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Abstract

This paper shows how marginal effects or derivatives estimated

nonparametrically can contain systematic downward biases. By considering the

behavior of kernel regression estimators with finite bandwidths, we indicate

how biases in derivatives arise as a natural feature of local averaging.

We indicate how the kernel regression of y on x will measure the

regression of y on x + hu, where h is the bandwidth and the distribution of u

is given by the kernel density. Thus, smoothing induces a generic

"errors-in-variables" problem with finite h. We characterize the impact of

this structure on derivatives, including connecting the derivatives to the

density of the regressors.

Various results are given, some involving a normal kernel and normal

regressors. Bias values associated with a normal linear model are computed

using approximately optimal bandwidth values, and are seen to be quite large.

A diagnostic statistic is given, and the role of the nonparametric fitting

criterion in derivative bias is discussed.



SMOOTHING BIAS IN THE MEASUREMENT OF MARGINAL EFFECTS

by Thomas M. Stoker

1. Introduction

Applications of econometric models either involve full model simulations

or partial calculations based on estimated interrelationships among economic

variables. For predictor variables that can be changed incrementally,

the latter type of application rests on the estimated values of

marginal effects or derivatives, often in the form of elasticities.

This role of econometric modeling has likewise affected the types of

models chosen for summarizing empirical relationships. For instance, part of

the popularity of the standard linear regression model; E(ylx) - a + x;

arises from its parsimonious summary of the predictor marginal effects or

derivatives, namely as the values of the coefficients . Standard

simultaneous equations models begin with linear structural equations, again

because of the parsimonious representation of interrelationships through

coefficients. Intrinsically linear equations arise in much the same fashions;

for instance a linear model predicting y Iln(Y) by x - ln(X) has coefficients

representing the elasticities of Y with respect to X.

Focus on derivatives has guided the evolution of flexible modeling

methods in econometrics. The literature of "flexible functional forms" arose

from the recognition of substantial restrictions on marginal effects in the

popular linear expenditure system used in analyzing consumer demand and the

Cobb-Douglas and CES functions used for characterizing production

relationships. In particular, a functional form was defined as "flexible" if

it was capable of approximating arbitrary derivative structures for a given

value of the predictor variables. While this pointwise requirement does not

necessarily allow an entire function to be well approximated, it can provide a
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reasonable minimum standard for whether estimation results have been contrived

by choice of functional form. The shortcoming of this early approach is that

the approximation of derivatives at a point, its main criterion, is not upheld

for methods of fitting the "flexible" functional forms to data.2

Current research on nonparametric methods in econometric modeling is

designed to overcome the restrictiveness of assumed functional forms,

appealing to functional approximation theory in large samples. It is

worthwhile noting that one of the earliest papers advocating nonparametric

methods in econometrics, namely Eldawabi, Gallant and Souza (1983), proposed

Fourier series approximation as a method for consistently estimating

derivatives at a point. Because of the dramatic recent development of

nonparametric methods, it is natural to conclude that the problem of

derivative measurement has been solved, with errors in results due exclusively

to sampling variation. Whether one fits a truncated version of a series

expansion (polynomial or Fourier series, for instance), or estimates a

relationship using local averages (kernel or nearest neighbor, for instance),

the available theory asserts that the estimates will capture arbitrary

nonlinearities, at least with a sufficiently large number of observations.

Under the same theoretical guidelines, the same can be said of the derivatives

of such relationships, namely that they give a consistent (nonparametric)

depiction of the effects of the predictors on the response, at each value of

the predictor variables. 3

Yet every one of these methods still involves a degree of functional

approximation in any empirical situation, and especially those of small or

moderate sample size. Infinite series expansions must be truncated at some

point, and it is easy to conceive of situations where the approximation theory

is of doubtful relevance. Taking an extreme case, if a linear model is fit to

data, the associated polynomial approximation theory has seemingly little to
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offer about the quality of derivative estimates at different points. Methods

based on smoothing (local averages), may present more assurance of accuracy,

because they are better structured to capture bumps, wiggles and other types

of nonlinearity. Yet in any empirical application the amount of smoothing

(windows for local averaging) must be set, inducing some approximation error.

The purpose of this paper is to show how the results obtained from

smoothing estimators can exhibit substantial, predictable biases in small or

moderate data samples. In particular, marginal effects or derivatives of such

estimators can be systematically downward biased, resulting in measured

effects that are too small. While the existence of bias is no surprise, the

fact that it can be in one direction, namely downward, is somewhat striking.4

Our analysis is based entirely on standard kernel regression estimators,

and while the smoothing bias is intrinsic, other methods of smoothing may not

exhibit the downward bias to the same degree. Section 2 begins with the basic

framework, and some brief motivation of the size of the bias based on

simulations of average derivative estimators. Section 3 opens with a

characterization of the nature of smoothing, as inducing a generic nonlinear

errors-in-variables structure. We then indicate how this induces downward

derivative bias, as well as the role played by the density of the regressors

in the bias problem. Discussion and examples based on normally distributed

regressors are given next, including a general result on downward derivative

bias. Section 4 addresses the role of sample size and dimension in derivative

bias, by calculating the bias using optimal bandwidth values for a normal

linear model. Section 5 completes the main exposition, by giving a simple

diagnostic statistic for derivative bias, and then gives a few remarks on the

role of the fitting criterion in nonparametric estimation; in particular we

point out how global fitting methods can act to mollify mismeasurement of

derivatives, at least on average. Section 6 contains some concluding remarks.
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The kernel estimator we consider does permit consistent estimation of

regression and its derivatives under the currently popular asymptotic theory,

that expresses the proper rate of shrinkage of the smoothing parameter or

bandwidth.5 As such, it is useful to point out initially how our analysis

differs from this theory. In order to focus on the impact of smoothing, we

employ an asymptotic theory that keeps the bandwidth fixed. In particular,

since the kernel estimator is a ratio of averages that have the bandwidth as a

parameter, we study the limit of that ratio when the bandwidth parameter is

set to the value used in a data sample. As such, our approximation theory

treats the averages directly, without promising to shrink the bandwidth as

sample size expands. The posture of the paper is that this theory may

provide a better distributional approximation in realistically sized samples;

however whether this is generally true is an practical issue that merits

further study.

2. Motivation of the Bias Problem

2.1 Basic Framework and Estimators

We take the observed data (yi,xi), i=l,...,N) to be an i.i.d. random

sample, where y is a response variable of interest and x is a continuously

distributed k-vector. The joint density of (y,x) is denoted F(y,x), and the

marginal density of x is denoted f(x).

In the spirit of modeling with additive disturbances, we take the

economic relationship of interest to be the mean regression of y on x, namely

g(x) - E(ylx). The marginal effects of x on y are the derivatives

(2.1) g'(x) ag(x)
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When y and x are in log-form, namely y in Y and x - n X, then the marginal

effects are the elasticities of Y with respect to X.

A parametric econometric analysis would specify a g(x) up to a finite

number of parameters that would then be estimated. A nonparametric analysis
A

would measure g(x) directly for each x, resulting in a function estimate g(x).

In either case, the marginal effects are measured by the derivatives of the

function obtained through estimation.

Our analysis of smoothing is based on the standard (Nadaraya-Watson)

kernel estimator of the regression g(x), defined as

(2.2) g(x) = C(

f(x)

where the numerator is

N

(2.3) c(x) = N h Yi
h

and the denominator is

N

i=l1

the standard (Rosenblatt-Parzen) kernel estimator of the marginal density

f(x) (c.f. Silverman(1986), Hrdle(1991)). Here h denotes the bandwidth value

that determines the extent of smoothing or local averaging, and X(.) is a

density function that gives local weights for averaging. The marginal effects
A

of y on x are estimated as the derivatives of g(x), given formally as

A A A

A c)(x) f'(x)c(x)
(2.5) g'(x)- 

f(x) f(x)
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The standard large sample theory shows how g(x) is a (pointwise)

consistent estimator of g(x) under conditions governing how the bandwidth h is

shrunk with increases in the sample size N, for instance h2 - 0 and Nhk o.

Analogous theory demonstrates how g'(x) is a pointwise consistent estimator of

the marginal effects g'(x). Our discussion is concerned with a different
A

issue, namely how well g'(x) estimates g'(x) for given bandwidth value h. As

such, our focus is on mismeasurement directly involved with smoothing.

The regularity conditions we require are as follows.

Assumption 2.1: The density f(x) has convex (possibly unbounded) support

k
Sf C R , and f(x) = 0 for x aSf, the boundary of its support. f(x) is

twice continuously differentiable on int(Sf). The density F(y,x) is twice

continuously differentiable in x. The mean and variance of (y,x) exists, and

g(x) = E(ylx) is continuously differentiable on int(Sf).

Assumption 2.2: The kernel (u) has support S C R , with X(u) > 0 for

u E int(SX) and X(u) = 0 for u E aSX, the boundary of S. The origin 0 E

SX, and if u S then -u E S. X(u) is symmetric, X(u) - X(-u), (with

JuX(u)du = 0) and continuously differentiable on int(SX).

Assumption 2.3: The integrals fx(u)f(x-hu)du and ffX(u)yF(y,x-hu)dudy

exist for x S and are differentiable in x, with derivatives

(fX(u)f(x-hu)du)' = X(u)f'(x-hu)du and (fX(u)yF(y,x-hu)dudy)' 

ff3(u)y (F/ax) (y,x-hu)dudy.

The last condition is stated in the form in which it is used, and could be

replaced by various primitive conditions that assure it (see, for example

Ibragimov and Has'minskii(1981)).
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2.2 Motivation via Average Derivative Estimators

There is little surprise in the observation that there is bias in the
A A

estimators g(x) and g'(x) for a given value of the bandwidth h. The issue

that motivates this paper is that the bias in derivatives can be substantial

and systematically one-sided, namely that derivative estimates can be

uniformly too small. This character of the bias was first noted by the author

6
in the behavior of certain average derivative estimators. For motivation

of the potential size of the problem, we now consider some results of this

study.

The connection of average derivatives to our inquiry is immediate: the

(unweighted) average derivative 6 of y on x is defined as the mean of g'(x)

over all x values.7 We consider two estimators below, which are sample

analogs of the following expressions of 6,

(2.6) 6 E(g')

= (E(ax/ax)) lE(g')

The first estimator is just the (trimmed) sample average of the estimated
A

derivatives g'(xi), or

N
A A A

(2.7) 6 N-1 g'(x i) 1i

i=l
A A

where 1.i - l[f(xi) 2 b] is a trimming indicator that drops observations with

small estimated density (required for the technical analysis of this

estimator). The second is a "slope" estimator, defined as

(2.8) d [xx Tl -E g'(x-) ]·1 [x'(xi)]T g1 0
ig( il (

where x' is the derivative (matrix) of the kernel estimator of E(xlx); namely
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A

(2.2) with yi replaced by xi. Stoker(1991a) points out how d can be written

as an instrumental variables estimator of the slope coefficients from
A A A

estimating the linear equation yi - c + xi'd + ui, which explains the

terminology.

Under certain shrinking bandwidth conditions, Stoker(1991a) has

shown these estimators to be J4 -consistent for 6, and asymptotically

equivalent. These conditions employ "asymptotic undersmoothing," so that the

averages above converge to their limits at a faster rate than the estimator

A 8
g(x) converges to g(x) at any point x. Consequently, in a large sample with

tiny bandwidths, the distributional properties of the estimators (2.7),

(2.8) will be virtually identical.

However, there is no reason to suspect that these estimators will behave

identically in small samples, or with substantive bandwidth values. In

particular, we can motivate the current study by illustrating how these two

estimators can give quite different measures of average derivatives. First

consider a linear model with normal regressors

(i 1 + li + 2i + x3i + x4i + i ;i

where the k = 4 predictors x..j, and the disturbance ei are (independent)

A(0,1) variables. The sample size is N = 100, the kernel is the spherical

multivariate normal density X(u) = n t(uj) with (u.) = (1/42;) exp(-uj /2),

the bandwidth is h = 1 and the trimming bound b is set to drop 1% of the

9
observations. The average derivative is the vector of coefficients 6 -

(1,1,1,1)'. Table 1 contains the means and standard errors of each of the

average derivative components over 20 Monte Carlo simulations.

The results on the "average" estimator (2.7) illustrate the scope of the

problem addressed in this paper. For concreteness, suppose that y and x

represented log-output and log-inputs respectively, with the simulated model

8
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TABLE 1: SIMULATION RESULTS - LINEAR MODEL

True Value:

A

61

.447

6 (1,1,1,1)

62

.453

A

63

.477

A

64

.444

(.063) (.101) (.059) (.076)

1.01

(.098)

1.01

(.078)

1.02

1.01

1.03

1.02

.985

.976

(.128) (.111) (.107)

Average

(2.7)

Slope

(2.8)

OLS

(.152) (.115) (.116)



(2.9) a Cobb-Douglas production function. Suppose that a log-production
A

function were estimated by the kernel estimator g(x), and the output
A

elasticities by g'(x). Table 1 (the "average" row), says that on average, the
A

estimates g'(x) are 45% of their true values. The OLS estimators are

virtually unbiased as they should be, as are the "slope" estimators (2.8).

This simulation design ought to favor good estimator performance. The

predictors are symmetrically distributed, independent and have a symmetric

impact on y. The R2 of the true equation is .80, which is not overwhelmingly

small for survey applications in economics. One facet of the results which

might be guaranteed is the good performance of the slope estimators, because

their instrumental variables formulation implies that they are conditionally

unbiased for the true coefficients. With this in mind we present simulations

of a binary response model in Table 2; namely where the dependent variable is

altered to

(2.10) Yi = 1[ 1 + Xli + X2i + X3i + X4i + i > 0 ] ; i = 1...,N

Now the true average derivative vector is 6 - .161 (1,1,1,1). The kernel,

bandwidth and trimming parameters are the same as for Table 1.

This table displays exactly the same characteristics. In this case the

OLS coefficients (of regressing the discrete y on x) are comparable because of

the design; with normally distributed regressors, the OLS coefficients

consistently estimate the average derivative 6 (c.f. Brillinger(1983) and

Stoker(1986)).

As indicated above, the results of Stoker(1991a) state that for very

large data sets, with tiny bandwidth (and trimming bound) values, the

differences seen in Tables 1 and 2 will disappear. In this context, 100

observations is clearly insufficient to constitute a "very large" sample in

this sense. Moreover, the bandwidth value h - 1 was not chosen by an

9
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TABLE 2: SIMULATION RESULTS - BINARY RESPONSE MODEL

True Value: 6 - (.161,.161,.161,.161)

61 62 63 64

Average .082 .083 .083 .076

(2.7) (.021) (.023) (.018) (.014)

Slope .186 .186 .178 .168

(2.8) (.039) (.046) (.036) (.034)

OLS .171 .171 .168 .160

(.035) (.033) (.035) (.028)



automatic mechanism,l0 and so one might approach this problem by trying to

derive "best" bandwidth values for averaging regression derivatives, to see if

these differences can be made small.

Our approach is different, namely to study the limiting behavior of the

estimators under fixed bandwidth values. This posture focuses on the impact

of smoothing, and gives a clear interpretation of how smoothing estimators can

differ from procedures based on (global) least squares or other fitting

criterion. In fact, exactly the sort of differences observed above follow

from this posture, as we now show.

3. Smoothing Bias in Marginal Effects

3.1 Errors-in-Variables Structure

While it would be most preferable to study the behavior of the kernel

regression estimator with a fully developed small sample theory, our analysis

is based on large sample approximation. This is due to the fact that our

underlying regression structure can be quite general, as well as the

nonlinearity in the construction of (2.2). In particular, we focus on

approximation with the bandwidth h held fixed, which differs from the

currently popular theory that shrinks the bandwidth along with increases in

sample size. Our posture treats (2.2) as a composition of simple averages,

without the promise of shrinking the bandwidth when more data is obtained.

This analysis is quite simple, and gives a natural interpretation. In

particular, we shall see that smoothing induces an "errors-in-variables"

problem into the results. The bias in derivatives arises in an analogous

fashion to the downward bias of a linear regression coefficient when the

regressor is measured with independent error. We now make these connections.

10
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A

Given the bandwidth h, we denote the limit of the estimator g(x) as

Yh(X). By applying Slutsky's theorem and the weak law of large numbers, this

limit is expressed as;

A A

^ plim c(x) E[c(x)]
(3.1) h(X) E plim g(x) - - -

plim f(x) E[f(x)]

A A

and so we need to characterize E[c(x)] and E[f(x)].
A

For E[c(x)], a standard change of variables gives

(3.2) E[c(x)] I y h(y,x) dy

where

(3.3) %h(y,x) = I K(u) F(y,x - hu) du

The function h is clearly a density, in the form of a convolution. In

particular, if (y,x) is distributed independently of u, with density X(u),

then h(y,z) is the joint density of y and z - x + hu. For E[f(x)], a similar

standard calculation gives

(3.4) E[f(x)] = f X(u) f(x-hu)du - ~h(X)

With x, u as above, h(Z) is easily seen to be the marginal density ofoz - x +

hu,11 and it is easy to verify that h(Z) - Bh(y,z) dy. For later reference,

we define the (translation) score Ah of h as

aln of
(3.5) h(X) -h 

ax hhh

X (u) f' (x-hu)du

f X(u) f(x-hu)du

where the latter equality follows from assumption 2.3.
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Combining (3.2) and (3.4) gives

A

A E[c(x)] Y h(yx)dy
(3.6) )7h(X) plim g(x) _ -

E[f(x)] Oh(X)

This expression is easy to interpret. Namely, h(Z) is the regression

function E(ylz), with z - x + hu. Moreover, given assumption 2.3, an

analogous argument to that above gives

(3.7) plim g'(x) = 7hf(x)

A

To summarize, for fixed bandwidth h, the regression estimator g estimates
A

the regression 7h of y on x + hu, and the derivative g' estimates the

associated derivatives 7 h' As such, local smoothing induces an

"errors-in-variables" problem, namely by causing the regression of y

conditional on x + hu to be measured instead of the regression of y

conditional on x.12 Of course, if h were allowed to vanish, then so would

the difference between these two regression functions. However, for finite h,

we show how the difference between h and g generates the derivative bias

problem.

3.2 Argument Shifting and Smoothing Bias

It is natural to conjecture that this structure induces a downward bias

in g'(x) as an estimator of g'(x), in analogy with the downward bias (toward

zero) imparted to the least squares coefficient of a linear model when the

regressor is measured with error. To develop this further, we first recall

the basic linear errors-in-variables structure, with a normal regressor.

Suppose that there is a single regressor x, and that the true model is

(3.8) y a + x + E

12
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where is distributed with mean 0, independently of x. Suppose further that

2
x is distributed normally with mean and variance a , and that X(u) is a

normal density, so that u is distributed normally with mean 0 and variance 1.

With z - x + hu, we have that

(3.9) y - a + (z - hu) + 

- a + [z - hE(ulz)] + v

where v - te - h[u - E(ujz)]) has mean zero conditional on z. The standard

bias analysis follows from

(3.10) Yh(Z) = E(ylz) = a + [z - hE(ulz)]

= [a + + (l-Vh) z

where v h 2/(a2+h 2), the latter equality using that

(3.11) hE(ulz) = vh (z - ).

Consequently, the OLS coefficient estimates (l-vh), or contains a downward

bias (in absolute value) as an estimator of the true coefficient . The term

Vh is the familiar "noise/total variation" ratio for this problem.

Aside from giving us an immediate example of smoothing bias; here

(3.12) g(x) = a + x , 7h(X) 1 [a + vh] + (l-vh) x

so that

(3.13) g'(x) =- , 7h'(x ) = (1-vh)

this example also serves to indicate how the bias arises. In particular,

the regression (3.10) is the true regression function with its argument

shifted from z to z - hE(ulz), or toward the mean of z, namely

(3.14) 7h(z) - g[z - hE(ulz)] - g[z - h (z - )]

13



where g(x) = a + x. This shifting serves to flatten the slope of h relative

to that of g. This point is illustrated in Figure 1.

Returning to the general format, we can see that the shift of the

argument is one of two factors affecting the structure of h relative to g.

To make this explicit, we first assume that the basic behavioral model has an

additive error:

Assumption 3.1: The true model for the response y is of the form

(3.15) y g(x) + 

where is independent of x.

We then have immediately that

(3.l6) Yh(Z) = E[g(z - hu)lz]

c E(g[z - hE(ulz) - h(u-E(ulz)llz)

Therefore, 7h could be constructed from g by i) shifting the central argument

from z to zhE(ulz), and ii) averaging g over the departures h[u-E(ulz)]. In

general, it is difficult to completely characterize these effects with

arbitrary functions g(x), f(x) and (u). For the remainder of this section,

we focus on i), the "argument-shift". The alteration ii) is difficult to

characterize generally (aside from examples), although we do present a result

for general regression in the next section, where the regressors are assumed

to be normally distributed.

The argument-shift depends solely on the distribution of (z,u), making

relevant the position of the density of z: for instance, in the univariate,

unimodal case, if z is in the right tail of the density it is natural to

expect that E(ulz) > O, implying a leftward shift, and if z is in the left

14
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tail of the density, it is likewise natural to expect E(ulz) < O, implying a

rightward shift. Each of these impacts serves to flatten a curved function

g(x), as illustrated in Figures 2a and 2b. If the alteration ii) is minor,

the argument-shift gives rise to the downward derivative bias.

To say more, we must characterize the structure of the shift, written as

ux(u) f(z-hu)du
(3.17) hE(ulz) h

f X(u) f(z-hu)du

and how it relates to the distribution of x or z - x + hu. The connection to

the density of z is immediate if we specialize to the case where u is normally

distributed; we assume,

AssumDtion 3.2: The kernel (u) is the multivariate normal density, with mean

0 and covariance matrix I, the kxk identity matrix.

For this kernel, we have that X'(u) = - uX(u). Using this, if

integration-by-parts is applied to each component of the numerator of (3.17),

we have that

2 ; X(u) f'(z-hu)du 2 h 2
(3.18) hE(ulz) =- f h h2 Ah(z)

X(u) f(z-hu)du h

Therefore, the direction of the argument-shift is determined by the sign of

the score Ah' or equivalently by the sign of the density derivative Sh' In

the univariate, unimodal case, the density derivative is positive to the left

of the mode, and negative to the right, giving the shift as depicted in

Figures 2a and 2b.13

For more general base densities, (3.18) indicates how downward derivative

bias will arise in areas of higher density, so that the average of the

15
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estimated derivatives will be too small. Consider the bimodal density of

Figure 3, with the true model linear. Here the slopes are too small over the

areas around the models, and too large for the connecting area in the middle.

Therefore, the average of the estimated derivatives will be too small, as the

sections with downward bias are more heavily weighted than those with upward

bias.

With a linear model, g(x) a + x T, we have that

(3.18) yh(x) = + T[x - h2 Ah(x)]

and

(3.19) h(x) T[I - h-a 21n h/axax}]

so that the direction of the derivative bias is determined by the concavity

properties of lh. If h is log-concave, a21n h/axaxT is everywhere negative,

and the derivative bias is uniformly downward. Given Assumption 3.2, if the

density f is log-concave, then so is h (Prekopa(1973, 1980) ). The average

bias in derivatives from (3.19) is

(3.20) E[yh'(x)] = [I - h2 E(-a 21n h/axax )] ;

The expectation in the latter expression is E(-a21n h/axaxT} =

-8a21n h/axax f(x) dx, which is not the information matrix of mh' but

nevertheless will be positive if weighting by f does not differ much

from weighting by h.' While we have not established a general result, when

this expectation is downward the average derivative bias is downward as

expected.
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3.3 Normal Predictors and Smoothing Bias

For nonlinear models, we can obtain more explicit formulations for the

derivative bias when the predictor variables are normally distributed (and a

normal kernel is used). Consequently, we now add the assumption

Assumption 3.3: The density f(x) is the multivariate normal density, with

mean p and nonsingular covariance matrix .

With assumption 3.2, the density h of z x + hu is a normal density with

mean p and covariance matrix + h2I, so that

(3.21) Ah(Z) = -aln h/az = ( + h2I) l(z - )

and

(3.22)
21 / ( h I)--a21n /azaz = (E + hI)

Further, we have that z = x + hu and u are joint normally distributed, which

implies that z and u - E(ulz) are independently distributed normal variables.

Defining

(3 23) Ah = (E + hI) z

then (3.18) implies that hE(ulz) = (I-Ah )(z-p).

The multivariate linear model is cast appears in this notation as

follows. Suppose now that y follows a normal regression model;

y - a + PTx + c, where e is distributed with mean 0, independently of x. Here

T
the true regression is g(x) = a + x, with derivatives g'(x) - , and the

regression of y on z x + hu is

(3.24) Ah(Z) E(ylz) = [a + (-Ahp)T ] + (Ah)T

with derivatives h'(Z) = Ahp. Therefore, g'(x) will estimate Ahp for each
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x, and is a downward biased estimator of g'(x) - b in the sense of

Chamberlain and Leamer(1976), namely Ah - Ah + (I-Ah)O is a matrix weighted

average of $ and 0, with positive definite weights. In the univariate case

2 22
we have Ah - -vh a2 /(a +h ) as before, and in the multivariate case where

h2h

- a2 I, we have Ah (1-vh) I. The design of Table 1 had h - 1 and a2 - 1,

so that the downward derivative bias factor predicted by this analysis is

1 - vh - 1/2 for each component. While not exactly matching the results of

Table 1, this depiction does explain a substantial amount of the difference

observed between the "average" row and the true values.

Because of the "argument-shift" structure, it is natural to conjecture

that the downweighting matrix Ah = (+h2I) plays a role in the

derivative bias associated with the estimation of a nonlinear regression

function g(x). In particular, with the additional regularity condition

Assumption 3.4: Suppose that for any normally distributed variable v and

scalar , we have a/af (Ev[g(v+f)]) - E [g'(v+)],

we can give a general characterization of the average derivative bias with

normal predictors. In particular, we can show

(3.25) E[Yh'(x)] = AhEw[g'(w) ]

where w - N(px,Zx[I - Ah(I-Ah)]). For the case where 

a2I, with vh m h2/(a2+h2), this result specializes to

(3.26) E[-h'(X)] (l-vh)Ew[g'(w)]

where w - (,ao2 I [1 - h(l-vh)]). As such, the average impact of smoothing

bias in derivatives is to downweight by Ah (or 1-vh), and alter the average

18



derivative value E[g'(x)] to E[g'(w)], where w has a more compact normal

distribution than x; with both distributions centered at .

The demonstration of (3.25) follows directly from the normality

and independence of z and hu - hE(ulz) e implied by assumptions 3.2 and 3.3.

The decomposition (3.16) is written as

(3.27) h(Z) E [g(z - E(hulz) - e)] - E(g[Ah z + (I-Ah )p - e])

so that assumption 3.4 implies

(3.28) h'(Z) AhEe (g'[A h z + (I-AhT ) - e])

Since e is independent of the argument z, by evaluating at z - x and taking

expectations we have

(3.29) E[h (X)] = AhExEetg'[ATx + (I-AhT ) - e]) - AhE[g'(w) ]

where w AhTx + (I-A T )p - e. w is normally distributed with mean p and

covariance matrix Ah A + h T = Z[I - Ah(l-Ah)]. This verifies (3.25).

The derivative bias formulation (3.25) has the striking implication that

on average, the same downweighting applies to derivatives when the true

model is quadratic or linear; for either g(x) a + PTx or g(x) = a + PTx +

x Bx, we have that

(3.30) Ex[7h'(x)] = AhE[g'(x)]

This is because the derivatives of the quadratic function are linear in x, so

that the spread change (from x to w in (3.25)) is inconsequential.

It is important to stress "on average" above, as one does not have

pointwise proportional downweighting, or h' (x ) - Ag'(x) for each x for a

quadratic function g(x). A useful exercise (details left for the reader) is

to verify this in the univariate normal case. We sketch this as

19
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Example 3.1: Let x - '(ja ) and

g(x) = a + fix + 1x 2

then yh(Z) is

(3.31) Yh(Z) [a + Bfivhl + + Plh + lz

+ [(1-vh) + 2 Vh - 2 1-h h] z + [fl(1 - h) ] z

2 22 2
with vh h /(a 2+h ) as before, and a uz a (positive) constant. Here h is

a shifted quadratic function, and h is concave (convex) if and only if g is

concave (convex). Since

(3.32) Y7h (z) = [( + 2 1vh)(-Vh)] + 2 [(1 - h )2 z

g'(z) = + 2 1 z

the relative values of h'(Z) and g'(z) depend on the position of the

predictor density (through ), h (through h) and z, matching only at z .

Nevertheless, we can verify (3.26,30) as

(3.33) E[-Th'(x)] = (1-vh) + 2 l(l-vh)

= (l-Vh)[ + 21A] (l-vh)E[g'(x)]

so that the mean of h' is biased downward by the same factor (1-vh) that

applies to the coefficient of a univariate linear model with

errors-in-variables.

We close this section with a further example, namely one that gives

similar results without the additive disturbance structure of assumption 3.1.
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Example 3.2: Consider a normal probit model, where

(3.34) y 1[E < a + Tx]

where 1[ ] is the indicator function, and - N(0,1), independently of x.

Here g(x) - I(a + Tx), where is the normal c.d.f., and g'(x) - i(a+pTx),

where Vb is the standard normal density function. With z - x + hu, to derive

Yh(Z) = E(ylz) we note that

(3.35) y - 1[ + Th(u-E(ulz)) < a + T (z - hE(ulz))]

= 1[ < a + ( )T + ( + (Ah)Tz ] ,

where r, E + bTh(u-E(ulz)), using that hE(ulz) - (I-AhT)(z-As). The variable

, is distributed independently of z, and - (O,a 2), where

2 2T 4 2 2 -T
C2 1 + h T [I + (h4-2h2)(Z+h2I) 1 ] P. Therefore

(3.36) 'h(Z) = [(a + (-Ahp) T + (Ah) Tz)/a ]

and

(3.37) 7h (Z) (A h)/a? 0[(a + (-Ah)T + (Ah)Tz)/a ]

involving Ah from the argument-shift, as well as other differences. Finally,

by exploiting the McFadden-Reid(1975) formulae (applied to average

derivatives as in Stoker(1986a,b)), we have that

(3.38) E[g'(x)] = cl P

(3.39) E[yh'(X)] c2 AhP = (c2/cl) Ah E[g'(x)]

where the constants c1 and c2 are given as

(3.40) c = C1 -[( + P T)/C1]

c [1 + Tz]/ 2
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C2 C2 -1[(a + T)/C2 ]

C2 - [1+ pT ( + h2 I)' 1Z( + h2 I) ]l/2

Therefore, the average downweighting is similar to that before, involving a

scaling of the linear factor Ah.

4.Size of the Derivative Bias: Dimension and Sample Size

Our discussion so far has indicated how derivative bias arises, and has

given formulations of the bias in terms of the bandwidth value h. Aside from

the simulation results of Tables 2 and 3, where the bandwidth was set in an ad

hoc fashion, we still have no sense of the "typical" size of the bias. For

applications where bandwidth values are small, there will be little

derivative bias; for those where the bandwidth is large, the bias can be a

substantive problem. Moreover, since different bandwidth values are

appropriate for different sample sizes, and for different dimensions (number

of x's), the derivative bias may arise only in limited settings; for

instance, small samples of moderate dimension.

We address this issue by considering the bias implied by bandwidth values

set in an approximately optimal fashion. In particular, we consider where the

true model is

(4.1) i a + Xli ++ ki + ki + ki i 1,...,N

where xj, j - 1,...,k and are independent, univariate normal random

variables, and a is a constant. For comparability across dimensions, we

fix the true R2 value of the equation by setting k2 - k(l - R2). From

(3.24), for a given bandwidth value h, the bias factor Ah for this design is

(1 - h) I, where vh -h2/(1 + h2). In words, each derivative will estimate

(1 - h) of its true value.
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We compute the bandwidth values by minimizing weighted mean integrated

squared error, approximated by its leading terms of the bias and variance.

Weighting is uniform over the centered (rectangular) region of probability

.95 for each dimension. The calculations and specific formulae are given in

the Appendix.

The bandwidth values h and the derivative bias h are computed for

R2 values of .8, .5 and .2 respectively in Tables 3a, b and c. Aside from the

case of one dimension, the bias values are strikingly large. For instance,

with R2 = 8, dimension k - 4 and N - 100, the optimal bandwidth value is h =

1.085, with a downward derivative bias of 54%. In comparison, Table 1 used

h 1, and therefore slightly understated the bias problem. The "curse of

dimensionality" appears here in spades, namely the derivative bias greatly

increases with dimension, and does not decrease rapidly with sample size. The

impact of the true noise in the equation is predictable but not terribly

large, as the bias increases when the R2 is lowered, but the differences are

not as substantial as those seen for the other features.

Of course, Table 3 is dependent upon the normal linear model, and

different bandwidth values would arise if any aspect of the design were

altered. Nevertheless, these results suggest strongly that derivative bias

can be a serious problem in typical empirical problems.

5. Bias in Marginal Effects and Fitting Criteria

We close our discussion by presenting a diagnostic statistic for bias in

marginal effects, and a few remarks on the structure of the bias with

different kinds of nonparametric regression estimators. The fact that

derivative bias arises with a linear model is symptomatic of certain fitting

problems of the kernel regression estimator. In particular, if the kernel

estimator is computed with y = x, the result is a biased depiction of the true
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TABLE 3: DERIVATIVE BIAS - APPROXIMATELY OPTIMAL BANDWIDTHS

Specification:

Linear Model:

Normal Regressors:

Yi a + xji + aci, i - 1...,N

x - (O,I)

Normal Disturbance:

Optimal Bandwidth:

Derivative Bias:

- I(0,1); Constant R2

h - A(k) Nl/(k+4 ) A(k)

h - h2/(l+h2 )
hh- 

Table 3a:

a2 -k(l - R2)

formula given in Appendix.

R2 - .80

A(k)

Dimension k

N- 25
Bandwidth h
Derivative Bias

0.719 1.193 1.589 1.930 2.199 3.111

1 2 3 4 5 10

0.378 0.698 1.003 1.291 1.538 2.472
12.48% 32.74% 50.17% 62.49% 70.29% 85.94%

N - 50
Bandwidth h
Derivative Bias

N - 100
Bandwidth h
Derivative Bias

N- 500
Bandwidth h
Derivative Bias

N -
Bandwidth h

1000

Derivative Bias

N -
Bandwidth h

5000

Derivative Bias

N - 10000
Bandwidth h
Derivative Bias

N - 100000
Bandwidth h
Derivative Bias

0.329 0.622 0.909 1.184 1.424 2.353
9.76% 27.87% 45.23% 58.35% 66.97% 84.70%

0.286 0.554 0.823 1.085 1.318 2.239
7.57% 23.47% 40.39% 54.08% 63.48% 83.37%

0.207 0.423 0.654 0.888 1.103 1.996
4.13% 15.20% 29.96% 44.06% 54.87% 79.93%

0.181 0.377 0.592 0.814 1.021 1.899
3.16% 12.46% 25.98% 39.84% 51.03% 78.30%

0.131 0.288 0.471 0.666 0.854 1.693
1.68% 7.68% 18.14% 30.70% 42.16% 74.14%

0.114 0.257 0.426 0.610 0.790 1.611
1.28% 6.20% 15.38% 27.14% 38.45% 72.19%

0.072 0.175 0.307 0.458 0.612 1.367
0.51% 2.97% 8.60% 17.32% 27.25% 65.14%



Table 3b: R2 .50

A(k)

Dimension k

N- 25
Bandwidth h
Derivative Bias

0.864 1.390 1.811 2.164 2.435 3.321

1 2 3 4 5 10

0.454 0.813 1.144 1.447 1.703 2.639
17.07% 39.78% 56.67% 67.68% 74.36% 87.45%

N - 50
Bandwidth h
Derivative Bias

N 100
Bandwidth h
Derivative Bias

N - 500
Bandwidth h
Derivative Bias

N - 1000
Bandwidth h
Derivative Bias

N - 5000
Bandwidth h
Derivative Bias

N - 10000
Bandwidth h
Derivative Bias

N - 100000
Bandwidth h
Derivative Bias

0.395 0.724 1.036 1.327 1.577 2.512
13.49% 34.40% 51.76% 63.78% 71.31% 86.32%

0.344 0.645 0.938 1.217 1.460 2.390
10.57% 29.39% 46.82% 59.69% 68.06% 85.11%

0.249 0.493 0.746 0.995 1.221 2.131
5.85% 19.57% 35.72% 49.76% 59.84% 81.95%

0.217 0.439 0.675 0.913 '1.130 2.028
4.49% 16.19% 31.32% 45.44% 56.09% 80.44%

0.157 0.336 0.537 0.746 0.945 1.808
2.41% 10.15% 22.35% 35.77% 47.18% 76.57%

0.137 0.299 0.486 0.684 0.875 1.720
1.84% 8.23% 19.10% 31.90% 43.37% 74.74%

0.086 0.204 0.350 0.513 0.678 1.459
0.74% 4.00% 10.90% 20.85% 31.46% 68.05%
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2
Table 3c: R .20

A(k)

Dimension k

N - 25
Bandwidth h
Derivative Bias

0.949 1.503 1.937 2.295 2.566 3.435

1 2 3 4 5 10

0.498 0.879 1.223 1.535 1.794 2.729
19.89% 43.59% 59.94% 70.20% 76.30% 88.16%

N - 50
Bandwidth h
Derivative Bias

N - 100
Bandwidth h
Derivative Bias

N - 500
Bandwidth h
Derivative Bias

N - 1000
Bandwidth h
Derivative Bias

N - 5000
Bandwidth h
Derivative Bias

N - 10000
Bandwidth h

Derivative Bias

N - 100000
Bandwidth h
Derivative Bias

0.434 0.783 1.108 1.407 1.661 2.597
15.84% 38.01% 55.10% 66.45% 73.40% 87.09%

0.378 0.698 1.003 1.291 1.538 2.472
12.48% 32.74% 50.17% 62.49% 70.29% 85.94%

0.274 0.534 0.797 1.055 1.286 2.204
6.97% 22.16% 38.86% 52.69% 62.32% 82.92%

0.238 0.475 0.722 0.968 1.191 2.097
5.37% 18.43% 34.27% 48.37% 58.65% 81.47%

0.173 0.363 0.574 0.791 0.996 1.869
2.90% 11.67% 24.77% 38.51% 49.79% 77.75%

0.150 0.324 0.520 0.726 0.922 1.779

2.21% 9.49% 21.27% 34.50% 45.95% 75.99%

0.095 0.221 0.374 0.544 0.714 1.509
0.89% 4.64% 12.27% 22.85% 33.76% 69.49%



regression E(xlx) = x, along the lines discussed above. This feature

motivates the discussion of this section.1 4

A

The simulations of Section 2.2 showed how the "slope estimator" d gave

essentially unbiased results for average derivatives. This estimator

multiplied the average of regression derivatives by the inverse of the factor

l A A

(5.1) Mh = N x'(xi) i

From our discussion above, it is clear that Mhx acts to correct for level

derivative bias in the estimation of the function x - E(xlx) by the kernel

regression estimator. Moreover, for the normal examples above, if the

trimming is ignored (or allowed to vanish with h fixed), we have that Mhx

estimates the downweighting factor Ah. Mh can then be computed as a

diagnostic statistic, and compared to the identity matrix. Of course, if the

normal design is called for, Ah = (+h2 I) z could be estimated directly to

indicate the extent of the problem(or with standardized data h - h2/(1 +

2
h2)). Mh would be preferable in nonnormal settings, although it only

measures the average proportion of derivative bias in estimating a linear

model. Example 3.1 showed how Mhx may not give an accurate correction to the

derivatives g'(x) at different evaluation points x.

Given that the issue arises in the estimation of the regression E(xlx),

it is natural to conjecture that the derivative bias might be smaller

for a estimation method that reproduced x exactly. While several

methods exhibit this property, here we consider some generic features of

approximating g(x) by global least squares, such as fitting truncated

polynomial or Fourier series expansions.

From Hrdle (1991), the kernel regression estimator arises from the local

least squares problem
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N

(5.2) g(x)- argmin R i [y 
# i=l

^

As above, with h held fixed, plim g'(x) - 7h'(x). From integrating by

parts, the mean difference between g' and 7h' can always be written as

T.
(5.3) E(g') - E(7h') = E([g(x) - h(x)] CT(x))

where (x) -f'(x)/f(x) is the translation score of the true density. Mean

bias arises from the level differences g(x) - h(X) being systematically

correlated with the score (x).

With global least squares, this interaction with the density can be

refined. In particular, suppose that the regression was estimated by

N

(5.4) g(x) = argmin N 1 [Yi _ (xi)]2

A(x)EPq i=l
q

where qP is a class of functions, for example polynomials of degree q. A
q

nonparametric theory for this estimation would be based on changing q with N,

so as to broaden so that its closure is sure to contain g(x). However,
q

consider the implications of such a method when N increases, for fixed q.

Suppose that the class Pq were sufficiently regular to allow us to demonstrate

that plim g(x) = (x) where solved the least squares problem

(5.5) j(x) = argmin E{[g(x) - (x)]2 .

p(x) E'

Moreover, the least squares criterion would imply that g(x) - (x) is

uncorrelated (orthogonal) to any element of q; for instance, the solution

Z(x) of the (population) problem of fitting the density score (x), or
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(5.6) Z(x) argmin E([(x) - (x)]2

(x) Pq

The fact that g(x) - -(x) and (x) are uncorrelated allows us to refine (5.3)

to

(5.7) E(g') - E(y') E([g(x) - (x)] T[(x) - (x)) .

The mean derivative bias is now the product of differences in fitting the

function g(x) and the score e(x).15 While general results are left for future

research, we can see how our earlier results are affected when x E q, with Pq

a linear space (for instance, if denotes polynomials of degree q 2 1).

Obviously, there is no derivative bias for linear models, as (x) = g(x) in

that case. Moreover, there is no mean bias when the regression is nonlinear

but the predictors are normal,1 6 as (x) is a linear function of x, so (x) =

e(x) here. Since this is not a pointwise justification, it does not recommend

series estimators generally (it is not clear how multimodal or skewed design

will impact then). However, it does illustrate how the fitting criterion can

alter the dependence of the bias on the design of the regressors.

6. Concluding Remarks

The intention of this paper is to be thought-provoking. While the

analysis is clearly critical about the incautious use of marginal effects

estimated by local smoothing, this does not serve as an argument for or

against the use of local smoothing estimators for examining the basic

structure of regression relationships. Such estimators are well equipped for

detecting bumps, troughs and other kinds of nonlinear structure, that other

estimators (such as truncated series) may miss. The main point of the paper

is that smoothing tends to dampen the size of the bumps, etc., leading to
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mismeasurement of marginal effects. Moreover, when the bias is roughly

proportional, a simple correction could remove the bias, as with the "slope"

version of the average derivative estimator given above. Similarly, while the

last section indicated how estimators based on global fitting may have less

derivative bias that kernel estimators when the design is normal, the

same property is not given for more general distributions of the regressors.

The focus of the paper on pointwise bias was originally motivated by

simulation results such as those of Table 1 and 2, which showed substantial

average mismeasurement. However, it is important to recall that pointwise

variance plays an equal role in the accuracy of nonparametric estimators.

While this feature is incorporated in the optimal bandwidth calculations of

Table 3, it gives further reason for not jumping immediately to the conclusion

that alternative nonparametric estimators dominate those using local

smoothing. For instance, if there are k - 5 regressors and N - 100 data

points, fitting a cubic polynomial (the lowest degree permitting non-concave

or convex relations) involves estimating 56 coefficients, which can impart

substantive variance to the estimated function (fitted values) from such an

analysis.

These are practical issues, which should be seen as distinct from the

theoretical results on nonparametric and semiparametric methods. The myriad

of results that now exist for optimal rates of convergence for function

estimation, or 4-N consistency for semiparametric methods, do not address these

implementation issues directly. For instance, for estimating average

derivatives, the bandwidth conditions of Powell, Stock and Stoker(1989) and

Hardle and Stoker(1989) indicate that the bandwidth should converge to zero

more quickly than for pointwise estimation, giving rise to "asymptotic

undersmoothing". While tempting, this does not establish that bandwidths

should be set to smaller values for a given finite sample size, but just how
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they would shrink in with increases in sample size.l7 These papers also make

use of bias reducing "higher-order" kernels, which are not considered in this

paper, but could affect the mismeasurement of marginal effects.

The point of this is that the myriad of theoretical results now available

on optimal nonparametric and semiparametric results are not informative about

how these procedures will work practically. This paper has presented a large

sample analysis, but used a fixed bandwidth theory to try to accurately depict

the impacts of smoothing in realistically sized samples. Which analysis is

better depends on the quality of approximation, which is a practical issue.

We have taken the stance that when a bandwidth of h 1 is set, the

distribution of the estimator will be better approximated but fixing h 1 in

the approximation, than by considering h to be tiny, as in the limit. The

same issue exists for every nonparametric estimator; are the precision

properties of a function fit by a cubic polynomial better described by

assuming the polynomial degree is large, as in the limit, or by recognizing

that a cubic formula has been fit to an unknown function.

Econometric theory has undergone spectacular development over the past

decade, coming to an equal position with mathematical statistics in terms of

understanding flexible measurement methods. This development has not been

accompanied by a large number of empirical applications, in part because of

the high degree of technical prowess now required for an applied researchers

to follow and assess the literature. The spirit of this paper is to suggest

that the practical issues be given much more weight in this econometric

research program. Without such practical validation, the impact of the

theoretical progress to date will be limited.
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Appendix: Approximate Optimal Bandwidth Formulae

The bandwidth values of Table 3 are picked by criterion discussed in

Hardle(1991), following closely the calculations in Hausman and Newey(1990).
A

For kernel estimator gh(x) of a regression g(x) - E(ylx), we choose the

bandwidth h to minimize the approximate weighted integrated mean squared

error, or

A A 2
IMSE(h) - w(x) [Var(gh(x) + Bias(gh(x)) ] f(x) dx

where w(x) is a weighting function, and pointwise variance and bias are

approximated by their leading terms in the bandwidth h, namely

Var(gh(x)) N-lh k I (u)2du a2(x)/f(x)

Bias(gh(x)) = (h2/2) Trace(82g/axaxT + 2 f'(x)/f(x)g'(x) ) uuTX(u)du

2
where a (x) = Var(ylx). For the linear model (4.1) with standard normal

regressors, and a normal kernel, IMSE(h) specializes to

IMSE(h) = C1N lh-k + C2h4

where

<(u2 2 -k/2 2
C1 = (u)du w(x)dx 2 w(x)dx =

C2 = I ( xj)2 w(x) f(x)dx

The optimal bandwidth value is then given as

-l/(k+4) l/k+4)

h-AN A = (kC1/4C2)l/(k)

We utilize uniform weighting on 95% of the sample; namely

w(x) l[-ck < x < ck; j - l,...,k]
j3 k
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where ck is set such that the (marginal) probability of -ck < xj < ck is

(.9 5)/k, so that E(w) .95 for every dimension value k. Recalling that we

set a 2 k(l - R2), the constants C1 and C2 are then solved for as

- 2 -k/ k22
C 2-k/2 w(x)dx 2 2k/2[2 k]k a2 2 k/2k k(l - R )

C2 + ( 2 jb(x )dx - [( 9 5)1/k 
2ck(ck)]k

-Ck

where (.) is the standard normal density, and the latter equality follows

from twice differentiating and evaluating the truncated normal moment

generating function. Therefore, the optimal bandwidth value is determined as

a function of k and N by

-1/(k+4)
h = A(k) N where

A(k) = (k22k/2 ckk/4[(.95) 1 /k 2ck (c)]kl/(k+4 )(1 - R2 )/(k+A~~~~~~~(1) - )k
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Notes

1 See Lau(1986), Barnett and Lee(1985) and Elbadawi, Gallant and Souza(1983)

for references to this literature.

2 For instance, a linear equation is capable of measuring first derivatives at

a point, but OLS coefficient estimates will not necessarily equal the

derivatives at a point of interest, such as the sample mean of the predictors

(c.f. White(1980), among others).

See Prakasa-Rao(1983) and Hrdle(l991) for references to the relevant

statistical literature, and Delgado and Robinson (1991) for an extensive

survey of recent work in econometrics.

Stoker(1991b) discusses the estimation of density derivatives with a similar

conclusion. However, reasons for the downward bias in kernel density
*he

derivatives are quite different than forkernel regression case as
of

studied here. Very preliminary versions of some of the resultsAthis paper and

Stoker (1991b) were contained in a draft entitled "Smoothing Bias in

Derivative Estimation," revised July 1990.

Hardle (1991) gives a good summary of this theory and the relevant

literature.

Extensive versions of the simulation results below will be reported in

Stoker and Villas-Boas(1991).

See Stoker(1986), Hrdle and Stoker(1989) and Powell, Stock and Stoker(1989)

among others. A semiparametric motivation for the estimation of 6 derives from

models with the index structure E(yjx) G( x), which is commonly available

in models of limited dependent variables. Without loss of generality, the

coefficients in a model of this type can be scaled so that they represent the

average effect on the observed response; namely one can set 6 - 6 defined

above. This imparts a concrete interpretation to the empirical effects that

are represented by the values of the coefficients .

8 The conditions also employ "higher-order" kernels, and many other smoothness

conditions that are not used in the analysis of this paper.
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While the positive kernel is not consistent with the asymptotic normality

results above, Powell, Stock and Stoker(1989) and Stoker and Villas-Boas(1991)

find that a positive kernel gives superior small sample performance.

Moreover, a positive kernel is used in the remainder of the exposition, so

that the results reported are relevant.

10 Rather it was chosen as roughly the smallest value for which stable

performance was seen for the "average" estimator.

1Silverman (1986) notes this structure for density estimators, and it is

exploited to study bias in Stoker(1991b).

12 To avoid possible confusion in the following, we note that z denotes the

random variable z x + hu as well as the argument for evaluating 7h. In

particular, for constructing ah(Z), we recognize that z - x + hu. However,

our point here is that g'(x) estimates h (x), namely the function h(z)

evaluated by setting the argument z = x.

13 Stoker(1991b) shows some elementary connections between the true density f

and the convolution h.' For instance, for a small enough bandwidth, it is

easy to show that the modal structure of h will be analogous to that of f.

A recent paper by Gasser and Engel(1990) criticizes the use of

Nadaraya-Watson weights in regression estimation, as in (2.2-4), for different

reasons than discussed here. However, some aspects of their analysis are
A

similar, such as noting the sensitivity of g(x) to the density of x.

15 This argument, for polynomials, was used by Newey(1991) to study

asymptotic bias.

This feature of polynomials is shown in Florens, Ivaldi and

Larribeau-Nori(1991).

7 Goldstein and Messer (1990) demonstrate the "undersmoothing" argument for

estimation of general functionals, and make the suggestion of undersmoothing

in finite samples.
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