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Abstract

This paper discusses a fundamental feature of density estimation by

smoothing, namely that estimated density derivatives and score vectors will

display a downward bias. We analyze the behavior of kernel estimators

with finite bandwidths, showing how the downward bias arises from Jensen's

inequality, as well as from the convolution structure of the estimator. A

result is shown to confirm intuition that is immediate from pictures.

We then consider the estimation of density score vectors. We motivate

interest in estimating score vectors by considering average derivative

estimation and adaptive estimation of location models. The bias in score

vectors is characterized for normally distributed variables, as well as

variables distributed via a normal mixture. For normal variables and a normal

kernel, the score bias is uniformly proportional. We calculate the bias for

approximately optimal bandwidth values, and note that it can be substantial.

For normal mixtures, we indicate that the score bias can be approximately

proportional. A simple diagnostic statistic (and/or correction) for score

bias is proposed.

KEYWORDS: Nonparametric; Kernel; Density; Derivative; Bias



SMOOTHING BIAS IN DENSITY DERIVATIVE ESTIMATION

by Thomas M. Stoker

1. Introduction

The study of nonparametric methods for estimating unknown functions is

one of the most rapid and extensive current movements in mathematical

statistics. This spectacular development has opened up the real possibility

of full characterizations of the statistical structure underlying empirical

data, in a fashion that is virtually free of restrictive modeling assumptions.

Moreover, this development has been advantageously complemented by advances in

computing power and statistical graphics, which establish the feasibility of

using nonparametric methods far beyond reasonable expectations of even a

decade ago.

The theoretical development of nonparametric methods has resulted in a

clear understanding of the factors involved in statistical approximation of

functions in large samples, as well as how optimal large sample performance

can be obtained with specific procedures. Quite familiar is the tradeoff

between pointwise bias and variance, how balancing them can yield optimal

rates of convergence, and how the smoothness and dimensionality of the true

function play essential roles. Likewise, quite familiar are methods for

exploiting functional smoothness in specific procedures; for instance, the use

of higher-order kernels in kernel density and regression estimation; as well

as the characterization of rules for choosing bandwidths that yield optimal

asymptotic approximation, such as the various versions of cross validation.l

Further, recent work has demonstrated how "plug-in" semiparametric estimators

can exhibit J4 rates of convergence, while using nonparametric estimators as

basic ingredients. The asymptotic conditions for nonparametric estimation in
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semiparametric problems typically differ from those of optimal approximation

of unknown functions; for instance, involving "asymptotic undersmoothing" to

reduce pointwise bias more rapidly than pointwise variance.

At any rate, the import of this theoretical work is to ascribe

substantial promise to the use of nonparametric estimators as empirical

tools, at least in problems of low or moderate dimension. Whether one employs

(a truncated version of) an infinite series expansion, or a method based on

local averages (kernel or nearest neighbor, for instance), it is natural to

expect that the results will give an accurate depiction of the density or

regression function under study. In particular, such results should be free

of any systematic errors that would be introduced by using a parametric model

that was badly specified, namely one that cannot closely approximate the true

function of interest. That is, all functional attributes should be well

exhibited by a nonparametric estimator, including derivatives, extrema and

other features. The work on "plug in" semiparametric estimators enhances this

view, by implying that dimensionality problems of the nonparametric

ingredients can be avoided when estimation is focused on a parameter, or

functional of interest.

Relative to the work on asymptotic theory, there is less

attention in the literature to the actual performance characteristics of

nonparametric estimators in finite samples. Moreover, it is easy to imagine

extreme cases where the asymptotic approximation theory would be of limited

value. For one instance, suppose that a complicated relationship was to be

nonparametrically approximated by polynomial regression, but that data

limitations required truncation (elimination) of all terms of quadratic and

higher order. In such a case, a method based on local averages could be

preferable, because of a more intrinsic ability to pick up bumps or other

nonlinear structure. At any rate, with small or moderate sample sizes, it is

2
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possible that the biases of nonparametric estimators are considerable, with

the standard asymptotic theory irrelevant or uninformative.

This paper points out a particular type of systematic bias in

nonparametric density estimators based on local averages. In particular,

because of local smoothing, pointwise estimates of density derivatives are

typically too small. This feature is based on the simple notion that

smoothing will tend to make a surface flatter, ergo the measured slopes will

be too small. The overall purpose of the paper is show how downward

derivative bias is a generic feature of density estimation by smoothing, as

well as indicate how the downward bias can be substantial, even with large

sample sizes. 3

It is important to stress that the existence of bias in local averages is

not surprising nor novel. However, our point is that the bias can lead to

systematic mismeasurement in an important aspect, namely derivatives

(and density scores). The downward bias problem depends directly on the

amount of smoothing: tiny bandwidth values make the problem disappear, in

accordance with the popular asymptotic theory.

We consider the estimation of a continuous density f(x) of a k-vector of

predictors x, its derivative f'(x) af/ax, and its (translation) score (x)

-aln f/ax - - f'/f. We assume that the data xi, i-l,...,N) is a random

sample, and we focus on the standard (Rosenblatt-Parzen) kernel density

estimator

N

(1.1) f(x) Nlh k E i - i

i=l h

where X(.) denotes a positive (differentiable) symmetric kernel density,

where the bandwidth value h controls the amount of smoothing.

The exposition is organized as follows. The simple conceptual foundation
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for downward derivative bias is discussed in Section 2, where the bias of the
A A

estimated density derivative f'(x) af/ax is studied. The typical downward

bias is immediately evident from density diagrams consistent with Jensen's

inequality. A result is given to confirm the intuition of the pictures.

The overall size and nature of the downward bias is addressed in Sections
A A A A

3 and 4, where the estimated score (x) - - f'(x)/f(x) - -ln f/8x is studied.

Section 3 gives some basic motivation for measuring the score from two

semiparametric problems, namely the estimation of average derivatives and

adaptive estimation of location models, as well as some indications of the

size of the bias, Section 4 begins with a basic formulation of the bias of

e(x), and then displays the score bias when the true density is multivariate

normal (with a normal kernel), and when the true density is a normal mixture.

These formulations permit the bias to be computed for "optimal" bandwidth

values for different sample sizes, as well as suggesting an approximate

structure of the bias. Namely, the score bias is exactly proportional for

each value of x in the normal case, and approximately proportional in the

mixture case. This helps clarify when the score bias problem may be ignored,

as well as motivates a simple level correction for it. We close Section 4

with a few general remarks on the nature of the bias in estimated scores.

The paper is intended to be thought provoking, in that it stands in

somewhat striking contrast to what is expected from now standard nonparametric

approximation theory. As such, it is important at the outset to point out how

our posture differs from that theory. In particular, under standard

conditions on the rate at which the bandwidth h shrinks with sample size, the
A A A

estimators f(x), f'(x) and (x) are easily shown to be pointwise consistent

estimators for f(x), f'(x) and (x). Here, the bias is formed from the
A A

expectations E[f(x)] and E[f'(x)] given the bandwidth value h. These terms
A A

can be thought of as the () limits of f(x) and f'(x), under asymptotic
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theory that takes the bandwidth h as fixed, not shrinking with sample size N.

We use this interpretation explicitly for the score (x), namely
A A A

characterizing the () limit plim e(x) - - E[f'(x)]/E[f(x)] for given
A

bandwidth h. As such, we treat f(x) of (1.1) as a simple sample average, with
A A

h a constant that has been set, and treat f'(x) and (x) analogously.

Consequently, this paper takes the posture that fixed bandwidth asymptotics

may give a more accurate distributional approximation than a theory that

promises that h will be shrunk when more data is obtained. Both approximation

theories would coincide in a large data set with tiny bandwidth values used,

but they give different results for finite bandwidth values.

2. Downward Bias in Density Derivative Estimates

2.1 Basic Framework

As indicated above, we consider a situation where the data is an i.i.d.

random sample of observations on a k-vector x, distributed with density f(x).

The basic structure used for the density is summarized as

Assumption 2.1: The density f(x) has convex (possibly unbounded) support

Sf R ,and f(x) = 0 for x E aSfI the boundary of its support. f(x) is

twice continuously differentiable on int(Sf).

The kernel density X(.) of (2.1) is structured as follows:

Assumption 2.2: The kernel X(u) has support S C k, with (u) > for

u E int(SX) and X(u) = 0 for u aSX, the boundary of S. The origin 0 E

SX, and if u E S then -u E S. X(u) - X(-u) is symmetric (with uX(u)du 0)

and continuously differentiable on int(SX).

5



Finally, we assume the following regularity condition, in lieu of primitive

4
conditions that guarantee it.

Assumption 2.3: The integral Jx(u)f(x-hu)du exists for x E Sf and is

differentiable in x, with derivative (X(u)f(x-hu)du)' = f X(u)f'(x-hu)du.

In this section, we focus on the derivative of the density estimator

f(x) of (2.1) relative to the true density derivative f'(x). The derivative
A

f'(x) is written explicitly as

A N

(2' f' (x) af(x) = -x)-k-l firo K 

i=l hX

2.2 Smoothing Bias and Jensen's Ineauality
A ^

The expectations of f(x) and f'(x) are found by a standard calculation

(c.f. Silverman(1986)): taking the expectation of (1.1) and changing variables

gives

A

(2.2) E(f(x)) = f X(u) f(x-hu)du

and for (2.1), including integration-by-parts,

A A

(2.3) E(f'(x)) = X(u) f'(x-hu)du = aE(f(x))/ax

where the latter equality uses Assumption 2.3.

The intuition behind the downward bias argument is that because of
A

Jensen's inequality, E[f(x)] will tend to be "flatter" that f(x), which can

cause measured slopes to be too small in absolute value. In particular,
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consider the univariate case where k - 1, and suppose that the support
A

of is compact, say S [-1,1]. Since E[f(x) - Eu[f(x-hu)] (u
A

distributed with density X), we have E[f(x)] < f(x) when f is strictly concave
A

on (x-h,x+h) and E[f(x)] > f(x) when f is strictly convex on (x-h,x+h).

In Figure 1 we have drawn a density and its derivative, as well as

expectations consistent with (2.2) and (2.3) (and Jensen's inequality).
A

Obviously, E[f'(x)] is smaller in absolute value than f'(x) everywhere except

for the tails. Figure 2 gives analogous pictures for a multimodal density,

where again, a downward derivative bias is evident.

2.3 Basic Aspects of Density Smoothing., and a Simple Result

While these pictures capture the essence of the problem, it will be

useful for our discussion later to reinterpret the impact of smoothing via

the convolution structure of (2.2) and (2.3), and then show a result that

6 A
verifies the import of the Figures 1 and 2. As well known, f(x) is the

density of Z - X + hu, where X is distributed as the empirical distribution of

the data (xi, i=l,...,N), and u is distributed with density X(u),

independently of X. Likewise, suppose that z x + hu, where x is distributed

with density f(x), independently of u, which is distributed with density X(u).

Then it follows immediately that the density h(Z) of z is given by the

formula

(2.4) Oh(Z) = f X(u) f(z-hu)du = E[f(z)]

and (from assumption 2.3) that

(2.5) h' (Z) = r X(u) f'(z-hu)du = E[f'(z)]

A

Therefore, f(x) measures the convolution h evaluated at x. Clearly if h 0,

then h(X) - f(x), but our concern is studying h for given h.
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This convolution structure permits several immediate comparisons between

Oh and f. First, their moment structures are easily compared. Each displays

the same mean p - f xf(x)dx- f xh(x)dx. With uuTX(u)du = ZU, we have the

covariance matrices

f(x-p)(x-p) f(x)dx _ Zx
(2.6)

f(x-p)(x-p)T h(x)dx = x + h2Z

so that h displays a larger (matrix sense) covariance matrix. If we

consider marginal densities implied by f and h' then it is easy to verify

that h displays the same third moment as f, and larger even moments of all

orders; for the jth component xj, we have

S(xj-Aj) 3 h(x)dx = (xj- j)3f(x)dx

(2.7)

f(xjx)dx > (x j-pj)rf(x)dx; r 4, r even.

provided the moments of f and X exist. The equality of third moments implies

that the marginals of h display less skewness than those of f.

Some properties are available from studies of the concavity properties of

convolutions. If X is log-concave and f is quasi-concave, then h is

quasi-concave (Ibragimov(1956)). If f is further assumed to be log-concave,

then 0h is log-concave (Prekopa(1973)). However, if f and X are only

assumed to be unimodal, then it is not true in general that h is unimodal

(Gnedenko and Kolmogorov(1954)), unless f is symmetric about its mean. For f

univariate, we can establish an analogy between the extrema structure of ~h

and f by limiting the bandwidth value h. This relation then implies a simple

result on the relative sizes of the derivatives of h and f, that essentially

verifies the intuition of the pictures of the last section.9
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We make the following additional assumptions.

Assumption 2.4: The univariate density f(x) has a finite number of local

maxima ml,..., md and local minima bl,..., bd1' with m < b < m2 < ... <

d-l < d.

Assumption 2.5: The kernel X(u) has support S - [-1.1].

The similarities between f and h are given as:

Lemma 31: Under Assumptions 2.1-5,

1. The support S of h(X) is convex and Sf c S. Oh is a

twice continuously differentiable density on int(S), and h(X) = 0

for x on the boundary, x E aS .

2. If f(x) is symmetric about a point mf, then h is symmetric about mf.

Suppose h E (O,ho] (where h0 is specified in the proof).

3. If f(x) is unimodal with mode mf, then h is unimodal with mode m ,

and f(mf) > h(m0).

4. If f(x) has modes ml, ..., md and local minima b, ..., bdl, then h

has associated modes ml, ..., md and local minima b , ..., bd-1' where

Oh(mj) < f(mj) for j = l,...,d, and h(b) > f(bj) for j = l,...,d-l.

This Lemma immediately implies the following theorem on the derivatives

of f and h:
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Theorem 2.1: Under Assumptions 2.1-5, if h (O,h0]

(2.8) I f'(x)ldx > |0'(x)|dx

Theorem 2.1 states in broad terms how h' will be smaller than f', or how

smoothing causes an underestimation of density derivatives. The limitation on

the bandwidth size is used in the proof of Lemma 2.1, however it seems natural

that that (2.8) will obtain for larger bandwidths. In particular, smoothing

away modes of f (with h having a smaller number of local extrema than f)

should exacerbate the typical underestimation of derivatives. If true, it

would be natural to assert a similar relationship between derivatives in the

multivariate case, however a proof would seemingly involve tracking the modal

structure of f as its components were individually varied.

While we have given the basic logic behind the downward derivative bias

implied by smoothing, the pictures and results above are not informative about

how large the bias is, or whether a systematic bias of this kind would make a

difference to any empirical problem. For some answers to these questions,

for the remainder of the paper we consider the impact of derivative bias on

measuring the score (x) = -f'(x)/f(x).

3. Background Motivation for Density Score Estimation

Our discussion of score estimation includes some general remarks on the

impact of the derivative bias, as well as specific calculations for examples

based on normal distributions. First, we provide some motivation for

studying the density score by recalling two estimation problems that involve

"plugging-in" score estimates. For this section only, we augment our notation

10
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to include a scalar response variable y, so that the data is a random sample

(Yi,Xi), i-l,...,N.

3.1 Average Derivative Estimation

The (unweighted) average derivative of y on x is defined as the mean of

the derivative of E(ylx), namely

(3.1) 6 - E[aE(ylx)/ax]

The estimation of 6 is of interest to various semiparametric problems; for

instance when the regression is structured as E(ylx) - G(xTP), then 6 is

proportional to 6, so that a nonparametric estimator of 6 measures 6 up to

10
scale.

The connection of the average derivative to the density score (x) is

seen by the following formulations of (3.1)

(3.2) 6 - Cov[t(x),y]

(= Cov[t(x),x]) lcov[e(x),y]

These representations follows from applying integration-by-parts and the law

of iterated expectation to E[aE(Ylx)/ax], and the latter representation

follows from noting that the leading matrix is the inverse of the identity I =

E(ax/ax) Cov(t(x),x) (c.f. Stoker(1986) for details).

The sample analogs of these formulae, where (x) is plugged in for (x),

give the two average derivative estimators of interest here. Following Hrdle

and Stoker (1989), the first estimator is

N
A 1 A A

(3.3) 6 N e (xi) [yi-y ] 1i

iml
A A

or the analog of the score-covariance representation, where 1.i = l[f(xi) b]

is a trimming indicator that drops observations with small estimated density

11
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A

(used in the technical technical analysis of 6). Following Stoker(1991a), the

second estimator is

N 1 N

(3.4) d - L i L i-l(3.4) d - -1 L e(xi) (xix) ]li

which is a linear "slope" estimator because of its interpretation via
A

instrumental variables estimation; namely d is the slope coefficient vector

from estimating a linear equation

A ^ A

(3.5) y c + x.'d + u.= 1
i i1 1

A A

using (1, e(xi)li) as the instrumental variable. This interpretation plays a

role in the motivation below.

These estimators are useful to our discussion for two reasons. First,

the estimators are based on fairly simple averages of the nonparametric
A

components (xi), so that differences in the estimators are easy to interpret.

Second, the types of differences (as illustrated below), leads one to propose

corrections and/or diagnostic statistics for the presence of derivative bias.

Under an asymptotic theory involving shrinking bandwidths, these

estimators can both be shown to be {§ consistent for 6, and moreover they can

be shown to be first-order equivalent. In particular, Hrdle and Stoker(1989)

show that if is a kernel of order p k+2 and some smoothness conditions

obtain, then as (i) N-, h-*O, b, h lb4o, (ii) for some > 0, b4Nl h2k +2-,

and (iii) Nh2 p -2 0,

N

(3.6) i (6 - 6) - N / E r(y i xi) + o (1)

i=l

where r(y,x) g'(x) - 6 + [y - g(x)] e(x), so that under standard central

12



A

limit theory, 4(8 - 6) has a limiting normal distribution with mean 0 and
A A

variance - E(rr T). Moreover, as shown in Stoker(1991a), iN(6 d -d) -o (1),
A A

so that 6 and d are equivalent to first order. These approximation conditions

are consistent with asymptotic undersmoothing; namely the bandwidth shrinks to

zero more rapidly than would be implied by optimal pointwise estimation of
A

t(x) by e(x).

While these estimators are asymptotically equivalent under the above

conditions, this is no guarantee that they will be similarly behaved in

finite samples. In particular, substantive differences in the scale of

the two estimators appear routinely in simulations (which in fact originally

motivated the present study).2 Consider the following simulation results,

which are fairly typical. The first example takes the basic model to be

linear:

(3.7) Yi 1 + Xli + 2i + x3i + 4i + i ; i 1,...,N

where the k - 4 predictors xjiV and the disturbance ei are (independent)

N(0,1) variables. The sample size is N - 100, the kernel is the spherical

multivariate normal density X(u) = H k(uj) with (u.) = (1/425) exp(-u.2/2),

the bandwidth is h - 1 and the trimming bound b is set to drop 1% of the

13
observations. The average derivative is the vector of coefficients 6 =

(1,1,1,1)'. Table 1 contains the means and standard errors of each of the

average derivative components over 20 Monte Carlo simulations.

While asymptotically equivalent under shrinking bandwidth theory, the
A A

14covariance estimator 6 is roughly 40% of the value of the slope estimator d.

Moreover, this simulation design ought to favor good estimator performance.

The predictors are symmetrically distributed, independent and have a symmetric

impact on y. The R of the true equation is .80, which is quite large

relative to survey applications, at least for economic data.
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TABLE 1: SIMULATION RESULTS - LINEAR MODEL

True Value: 6 - (1,1,1,1)

A

"Covariance"

(3.3)

"Slope"

(3.4)

OLS

.389

A

.390

A

63

.404

A

64

.385

(.047) (.078) (.039) (.062)

.991

(.101)

1.01

1.01 1.03 .984

(.154) (.102) (.101)

1.01 1.02 .976

(.078) (.128) (.111) (.107)

III



One facet of the results which might be guaranteed is the good

performance of the slope estimators, because they are conditionally unbiased
A A

for the true coefficients (provided x - x and (x)l are not orthogonal). With

this in mind we present simulations of a binary response model in Table 2;

namely where the dependent variable is altered to

(3.8) yi [ 1 + Xli + x 2i + 3i +4i + i > 0 ] ; i 1

Now the true average derivative vector is 6 - .161 (1,1,1,1). The kernel,

bandwidth and trimming parameters are the same as for Table 1.

Here the same problems arise, with a substantial underestimation of 6 by
A

the covariance estimator 6, and much less bias exhibited by the slope

estimator d. We have included the OLS estimator (of regressing the discrete y

on x) because its performance is dictated by the design: namely with normally

distributed regressors, the OLS coefficients are (unconditionally) consistent

for the average derivative 6 (c.f. Brillinger(1983) and Stoker(1986)).

The theoretical results cited above assert that for very large data sets,

with tiny bandwidth (and trimming bound) values, the differences seen in

Tables 1 and 2 will disappear. As such, 100 observations may be just too

small for any adherence to this approximate distributional theory. Moreover,

one could approach these differences by deriving an optimal bandwidth value.1 5

However, we consider a different explanation, namely that the estimated

values t(x) are uniformly too small, in the sense of downward bias discussed

before. Specifically, suppose that for a given (fixed) bandwidth value h, we

denote plim e(x) A h(X). Using an argument analogous to that presented in

Hdrdle and Stoker(1989), as N e X and b 0 (but h fixed), we can show that

A

(3.9) plim 6 = Cov(Ah,y)

A -

plim d = (Cov[Ah(x),X]) lCov[lh(x),y]

14



TABLE 2: SIMULATION RESULTS - BINARY RESPONSE MODEL

True Value:

A

6 - (.161,.161,.161,.161)

A

62
A
63

A

64

"Covariance"

(3.3)

"Slope"

(3.4)

OLS

.063 .068 .070 .063

(.021) (.022) (.015) (.013)

.177

(.033)

.171

.179 .171 .164

(.040) (.036) (.032)

.171 .168 .160

(.035) (.033) (.035) (.028)

�I_

�I�__ __
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Now, suppose that there was a proportional bias; say for each x,
~~A A

Ah(X) = 1/2 (x). Then plim 6 - 1/2 6 but plim d - 6. As such, the leading

A A

term of d would act to correct for systematic underestimation of t(x) by (x).

If fact, the relation Ah(X) - 1/2 (x) is exactly the one given in

Section 4 for the normal design of Tables 1 and 2. As such, this explanation

captures a large part of the differences noted above. It is also useful to
A

note that the leading term of d corrects for any bias of matrix proportional
~~A A

form; if Ah(X) - A t(x), then plim 6 - A 6 and plim d - 6. This suggests an

obvious diagnostic statistic (or correction) for the bias problem, which we

spell out at the end of Section 4.

3.2 Adaptive Estimation of Location Models

While the average derivative example is closely aligned with the issues

at hand, estimation of the density score plays a role in other familiar

problems in statistics. Here we indicate their role in adaptive

estimation of location models, as developed by Stein(1956), Stone(1975),

Bickel(1982) and Manski(1984), among others.

The model of interest here is

(3.10) y = g(x,8) + E

where is a finite vector of parameters of interest, and is distributed

16
independently of x, with density f 1 As such, the density of y conditional

on x is

(3.11) F(ylx,9) = f[y-g(x,8)]

with

(3.12) aln F(ylx, )/aO = e ag/a
' 6~~~

15



where e = -f '/f is the translation score. The information matrix is then
E E E

(3.13) >I - E[aln F(ylx,O)/a8 aln F(ylx,6)/a T ]

- E[eE2 ag/a6 ag/a8T]

If the density f is known and specified, then under standard conditions the
^ A

maximum likelihood estimator of is Ni consistent, A-N( - ) (08l),

-1
where 89 is the Cramer-Rao lower bound.

The question of adaptive estimation is whether an estimator of 8 can be

constructed with this asymptotic distribution, when the density f is unknown.

From Bickel(1982) and Manski(1984), if f is symmetric around 0, the answer

here is positive. A solution is as follows: begin with any Th consistent

estimator of , compute the residuals, i yi - g(xi,8), estimate f and e
A A ^ ^

using the kernel density estimator f, e = - f '/ff, and then update 9 by one

Newton-Raphson step:

N -

(3.14) 6 9 + Ei 2 (lg(xi)/a8) (ag(xi ,)/a)T

iL 

N

E ei (ag(xi8)/a) (yi-g(xi)

A 17

The natural estimator of the asymptotic variance of 6 is likewise7

N .[-1r
1(3.15) .= IN e i (ag(x i,)/a6)(ag(xxi i)/a) 1

We raise this example to just illustrate the natural role

of the score e in problems of location, as well as point out the implications
A

of a uniform downward bias in the kernel estimator e in a practical
6

16
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A

application of these ideas. Suppose that is proportionately too small, then

(since ff is symmetric) the direction of the correction (3.14) is likely

accurate, but the step taken will be too large. If the full maximization of
A

an estimated log likelihood (based on (3.11) using f ) is carried out, it is
A

possible that the resulting adaptive estimate will not be affected by the

downward bias problem (again since f and the kernel X are symmetric).

However, in either case, the variance estimator (3.15) will be too large, with
A

the standard error of a component of 0 overestimated by the reciprocal of the

proportion of score bias.

We now turn to an analysis of the bias in estimated density scores.

4. Downward Bias in Density Score Estimates

4.1 Basic Structure
A A A

Because of the nonlinear structure of e(x) = - f'(x)/f(x), we use a large

sample approximation, but one holding the bandwidth value h fixed. This

differs from the currently popular approximation theory, but does permit one

to isolate and characterize the impact of local smoothing. Since the limits
A A 18

of f'(x) and f(x) are their expectations, we have by Slutsky's theorem that1 8

EAf '(x)] (X) aln (X)E_____]h (x)
(4.1) plim ( x) - - _

E[f(x)] Oh(x) ax

h(X).

Therefore, (x) estimates the score of the density h evaluated at x, where ~h

is the (convolution) density of x + hu.

It appears difficult to establish a general result asserting that

the norm of Ah(X) is typically smaller than that of the true score (x) for

an arbitrary base density f(x). The end of this section contains a few

17



remarks on general comparisons that are available. For concreteness, we now

discuss examples and calculations based on normal distributions.

4.2 Normal Distributions and Proportional Downward Bias

When the convolution h can be solved for, we can solve for Ah(X) and

the bias explicitly. The simplest cases concern when x is normally
A

distributed and a standard normal kernel is used to compute f(x). Suppose

2
first that x is univariate normal, with mean and variance a . In this case

the true score (x) is

1

{4°2) i(x) = -2 (x - )
a

The kernel estimator f(x) estimates the density h(X) of (2.4), which is a

2 2 A
normal density with mean and variance a + h2. The score (x) estimates

Ah ain h/aX, or

(4.2) Ah(x) = 2 2 (x- 
a h

Therefore we conclude that

2
a

(4,3) Ah(X) = 2 h2 t(x) ah (x) .
a +

Here the bias is uniformly proportional for all x, and downward by the factor

2 22
ah = /( o2+h).

Matrix proportionality arises in the multivariate normal case. Suppose

that x is distributed multivariate normally with mean and covariance matrix

E, and that X(u) is the spherical normal density, with mean 0 and variance I.

The true score is

18

III



(x) - -1(X - )(4.4)

The density h is normal with mean and covariance matrix + h2I, so that
A

the score (x) estimates

(4.5) Ah(x) - ( + h2 I-) m Ah (x)

where Ah - ( + h2 I) 1Z is the matrix factor of proportionality. If x is

further assumed to be spherical normally distributed; namely with Z - a2I,

then a symmetric componentwise underestimation occurs; namely we have

Ah = [2/(a2+h2 )] I above, so that

2
a

(4.6) Ah(x) 2 h2 (x) ah (x)
+h

This formula illustrates the potential severity of the bias problem; if h is
A

set to the standard deviation of the components of x, then (x) will estimate

half the value of (x) for any x.20

To get some feeling for the size of the bias relative to dimension and
A

sample size, we compute the bias for optimal bandwidths for estimating f(x) in

the spherical normal case. Table 3 gives such values, using bandwidths

computed from the formula in Silverman(1986, p. 87), based on first order

approximation of pointwise bias and variance. Listed here is the standard

deviation of each component of x implied by h' namely (1 + h2)1/2 nd the

derivative bias 1-ah, expressed in percentage terms.

The bias numbers are on the whole quite substantial. For instance,

consider the case of estimating the univariate normal density with 100

observations. The standard deviation implied for h is only marginally larger

than that for f, namely 1.085 to 1.0, but there is still a 15 % downward bias

in the score vector. Even with 5000 observations, the bias is not negligible.
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TABLE 3: DERIVATIVE BIAS WITH APPROXIMATELY OPTIMAL BANDWIDTHS

Specification:

Normal Design:

Normal Kernel:

x - (O,I), multivariate normal k vector

X is the (0,I) density;

Optimal Bandwidth: h - A(X) N l/(k + 4) , A(X) [4/2k+.

(Silverman (1986, p.87))

Phi Stan. Dev.:

Derivative Bias:

A(K)

Dimension k

Component standard deviation from h; namely (1 + h2)1 / 2

h2/(1+h2 )

1.059 0.963 0.923 0.904 0.894 0.888

1 2 3 4 5 10

N - 25
Bandwidth h
Phi Stan. Dev.
Derivative Bias

N- 50
Bandwidth h
Phi Stan. Dev.
Derivative Bias

N- 100
Bandwidth h
Phi Stan. Dev.
Derivative Bias

N - 500
Bandwidth h
Phi Stan. Dev.
Derivative Bias

N - 1000
Bandwidth h
Phi Stan. Dev.
Derivative Bias

N- 5000
Bandwidth h
Phi Stan. Dev.
Derivative Bias

N - 10000
Bandwidth h
Phi Stan. Dev.
Derivative Bias

N - 100000
Bandwidth h
Phi Stan. Dev.
Derivative Bias

0.556
1.144
23.64%

0.484
1.111
19.00%

0.422
1.085
15.10%

0.306
1.046
8.54%

0.266
1.035
6.61%

0.193
1.018
3.59%

0.168
1.014
2.74%

0.106
1.006
1.11%

0.563
1.148
24.10%

0.502
1.119
20.13%

0.447
1.095
16.67%

0.342
1.057
10.47%

0.305
1.045
8.49%

0.233
1.027
5.15%

0.208
1.021
4.13%

0.141
1.010
1.96%

0.583
1.157
25.36%

0.528
1.131
21.80%

0.478
1.108
18.61%

0.380
1.070
12.61%

0.344
1.058
10.59%

0.273
1.037
6.96%

0.248
1.030
5.78%

0.178
1.016
3.08%

0.604
1.168
26.75%

0.554
1.143
23.49%

0.508
1.122
20.52%

0.416
1.083
14.72%

0.381
1.070
12.68%

0.312
1.047
8.85%

0.286
1.040
7.55%

0.214
1.023
4.39%

0.625
1.179
28.09%

0.579
1.155
25.08%

0.536
1.134
22.30%

0.448
1.096
16.72%

0.415
1.083
14.68%

0.347
1.058
10.74%

0.321
1.050
9.35%

0.249-
1.030
5.82%

0.706
1.224
33.25%

0.672
1.205
31.09%

0.639
1.187
29.01%

0.570
1.151
24.51%

0.542
1.138
22.73%

0.483
1.111
18.94%

0.460
1.101
17.47%

0.390
1.073
13.22%

1 - ah 



For higher dimensional problems, the bias is substantial for small sample

sizes, and vanishes much more slowly as the sample size is increased.

For instance, the derivative bias in a 10 dimensional problem drops from 19 %

with 5,000 data points to 13 % with 100,000 data points. Since the bias

depends only on the value of the bandwidth, this is just a reflection of the

slowness with which the optimal bandwidth shrinks with sample size, or the

"curse of dimensionality."2 1

4.3 Normal Mixtures and Approximate Proportional Downward Bias

This matrix proportionality certainly does not exist generally, although

it may provide a useful approximation. We now consider the cases where f(x)

is a mixture of normals with equal covariance structures. Beginning with the

univariate case, let fl(x) denote the normal density with mean 1 and variance

2 2
a , and f2(x) denote the normal density with mean 2 1 and variance a

With 0 < p < 1, suppose that x is distributed with density f(x) = pfl(x) +

2
(l-P)f 2(x), so that the mean and variance of x are p - pp1 + (1-P)p 2 and a

2
+ p(l-p)(p 2- 1) , respectively. Suppose, as above, that X(u) is a normal

density, with mean 0 and variance 1. In this example, it is easy to verify

that

1 1
(4.7) t(x) = -2 (x)(x-l) + -2 [l-(x)](x-p2)

a a

where w(x) = pfl(x)/[pfl(x) + (l-P)f 2(x)]. If 1 and 2 represent the

2 2
normal densities with means 1 2 and common variance a + h

then the density h is easily seen to be

(4.8) Oh(x) = p l(X) + (l-p) 2(x)

20



The score Ah(X) is

1 1

(4.9) Ah() - 2 2 0(x)(x-1l) + h2 2 [l'w(x)](x-'2)
a +h a +

where (x) - p 1 (x)/[ pl1 (x) + (1-P) 2(x)]. Therefore, the impact of

smoothing is to induce downweighting (a 2 to (a2 + h2) 1), and

"flatten" the relative weighting from w(x) to w(x). In particular,

(4.10) Ah(x) - ah(x) - [(x)-(X] a h (2- l)/ a

2 2 2

where ah a /(a2 + h2 ) as before. Provided the variation in weighting

w(x)-w(x) is minor, or the mean spread p2-A1 is not large relative to the

2
(within) variance a , Ah(x) will be approximately proportional to t(x).

We can develop this formula further by studying the weighting. In

particular, denote

(4.11a) z(x) = [x - ( 1+.2)/2] (p2-l1)/a
2

(4.11b) c = ln[(l-p)/p]

and

1
(4.12) w(x,a) =

1 + exp[c + az(x)]

so we have that

(4.13) w(x) = w(x,ah), w(x) = w(x,l)

The function w(x,a) is (one minus) a logit c.d.f, is decreasing in x (and z),

with asymptotes 1 and 0, and decreasing in a for x < (p1+2)/2 (or w(x,a) >

p) and increasing in a for x < (p1+A 2)/2 (or w(x,a) > p). Figure 3 plots

typical versions of w(x), w(x) and w(x) - w(x). Obviously, the difference

Iw(x) - w(x)I is less than 1-p for x < ( 1+A2)/
2 and less that p for x >
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(p1+~2)/2, and vanishes in both tails.

The difference (4.10) is now easy to characterize. By the

mean value theorem, we have that

(4.14) w(x) - w(x) - z(x) w[x,a(x)](l - w[x,a(x)]) (1 - ah)

where ah a(x) 1. From the monotonicity properties of w(x,a), we have

(4.15) Jw(x) - w(x)l < Iz(x)I [Max(w(x), w(x)) - w(x)w(x)] (1 - ah)

Consequently, the difference (4.10) is

(4.16) Ih(x) - ahe(x)I Ix - (+ 2)/21[Max(w(x), w(x)) - w(x)w(x)]

ah(l - ah) [(2-P1)/a 2]

where we have inserted the formula for z(x). While this bound could be

computed for various specifications, it still points out how the difference

clearly vanishes in the tails, and that no substantive departures are likely

when the "bumps" in the distribution ( 1 and '2) are not far apart relative to

the within variance (a2). In other words, Ah(X) - ah (x) can be a good

approximation.

This example is of interest because of the fairly wide range of

distribution shapes that a normal mixture can represent. When the mixture

variances are different, a further term is added to the difference (4.16),

which does not appear to be as easy to characterize. One response to this is

to consider mixtures of more than two normals with equal variances, for

instance where f + P2f2 + (1-Pl-P2)f3, where fl f2 are as above, and

2
f is a normal density with mean 3 and variance a In this case3 A
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(4.17) Ah(x) - ahe(x) - ah [l(x)-l(x)](A3 -Al)/a +

[W2(x)- 2(x)](A3-2)/a /

where wl(x) - pfl(x)/f(x), w2(x) - p2f2(x)/f(x), and wl(x), w2(x) are

similarly defined. These weights have bivariate logit c.d.f. structure as

above, and a similar analysis is possible, again showing vanishing difference

in the tails, and substantive difference likely only when 'l, 2 and 3 are

far apart relative to a 2.

The multivariate case is quite similar. Now let fl(x) denote the

multivariate normal density with mean 1 and covariance matrix , and f2(x)

denote the normal density with mean A2 1l and covariance matrix , and for 0

< p < 1, let f(x) - pfl(x) + (l-p)f2(x). Suppose that X(u) is a spherical

normal density, with mean 0 and variance I. For this case we have that

(4.18) Ah(x) - Ahe(x) [ )() -(x) ]Ah (2-1)

where Ah = ( + h2I) -1 as before. Further analysis is formally analogous to

the univariate case, since if

1

(4.19) w(x,A) =T -
1 + exp(c + [x-(i 1+"2)/2] A (A2-i1))

then

(4.20) w(x) = w(x,Ah), w(x) = w(x,I)

with the logit c.d.f. structure exploited as before. Of course, for the

multivariate case, the range of possible distribution shapes is more severely

restricted by the requirement of equal covariance structures across the

23



mixture components. Nevertheless, it raises the possibility that downward

score bias is approximately matrix proportional is nonnormal examples.

4.4 Mean Bias Corrections

For diagnosing and/or correcting the bias problem, a couple of

suggestions are immediate. First, if the data used is standardized to have

unit variances, the bias proportion 1-ah - h2/(1 + h2) appropriate for the

normal case can be calculated, to give a "quick and dirty" indication of the

extent of the problem.2 2

A more involved correction is suggested by the estimators discussed in

Section 3.1. In particular, suppose that the bias is approximately matrix

proportional, with h(X) A(x). In this case, we have that

(4.21) Cov[Xh(x),x] A Cov[t(x),x] - A

But this covariance is estimated by the leading term of the slope estimator d

of (3.4), namely

N

(4.22) Dh N () 

i=l

Consequently, computing Dh and examining I - Dh gives a method of examining

the extent of the bias. Moreover, the score estimates could be corrected as

A

(4.23) -(x) = Dh 1(x)

For the normal case, this correction is consistent, with plim (x) = (x)

regardless of whether h is treated as fixed or shrinking with sample size.

The quality of the correction in general depends on the quality of the

proportionality relationship Ah(X) A(x). If this relationship is not close
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for certain ranges of x, the correction (4.23) only serves to fix the overall

level of the score estimates, by assuring Cov[Z(x),x] - I in large samples.

4.5 Further Remarks on Downward Bias in Score Estimates in the General Case

As mentioned above, it appears difficult to show a general result that

the norm of Ah(X) is typically smaller than that of t(x), where "general"

means that f(x) can be any arbitrary base density. One type of comparison is

available from efficiency theory, as follows. Pretend for the moment that the

data consisted of observations (xi,hui), i-1,...,N, distributed with density

X(u)f(x-A0), with true value 0O-0. Here x is sufficient for the estimation of

A, and under standard regularity conditions the maximum likelihood estimator p

- argmax E In f(xi-p) has asymptotic variance

(4.24) If(4.24) 1e~ = [ e(x)e(x)Tf(x)dx]

which is the asymptotic Cramer-Rao bound. Alternatively, we could

(stupidly) use the data (zi = xi+hui, il1,...,N) to estimate , namely by =

argmax E ln h(Zi-S), which has asymptotic variance

(4.25) h [ Ah(Z)Ah(z) h(
Ah h

-l -1
Standard Cramer-Rao theory asserts that h is positive

semi-definite, or equivalently that Ze - szh is positive semidefinite. In

this sense, Ah(X) is generally smaller than (x) in absolute value, but this

sense is not exactly suited for the purpose at hand. In particular, since

our argument is that Ah(X) is measured instead of (x), a better comparison

would be of to ZAh = I Ah(x)Ah(x) Tf(x)dx. It is not immediately apparent

how to establish that Ze - ZAh is positive semi-definite for arbitrary f(x).
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Again, such a result is not contrary to intuition; if the components of

Ah(x)Ah(x) increase with x - "I (for instance if h were log-concave), the

fact that f(x) displays smaller variance that h(X) would be consistent with

Z - Ah positive semi-definite.

The pointwise relation between Ah and e is intimately connected to the

concavity properties of ln(Oh/f), since ln(Oh/f)/ax = (x) - Ah(x). For

instance, if f is univariate and symmetric and ln(Oh/f) is quasi-convex,

then It(x)l 2 IAh(x)l for all x. The normal example given above has

ln(Oh/f) convex, consistent with this observation. However, even when X and f

are log-concave, ln(Oh/f) is the difference between two concave functions,

and it is not obvious how to characterize the primitive conditions under which

this difference is quasi-convex over a region of substantial probability.

We can show one result for the univariate case.

Theorem 4.1: Given Assumptions 2.1-5, if

i) f(x) is three times differentiable, symmetric and unimodal with

mode mf,

ii) (x) is an increasing convex function on (--,mf].

iii) h E (O,h0], and for x E [mf-h,mf), a E (-h,h),

-f'''(x+a) 2 (x) f"(x+a)

then

(4.26) E(lt(x)l) > E(IAh(x)l)

where E(Ieg(x)I) - I e(x)lf(x)dx and E(IAh(x) ) SIAh(x) f(x)dx.

Theorem 4.1 opens the possibility that Ilhl is smaller than le(x)l in general,

but is based on very restrictive conditions. While the symmetry and
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unimodality are needed in the proof, they are certainly not necessary for

(4.26) to hold. In particular, the proof suggests that these conditions may

suffice for ln(oh/f) to be quasi-convex; if so then (4.26) is just a weak

implication of the pointwise dominance jI(x) I/h(x)l a.e. (f). Theorem 4.1

covers the univariate normal case above, where the score (x) is linear in x.

5. Conclusion

This paper has established how the derivatives of nonparametric density

estimates may contain substantial downward biases, due to local smoothing. It

is important to stress the point that the existence of bias in moderate

samples is by itself not surprising, but rather that the bias causes

systematic suppression of the values of derivatives. Density estimators based

on local smoothing clearly represent some of the best tools for flexibly

characterizing modal structure and other nonlinearity, and this paper only

argues that the magnitudes of measured "bumps" and "valleys" can be

understated. When the precise magnitudes are inessential to an empirical

problem, the downward derivative bias is of little practical consequence.

It is also important to stress that the extent of downward derivative

bias is determined solely by the amount of smoothing, or size of bandwidth

used. In particular, dimensionality and/or higher order differentiability of

the base density have an effect only if the bandwidth value is affected.

Moreover, if the bandwidth value used is tiny, then the derivative bias is

minor. Of course, if the bandwidth value chosen is smaller than that dictated

by a mean squared error criterion, the pointwise variance is larger than it

needs to be.

One natural response to our results is that we have just inappropriately

used bandwidth values that are too large. While Table 3 is presented to

address this concern, certain theory can be interpreted to say that the
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bandwidth values used in that table may still be too large. For instance,

Goldstein and Messer (1990) suggest implementing the "asymptotic

undersmoothing" requirement of estimating smooth functionals by choosing

bandwidths that are smaller than those that are optimal for pointwise

estimation. While the sense of this analogy is clear, it is an empirical

issue as to whether the smaller bandwidths will work in practice for realistic

sample sizes. The author's experience with average derivative estimators

(discussed in Section 3.1) is contrary to this, leading in part to the present

study. At any rate, in any given empirical problem, a bandwidth value must be

chosen, and the downward bias will be present. Whether tiny bandwidths can be

used successfully in small samples, for either nonparametric or semiparametric

problems, is a central question of future research.

While the derivative bias is a generic problem, its structure may

likewise permit generic corrections. In this spirit we have advanced the idea

of proportionality in the bias of estimated scores. This coincides with the

author's experience that the slope versions of average derivative estimators

(such as (3.4)) give good estimates under a wide variety of simulation

designs. Moreover, the correction suggested is simple and interpretable.

A natural question of future research is whether such a simple correction has

practical value in general. In other words, are there standard empirical

settings, remote from our examples, that dictate more involved corrections as

a general rule?

This point, as well as our earlier conclusions, stress the need for

studying the performance of nonparametric and semiparametric methods in

realistically sized samples. The well-developed theoretical paradigm for

these methods is in need of empirical confirmation, as the highest priority

for future work.
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Appendix: Proofs of Theorems

Proof of Lemma 2.1:

1. That h is twice differentiable follows from the twice differentiability of

f and Assumption 2.4. The remaining points are immediate, with Sf - [a,b]

implying S - [a-h,b+h].

2. f(x) is symmetric about mf if f(x) - f(2mf-x). We have

Oh(x) - X(u)f(x-hu)du - X(u)f(2mf-x+hu)du - X(u)f(2mf-x-hu)du = h(2mf-x)

by the symmetry of X(u).

3. Suppose I (x; w(x,mf], f"(w) < 0) [wl,W 2], where Wl<mf< 2 by

continuity of f". Set h - (1/2) min (mf-wlw 2 -mf). From (3.7), we have

h' (x) 0 for x E (--,mf-h] and h' (x) < 0 for x E [mf+h,o). Suppose h has

two modes ml,m2 [mf-h, mf+h], m< m 2, mil Then O - Jx(u)[f'(m-uh)-f' (m2-uh)

= fX(u)[(m 2-ml)f"(((u))du = (m2-ml)f"((), where the second equality is the

mean value theorem, with (u)E[ml-h,m2+h ] and the third inequality is the mean

value theorem for integrals, with (E[mf-2h,mf+2h]. But since h < h,

f"(() < 0, so that m 1 m 2, with h unimodal. Since f(mf) sup f(x) and mf

is unique, by (3.6) we have h(mO) < f(mf).

4. For each local mode, define I - (x; w(x,mj], f"(w) < 0) - [jlwj2],

h. = (1/2) min mj -wjlw 2-mf). For each local minimum, define

Ii = (x; w(x,bj], f"(w) > 0)} [ ,wj2] and hj (1/2) min (bj-w 1 ,w2j-bi 

Define h = (1/2) min (hj ,j=l,...,d, hi, j-l,. .. ,d-l), and note that h > 0 by

the continuity of f". By an argument analogous to that given in 3 for

unimodality, we conclude that h has a unique mode mj in [mj-h,mj+h], for each

j=l,...,d, and a unique local minimum bj in [bj-h,bj+h], j-l,...,d-l. The

remaining properties follow from the fact that the supremum of f(x) over
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[mj-2h,mj+2h] is f(mj), and that the infimum of f(x) over [bj-2h,bj+2h] is

f(bj). QED Lemma 2.1

Proof of Theorem 2,1: f'(x) and h'(X) alternate in sign: f'(x)> 0, x E

(-m,ml); f'(x) < 0, x [ml,bl];...; f'(x) < 0, x [md,- d ); and h'(X)2 0,

x E (-,ml); h'(X) < 0, x [ml,bl];...; f(x) < 0, x [md,-0)

Consequently,

f (jf'(x) - oh'(x)[)dx = 2 [f(mj)-Oh(M)] + 2 [h(bj)-f(bj)] > 0

by Lemma 2.1. QED Theorem 2.1.

Proof of Theorem 4.1: Since f is symmetric and unimodal (with mode mf), h is

symmetric and unimodal with mode mf, by Lemma 3.1. Consequently, f'(x) and

Oh?(X) are asymmetric about mf (namely f'(x) = -f'(2mf-x), etc.), as are (x)

and h(X). Thus

E(It(x)I) - E(lAh(x)I) = I e(x) - IAh(x)I dx

mf aln f aln hj

- ax ax
f(x)dx

For b < mf, apply integration by parts as

mf aln f

Jb ax

n f(mf)
1n h f(x)dx = In 0 (m ) f(mf)
ax h(mf) mf

f(b)
- n f(b)

9h(b)

mf f(x)

Jb i (x) f'(x) dx

Thf in(X)
f(mf) f(()

= in h (m f) i-n 
(

I ~ ~ f 
f(mf)

[ fh(b) lfb
+ In -ln i f(b )

f (b) f(

where the latter equality follows from the mean value theorem for integrals,
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with ( E [b,mf]. If h(x)/f(x) is a monotonically decreasing function of x,

then the theorem follows from taking the limit as b " - (note that the

inequality is strict; since h(mf)/f(mf) < 1, h(x)/f(x) constant would

violate the fact that h(X) is a density function).

To show that ~h(x)/f(x) is decreasing, differentiate as

h X(u) (f(x-hu) f(x) f(x-hu) du

ax f(x) -1

1 1 1

f(x) 0 x(u) (f'(x-hu) + f'(x+hu) f(x) [f(x-hu) + f(x+hu)] du

by the symmetry of X. If the term in brackets is less than or equal to zero,

then so is the integral, and the result follows. This occurs if

(*) f'(x-hu) + f'(x+hu) f(x) [f(x-hu) + f(x+hu)]
f(x)

For x < mf-h, define w(x,hu) f(x-hu)/[f(x-hu)+f(x+hu)], and note that

w(x,hu) < (1/2) since f(x) is decreasing for x C mf. Therefore

f'(x-hu) + f'(x+hu) wf(x-hu) f' (x+hu)
f(x-hu) + f(x+hu) f(x-hu) f(x+hu)

< f'[x + (1-2w)hu] < f'(x)
fix + (1-2w)hu] - f(x)

since (x) - f'(x)/f(x) is convex, and increasing in x, proving (*). Now

suppose x [mf-h,mf). Condition (iii) implies that

f'(x)
v(a) = f'(x+a) - f(x) f(x+a)

is a concave function in a E (-h,h), and (*) is implied by

(1/2)v(-hu) + (1/2)v(hu) v(O) = 0.

QED Theorem 4.1.
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Notes

Textbook treatments of this work can be found in Silverman (1986),

Prakasa-Rao (1983) and Hrdle (1991) among many others; for a recent survey

on work on nonparametric methods in econometrics, see Delgado and Robinson

(1991).

A recent general treatment is given by Goldstein and Messer(1990). For such

results in a specific problem see Powell, Stock and Stoker (1989) and Hrdle

and Stoker (1989), among others.

Stoker(1991b) discusses downward derivative bias with kernel regression

estimators. While the mathematics of this problem is similar, the structure

of the bias is quite different. Preliminary version of some results from the

current paper as well as Stoker (1991b) were previously reported in a

manuscript entitled "Smoothing Bias in Derivative Estimation," revised July

1990.

See Ibragimov, I.A. and Has'minskii (1981), among others.

Provided the variances of the components of (1.1) and (2.1) exist, standard

laws of large numbers and central limit theory (with the bandwidth h fixed)
A A A A

imply that plim f(x) E[f(x)] and plim f'(x) = E[f'(x)], and that
A A A

-f(fx) - E[f(x)]) and (f'(x) - E[f'(x)]) have limiting normal

distributions.

6
See Silverman (1986) and Manski (1988), among many others.

A function R(x) is quasi-concave if R[axl+(l-a)x 2] min[R(xl),R(x2)], and

is log-concave if In R is concave.

8These properties were suggested to the author by A. Caplan and B. Nalebuff,

and are reviewed in Prekopa(1980) and Caplan and Nalebuff(1990). Some related

properties can be found in the theory of majorization; c.f. Marshall and

Olkin(1979).

The following lemma and theorem are quite basic, however I could not find

similar results in the literature.

See Stoker (1986) and Hrdle and Stoker (1989) for many examples of index

structure of this type.
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11 For instance, in the simulation study of "density weighted" average

derivative estimators in Powell, Stock and Stoker(1989), it was shown that

slope estimators (with positive kernels) gave somewhat better small sample

performance than moment estimators. However, their simulations were based on

normalized estimators, so that a uniform derivative bias would not be

detectable.

12
The following results will be revised as part of a large simulation study to

be reported as Stoker and Villas-Boas (1991).

13 While the positive kernel is not consistent with the asymptotic normality

results indicated above, Powell, Stock and Stoker(1989) and Stoker and

Villas-Boas(1990) find that a positive kernel gives superior small sample

performance. Moreover, a positive kernel is used in the remainder of the

exposition, so that the results reported are relevant.

The bandwidth value h - 1 was not chosen subject to an optimality
A

criterion, but rather was roughly the minimum value for which the results on 6 of(3.3

were not erratic. Tables 1 and 2 are mainly illustrative; many more than 20

Monte Carlo simulations called for (see Note 12).

15 A preliminary study of this problem is given in HArdle, Hart, Marron and

Tsybakov (1991), for the one dimensional case.

16 We depart from our previous notation in this section only, namely with f

the density to be estimated nonparametrically.

1We have included the "low density" trimming indicator i as in Stone (1975),
but abstracted from the "sample-splitting" feature of Bickel's(1982) analysis.

This is because our concern here is not with the technical issues of

estimation, but just to illustrate uses of the density score. Of course, if

basing density estimation on a split sample necessitated using a larger

bandwidth, then the score bias problems discussed next would be exacerbated.

18
As before, a standard application of central limit theory (and the delta

A

method) shows that for fixed h, §[t~(x) - h(x)] has a limiting normal

distribution, provided x is in the interior of the support of f(x).

19 Here Ah(X) is a "matrix weighted average" of (x) and 0 in the sense

of Chamberlain and Leamer(1976), namely Ah(x) = Ah (x) + (I-Ah) 0.
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ill

20 This verifies the assertion at the end of Section 3.1 that Ah(X) 1/2 e(x)

applied to the simulation design, where Z - I and h - 1.

21 There are at least three reasons to believe that the bandwidth values of

Table 3 are too small, so that Table 3 understates the downward bias. First,

the bandwidth formula is for estimating the density, and not the derivative or

score, which could be expected to give larger values. Second, the bandwidth

formula is based on the leading terms of the Taylor series of integrated mean

squared error, which is an asymptotic approximation. Steve Marron has told me

about some of his joint work calculating exact optimal bandwidth values for

the normal design here, that indicates that the bandwidth values in Table 3

are too small. Unfortunately, at the time of writing, I haven't been able to

locate a reference to this work. Finally, as stated in note 14, erratic

behavior of the average derivative estimator (3.3) was exhibited for

bandwidths less that 1.0, so that the "optimal value" of .508 in Table 3 did

not give good performance. Consequently, this table may have bandwidth values

that are too small for realistic situations, especially those values given for

very small samples and moderate to large dimension.

22 This ratio overstates the bias in the normal mixture case, because of the

"between variance;" in the two mixture case, the data would be standardized

for the variance a + p(l-p)(A 2-A 1) , not just a as it appears in ah

a /(a +h2).
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