Test Effort as a Function of Number of Failures

As stated at the outset, given a history of the test process up to the time of the nth

failure, an estimate of the incremental time on test to the occurrence of the next n - m

failures is of considerable practical value to the software manager who wishes to predict

testing effort as a function of number of failures.

Our objective is to provide an estimator for Z(,) given Z(m) = Z(m) and Sm = sm that

is both easy to compute and behaves reasonably for moderate samples. Recall that with

w,(c) = z(n+l) (4.8) yields an estimate of a(s,) based on observation of Z(n+l) and S(n)
that is both asymptotically CMLE, unbiased, and in addition is coincident with unbiased

estimation of the sum H = E h(j) of any single valued function h(-) of the ajs (See
jeAN

Proposition 4.1).

These facts together with (2.11) suggest a point estimator for Z(n), n > m + 1, given

observation of Z(m+1) = z(m+l) and Sm = Sm that is a solution (,) to

1 - e -zYi
1- e-z(m+l)y = n (6.1)

N
for z e (0, oo). Specific motivation for the form of this estimator is the identity E rk(n) =

k=1

n. If we are given only inclusion probabilities rk(n) and rk(m), k s, then

7rk(n) (6.2)

N

has expectation 7rk(n) = n with respect to Sm. Replacing 1/7rk(m) with its unbiased
k=1

point estimator (1 - e-z(m++)Yi) - and 7rk(n) with Rosen's approximation (1 - e-z(f)y),

z(f) satisfying (2.11), yields (6.1).

A unique solution to (6.1) in (z(m+l), cc) exists provided that n is chosen to be less

than N = E [1- exp(-z(,m+l)yj}]- 1, an unbiased estimate of the total number N of
je9m

faults in the system at the outset of testing. This point estimator is a function of both

Z(m+l) and Sm, so prior to observing Z(m+l) and Sm, it is rv Z(n)(Z(m+l), Sm) which we

abbreviate as Z(,). Under mild conditions on the large N behavior of the set AN of fault

magnitudes, if m/N = fm - ge(0, 1) and n/N = fn - fe(O,1) as in the asymptotic

regime (A 2 ), IZ(n) - (n) = op(l); i.e. as N -- o, the absolute value of the difference
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between Z(,) and Z(,) converges to zero in probability. In this sense, Z(,) is a "consistent"

estimator of the rv Z(,). [A proof will be provided elsewhere.]

The results of a small Monte Carlo study of Z(,) given a sample of size m < n and

Z(,) = z(m) - NOT Z(m+l) = Z(m+l) - suggest that the prediction scheme represented

by (6.1) produces point estimates of Z(n) with small to moderate bias and increasing

variability as z(m) increases.

Statistics describing Z(,) for the Hiajek and exponential examples of Section 5 are

presented in Table 6.1 and 6.2 respectively. Table 6.1 is based on use of 4,000 replications

of a successive sample of size m = 4 from Alo0 = 1, 2,..., 10} to generate point estimates
of Z(7) using (6.1). Table 6.2 is based on use of 1,000 replications of a successive sample

of size m = 10 from A30 composed of 30 fractiles of a mean 1.0 exponential distribution
to generate point estimates of Z(20) using (6.1).

Table 6.1 and Table 6.2 here

Even though both sample and population size for the exponential example are sub-
stantially larger for the exponential example than for the H6jek example, n = 100, N = 30
and n = 4, N = 10 respectively, Z(,) behaves similarly in both cases:

(1) Z(,) is positively skewed with extreme right tail outliers [Figures 6.1b and 6.2b]. By

comparison Z(,) is substantially less positively skewed and, for the case n = 10, N = 30
the histogram of simulated values of Z(,) is reasonably approximated by a Normal
distribution [Figures 6.1a and 6.2a]. (As N ) oo in the regime (A 2) an appropriately

scaled version of Z(n) is N(0, 1); see Andreatta and Kaufman (1990)).

(2) Variability of Z(n) rapidly increases as Z(,) increases. [Scatterplots in Figures 6.3a

and 6.3b].
(3) The expectation of the predictor Z(n) given Z(m) = Z(m) increases faster than linearly

as a function of Z(m,,,) and slower than exponentially. [Figures 6.4a and 6.4b].

(4) The mean of 2(7) in the Hajek example is 1.6% greater than the mean of Z(7) [Table
6.1]. In the exponential example, right tail outliers boost the positive bias of Z(20) to

10.4% [Table 6.2a]. If the Monte Carlo sample is trimmed to exclude values of 2(20)

greater than four standard deviations above the maximum value of Z(20) achieved in

the sample, the bias of the trimmed sample is negligible. When the 16 of 868 such
values are deleted the bias is -. 03%.
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7. CONCLUDING REMARKS

Successive sampling schemes and EOS models of software failures are intimately re-

lated to one another. This relation allows application of methods of inference and pre-

diction developed for successive sampling to be applied to software failure sampling as

demonstrated in this paper.

Further linkages between successive sampling schemes and Bayes/empirical Bayes

treatment of software reliability models can be established by invoking a super-population

process that describes how fault magnitudes are generated.
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TABLE 5.1
INCLUSION PROBABILITIES nk(n)

n=l n=2 n=3 n=4 n=5 n=6

0.1818 0.3503 0.5039 0.6408 0.7588 0.8554
0.1636 0.3196 0.4663 0.6017 0.7231 0.8271
0.1455 0.2878 0.4258 0.5578 0.6811 0.7921
0.1273 0.2549 0.3824 0.5086 0.6317 0.7485
0.1091 0.2210 0.3360 0.4537 0.5737 0.6941
0.0909 0.1862 0.2867 0.3930 0.5059 0.6259
0.0727 0.1506 0.2346 0.3262 0.4274 0.4369
0.0545 0.1141 0.1798 0.2534 0.3377 0.5410
0.0364 0.0768 0.1223 0.1747 0.2365 0.3123
0.0182 0.0387 0.0624 0.0902 0.1239 0.1667

Ak

10

9

8

7

6

5

4

3

2

1



TABLE 5.2
[HAJEK EXAMPLE]

Unbiased(l)

1.002
(.448)

.508
(.452)

9.945
(1.716)

N

Corrected(2 )
Unbiased

.997
(.514)

.502
(.516)

10.163
(1.843)

(a 2 0)(3)
Ordered

1.255
(.586)

.764
(.588)

(a > 0)(3)
Ordered

1.265
(.589)

.770
(.587)

(a 0)(4)
Ordered

.924
(.455)

.442
(.448)

Based on observation of:

(1) sn and Z(n+l )

(2) sn and Z(n)

(3) En and Z(n)

(4) Sn and Z(n+1)

(a > 0)(4)
Ordered

.945
(.444)

.452
(.447)



TABLE 5.3
[EXPONENTIAL EXAMPLE]

Unbiased(l)
1.004
(.225)

.477
(.236)

29.79
(15.48)

Corrected(2)
Unbiased

.994
(.257)

.467
(.506)

30.445
(16.186)

.527
(.004)

Ordered(3 )

.980
(.227)

.453
(.238)

(1) Sn and Z(n+1)

(2) sn and Z(n)

(3) n and Z(n+1) [All 1,000 trials produced an ordered estimate.]
(4) sn and Z(n) [All 1,000 trials produced an ordered estimate.]
(5) a(sn) has mean .473 and standard deviation .004.

a(5)

Ordred (4 )

1.087
(.284)

.559
(.292)
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TABLE 5.4

MEAN SQUARE PREDICTION ERROR OF UNBIASED ESTIMATOR a(Sn)
(HAJEK'S EXAMPLE, N=10, n=4, 4000 TRIALS)

FRACTION a(Sn) > 0

MEAN OF
A

a(Sn)

MEAN OF a(Sn)

BIAS

= 1.0

= .508

= .505

= .003

(EXPONENTIAL EXAMPLE

[UANCE OF a(Sn)

?dANCE OF a(Sn) =

VARIANCE ((Sn), (a(Sn) =

N=30, n=10, 1000 TRIALS)

FRACTION a(Sn) > 0
A

MEAN OF a(S n )

MEAN OF (Sn)

= 1.0

= .477

= .473

MSE
A

VARIANCE OF a(Sn)

VARIANCE OF a(Sn)

COVARIANCE ( a(Sn), a(Sn))

.1627

.1676

.0053

.0051

= .0509

= .0557

= .0040

BIAS = .004 - .0044



TABLE 6.1

(Z(7) vs. Z(7) FOR HAJEK'S EXAMPLE, 4000 TRIALS)

FRACTION

MEAN OF Z(7)

MEAN OF Z(7)

BIAS

= .85

= 12.65

= 12.45

= .20

MSE

VAR (Z)

VAR (Z)

Cov (z, Z)

= 104.31

= 113.04

= 28.47

= 18.59



TABLE 6.2a

[2(7) vs. Z(7) FOR EXPONENTIAL EXAMPLE]

1000 TRIALS

FRACTION

MEAN OF Z(7)

MEAN OF Z(7)

BIAS

= .87

= 57.41

= 51.99

= 5.42

MSE

VAR (Z)

VAR (Z)

COv (Z, Z)

TABLE 6.2b

OUTLIERS >200 OMITED

FRACTION

MEAN OF Z(7)

MEAN OF Z(7)

= .84

= 51.45

= 51.59

= -.14BIAS

MSE

VAR (Z)

VAR (Z)

COV (Z, Z)

= 2073.19

= 2273.95

= 225.87

= 213.28

= 917.73

= 992.50

= 220.85

= 137.81



FIGURE 5.1
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FIGURE 6.la
ACTUAL Z-HAJEK EXAMPLE
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FIGURE 6.lb
ESTIMATED Z-HAJEK EXAMPLE
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FIGURE 6.2a
ACTUAL Z-EXPONENTIAL CASE
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FIGURE 6.2b
ESTIMATED Z-EXPONENTIAL CASE
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FIGURE 6.3a
ESTIMATED VS ACTUAL Z-HAJEK CASE
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FIGURE 6.3b
ESTIMATED VS ACTUAL Z-EXPONENTIAL CASE
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FIGURE 6.4a
Z(7) vs Z(4) - HAJEK EXAMPLE
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FIGURE 6.4b
EXPONENTIAL EXAMPLE
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