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Abstract

Boom and bust is a pervasive dynamic for new products. Word of mouth, marketing, and learning

curve effects can fuel rapid growth, often leading to overcapacity, price war, and bankruptcy.
Previous experiments suggest such dysfunctional behavior can be caused by systematic
'misperceptions of feedback', where decision makers do not adequately account for critical

feedbacks, time delays, and nonlinearities which condition system dynamics. However, prior

studies often failed to vary the strength of these feedbacks as treatments, omitted market processes,

and failed to allow for learning. A decision making task portraying new product dynamics is used

to test the theory by varying the strength of key feedback processes in a simulated market.

Subjects performed the task repeatedly, encouraging learning. Nevertheless, performance relative

to potential is poor and is severely degraded when the feedback processes in the environment are

strong, supporting the misperception of feedback hypothesis. The negative effects of feedback

complexity on performance were not moderated by experience, even though average performance
improved. Models of the subjects' decision making heuristics are estimated; changes over trials in

estimated cue weights explain why subjects improve on average but fail to gain insight into the
dynamics of the system. Though conditions for learning are excellent, experience does not appear
to mitigate the misperceptions of feedback or systematic dysfunction they cause in dynamic

decision making tasks.
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Boom and bust is a pervasive dynamic for new products. Sales of new products often

grow at rapid exponential rates as word of mouth, advertising, and falling prices attract new buy-

ers. New producers tend to enter the market. But eventually the stock of potential purchasers is

depleted and sales fall to an equilibrium determined by replacement needs. During the transition to

replacement demand producers often suffer large losses due to excess capacity and falling prices,

stimulating exit (Gort and Klepper 1982, Klepper and Graddy 1990).

As a typical example, figure 1 shows the sales and net income of Atari, the leader of the

-Islt s'ave of video games. Atari, then a division of Warner Communications, roughly doubled its

sales ch year, from $35 million in 1976 to over $2 billion in 1983. Profit from operations

reached $323 million in 1983. But within a year sales plummeted as both home and arcade

markets became glutted. Atari lost $539 million in 1983, and was sold for just $160 million in

debt, a 32% equity stake, and no cash (Petre 1985). Warner took an additional $592 million

charge against 1984 earnings for losses related to the sale.

Porter (1980) describes this pattern of boom, bust, price war and shakeout as a generic

feature of industrial dynamics:

"As [a maturing industry] adjusts to slower growth, the rate of capacity addition in the industry must slow down
as well or overcapacity will occur. Thus companies' orientations toward adding capacity and personnel must
fundamentally shift and be disassociated from the euphoria of the past... These shifts in perspective rarely occur
in maturing industries, and overshooting of industry capacity relative to demand is common. Overshooting leads
to a period of overcapacity, accentuating the tendency during transition toward price warfare." (p. 239)

The boom and bust dynamic appears in diverse industries. "Snowmobiles, hand calculators, tennis

courts and equipment, and integrated circuits are just a few" examples cited by Porter (1980). To

these can be added VCRs and other consumer electronics, personal computers, toys and games

(Beinhocker 1991), bicycles and chain saws (Porter 1983), home furnishings (Salter 1969), and

numerous other consumer and industrial goods. This study explores the role of cognitive

misperceptions in the genesis and persistence of the boom and bust phenomenon.

The boom and bust dynamic provides a typical example of a dynamic decision making

system. Decisions made today alter the environment, giving rise to information upon which

tomorrow's decisions are based - the evolution of the system is strongly conditioned by the
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behavior of the decision makers. Recent studies show, with few exceptions, that decision making

in complex dynamic environments is poor relative to normative standards or even relative to simple

heuristics, especially when decisions have indirect, delayed, nonlinear, and multiple feedback

effects (Diehl 1992, Sterman 1989a, 1989b, Kleinmuntz and Thomas 1987, Kluwe, Misiak, and

Haider 1989, Brehmer 1990, Smith, Suchanek, and Williams 1988; Funke 1991 reviews the large

literature of the 'German School' led by D6rner, Funke, and colleagues). Sterman (1989a, 1989b)

argues that the mental models people use to guide their decisions in dynamic settings are flawed in

specific ways: they tend to ignore feedback processes whiqh cause side-effects, they fail to

appreciate time delays between action and response and in the reporting of information, and they

are insensitive to nonlinearities which may cause the relative importance of different feedback

processes to change as a system evolves. Sterman argued that such "misperceptions of feedback"

cause systematically dysfunctional behavior in dynamically complex settings.

However, prior work is limited in several respects. In many studies feedback complexity

was not varied as an experimental treatment; other factors might have been responsible for

subjects' poor performance. Market institutions, argued by many to provide incentives and means

to overcome individual departures from rationality (Hogarth and Reder 1987), have not been

included in most studies of dynamic decision making (but see Kampmann and Sterman 1992).

Many studies report the results of first trials in which subjects had little opportunity for learning.

In others (Brehmer 1990, Kleinmuntz and Thomas 1987, Broadbent and Aston 1978 and many of

the studies surveyed in Funke 1991), subjects had little or no prior training or experience relevant

to the task (fighting forest fires, treating disease, running a national economy or managing an

ecosystem). While good arguments can be made that 'real life' is more like the first trial in such

experiments than the last (Camerer 1987), the robustness of the misperception of feedback phe-

nomenon to opportunities for learning has largely gone untested.

The present experiment addresses many of the limitations of earlier work. The task - the

introduction and management of a new product - is realistic and well matched to the interests and

training of the subjects - management school students, most with several years of business experi-



ence. The simulated environment includes an explicit market mechanism, including competition

and consumer response to prices. Powerful incentives are used to motivate performance. The

misperception of feedback (MOF) hypothesis is tested directly by varying the strength of key feed-

back relationships across experimental conditions. If subjects are prone to misperceptions of the

feedback environment, performance relative to benchmarks should be systematically worse in

conditions with high feedback complexity, since these feedbacks will produce consequences unac-

counted for by subjects' mental models, and better in environments with only weak feedbacks,

since these vironments will more closely coincide with their mental models. Further, the sub-

jects performed the task repeatedly, creating opportunities for learning which might improve per-

formance, particularly in conditions of feedback complexity. We describe the task, protocol, and

results, analyze the nature of the learning process, and close with discussion of the implications.

The Task: Managing a new product

The task consists of an interactive computer game or "management flight simulator" (Senge

and Sterman 1992 and Graham, Morecroft, Senge and Sterman 1992 discuss the design and use of

such simulations and contrast them with traditional business games; Sterman 1988 provides an-

other example). The flight simulator embodies a model representing a firm, its market, and its

competition. Subjects must manage a new product from launch through maturity, and make

pricing and capacity decisions each quarter year through a ten-year simulation.1

Market Sector

The market model is based on well known diffusion models in the tradition of Bass (1969),

Kalish and Lilien (1986), Mahajan and Wind (1986), Homer (1987), and Mahajan, Muller, and

Bass (1990). The essence of these models are the feedbacks driving the adoption process by

which potential purchasers become aware of and choose to buy the product (figure 2). Adoption

increases the customer base, generating word of mouth which leads to additional sales (a positive

feedback process), but also depleting the pool of potential future customers (a negative feedback).

The customer base follows a characteristic s-shaped pattern, while sales rise exponentially, then

peak and decline to the rate of replacement purchases as saturation sets in.2 Key features of the
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market sector include the following:

* Product price affects the number of potential adopters. The elasticity of industry demand is less

than unity, quite typical for many goods (Hauthakker and Taylor 1970).

* The greater the aggregated marketing expenditures of the firm and the competition, the larger the

fraction of potential customers who purchase each quarter. Diminishing returns set in for high

marketing expenditure levels.

* Demand is also generated by word of mouth. Word of mouth is driven by recent purchasers

(people who are still excited by the product and have not yet come to take it for granted). The

strength of the word of mouth effect (the number of purchases generated per quarter by each

recent purchaser) was a treatment variable in the experiment.

* A fraction of the customer base re-enters the market each quarter to replace worn or obsolete

units. The repurchase fraction was a treatment variable in the experiment.

* Total orders for the product are divided between the firm and the competition in proportion to the

attractiveness of each product. Attractiveness depends on price, availability (measured by

delivery delay), and marketing expenditure. While industry demand is relatively inelastic, firm

demand is highly but not infinitely elastic - price is important to consumers but availability and

marketing can differentiate the two products.

Firm sector

While many diffusion models implicitly equate shipments with orders, the model here

explicitly represents the supply side of the market. The key assumptions of the firm sector are:

* Product is built to order. Customer orders flow into a backlog until they are produced and

shipped.3 The firm will ship the current backlog within one period unless capacity is inadequate,

in which case the backlog and delivery delay rise, reducing the attractiveness of the finm's

product and the share of orders it receives.

* Subjects set a capacity target each quarter. Actual capacity adjusts to the target with a delay rep-

resenting the time required to plan for, acquire, and ramp up new production facilities. Capacity

adjustments follow a distributed lag with a mean of four quarters. Some investments can be real-
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ized sooner than four quarters (purchasing additional equipment), while some take longer

(building new plant). For simplicity the delay is symmetrical in the case of capacity reduction.

* The firm benefits from a learning curve which reduces unit costs as cumulative production expe-

rience grows. A standard "80%" learning curve is assumed - each doubling of cumulative pro-

duction reduces unit variable costs by 20%. The competitor's learning curve has identical

strength. There are no inter-firm learning spillovers.

* Profit is revenue less total costs. Total costs consist of fixed and variable costs, marketing

expenditures, and investment costs. Revenues are determined by the quantity shipped in the

current quarter and the average price received for those units. Customers pay the price in effect

when they booked their order, even if the price has changed in the interim.

* Fixed Costs are proportional to current capacity. Unit fixed costs are constant. Variable costs

are proportional to output. Unit variable costs fall as cumulative production increases.

Marketing expenditures are set to 5% of revenues.

* Investment costs represent administrative, installation, training, and other costs of increasing

capacity; symmetric decommissioning costs are incurred whenever capacity is decreased.

Investment costs are proportional to the magnitude of the rate of change of capacity.

* Subjects may lose as much money as they like without facing bankruptcy. The task is therefore

more forgiving than reality since losses which would cause bankruptcy in real life can in the

game be offset by subsequent profits.

Competitor Structure and Strategy

The subject's firm faces competition from another firm which has launched a similar

product at the same time. The playing field is level - the structure and parameters for the firm and

its competitor are identical. But while the subjects make price and target capacity decisions for

their firm, the competitor's price and target capacity decisions are simulated with simple rules.

The competitor sets target capacity to meet expected orders for its product and to control

delivery delays by reducing excessive backlogs. Expected orders are determined by the

competitor's current order rate and the expected growth rate of orders. Extrapolative expectations
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are assumed: the recent growth rate of orders is projected four quarters ahead - the length of the

capacity acquisition lag and thus the relevant planning horizon - to account for the growth in

demand likely to occur while awaiting delivery of capacity ordered today. To this forecast of

future demand is added an adjustment proportional to any excess backlog. If desired production

were higher than current capacity, additional capacity would be ordered to reduce the backlog. The

decision rule for competitor capacity acquisition has been used extensively in simulation models

and is well supported both empirically and experimentally (Senge 1980, Sterman 1987a, 1987b).

Competitor price is set to equal unit costs multiplied by a fixed margin to cover marketing

and investment costs, and to provide a normal return when capacity is well utilized. As competitor

production experience grows, unit costs fall, and competitor price falls proportionally.

Note that these decision rules are extremely simple. Consistent with theories of bounded

rationality (Simon 1982, Morecroft 1985) and experimental evidence (cited above), the competitor

relies on locally available information and uses simple rules of thumb. No optimization of invest-

ment costs versus opportunity costs of lost revenue is performed in selecting the path of capacity,

much less any strategic or game-theoretic reasoning about competitive reactions. One might expect

that subjects would easily find ways to exploit the competitor and achieve excellent results. On the

other hand, Hogarth and Makridakis (1981) found that subjects in a management game could not

differentiate between simulated and human competitors and attributed complex strategic reasoning

to 'competitors' whose decisions were largely random.

Hypotheses and Experimental Design

The central issue is the extent to which subject behavior and performance depend on the

feedback complexity of the environment. In markets for new products two critical feedback

processes involve word of mouth and the average lifetime of the product. Word of mouth creates a

powerful positive feedback loop by which recent purchasers of the product generate new

purchasers. The stronger the word of mouth feedback, the faster demand grows, the higher it

peaks, and the sooner and more suddenly the market declines as the nonlinear transition to

saturation sets in. The longer the lifetime of the product, the lower the replacement demand and the
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larger the "bust" or decline in demand from its peak to equilibrium value as the market for new

customers is saturated. We seek to understand whether subjects employ capacity expansion and

pricing strategies that are internally consistent and that function well in the rich feedback

environment surrounding the diffusion of new products. Are subjects' strategies sensitive to the

important feedbacks, time delays, and nonlinearities in the environment? Or do people approach

the task with simple mental models which do not adequately account for the these features?

Prior work on misperceptions of feedback (Sterman 1989a, 1989b, Diehl 1992) and on

intuitive extrapolation of exponential growth (Wagenaar and Timmers 1979, Wagenaar and Sagaria

1975, Andreassen 1990a, b) predict that performance relative to potential should deteriorate as the

word of mouth feedback increases in strength and as the product lifetime lengthens. Performance

relative to potential is hypothesized to decline as these factors increase not merely because the

market will have higher variance and will thus engender larger forecast errors. On the contrary, the

MOF hypothesis suggests subjects will approach the decision task with mental models that are

insufficiently sensitive to these feedbacks, nonlinearities and delays, and thus make decisions that

intensify the problems created by strong word of mouth and long product lifetimes. For example,

a learning curve strategy (low prices and aggressive capacity expansion to seek market share

advantage and push costs down the learning curve faster than the competitor) may be quite

effective in an environment where word of mouth is weak and replacement demand strong, since

there will be little overshoot of peak demand relative to equilibrium. However, when these

feedbacks are strong, the same strategy might lead to disaster. Low prices induce more customers

to enter the market, further accelerating demand growth. Likewise, aggressive capacity expansion

accelerates growth of the customer base, further strengthening the word of mouth feedback. By

augmenting the growth-producing feedbacks such a strategy increases peak demand and forces

saturation to occur more rapidly. The resulting excess capacity and losses may overwhelm any

cost advantage gained through the learning curve. The example illustrates a general point: subjects

may exacerbate or moderate the forces which create boom and bust, depending on how well they

understand the feedback processes in the environment. The misperceptions of feedback hypothesis
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thus predicts strong main effects of the treatments, with performance relative to potential degraded

significantly by stronger word of mouth and longer product lifetimes.

Yet performance should improve with experience. Improvement might arise for two rea-

sons with quite different implications. First, all features of the task other than the treatment vari-

ables remain constant over successive trials. Subjects can be expected to improve simply because

they become increasingly familiar with the task and information display. Later trials will be

informed by knowledge of the magnitudes and timing the variables achieved in prior trials.

Beyond learning from these surface features, however, we hope and expect subjects will gain a

deeper appreciation for the dynamics of the system and the feedback processes which produce

them, resulting in changes in strategy which allow them to perform better in complex feedback

environments. The distinction between these two modes of learning is critical. Since real situa-

tions vary in more dimensions than the task, improvement based on knowledge that, e.g. "last time

demand reached about two million units/quarter" will not transfer well from one actual new product

setting to another. Insight into the feedback structure and dynamics of such settings, however, can

be applied to situations with very different numerical values. Learning derived from surface fea-

tures of the task is expected to improve performance on average, but differences in performance

across feedback conditions would remain. Insight into the feedback structure of the task, in con-

trast, should help subjects improve performance more in conditions of high feedback complexity.

Such learning would manifest as a significant interaction between treatments and trial in which the

negative effects of strong word of mouth and long product lifetimes are moderated by experience.

We created five scenarios identical in all respects except for the strength of the word of

mouth feedback and average lifetime of the product (replacement fraction). These parameters are

varied from half to double the base case values. Figure 3 shows the pattern market demand would

take in the five scenarios if capacity were always equal to orders and assuming price equals unit

costs plus a fixed gross margin of 25%. In all cases the characteristic pattern of growth, peak, and

decline to equilibrium is present, but the growth rate, peak value and timing of orders, and equilib-

ria vary. Of course, the actual order pattern in any trial is strongly influenced by the subject's de-
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cisions, both directly, through the influence of price and capacity decisions on customer purchases,

and indirectly, through the subject's influence on the competitor's price and capacity decisions.

The 122 subjects were students in two sections of an elective class on system dynamics for

corporate strategy at MIT's Sloan School of Management. About 35% and 40% were first and

second year MBA students, respectively. Roughly 10% were mid-career managers in an executive

MBA program, 7% were undergraduates and the rest were graduate students from other MIT

departments. We used a Latin square design with five sequences of the five scenarios. Though a

few subjects failed to complete all five trials, the design was quite well balanced. The number of

trials in each of the 25 cel! :I 'he desig: nged from 19 to 27, with a mean of 23.

The task was assignc: as homework to be done individually within ten days. Subjects

received a detailed written description of the task describing their firm, the market, the competitor,

the cost structure, information available, and so on (Paich 1992). The software was demonstrated

in class, and the simulated environment discussed. Subjects were randomly assigned to one of the

five sequences by randomizing the floppy disks prior to distribution. Subjects could take as much

time as they wished for each decision, and could suspend play between trials, resuming it later,

moderating fatigue effects and encouraging reflection between trials. The instructions directed

subjects to keep a log during each trial, including the strategy they intended to follow and

evaluation of their results. Subjects were told these write-ups would be graded for the quality of

the analysis, providing an incentive to formulate a sensible strategy and evaluate its effects

carefully. Subjects also received "bonus points" in proportion to their cumulative profits for all

five trials (grades were never reduced no matter how poorly subjects did). Students' evident

concern with grades and the large number of questions received about the bonus point system

suggest the bonus provided a powerful incentive to perform well.4 These conditions allowed

individual effort to vary, possibly introducing additional between-subject variance, but increased

the incentives and opportunity for subjects to perform well and learn from their experience.

Each trial consisted of a 40 quarter market. The first two quarters of data were provided to

orient the subjects, who then made 38 sets of target capacity and price decisions. After each deci-
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sion, outcome feedback was provided showing the results for the quarter. A spreadsheet display

was used since the subject pool, management students with excellent computer skills, were all

experienced in interpreting such displays. The screen presented 19 variables, including a complete

description of the firm's operations and finances, extensive market data and competitor

intelligence. The display normally showed the current and three prior quarters. Subjects could at

any time scroll through the entire history with a few clicks of the mouse. In addition, subjects

could select up to four variables to display graphically the entire history of the trial to date. Any of

the variables in the spreadsheet could be so displayed; graphs could be constructed at any time and

as often as desired. The software automatically recorded the results.

Results

Before presenting the statistical results it is useful to examine the dynamics produced by the

subjects. Figure 4 shows a typical first trial (overall this subject's profits were 114% of the grand

mean). The subject's log (table 1) records his strategy before playing: "grow at market pace. Price

follower". However, the subject faced the most difficult condition (strong word of mouth; low re-

purchase fraction). Orders grow rapidly. The subject comments at time two "Need much more

capacity" and raises target capacity. However, due to the acquisition lag, capacity constrains ship-

ments, backlog grows, and delivery delay rises. The subject tends to follow competitor price

moves with a lag, even though the subject is unable to fill incoming orders throughout the growth

phase. The subject continues to increase target capacity to a peak of 5 million units in quarter 16 -

reflecting rapid industry growth and the large backlog of unfilled orders. However, orders peak in

quarter 12 at about 2.7 million units, and by quarter 14 capacity has risen enough to work off all

excess backlog. Shipments fall precipitously to the rate of new orders. The subject dramatically

cuts target capacity, commenting "I've gotta cut fixed costs", but actual capacity lags behind, peak-

ing at 3.7 million units in quarter 18 just as orders fall to their low point. The subject is unable to

cover the fixed costs of his excess capacity and experiences large losses. He writes "fire the CEO"

as cumulative losses reach $475 million in period 21. By quarter 25 orders stabilize at the replace-

ment equilibrium. The subject gradually reduces capacity and uses price to manage utilization.
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Profitability is restored, and the cumulative loss is cut to 'only' $268 million by the end of the trial.

Performance Measures

Since the profit potential of each scenario depends on the strength of word of mouth and

the product lifetime, subjects' raw performance - cumulative profit - confounds their relative abil-

ity to manage the situation with absolute profit potential. 5 We therefore assess subject performance

rele!ve to benchmarks to remove the effect of the treatments on potential profits. Profit equals the

product of unit sales and the profit margin (price - unit costs). Sales depend multiplicatively on the

strength of word of mouth, w, and the replacement fraction, r. Thus cumulative profit is a multiple

of hunction of w and r, and the appropriate Performance measure, I, is the ratio of cumulative

profit for each subject i in each trial t, 7nit(w,. , to cumulative benchmark profit r*(w,r): 6

rlit(w,r) = git(w,r)/c*(w,r). (1)

H adjusts raw profit for the intrinsic profit potential of the task and allows us to measure the effects

of the experimental treatments beyond changes in intrinsic task difficulty. The benchmark reported

here is provided by simple behavioral rules for both price and target capacity7 :

Ct = s'Dt-1 (l+gt 1)a2(Bt/Ct) a3 (2)

gt-1 = (Dt- - Dt-2)/Dt-2 (3)

where C* is target capacity, s* is target market share, D is total industry sales, g is the fractional

growth rate of i ustry sales over the most recently available period, B is the current backlog and

C is current capacity. The target market share is set to 50%, with a2 = 2.88 and a3 = .83.8 The

capacity rule seeks to capture 50% of expected demand, where demand is forecast by extrapolating

current industry sales at the current growth rate. In addition, target capacity is increased

(decreased) relative to the demand forecast when capacity is insufficient (excessive) relative to

desired production.

The benchmark strategy assumes cost-plus pricing with a constant gross margin:

Pt = (l+m)ct (4)

where c = unit costs and m = gross margin, set to .25. Price in the benchmark strategy simply

follows costs down the learning curve, with a markup sufficient to cover marketing expense,

III
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investment costs, and provide a reasonable profit (at normal capacity utilization).

The behavioral benchmark is a simple, even naive, rule. It involves no game-theoretic

reasoning. There is no explicit consideration of investment costs, competitor price or capacity, nor

any market information, much less of the competitor's strategy. It utilizes only four cues (costs,

industry sales, backlog, and current capacity) rather than full information. The rule naively

extrapolates demand growth and does not anticipate market saturation. It does not use pricing to

clear the market, control profit margins, or signal intentions. The behavioral benchmark should

therefore be a floor on subjects' performance.

We next estimate general linear models to test the hypotheses above. We first tested for the

effect of the sequence of scenarios. No sequence effect was found (p=.27 with Trial (T), Word of

mouth (w), and Replacement fraction (r) as explanatory variables). Sequence was therefore not

included in subsequent models. We next estimated a model with Subject (S), Trial, w, and r as

explanatory variables along with the interactions w x r, T x w, T x r, and T x w x r (table 2).

Overall, subjects performed very poorly relative to the benchmark. Despite the naivete of

the benchmark rule, the estimated mean ratio of profit to benchmark profit was under 24%. The

benchmark beats the subjects 492 trials to 73: in 87% of the trials the naive benchmark was a

ceiling, not a floor, on performance.

The main effects of the treatments are highly significant and consistent with the MOF

hypothesis. Over and above changes in intrinsic profit potential, performance relative to the

benchmark is severely degraded as feedback complexity increases (Table 2; figure 5). Specifically,

the stronger the positive feedback loops which produce growth (the stronger the word of mouth

effect), the worse people do even relative to the naive benchmark. Why? The faster the growth in

orders the harder it is for subjects to match capacity with demand. Excess backlogs build up,

increasing delivery delays and reducing market share, all reducing profit. The stronger the positive

growth loop, the sooner and higher demand will peak and the larger the decline in demand when

demand drops to replacement rates, leading to huge losses when the fixed costs of peak capacity

cannot be covered by low demand. Also, unnecessary investment costs are incurred to the extent
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subjects respond to faster demand growth with faster growth of capacity.

Most importantly, subjects seem insensitive to, and their behavior exacerbates, the critical

feedbacks which couple the firm to its market and competitor. The word of mouth feedback

depends on the customer base, which can only increase as fast as shipments. The faster the sub-

jects increase capacity the faster the customer base grows, and the stronger the word of mouth loop

will be. And to the extent subjects seek to gain market share by pricing below the competition they

speed demand growth as lower prices draw more people into the market. As will be seen below,

subjects consistently act to strengthen these positive feedbacks, speeding and increasing the

severity of market saturation and resulting in larger losses during the 'bust' phase.

Also consistent with the MOF hypothesis, the longer the useful life of the product the

worse subjects perform relative to the naive benchmark (figure 5). The longer the useful life, the

lower the replacement demand and the steeper and deeper the drop from peak orders as the market

saturates. Subjects are not able to track demand even as well as the naive strategy which forecasts

by univariate extrapolation and has no knowledge of the lifecycle. The highly significant

interaction between w and r shows that the negative effects of feedback complexity on performance

are compounded when the word of mouth feedback is strong and the replacement fraction small.

Frequent repurchase implies demand overshoots its equilibrium value only slightly - the nonlinear

transition from growth-generating positive feedback to decline caused by the negative feedback of

market saturation is gradual and mild. Subjects who are overly aggressive in acquiring capacity

during the boom are not punished too harshly. Thus, as shown in figure 5, average performance

is significantly better and changes in word of mouth have but little effect when the replacement

fraction is high. When there is little replacement demand, however, the nonlinear transition from

boom to bust is sudden and sharp. Thus average performance is significantly worse and changes

in word of mouth have stronger effects when the replacement fraction is low. In the most difficult

case (w=2, r=.5), mean subject profits are negative $121 million while the benchmark is positive

$229 million; in the condition with the weakest feedbacks (w=.5, r=2), mean performance is $605

million while the benchmark is $922 million.
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Learning

As expected, subjects improve with experience. Mean performance is just 13% of the

benchmark in trial 1 but rises to 63% in trial 5 (figure 6). The win ratio for the subjects rises from

under 4% in trial 1 to 17% in trial five. However, improvement is slowing by the final trial. Mean

subject profits in trial 5 are the same as in trial 4, and the subject win ratio actually drops between

trials 4 and 5. Performance seems to be saturating well below even the naive benchmark.

We had hoped that, beyond the general improvement shown by the main effect of trial on

performance, subjects would be improving their understanding of the environment with experience

and so would develop heuristics which produce better relative performance in the conditions with

high feedback complexity. Such learning would be reflected in significant interactions between the

treatments and trial. However, none of the interactions between treatments and trial are even

remotely significant. Though subjects improve on average there is no evidence to suggest they are

learning to cope better with environments involving strong feedback processes.

The failure of subjects to improve their ability to manage complex feedback environments is

an important, and somewhat unexpected, result. The conditions for learning are excellent:

Subjects receive immediate, comprehensive and accurate outcome feedback. In the course of their

five trials they made nearly 200 sets of decisions, were under no time pressure, and faced strong

incentives for performance. While prior research shows that learning from outcome feedback is

difficult in the presence of noise and nonlinearity (e.g. Brehmer 1980), the present task is

completely deterministic and subjects had extensive knowledge of the causal structure of the

system. Further, despite the general learning effect, performance after five trials remains

significantly worse than the naive benchmark.

Modeling subjects' decision rules

To understand both the weakness of the overall learning effect and the failure of subjects to

improve performance across feedback conditions we next test several behavioral decision rules for

target capacity and price. The rules postulated here were suggested by consideration of the sub-

jects' written reports of their strategies, prior models of similar decisions in the literature, and the
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feedback structure of the task. Other rules are of course possible. The models are designed to

indicate the importance of different cues in subjects' decisions; changes in the weights across trials

yield insight into learning and its limitations (Einhorn, Kleinmuntz, and Kleinmuntz 1979).

Generalizing the behavioral benchmark, we postulate decision makers who select the target

share of the market their firm seeks to capture, estimate future market demand from prior in-

formation, current demand, and the recent growth rate of demand, and invest to balance capacity

with demand. The rule thus combines feedforward or forecasting (estimation of future demand)

with a feedback component to correct errors in the forecasts (the response to excess or insufficient

capacity). Specifically,

C*t = s*[Deo(1-al )Dt- l X' ](l+gt-l.)a2(BCt)a3 (5)

gt-l = (Dt- - Dt-2)/Dt-2 (6)

where s* is target market share (assumed constant), Deo is the prior expectation of average industry

demand, D is actual demand, gt is the expected fractional growth rate of demand, B is the backlog

(desired production), and C is actual capacity. 9 The rule assumes subjects seek to capture a certain

share of the forecasted market demand. Forecasted demand is modeled as a weighted geometric

average of current demand and a prior expectation. That prior belief is likely to be strongly condi-

tioned by the demand observed in earlier trials. Subjects with little initial idea of the size of the

market, as before the first trial, would most likely follow a demand tracking strategy with a high

al. Subjects whose prior expectation is never modified by actual experience would have al =--0,

while 0 < al <1 indicates a conservative strategy in which target capacity falls increasingly short if

orders exceed the value of demand the subject expects before the trial begins. Such behavior could

be intentional, if subjects fear overshooting the equilibrium as demand becomes large, or the result

of inadvertent anchoring on prior beliefs. In addition to estimating current demand, the capacity

acquisition lag requires subjects to account for likely growth in demand. Subjects who extrapolate

recent changes in demand would have a2 > 0; extrapolative expectations based on the most recent

demand data are assumed (this cue is reported on the information display and is commonly avail-

III
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able in actual markets). Target capacity should also respond to mte demand/supply balance as

measured by the ratio of backlog (desired production) to production capacity.

The proposed decision rule for price P assumes subjects use markup pricing:

Pt= UVCt -M*t (7)

where UVC = unit variable cost and M* = gross margin. Gross margin depends on the subject's

response to demand/supply balance and the policy for passing cost reductions on to the consumer:

M*t = Mo(UVCt/UVCo) 1-(BCt)[2 (8)

As the firm moves down the learning curve, the subject must decide how much of the cost

reduction to pass on to consumers. All cost reductions are passed into price when Al = 0, while -1

< 31 < 0 indicates price falls less than costs. Positive values of 1 indicate price falls faster than

costs, perhaps indicating an attempt to build market share and move more rapidly down the

learning curve than the competitor.10 We further expect that the gross margin will increase when

desired production (backlog) is high relative to capacity (2 > 0).

Collecting constant terms, assuming independent multiplicative errors, and taking logs

yields the form in which the decision rules were estimated:

log(C*t) = ao + allog(Dt 1) + a2log(l+gt-l) + a3log(Bt/Ct) + el (9)

log(Pt) = bo + bllog(UVCt) + b2log(BJCt) + 2 (10)

Each rule was estimated separately for each of the five trials of each subject. OLS regres-

sion revealed positive autocorrelation in the residuals, so the Cochrane-Orcutt procedure was used.

The proposed rules capture the bulk of the variance in subject's decisions (table 3). For

target capacity the mean K 2 is .87, exceeds .90 for more than two-thirds of the trials, and is less

than .50 for only 5%. The mean K 2 is .95 for price, with '2 > .90 for more than 87% of the trials

and less than .50 for just 1%. The coefficients generally have the expected signs. For target ca-

pacity, the constant ao and the parameter al usually are large and statistically significant. The mean

estimate of al = .38 indicates subjects based their capacity decisions primarily on their prior esti-

mate of market demand and only secondarily on actual market demand. To assess the prior
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expectation of market demand, we note from equations 5 and 9 that ao= (1-al)ln(s*De). After

obvious outliers are eliminated 1, the mean value of ln(s*De) = 13.32, indicating subjects' initial

goal for capacity averaged roughly 600,000 units. In contrast, the parameters a2 and a3 are

generally small - roughly half are not statistically different from zero - showing subjects are quite

insensitive to the recent growth of demand and the demand/supply balance. For the price equation,

the constant bo and the parameter bl are usually statistically significant while b2 is very small and

not significant in nearly two-thirds of the cases. Subjects generally price to follow costs (or com-

'efitor price) down the learning curve. The supply/demand balance has but little effect on price.

The estimated decision rules provide insight into subjec. poor overall performance relative

to the benchmark rules. Subjects generally set target capacity equal to their initial goal for capacity,

are only partially responsive to actual market demand, and are quite insensitive to the growth in

demand. Given the capacity acquisition lag such conservative demand forecasts ensure that actual

capacity will be grossly inadequate during the boom phase, causing high backlogs, long delivery

delays, and market share erosion. The subjects' insensitivity to demand growth further

exacerbates capacity shortfall during the boom and is consistent with prior work (Wagenaar and

Timmers 1979). However, the low weight on the supply/demand balance in both the capacity and

pricing decisions is quite surprising. Hogarth (1981) argues that dynamic decision making might

be better than one-shot static decision making, since subjects can review and revise prior decisions

as outcome feedback becomes available, gradually correcting errors. Here, however, this

postulated adaptation does not operate well. Subjects fail to increase target capacity sufficiently as

backlogs accumulate, and they fail to cut target capacity aggressively when faced with excess

capacity. The result is lost profit during the growth phase and larger losses during the bust phase.

Similarly the near-zero weight on the backlog/capacity balance in the pricing rule shows that

subjects price too low during the boom phase, even though they cannot possibly satisfy the current

demand; likewise, subjects generally fail to cut prices to stimulate demand during the bust despite

huge amounts of excess capacity. Not only are subjects insufficiently adaptive, but their capacity

and pricing decisions are inconsistent.
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We next investigate how subjects' decision weights change over trials. In particular, we

seek to explain the weak overall improvement in performance and the failure of subjects to improve

their relative performance across different feedback complexity conditions in terms of changes in

their cue weights. To do so we explore models of each estimated parameter with subject, trial, and

the word of mouth and replacement fraction treatments as explanatory variables (table 4).

All the coefficients of the target capacity rule change significantly over the five trials, indi-

cating experience caused subjects to alter their forecasts of demand and their responsiveness to

market growth and demand/supply balance. The estimated elasticity of target capacity with respect

to current market demand (al) falls from .49 in trial one to .32 by trial five. Before their first trial

subjects have little prior knowledge of likely demand, so have little choice but to follow actual

demand (even so there is substantial conservatism in their forecasts). As suggested by the poor

results and the subject logs (e.g. table 1), subjects find it difficult to forecast the boom and bust

pattern. With experience, however, subjects learn approximately how big the peak and equilibrium

values of demand will be. They rely increasingly on their knowledge of the demand levels reached

in prior trials and become less responsive to the actual demand in the current trial. Similarly, initial

demand and capacity levels are low compared to the peak and equilibrium values of demand, so

initial expectations of demand in trial one, before any experience is gained, should be low but rise

over trials. Indeed, the imputed prior expectation s*De averages about 300,000 units in trial one; it

doubles by the second trial, and rises to nearly 900,000 by trial five. The estimate also depends

significantly on equilibrium demand (indicated by the significant effect of replacement fraction on

s*De) since the true equilibrium demand becomes clear about half-way through (see figures 3-4).

The capacity acquisition lag requires subjects to forecast demand well into the future. But

the regression results show that on average subjects are virtually unresponsive to the growth rate of

demand. While subjects may choose not to respond fully to demand growth, ignoring it inevitably

results in insufficient capacity during the boom and larger surpluses during the bust. Table 4

shows that subjects do learn to respond to demand growth with successive trials. However, the

effect is small. In the first trial the mean estimate of the elasticity of target capacity with respect to
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market growth is negative, indicating subjects expect demand to regress to prior values rather than

growing further. By the fifth trial most have learned to extrapolate recent demand changes, but the

mean elasticity has risen only to about .10 (similar shifts from regressive to extrapolative

expectations were found by Andreassen (1990a, 1990b) in stock market trading experiments).

While experience does lead subjects to anticipate market growth to some degree, the improvement

is so small that even after five trials subjects show little ability to forecast changes in demand or

account for the lag in acquiring capacity. The result is massive backlogs and lost revenue during

the growth phase, and slow reductions in excess capacity during the bust phase.

The response of target capacity to the demand/supply balance also increases with experi-

ence. The mean elasticity rises from .18 in trial one to about .5 in the last two trials. However,

even with experience the average response to supply and demand is much less than optimal.

Worse, there is no evidence that subjects' pricing strategies evolve. In particular, the

responsiveness of price to the demand/supply balance does not increase with experience. Subjects

learn slowly to adjust capacity to demand, but do not learn to use price to clear the market, nor do

they alter the average level of price. During the boom, price can be raised to both reap higher profit

and to slow the growth of demand; during the bust, price can be cut to boost market share and

increase capacity utilization, reducing losses. Subjects in'general do neither, foregoing a critical

opportunity to moderate the severity of the boom and bust dynamic and boost profitability.

Thus experience does not move subjects towards a greater appreciation of the feedback pro-

cesses which create market dynamics. Rather, subjects seem to find the dynamics so hard to

anticipate or understand that they move towards a 'ballistic' strategy in which prior beliefs about

equilibrium demand are increasingly influential while outcome feedback about actual demand is

increasingly ignored. The subject logs confirm the regression results. The following, describing a

subject's strategy for the final trial, is typical:

Since I know I can't beat my competitor during peak sales, I am going to ramp up early to the level that I
believe might represent replacement sales. I can hopefully then capture that much of the market during the
peak..., and the majority of the replacement market after sales peak. Price will be adjusted as necessary to
maintain market share.

III
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The subject immediately boosted capacity to about 2 million and held it constant through quarter

30, even though orders reached more than 5 million. Price was increased above the competitor

during the boom, but not enough to prevent the long delivery delays. During the bust, prices were

cut, but not enough to prevent significant excess capacity.

Discussion

Prior work in dynamic decision making suggested that subjects' mental models of dynamic

environments are generally poor. Specifically, prior work suggested subjects do not account well

for feedback loops, time delays, accumulation processes, and nonlinearities. However, much

prior work did not explicitly vary the strength of feedback processes as treatments to establish how

dynamic complexity influenced performance, nor did they include market institutions and oppor-

tunities for learning which might mitigate the errors. Many prior experiments used abstract tasks

or tasks not relevant to the subjects' training and experience. The present experiment presents

subjects with a common and realistic management task. Extensive opportunities for learning were

provided - fifty years of simulated industry experience with perfect, immediate outcome feedback.

Despite these opportunities for excellent performance, the vast majority of subjects are out-

performed by a naive behavioral rule. The benchmark rule utilizes a small subset of available

information and combines these cues in simple ways, without recourse to optimization or game

theoretic reasoning. As in many prior static judgment and decision making tasks, what should

have been a floor on performance turned out to be a very high ceiling.

Consistent with the misperceptions of feedback hypothesis, the stronger the feedback

processes in the environment the worse people do relative to potential. In particular, subjects fail

to account for a fundamental structural feature of durables markets: ceteris paribus, the faster sales

grow, the sooner and more suddenly the market must saturate. The effect is not mere forecasting

error. Subjects' own actions exacerbate the problem by strengthening the positive feedback loops,

generating a more vigorous boom and a more severe bust. Further, subject behavior is riddled

with inconsistencies. Most subjects maintain price close to or less than the competitor price, even

during the growth phase when capacity lags orders and the availability of their product plunges.
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They cut prices to match the competitor even though they are unable to meet the current demand.

Low prices also intensify the boom and bust dynamic by stimulating demand, reinforcing the word

of mouth loop and leading to faster growth and steeper decline.

Most disturbing, there is no evidence that subjects improved their ability to manage the

environments with high feedback complexity as they gained experience, despite improvement on

average. Analysis of estimated cue weights revealed the sources of subjects' failure to improve

their ability to manage complex dynamic environments. Based on their experience of previous

games, the subjects altered their strategies to use less, not more, outcome feedback on demand.

The subjects learned the basic pattern of market dynamics. They predicted the approximate size of

the replacement market and quickly increased capacity to that level, largely ignoring the level or

growth rate of market demand in the specific scenario. Because experience provided useful

information on likely equilibrium demand, performance on average improved with trials. Because

subjects were insufficiently responsive to the level and growth rate of the market and to the

demand/supply balance, they did not improve their ability to handle the difficult feedback envi-

ronments. The nature of subjects' learning is particularly remarkable in light of their poor overall

performance: after five trials mean performance is just 60% of the naive benchmark, and only 17%

of subjects beat the benchmark in their final trial.

Conditions for learning in the experiment are superior those in the real world, where out-

come feedback is often missing, noisy, and significantly delayed; where other confounding factors

are more numerous and demands on managerial attention are greater, and where the time scale for

change can exceed the tenure of managers (Kahneman and Tversky 1987, Thaler 1987). Further,

the learning that did occur in the experiment would be much less successful in the real world. By

design, the experiment simplified the environment by holding the potential market constant across

scenarios. In real situations, the variation is much greater. Few decision makers could ignore

market feedback, determining capacity primarily from the history of prior products and then failing

to revise that decision despite the huge backlogs, angry customers and other pressures engendered

by rapid growth. Without mental models which account for the feedback processes, time delays,

III
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and nonlinearities which create boom and bust, outcome feedback is likely to lead to behavior such

as observed in subjects' first trials. The striking correspondence between many first trials and the

behavior of numerous actual firms suggests these misperceptions of feedback may play a

significant role in the real world. Empirical studies contrasting the dynamics of fiums facing high

and low feedback complexity should be undertaken to test the generality of these findings.

Existing studies (e.g. Zarnowitz 1985, Mosekilde, Larsen, Sterman and Thomsen 1992) do show

that markets characterized by long lags, strong positive feedbacks, accumulations, and

nonlinearities (e.g. commercial real estate, shipping, capital goods) do suffer from more instability

than those with less feedback complexity (e.g. soft goods, services). Experiments underway with

seasoned managers as subjects and field study could also provide important insight into processes

of individual and organizational learning which might enable high performing firms in complex

environments to avoid the problems observed in the laboratory.

The results also have pedagogical and prescriptive implications. The recognition that

traditional management pedagogy, stressing lectures and cases, often does not lead to improved

decision making ability has long motivated the use of management games. However, evidence on

the effectiveness of traditional business games is mixed at best (see Graham et al. 1992 for a

review). The failure of subjects to learn from experience in the present study offers an explanation

and suggests principles for the design of more effective management simulations and computer-

supported learning environments. Specifically, learning processes based on simulations must

include the use of conceptual schema and tools capable of representing and interpreting feedback

complexity. Action and reflection must be integrated in an iterative, interactive learning cycle (see

Morecroft and Sterman 1992 for illustrations and evidence). Experiments with these tools are also

underway with a number of organizations, where speeding individual and organizational learning

is a growing challenge for firms facing shorter product lifecycles and other changes which

intensify the feedback complexity of their environment.
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Notes

1 See Paich (1992) for full documentation of the model, methods and results. The game, revised

for educational use with full documentation and instructions, is available from John Sterman.

2 In reality additional feedbacks exist involving e.g. changes in technology, line extensions,

cannibalization of sales by new generations of the product, network externalities, and so on. To

keep the task manageable these effects are not treated.

3 Experimental evidence shows that inventories would substantially destabilize the system and

make the player's task much harder (Sterman 1989b, Diehl 1992). Beinhocker (1991) discusses

the destabilizing role of inventories in the collapse of toymaker Worlds of Wonder.

4 The role of incentives, monetary and nonmonetary, in decision making performance is complex

(see Hogarth et al. 1991 for a review and experimental evidence). There is no evidence to suggest

subjects did not take the task seriously or attempt to do their best.

5 Theoretically, the net present value of profits should be the performance measure. However,

experimental studies (see Prelec and Loewenstein 1991 and references therein) show people's

subjective time preferences often do not follow standard discounted utility models. We therefore

used undiscounted cumulative profits to simplify :ive cognitive burden of the task and to avoid

confounding the results with various anomalies in intertemporal choice. In fact, the bulk of the

profits earned by subjects occur in the final phase of the simulated markets, after equilibrium has

been reached, while the losses occur early in the product life cycle.

6 Consider equilibrium, when sales = orders = capacity and i(w,r) = orders*(price - unit costs).

In equilibrium orders are determined by the product of total market size and the replacement

purchase fraction. Thus both subject profit and benchmark profit are multiples of the replacement

fraction, and the ratio then allows comparison of profit relative to potential across scenarios with

different repurchase fractions.

7 We have also analyzed other benchmarks, including a 'perfect foresight' rule in which target
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capacity is always set to provide capacity exactly equal to desired production (but maintaining the

naive pricing strategy). This rule substantially outperforms the behavioral rule and dominates the

subjects in 98% of the trials. Cumulative profit relative to cumulative sales was also used to

remove the effect of the treatments on total market size. The statistical significance and magnitudes

of the treatment and learning effects are robust to these alternative benchmarks (Paich 1992).

8 The values of al and a2 were chosen by grid search of the parameter space to maximize

cumulative profit over the five scenarios conditional on the assumption that target market share is

50%. We stress, however, that the simplistic behavioral benchmark rule is far from optimal.

9 Demand is measured by industry sales (shipments), as reliable industry aggregate order

information is generally not available in actual markets. Note, however, that sales may be (and in

many trials are) constrained by capacity during the boom, so that sales data measure not demand

but capacity, a subtle but important way in which nonlinearity influences task complexity.

10 Gross margin should also depend on competitor price. However, competitor cost (and

therefore price, since competitor margin is constant) is highly correlated with the firm's own costs

since the learning curve for each has the same strength. Therefore subjects' responses to costs and

competition cannot be independently estimated. Substituting competitor price for costs in the price

equation does not substantially change the results reported here.

11 Values such that 0 < ln(s*De) < ln(20e6) were retained (410 out of 565). This range easily

encompassed all actual market demand levels attained in the task.
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Table 1. Subject log: Trial 1, Scenario D: Strong word of mouth, low repurchase rate.

Q Comments Before Entering
Decisions

1 Strategy: grow @ market pace; price
follower;, assume capacity growth is linear.

2 Grow faster than the market. Need much
more capacity. Expand to 55,000. P[rice]
constant.

3 Hold capacity target fixed. P to 81 to
follow competitor.

4 Want 50% of market. Build to 150,000.
Believe market max. = 300,000.

5 Want more. Build to 250,000 NOW. P up
to 82.

6
7 Revise market max est. Build to 500,000

and vow never to add.

Build to 1,000,000 & vow never to add
again.

10 Build to 1,500,000 & vow never to add
again. P to 70.

11 Build to 5,000,000.
12 Destroy CAPACITY to 2,500,000. P to 65

to up demand.
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30

Comments After Entering
Decisions

Sales WAY up !!!!!

Sales WAY up !!!!!
Try and be patient.

Sales WAY up ! Way above capacity.
Behind. EXPAND !!!
Sales WAY up. ! Way above capacity.
Behind.

Sales flattening therefore drop price.

Market demand up to 7,000,000.

Sales fell. HELP!!!!!!
LOOK AT NET INC[OME]. I got
suckered ! !!

P to 55

Target capacity = 90,000 ONLY. I've
gotta cut fixed costs.
P to 52

Capacity "OK". P up to 56.

Capacity = orders = backlog GOOD.
P to 58.
P to 60.
P to 62
P to 62
P to 61

40

A new high in lows. Fire the CEO.

Let's fool around with Price.

Zero-sum game.

That's all folks.
This was humiliating.

8
9
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Table 2

Analysis of cumulative profit relative to the behavioral benchmark.

Dependent Variable: flit(w,r) = cumulative subject profit relative to benchmark profit as functions

of subject i, trial t, (log) strength of word of mouth feedback w and (log) replacement fraction r.

N =565, 2 = 0.39

Explanatory Variable S S df Mean Square F p

Subject 182.13 121 1.51 1.26 0.05

Trial 30.29 4 7.57 6.31 0.000+

w 14.07 1 14.07 11.73 0.001

r 79.51 1 79.51 66.29 0.000+

w x r 9.93 1 9.93 8.28 0.004

Trial x w 3.87 4 0.97 0.81 0.52

Trial x r 2.38 4 0.60 0.50 0.74

Trial x w x r 4.73 4 1.18 0.99 0.42

Error 508.52 424 1.20

Estimated Treatment and Trial Effects.

The interactions of trial with treatments are not shown as they are not significant.

Constant 0.235

Trial: 1 2 3 4 5

-0.353 -0.118 -0.053 0.216 0.308

w -0.257

r 0.613

wxr 0.313
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Table 3

Means and standard deviations of estimated parameters for subjects' capacity and pricing rules (eq.

9-10). The parameter p is the estimate of the first-order autoregressive term. The final column

shows the percentage of estimates which were not significantly different from zero.

Parameter t CY % NS

Capacity Rule:

ao 8.414 6.450 22

al .383 .433 30

a2 .036 .533 56

a3 .318 .715 43

p .560 .328 21

K2 .872 .183

Pricing Rule:

bo 3.125 2.553 3

bl .259 .337 28

b2 .016 .067 62

p .781 .215 3

-2 .947 .095
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Table 4.

Dependence of estimated parameters on trial and treatments. The model in all cases is:

Pit = Constant + Subjecti + Trialt + wit + rit + wit'rit + error,

where Pit is the estimated parameter for trial t of the ith subject; w and r are the (log) strengths of

the word of mouth parameter and replacement fraction, respectively. Significance levels (p-values

of the F-statistic) for the effects are given in parentheses. The subject factor was significant for all

estimated parameters at better than the .001 level.

Parameter w r w*r Constant + Trial Effect R
1 2 3 4 5

Capacity Rule:

In(s*De)§ .077 .453 .35 12.6 13.3 13.6 13.5 13.7 .36
(.55) (.000+) (.06) (.000+)

al .006 -.032 -.06 0.49 0.39 0.40 0.33 0.32 .40
(.82) (.22) (.14) (.011)

a2 .171 .038 .08 -0.06 -0.02 0.05 0.14 0.09 .36
(.000+) (.26) (.115) (.018)

a3 .003 -.031 .05 0.18 0.40 0.34 0.57 0.43 .40
(.94) (.47) (.43) (.000+)

Pricing Rule:

bo -.126 .288 .08 3.39 3.01 3.00 3.27 2.92 .39
(.42) (.07) (.72) (.502)

bl -.004 -.028 .01 0.26 0.27 0.24 0.30 0.23 .38
(.86) (.18) (.76) (.489)

b2 .018 -.007 .01 0.01 0.01 0.02 0.02 0.02 .34
(.000+) (.12) (.063) (.381)

§ ln(s*De) is the (log) of the imputed expectation of the share of equilibrium demand the subject

seeks. It represents the subject's prior belief about the size of the market they wish to capture in

the trial, and is calculated from the estimated coefficients as ln(s*De) = ao(l-al); see eqs 5 and 9.

III
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Figure 1. Boom and Bust: Sales and Net Income of Atari, Inc. Sources: 1976-1983: Warner

Communications Annual Reports. 1984-1985: Atari, Inc. Company Reports; Investext. In 1984

Warner sold Atari; 1984 results cover the period from sale (5/17/84) through end of year.

Operating income does not show 1984 charges against Warner profit associated with the sale of

$592 million.
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Figure 2 Causal Structure of the Market Sector.
Potential customers may adopt either through the effects of marketing or word of mouth, flowing
into the customer base. When the decision to discard and repurchase is made, customers re-enter
the potential pool. Changes in product price change the size of the potential market. The self-
reinforcing (positive) word of mouth feedback loop promotes growth early in the product's life.
As the pool of potential customers is depleted, the negative feedback of market saturation
constrains adoption. In equilibrium adoption equals replacement demand. Not shown is the
determination of market share between the two firms represented in the simulation. Though not
shown, many additional loops are created by the coupling of the market to the subjects' decisions.
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Figure 3.

The two treatment variables, the strength of the word of mouth feedback and the repurchase

fraction, were varied from half to double their base case values to produce five scenarios (A-E)

with orthogonal (log) values of the two treatments. The figure illustrates the impact of these

treatments on market dynamics through simulations assuming no capacity constraints and constant

margin pricing; actual demand patterns depend on subject decisions. When word of mouth is

strong (scenarios B and D) demand grows rapidly, peaks at a large value, and declines sharply to

equilibrium compared to those cases where word of mouth is weak (C and E). When the

replacement interval is long (D and E), the drop to equilibrium is large, while frequent replacement

leads to modest declines (B and C). The slight variation in final orders between scenarios D and E

and between scenarios B and C is due to small differences in cumulative production, and hence

costs, price, and demand, despite the same repurchase interval.
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Figure 4

Behavior of typical subject in the first trial. The subject faces the most difficult scenario (D) with

strong word of mouth and low replacement demand. Compare to Figure 1.
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Figure 5. Effect of Word of Mouth and Replacement Fraction treatments on relative performance.

Strong word of mouth and low replacement rates degrade subject performance relative to the

benchmark. The significant interaction shows that the combination of strong word of mouth and

low replacement is particularly troublesome.
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Figure 6. Effect of experience on performance. Average performance increases with experience

from 13% to 63% of the behavioral benchmark. Also shown is the "perfect foresight" benchmark

which results from assuming perfect knowledge of future demand in the capacity decision rather

than the demand forecast produced by the behavioral rule. (The slight variation in the values of the

benchmarks over trials arises because the design was not perfectly balanced.)
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