
Modeling and Heuristic Worst-case Performance
Analysis of the Two-level Network Design

Problem

Anantaram Balakrishnan,
Thomas L. Magnanti

and
Prakash Mirchandani

WP# 3498-92-MSA November, 1992

Modeling and Heuristic Worst-case
Performance Analysis of the

Two-level Network Design Problem

Anantaram Balakrishnant
Thomas L. Magnanti

Sloan School of Management
M. I. T.

Cambridge, MA

Prakash Mirchandani*

Katz Graduate School of Business
University of Pittsburgh

Pittsburgh, PA

Revised: November 1992

t Supported in part by a grant from the AT&T Research Fund
* Supported in part by a Faculty Grant from the Kaz Graduate School of Business, University of

Pittsburgh

Abstract

This paper studies a multi-facility network synthesis problem, called the Two-level
Network Design (TLND) problem, that arises in the topological design of hierarchical
communication, transportation, and electric power distribution networks. The nodes of a
multi-level network have varying levels of importance; more critical or higher level nodes
require more expensive higher grade interconnections. Given an undirected network with
L possible facility types for each edge, and a partition of the nodes into L levels, the multi-
level network design problem seeks a connected design that minimizes total cost while

spanning all the nodes, and connecting nodes at each level via facilities of the
corresponding or higher type. The TLND problem is a special case of multi-level network
design with L = 2. This problem generalizes the well-known Steiner network problem and
the hierarchical network design problem. In this paper, we study the relationship between
alternative model formulations for this problem, and analyze the worst-case performance
for a composite TLND heuristic based upon Steiner and spanning tree computations.
When the ratio of higher to lower grade facility costs is the same for all edges, the worst-
case performance ratio of the TLND heuristic is 4/3 if we can solve an embedded Steiner
network problem optimally. For other cases, we express the TLND heuristic worst-case
ratio in terms of the performance ratio of the Steiner solution method. A companion paper
develops and tests a dual ascent procedure that generates tight upper and lower bounds on
the optimal value of the multi-level network design problem

Keywords: Network design, integer programming, problem formulation, valid
inequalities, worst-case analysis of heuristics

1. Introduction

1.1 Motivation
This paper studies a multi-facility, network synthesis problem which we call the

Multi-level Network Design (MLND) problem. The problem, which generalizes

several well-known optimization models, addresses design decisions for hierarchical

telecommunications, transportation, and electric power distribution networks. The nodes

in the network have different levels of importance, with more critical or higher level nodes

requiring higher grade (e.g., higher capacity or more reliable), but more expensive,

interconnections. Designing the topology for such hierarchical networks motivates the

following MLND problem. The problem input consists of an undirected graph whose

nodes are partitioned into L levels; each edge can contain one of L differentfacility types,

with higher grade facilities requiring higher fixed costs. We must select a connected

subgraph, and choose a facility type for each selected edge so that all nodes at any level 1

communicate via facilities of grade I or higher. The objective is to minimize the total cost of

the chosen facilities. We refer to the special version of the MLND problem containing only

two node levels-primary and secondary nodes-as the Two-level Network Design

(TLND) problem.

Two-level network design problems have considerable economic significance.

Consider, for instance, the telecommunications context. With increasing demand for

higher bandwidth telecommunication services, regional telephone companies are rapidly

modernizing their metropolitan networks by replacing copper cables with fiber optic

systems. For instance, from 1987 to 1991, the regional telephone companies in the United

States nearly quadrupled their deployment of fiber optic equipment to an installed base of

over 8.2 million fiber-kilometers. Total U. S. sales of fiber optic cables and systems was

approximately $ 1.7 billion in 1991, and the demand is expected to grow further as the

deployment of fiber optics in local loops, metropolitan area networks, and cable television

systems increases (U.S. Industrial Outlook 1992). Since network modernization entails

enormous invesntments, planners require new models and methods to design cost-effective

two-level networks combining fiber optic transmission systems (primary facilities) and

copper cables (secondary facilities). The switching centers and certain critical customers

(e.g., large businesses) are primary nodes, and households are secondary nodes. Because

primary nodes have greater traffic volume and higher transmission frequency, the network

must connect them using fiber optic systems (which have higher bandwidth, but also

higher cost). Secondary nodes, on the other hand, might access the network via either

-1-

fiber or copper cables. When the fixed cable installation costs dominate (relative to
throughput-dependent costs), this network configuration problem reduces to the TLND

problem.

Similar applications arise in road network planning and electric power distribution
planning (see, for instance, Patel [1979], Current, ReVelle, and Cohon [1986]). In the
transportation context, all-weather highways and rough roads might represent primary and
secondary facilities, with major cities and rural communities serving as primary and

secondary nodes. For electric power distribution, the primary and secondary facilities

correspond to high and low voltage transmission lines.

Admittedly, the TLND problem or its multi-level generalization might not completely

capture all the complexities of the actual design task. For instance, the model incorporates

only a coarse representation of capacity constraints via the discrete facility types.

However, TLND solutions provide insights and principled starting points for an overall

network design exercise.

The TLND model also has theoretical significance because it generalizes several

classical discrete and network optimization models. For instance, the model generalizes the

Hierarchical Network Design (HND) problem, defined by Current et al. [1986]. The

HND problem designates exactly two nodes of the network as primary nodes. Its solution

consists of a primary path connecting these two nodes; secondary edges connect the

remaining nodes to this path. The TLND problem also generalizes the Steiner Network

problem (Dreyfus and Wagner [19721) which, in turn, generalizes the shortest path and

minimum spanning tree problems. To model the Steiner network problem, we treat the

terminal vertices as primary nodes in the TLND problem, designate the potential Steiner

vertices as secondary nodes, and use zero secondary costs for all edges (the primary costs

are the original edge lengths in the Steiner problem). Deleting all the secondary edges from

the optimal TLND solution gives the minimum cost Steiner network.

1.2 Previous research
Iwainsky [1985] introduced the multi-level network design problem, and Duin and

Volgenant [1989] showed how to transform this problem (which they call the Multi-

weighted Steiner tree problem) into an equivalent directed Steiner tree model over an

expanded network. For a MLND problem with n nodes, m undirected edges, and L levels,

the expanded network contains nL nodes, and (2Lm + Ln) directed arcs. Researchers have

-2-

11

extensively studied two special cases of the TLND problem: the Steiner network problem

and the HND problem. The vast literature on the Steiner network problem (see Winter
[1987] for a recent survey) addresses issues of model formulation and polyhedral
representations (e.g., Prodon, Liebling and Gr6flin [1985], Chopra and Rao [1988a]
[1988b]), worst-case analysis of heuristics (e.g., Takahashi and Matsuyama [1980], Kou,
Markowsky, and Berman [1981], Goemans and Bertsimas [1990]), and computational
testing of optimization-based solution methods (e.g., Wong [1984], Beasley [1984],
[1989]). The literature on the HND problem is relatively recent. Current et al. [1986],

Shier [1991], and Pirkul, Current, and Nagarajan [1991] describe heuristic solution

methods, and Orlin [1991]. analyzes the problem's computational complexity and heuristic

worst-case performance. Duin and Volgenant [1989] describe methods to identify optimal

edges and eliminate variables from the HND problem formulation, and present

computational results to demonstrate the effectiveness of these reduction strategies. For the

TLND problem, Duin and Volgenant [1991] propose two approximate methods that are

analogous to previous Steiner tree heuristics, and discuss problem reduction tests.

The TLND problem is NP-hard since it generalizes the Steiner network problem (Garey

and Johnson [1979]). Orlin [1991] showed that even the HND special case is NP-hard.

Furthermore, the HND problem remains NP-hard even when all the edges have the same

primary-to-secondary cost ratio, or if all the edges have unit primary costs and binary

secondary costs (Orlin [1991]). This paper considers modeling issues for the TLND

problem, and develops worst-case bounds for a combined heuristic based on Steiner and

spanning tree solutions. A companion paper (Balakrishnan, Magnanti and Mirchandani

[1992]) develops and tests an algorithm that combines problem preprocessing, dual ascent,

and local improvement to approximately solve the MLND problem. Using this method, we

have solved large-scale TLND problems containing up to 500 nodes and 5000 edges to

within 0.9% of optimality; the mixed integer formulation for our largest test problem

contains 20,000 integer variables and over 5 million constraints.

This papa is organized as follows. Section 2 introduces our notation and presents two

related integer progra-mming formulations for the undirected TLND problem-a Steiner-

Spanning tree formulation and a multicommodity flow-based formulation. We also

describe a class of inequalities, called the bidirectional commodity-pair inequalities, that

produce a considerably stronger "enhanced" linear programming relaxation. In Section 3,

we consider a more compact formulation corresponding to the directed version of the

TLND problem, and show that this formulation has the same optimal linear programming

-3 -

value as the enhanced undirected formulation. Section 4 describes several natural heuristic

strategies based upon minimum spanning tree and Steiner tree solutions (Duin and
Volgenant's [1991] heuristics are particular implementations of these strategies), and
derives worst-case performance bounds for a combined TLND heuristic. For problem
instances with proportional primary and secondary costs (i.e., the ratio of primary to

secondary cost is the same for all edges), our method's worst-case bound is 4/3 if we solve

an embedded Steiner tree problem exactly; if we use a Steiner heuristic with worst-case
bound of p, the TLND worst-case bound is p if p > 2, or 4/(4-p) if p < 2. The TLND

worst-case performance ratio increases to (p+1) for problems with nonproportional costs.

As part of our analysis, we provide worst-case examples to show that these bounds are
tight. Section 5 offers some concluding comments.

2. Modeling the Undirected TLND Problem

The TLND problem is defined over an undirected network G=(N,E) with nodes

partitioned into two subsets-primary (level 1) nodes and secondary (level 2) nodes. Let p

denote the number of primary nodes. For convenience, we index the primary nodes from 1

to p, and the secondary nodes from (p+1) to n. Every candidate edge (ij) in E has a
primary cost aij and a secondary cost bij, with aij > bij > 0. We assume, without loss of

generality, that each edge can contain either facility type. If the problem context prohibits
edge ij) from containing a primary facility, we can set the primary cost aij to a very high

value; similarly, setting bij = aij permits us to model edges that can contain only primary

facilities.

The TLND problem seeks a tree that spans all the nodes and contains a subtree of

primary facilities connecting all the primary nodes. This primary subtree might (optionally)

span some secondary nodes. Note that if all the nodes are primary nodes or if the primary

cost equals the secondary cost for all edges, the TLND problem reduces to the minimum

spanning trw problem. At the other extreme, the shortest path problem corresponds to the

special case in which the network contains only two primary nodes, and all secondary costs

are zero; with more than two primary nodes, this model becomes a Steiner network

problem.

To formulate the TLND problem as an integer program, we first represent it as two
linked subproblems-a Steiner tree subproblem and a spanning tree subproblem. We then
expand (in Section 2.2) the Steiner and spanning tree constraints in terms of binary design

-4-

variables and continuous flow variables to obtain a basic flow-based formulation. Section

2.3 describes some valid inequalities to strengthen this formulation. Using a small
example, Section 2.4 demonstrates how these additional inequalities significantly improve
the optimal value of the linear programming relaxation. In Section 3, we transform the
undirected problem into a directed problem, and prove that the linear programming
relaxation of the directed formulation has the same optimal objective function value as the

linear programming relaxation for the enhanced undirected formulation. This result enables

us to apply a dual ascent method for the directed problem, which is easier to describe and

implement (Balakrishnan et al. [1992]).

2.1 Steiner-Spanning Tree (S-ST) Formulation
This problem formulation exploits the following two observations concerning the

optimal TLND solution:
(i) the optimal design is a spanning tree of the original graph G (since all costs are

nonnegative), and
(ii) the edges containing primary facilities constitute a Steiner tree, with the primary

nodes as terminals, that is embedded in the spanning tree (since aij > bij).

Correspondingly, we have two sets of binary decision variables:

Uij = 1 if edge (ijJ contains a primary facility, and
O otherwise.

wij = 1 if edge (ij) belongs to the optimal design, and
O otherwise.

We let eij = aij - bij > 0 denote the incremental cost of edge i,j}.

Let U be the set of all Steiner trees with primary nodes as terminals (and secondary
nodes as Steiner points). u = (uij} is the characteristic vector of a Steiner tree in U, i.e.,

uij = 1 if edge (ij) belongs to the Steiner tree, and uij = 0 otherwise. Similarly, let W be

the set of all spanning trees of the graph G, and w denote the characteristic vector of a

spanning tree. The TLND problem then has the following Steiner-Spanning tree (S-
ST) formulation:

-5-

[S-ST] minimize ~ (eij uij + bij wij) (2.1)

subject to
Steiner tree constraints:

u e U, (2.2)

Spanning tree constraints:
w E W, (2.3)

Linking constraints:
Uij < wij for all {ij)} E, and (2.4)

Integrality constraints:

uij, wij = Oor 1 for all (ij)} e E. (2.5)

The objective function (2.1) minimizes the secondary cost for the spanning tree w and

the incremental cost of the Steiner subtree u. Constraints (2.2) and (2.3) specify that the

primary subnetwork must be a Steiner tree while the overall network is a spanning tree.

The linking constraints (2.4) ensure that the Steiner tree is embedded in the selected

spanning tree.

The S-ST formulation extends easily to the general MLND problem with more than

two levels. Consider L different sets U 1of Steiner trees, one for each level I = 1, 2, ... ,
L of the network; the set U contains all Steiner trees using level I or higher level nodes as

terminals (in our terminology a higher level has a lower index 1). Correspondingly, for
each edge (ij), we have L different design variables ul, for = 1, 2, ... , L. The linking

constraints are:

U! S< ulij for all edges (i,j} e E, and I = 1, 2, ... , L-1.

The objective function coefficient et for variable uj equals the difference in cost between
the level I facility and the level (1+1) facility on edge (ij).

Note that for the HND special case (which contains only two primary nodes), the

Steiner tree component of the S-ST formulation reduces to a shortest path restriction, i.e.,

U is the set of all simple paths in the network connecting the two primary nodes. Also, if

we omit the linking constraints (2.4), the formulation decomposes into two independent

subproblems: a Steiner tree subproblem (over the primary nodes) using the incremental
edge costs eij, and a spanning tree subproblem using the secondary costs bij. The sum of

the optimal values for these two subproblems, therefore, provides a lower bound on the

-6-

III

optimal value of the TLND problem. We exploit this observation in Section 4 when we
derive heuristic worst-case bounds for the TLND problem.

2.2 Basic Undirected Flow-based Formulation
This section reformulates the TLND problem by expanding the set constraints (2.2) and

(2.3) in the [S-ST] model using multi-commodity flow formulations of the Steiner tree and

spanning tree subproblems. To formulate these subproblems in terms of network flows,

we introduce (n-1) unit demand commodities, all originating at a common root node; for

convenience, we designate the primary node 1 as the root node. We index the commodities

from 2 to n, and impose flow constraints for commodity k = 2, 3,..., n requiring that we

send one unit of flow from node 1 to node k. We refer to commodities 2 to p (i.e.,

commodities with primary nodes as destinations) as primary commodities, and

commodities (p+l) to n as secondary commodities, and let P and S denote the set of

primary and secondary commodities. To determine the routing of each commodity k, we
introduce directed (continuous) flow variables fij and fi for each edge (i,j}. The variable

ft (fik) denotes the fraction of commodity k's (unit) demand flowing from node i to node j

(from node j to node i). We next expand the Steiner tree and spanning tree constraints
(2.2) and(2.3) using these flow variables and the design variables uij and wij.

First, consider the Steiner tree constraints (2.2). By definition, the Steiner tree must

span all the primary nodes, i.e., it must provide an origin-to-destination flow path for every

primary commodity. This requirement translates into the following flow conservation and

forcing constraints (Wong [19841 proposed this Steiner tree formulation):

Steiner treeflow conservation equations:
-1 ifj=l

icNftjiJ-iNt = 1 ifj=k

0 if j * k for all je N, ke P, (2.2a)

Steiner tree rcing constraints:
5 uij, and

f 5 Uij for all ij)}E, kP, (2.2b)

Nonnegativity constraints:
fij 0 for all (ijE,keP. (2.2c)

-7-

The Steiner tree forcing constraints (2.2b) ensure that primary commodities flow (in either
direction) only on edges (i,j) containing primary facilities, i.e., only if uij = 1.

We can rewrite the spanning tree constraints (2.3) using an analogous flow

formulation. The spanning tree must carry one unit of flow from the root node to every

other node of the network; an edge (ij } can carry flow only if we include it in the design
(i.e., only if wij = 1). The following constraints express these conditions.

Spanning tree flow conservation equations:
-1 ifj=1

I 1 ifj=k
is N i N j

0 ifj k for all je N, ke PuS, (2.3a)

Spanning tree forcing constraints:

•t wij, and
wij for all (i,j) E, ke PuS, (2.3b)

Nonnegativity constraints:

fij, - 0 forall (i,j)e E,kePuS. (2.3c)

Replacing constraint (2.2) with (2.2a), (2.2b) and (2.2c), and constraint (2.3) with

(2.3a), (2.3b), and (2.3c) in formulation [S-STJ, and eliminating the redundant constraints
(2.2a) and (2.2c) for k E P, we obtain the expanded S-ST formulation containing the

following constraints:

* flow conservation equations (2.3a) for each commodity at every node;

* Steiner tree forcing constraints (2.2b) for all edges;

* spanning tree forcing constraints (2.3b) for all edges;

· linking constraints (2.4) for all edges;

*· notegativity constraints (2.3c) for all the flow variables; and,

· inegrality restrictions (2.5) for all the design variables.

Consider the following change of variables in the expanded S-ST formulation: for
every edge (ij), we introduce a new decision variable vij, and replace the spanning tree

edge selection variable wij with (uij + vij). Since both wij and uij are binary variables and

since wij > uij (constraint (2.4)), vij is also binary, and has the following interpretation:
vij = 1 if edge (ij contains a secondary facility, and

0 otherwise.

-8-

III

We refer to uij and vij, respectively, as primary and secondary edge selection variables.
Substituting for wij in the linking constraint (2.4) gives

uij < Uij + Vij,

which reduces to nonnegativity constraints for the v variables. Constraints (2.2b) remain
unchanged, while constraint (2.3b) becomes

< uij + vij, and

< ui + vii for all {ijJ}E, kS.

These constraints specify that a secondary commodity k can flow in either direction on edge
(i,j } only if this edge contains a primary or secondary facility. Finally, with the change of
variables, the primary cost aij replaces the incremental cost eij as the objective coefficient of
uij, and variable vii has the secondary cost bij as its objective coefficient. We refer to this

revised formulation as the Basic Undirected Flow-based (BUF) formulation.

[BUF minimize aj + i bij vij (2.6)
ij}eE { ij)EE

subject to

Commodity flow conservation:
-1 ifj=1

iNAii - 1iN t = 1 ifj=k

0 ifj*k for all je N, k PS, (2.7)

Primary forcing constraints:

S uij, and (2.8a)
S Uij forall (ij)jE, kP, (2.8b)

Seconday forcing constraina:
S uij + vij, and (2.9a)

uij +vij forall (ij)eE,keS, (2.9b)

Nonnegativity, integrality:
U v = O or 1 for all ij)eE, (2.10a)

ft' Ž 0_ for all i,j E, ke PuS. (2.b)

The flow-based model easily accommodates variable (flow-dependent) costs (these
costs appear as objective function coefficients for the flow variables tj), and also extendsIi

-9-

to the more general multi-level network design problem. Like the spanning tree and Steiner

network problems, the TLND problem also has several alternate formulations. For

instance, we can reformulate the problem in cutset form using only the primary and
secondary design variables (see Aneja [1980] and Chopra and Rao [1988a] for cutset

formulations of the Steiner network problem). This formulation contains an exponential

number of constraints (corresponding to all possible cutsets in the graph). A second

variant would express the connectedness constraint by defining a different commodity for

every pair of nodes in the network.

For a network with n nodes and m edges, formulation [BUF] has O(m) binary

variables, O(mn) flow variables, O(n2) flow conservation constraints (2.7), and O(mn)

forcing constraints (2.8) and (2.9). In the next section, we describe model enhancements

that strengthen the formulation but increase the number of forcing constraints to O(mn2).

2.3 Strengthening the Undirected Flow-based Formulation
As we illustrate in Section 2.4, the basic undirected flow-based formulation [BUF] has

a relatively weak linear programming relaxation, making it unsuitable for LP-based solution

methods such as the dual ascent procedure we develop in Balakrishnan et al. [1992]. To

strengthen this relaxation, we describe a class of additional valid inequalities which we call

the bidirectional commodity-pair forcing constraints. As their name suggests,

these constraints contain flow variables for pairs of commodities flowing in opposite

directions on each edge; they replace the primary and secondary forcing constraints (2.8)

and (2.9) of formulation [BUF].

Let us first consider the primary forcing constraints (2.8) in formulation [BUF]. To

strengthen these constraints, we exploit the following property of the optimal TLND

solution. Since the primary and secondary costs are nonnegative and since all commodities

share the same origin, the TLND problem has an optimal tree solution that routes all

commoditis flowing on an edge in the same direction on that edge. In particular, if this

solution routes a pair of primary commodities k and h on edge (ij), then both commodities

must flow either from node i to node j or from node j to node i. This observation motivates

the following stronger forcing constraints, which we call the primary commodity-pair

forcing constraints or P-P forcing constraints:

fl +f u forall(ij)e E,kheP. (2.11)
Ii .1 I

-10-

The same principle also applies to commodity pairs containing secondary commodities.

However, if either commodity k and/or commodity h is a secondary commodity, we must
add the secondary design variable vij to the right-hand side. Thus, for mixed (primary and

secondary) commodity pairs we add the P-S forcing constraints

f + • < uij + vij forall (i,j} e E,keP&hSorkeS&he P.(2.12)

For pairs of secondary commodities, we replace the secondary forcing constraints (2.9) in

formulation [BUF] with the S-S forcing constraints

fi+ i 5 uij + vij forall(i,j)e E,k,he S. (2.13)

Let [EUF] denote the Enhanced Undirected Flow-based formulation containing

these three sets of constraints instead of the single-commodity forcing constraints (2.8) and

(2.9).

The bidirectional commodity-pair forcing constraints (2.11), (2.12), and (2.13)

strengthen the original forcing constraints since they contain additional flow variables on

the left-hand side. However, since these constraints apply to every pair of commodities,

the enhanced formulation for a network with n nodes and m edges contains O(mn2) forcing

constraints rather than the O(mn) forcing constraints in the basic formulation. For the

largest network size that we tested in our computational study (Balakrishnan et al. [1992]),

formulation [EUF] contains more than 450 million constraints.

Researchers have previously proposed bidirectional commodity-pair forcing constraints

for related problems. Unlike our P-P, P-S, and S-S forcing constraints (2.11)-(2.13)

which incorporate the MLND problem's multiple commodity (and facility) types, the

previous constraints consider only a single commodity type. Magnanti and Wong [1981]

described commodity-pair forcing constraints for the uncapcitated network design

problem; Balairshnan, Magnanti and Wong [1989] incorporated these constraints in a dual

ascent algoithm. Martin [1986] showed that adding the commodity-pair forcing

constraints to the undirected multicommodity flow formulation of the minimum spanning

tree problem gives an exact formulation, i.e., the LP relaxation of this formulation has

integer extreme points (this property does not hold for the TLND problem).

-11-

2.4 Impact of Adding the Commodity-pair Forcing Constraints
Using the simple 6-node example shown in Figure 1, we illustrate the impact of

successively adding the commodity-pair forcing constraints on the linear programming

lower bound. This example has 3 primary nodes (nodes 1, 2, and 3) and 3 secondary

nodes. The numbers on each arc denote the corresponding primary and secondary costs.

Primary nodes are shaded circles, and secondary nodes are hollow circles.

Figures 2(a) through 2(e) depict the optimal linear programming solutions as we

progressively strengthen the basic undirected formulation [BUF] by adding the P-P forcing

constraints, the S-S forcing constraints, and the P-S forcing constraints. In these figures,

dark and light lines represent, respectively, primary and secondary edges with positive LP

solution values. Solving the LP relaxation of the basic formulation [BUF] gives the

solution shown in Figure 2(a) with a cost of 78.5; this solution violates (for example) the

P-P forcing constraints on edge (2,3). Adding the P-P constraints (for all edges) increases

the optimal LP value to 88.5, and gives the solution shown in Figure 2(b). Contrast this

solution with the optimal values (Figure 2(c)) obtained by enforcing integrality for only the
primary design variables uij (and keeping the secondary design variables continuous); this

mixed integer program has an optimal value of 91.

The solution in Figure 2(b) (with the P-P forcing constraints added to formulation

[BUF]) violates the S-S forcing constraints for edges (4,5) and (5,6). Adding the S-S

forcing constraints for all edges eliminates this solution. However, the new optimal LP

solution, shown in Figure 2(d), still contains fractional values. In particular, this solution

has a cost of 101 and violates the P-S forcing constraint for edge (3,6). Finally, when we

add all the P-S forcing constraints (i.e., we use the complete enhanced formulation [EUF]),

the optimal LP solution is integral, and is therefore optimal for the original problem as well;

Figure 2(e) shows this optimal TLND solution.

For this example, the lower bound progressively increases from the basic LP value of

78 to the opimal IP value of 106, fully eliminating the original integrality gap of 35% as

we successively introduce the commodity-pair forcing constraints (2.11), (2.12) and

(2.13). This example also shows that none of these three classes of commodity-pair

forcing constraints is redundant. We next describe a compact directed problem

formulation, and prove that this formulation has the same optimal linear programming value

as the enhanced undirected formulation [EUF].

-12-

11

3. The Directed TLND Model

The Directed TLND problem seeks a minimum cost directed spanning
arborescence rooted at a specified primary node; this arborescence must contain a rooted
subtree of primary arcs that spans all the primary nodes (and optionally includes secondary
nodes). Given an undirected TLND problem, we consider an equivalent directed TLND
problem by

(i) choosing an arbitrary primary node, say node 1, as the root node, and,

(ii) replacing each undirected edge ij} in the given graph with two directed arcs (ij)
and (j,i), both having the same primary and secondary costs (aij and bij) as the

original edge.
Let A denote the set of arcs in this directed network. Since the primary and secondary arc
costs are both nonnegative, the directed TLND problem defined over the transformed
network has an optimal solution that selects at most one of the arcs (ij) and (j,i).
Therefore, ignoring the arc directions in this solution gives the optimal undirected solution
with the same total cost. Note that this transformation is valid only for problems with a

single-source (or single-destination) commodity flow pattern. For problem contexts
requiring multicommodity flows (with associated flow costs) between multiple origins and
destinations, the directed model is not equivalent to the undirected model because it double
counts the fixed cost for edges that carry flow in both directions.

3.1 The Directed Flow-based Formulation
To formulate the directed TLND problem as a mixed-integer program, as in the

undirected problem, we use a commodity flow pattern with n-I unit demand commodities,
all originating at the common primary root node 1. As before, the formulation uses
directed (continuous) commodity flow variables ftj, for all arcs (ij) E A, denoting the

proportion of commodity k's demand flowing from node i to node j. The formulation
contains directed (binary) arc selection variables xij and yij for each arc (ij) E A. The

primary arc selection variable xij has value 1 if we select arc (ij) as a primary arc, and O
otherwise. The secondary arc selection variable Yij has value 1 if we install a secondary

facility on arc (ij), and 0 otherwise. We obtain the following Directed Flow-based
formulation, denoted [DFe, by replacing the primary and secondary edge selection
variables uij and vii in the basic undirected flow-based formulation [BUF] with the directed

arc selection variables xij and Yij-

- 13-

[DF] minimize (aij xi + (bij ij(3.1)
(ij)E A (ij)e A

subject to

Commodityflow conservation:
-1 ifj=1

iX fi -i tt j = 1 ifj=k
iE N iEN J

0 ifj k for all je N, ke PuS, (3.2)

Primary forcing constraints
f14 5 Xij for all (ij)E A, k P, (3.3)

Secondaryforcing constraints

tij < xij +Yij for all (ij) A, ke S, (3.4)

Nonnegativity, integrality:

Xij Yij = 0 or 1 for all (i,j)e A, (3.5a)
fij > 0 forall(i,j)eA, kePS. (3.5b)

Observe that, unlike the enhanced undirected formulation [EUF], the directed formulation

uses only the O(mn) (unidirectional) single-commodity forcing constraints (3.3) and (3.4).

Yet, as we show next, this formulation has the same optimal linear programming value as

formulation [EUF].

3.2 LP-Equivalence of Directed and Enhanced Undirected Models
This section shows that, when the primary and secondary costs are nonnegative (and all

commodities originate at a single node), the linear programming relaxations of the directed

flow-based formulation [DF] and the enhanced undirected formulation [EUF] have the

same optimal values. Previously, Goemans and Myung [1991] have considered a similar

result for the Steiner tree problem. They showed that the polyhedron determined by the

linear programming relaxation of the enhanced undirected Steiner tree formulation (without
the explicit upper bound constraints uij < 1) is a projection of the polyhedron determined by

the linear programming relaxation of the directed formulation. This property is a

polyhedral result that does not depend upon the sign of the objective function coefficients.

Our result applies to the broader class of multi-level design problems, but considers only

optimal solutions of the linear programming relaxation, and requires nonnegative costs.

We might also note that, for the Steiner network problem, Chopra and Rao [1988a] have

shown a related equivalence between a directed cutset formulation and an (enhanced)

-14-

III

undirected multi-cut formulation; both these formulations use only design variables, and do

not contain the unit upper bounds on these variables.

Let [LDF] and [LEUF] denote the linear programming relaxations of [DF] and [EUF],

obtained by replacing the integrality (O or 1) restrictions (2. lOa) and (3.5a) on the edge and

arc selection variables with nonnegativity constraints and unit upper bounds (e.g., replace
the constraint uij e (0,1) in [BUF] with the constraints 0 < uij < 1).

Theorem 1: For problems with nonnegative primary and secondary costs, the linear

programming relaxations offormulations [EUF] and [DF] have equal

optimal objectivefunction values.

Proof:
We prove the theorem by showing that, given an optimal solution to either formulation

([LDF] or [LEUF]), we can construct a feasible solution to the other formulation with the

same objective function value. Given a solution to one formulation, we will use the same
flow solution (ftj) for the other formulation to determine appropriate values of the design

variables for the second formulation.

We first note that, for a given flow solution {fi}, it is easy to find the optimal values of

the design variables for either formulation. For any arc (ij) e A, let F and FP'S denote

the maximum primary flow and maximum combined (primary or secondary) flow on this

arc in the direction i to j, i.e.,

FP = max { tj:k P),and

,Fe s= max {f(:ke PuS).

For given flows, we use the following equations to compute the values of the directed
design variables xij and Yij in formulation [LDF]:

xij = F and (3.6a)

Yij = F - xi for all(ij) e A. (3.6b)

Equations (3.6a) and (3.6b) ensure that the directed design variables xij and Yij are

nonnegative, and have the smallest possible values that satisfy the primary and secondary

forcing constraints (3.3) and (3.4). Since the primary and secondary costs are

nonnegative, this solution also has the smallest possible design cost that accomodates the

given flows.

- 15-

Similarly, we can express the undirected design solution to [LEUF] in terms of given
flow values as:

uij = max (i + : k,h e P = F + F and (3.7a)

vij = max (ft + f: k,h e P u S } -uij = FP + F - uij >0. (3.7b)

Again, the undirected design variables are nonnegative, and satisfy all the commodity-pair
forcing constraints (2.1 l)-(2.13) of formulation [LEUF. Equations (3.7a) and (3.7b)
select the lowest possible values of the primary and secondary edge selection variables uij
and vij that accomodate the given flows.

We refer to the values of the directed and undirected design variables satisfying (3.6) or
(3.7) as tight design values. When defined by the same flows f, these values satisfy the

following relationships:

uij = xij + xji, and (3.8a)

vij = Yij + Yji for all (i,j) e E. (3.8b)

Next observe that given an optimal solution to either the directed or undirected model, we
can (i) assume it has tight design values, and (ii) use the given flows to construct tight
design values to the other model satisfying (3.8). Since the costs are symmetric, the
solutions satisfying (3.8) have the same objective function value.

So far, we have shown that the transformations via equations (3.6) and (3.7) from an
optimal solution of either problem give directed and undirected design solutions that are
nonnegative, satisfy the forcing constraints of [LDF] and [LEUF], and have equal objective
function values. To complete the proof of equivalence, we need to show that the computed
design variables have values less than or equal to 1. The transformation from [LEUF] to
[LDFJ via equations (3.6) clearly satisfies this condition, since uij • 1 and viji 1 in the
given [LEUF] solution and the computed values of xij and Yij are nonnegative and satisfy

equations (3.8). The following claim, which we prove (in the Appendix) using the flow
decomposition property (see, for example, Ahuja, Magnanti, and Orlin [1993]), establishes
that the reverse transformation from [LDF] to [LEUFI gives an undirected design solution
that also satisfies the unit upper bounds.

-16-

III

Claim: The linear programming relaxation [LDF] of the directedformulation has an

optimal solution satisfying the conditions:

Xii + Xii < 1, and
Yij + Yji -< I for all edges ij e E.

Proof: See Appendix 1.

Recall that the values of the undirected design variables uij and vij that we derive from

the optimal directed solution to [LDF] satisfy equations (3.8). Therefore, given a directed

design solution satisfying the conditions of the claim, the derived undirected solution also

satisfies the unit upper bounds. These arguments prove that the directed formulation and

enhanced undirected formulation have the same optimal LP value.

Since the directed formulation [DF] and the enhanced undirected formulation [EUF] are

LP-equivalent, in Balakrishnan et al. [1992] we use the directed formulation to develop the

dual ascent algorithm. This algorithm is much easier to describe and implement than its

equivalent undirected version. Finally, we note that the LP-equivalence of the directed and
enhanced undirected formulations also extends to the more general single-origin (or single-

destination) two-level network design model withflow costs. In this model, routing
commodity k on arc (ij) incurs a nonnegative per unit cost of cij (we assume this per unit

cost to be the same for all commodities) in addition to the fixed primary or secondary cost.

We can apply a slight extension of the previous proof to problems with flow costs by
additionally showing that the flow rerouting step (see Appendix 1) will both ensure a

feasible design and not increase the total flow cost of the optimal LP solution.

4. Worst-case Analysis of TLND Heuristics

This section analyzes the worst-case performance of several heuristic methods for the

undirecld TLND problem. Duin and Volgenant [1991] describe two approximate

algorith-a modified weight heuristic and a branch chord heuristic-for the TLND

problem. Thes methods apply a Steiner tree heuristic (Takahashi and Matsuyama [19801)

to select the primary edges; the methods differ in the edge costs they use to construct the

Steiner tree. Duin and Volgenant [1991] raised the issue of whether these heuristics have
the same worst-case performance ratio of 2 as the underlying (undirected) Steiner

heuristics, but report that they had not found tight bounds.

-17-

We propose two broad classes of heuristic strategies for the TLND problem-

"forward" heuristics and "reverse" heuristics. A forward heuristic first selects the
configuration of primary edges, and then adds secondary edges to connect the remaining

secondary nodes. In contrast, a reverse heuristic first installs secondary facilities to
connect all secondary nodes, and then upgrades or installs primary facilities to connect the

primary nodes. We can implement these two strategies in various ways by solving

minimum spanning tree or Steiner network subproblems to determine the primary and/or

secondary subtree. (We can interpret Duin and Volgenant's [1991] two heuristics as
specific implementations of the forward and reverse strategy respectively.) We consider

four distinct methods, two forward and two reverse, and analyze the worst-case
performance of a composite heuristic that selects, for each problem instance, the best
(lowest cost) among the four heuristic solutions.

Motivated by Orlin's [1991] heuristic worst-case analysis for the HND problem, we
first consider a special class of TLND problems in which the ratio of primary to secondary
costs is the same for all edges. For this class of problems, we show if p is the worst-case

ratio of the heuristic used to solve the embedded Steiner network subproblem, then the
composite TLND heuristic has a worst-case performance ratio of p or 4/(4-p) depending

on whether p > 2 or p < 2. This result implies that, if we can solve the Steiner network

subproblem optimally (as in the HND problem), the composite heuristic produces a
solution to the proportional cost TLND problem that is guaranteed to cost no more than 4/3

the optimal cost (compared to Orlin's worst-case bound of 1.618). When the primary to

secondary cost ratio varies by edge, the composite heuristic has a worst-case ratio of
(p+1). We also provide worst-case examples to prove that these bounds are tight. Our

worst-case results resolve Duin and Volgenant's [1991] conjecture about the relationship

between Steiner and TLND heuristic worst-case ratios. We note that transforming the

TLND problem into an equivalent directed Steiner tree problem (Duin and Volgenant
[1989]) is not an effective tactic for TLND worst-case analysis since the lowest worst-case

ratio known to date for the directed Steiner tree problem with w terminal nodes (w = p+n

in the equivalent directed Steiner tree representation of the TLND problem) is log(w); this
result relies on transforming and solving the directed Steiner problem as a set covering

problem (Goemans [1992]).

-18-

II

4.1 TLND Heuristics
4.1.1 Forward Heuristics

Forward heuristics first select the edges interconnecting the primary nodes (these edges

must contain primary facilities), and then complete the design by adding secondary edges to

connect the remaining secondary nodes (those that do not already belong to the primary

subtree). We describe two such methods that respectively use the minimum spanning tree
and minimal Steiner tree to construct the primary subtree.

The basic version of the Minimum Spanning Tree (MST) heuristic for the
TLND problem constructs a feasible solution by installing primary facilities on all the edges
of the minimum tree T spanning all the nodes of the original graph G (using primary edge
costs). The primary subtree, denoted as Tp, is the minimal subtree of T that spans all the

primary nodes.

We can improve the MST heuristic as follows. Instead of installing primary facilities
on all edges of T, we (i) install primary facilities on all edges of subtree Tp, and (ii) select

secondary edges to span the remaining secondary nodes by applying the following

optimal secondary completion procedure:
Aggregate all the nodes spanned by the primary subtree into a single node. If this

aggregation process creates parallel edges, discard all but the cheapest (in terms of

secondary costs) parallel edge. Find the minimum spanning tree of this condensed

graph using secondary costs. Install secondary facilities on the edges of this subtree.

We refer to process of first finding the minimum spanning tree and then applying optimal
secondary completion to Tp as the Enhanced Minimum Spanning Tree (EMST)

heuristic.

The Forward Steiner Tree (FST) heuristic for the TLND problem first finds an
exact or approximate Steiner tree (using primary edge costs) spanning all the primary nodes
(and optionaily covering some secondary nodes). This Steiner tree serves as the primary

subtree in the heuristic TLND solution; we determine the secondary edges by applying the

optimal secondary completion procedure to the primary subtree. Since the Steiner network

problem is itself NP-hard, we might consider using an approximate method to solve the

Steiner subproblem; consequently, we will express our TLND worst-case results in terms
of the worst-case ratio p of the Steiner tree solution method (p = 1 if we solve the Steiner

tree subproblem exactly). For the HND special case, we can solve the Steiner subproblem

exactly since this subproblem corresponds to finding the shortest path between the two

-19-

primary nodes (using primary edge costs). We refer to this specialization of the FST

heuristic as the Shortest Path (SP) heuristic.

We can interpret Duin and Volgenant's [1991] modified weight heuristic for the TLND
problem as one version of the FST method. Using an edge weight function that reflects

savings in secondary costs, they construct a primary subtree using a method analagous to
Takahashi and Matsuyama's [1980] greedy heuristic for solving Steiner tree problems.

The modified weight heuristic then completes the TLND solution by applying the optimal

secondary completion procedure.

4.1.2 Reverse Heuristics
The MST and FST heuristics first connect the primary nodes (possibly via intermediate

secondary nodes), and then choose secondary edges using the optimal secondary

completion procedure. We now consider analagous "reverse" methods that first connect

the secondary nodes, and then use incremental edge costs to install primary facilities. This

reverse strategy might be intuitively appealing for problem instances with secondary costs

close to primary costs. We describe two alternative implementations of this strategy.

The Incremental Steiner Tree (IST) heuristic first finds the minimum tree
spanning the node set S u (1 } using secondary costs (recall that primary node 1 is the root

node). Using incremental (= primary-secondary) costs for the edges of this tree, and the

original primary costs on the remaining edges of G, the method constructs a Steiner tree

with primary nodes as terminals. Adding the edges (with primary facilities) of the Steiner

tree to the original subtree (containing secondary facilities), and successively dropping

secondary edges to eliminate any cycles gives a feasible TLND solution.

The Overlay Steiner Tree (OST) heuristic begins with the secondary-cost

minimum spanning tree over all the nodes (the IST heuristic connects only nodes
S u ({ 1)). We then construct a Steiner tree (with primary nodes as terminals) using

incrmental costs for edges in the minimum spanning tree, and primary costs for the

remaining edges. As before, we install primary facilities on the edges of the Steiner tree,

and eliminate cycles by successively dropping secondary edges.

Like the FST heuristic, the IST and OST heuristics might employ either an exact or

approximate method for solving the Steiner subproblem. For the HND problem, we can

solve this subproblem exactly using a shortest path algorithm. Although all three Steiner

-20-

III

tree-based heuristics-FST, IST, and OST-solve Steiner subproblems with the primary
nodes as terminals, they use different costs (primary costs for FST, and different
incremental costs for IST and OST). Just as the EMST heuristic improves the MST
solution, we might consider the following enhancement of the IST (or OST) heuristic
solution: after solving the Steiner tree subproblem in the second step, apply optimal
secondary completion to the primary subtree (chosen by the exact or approximate Steiner

solution method) in order to decide the configuration of secondary facilities. We will refer

to this improved method as the Enhanced IST (or OST) heuristic.

In addition to the Steiner tree-based reverse heuristics IST and OST, we might also
consider a minimal spanning tree-based reverse heuristic analagous to the MST heuristic.
This method first finds the secondary-cost minimal spanning tree, determines the primary
subtree of this spanning tree, and upgrades the secondary facilities to primary facilities on
all edges of this primary subtree. Note, however, that the OST heuristic dominates this

method since the primary subtree (of the secondary minimal spanning tree) is one of many

possible heuristic solutions to the Steiner subproblem in the second step of the OST
method. Finally, we can also interpret Duin and Volgenant's [1991] branch chord heuristic

as a version of the enhanced OST heuristic; starting with the secondary minimum spanning
tree, the branch exchange method constructs the primary subtree by successively
exchanging secondary edges for primary edges.

4.2 Worst-case Bounds for the Proportional Costs case
This section considers the special class of TLND problems having the same primary-

to-secondary cost ratio, say r, for all edges, i.e.,
r = aij / bij for all edges {ij) E.

In this case, the incremental cost eij of edge ij) equals (r-l) bij. In the following

discussion, we let T(G) denote the minimum tree (using secondary costs) spanning all the
nodes of the graph G. To simplify our notation, we assume without loss of generality, that
we have scaled the costs so that the secondary cost of the minimum spanning tree T(G)

equals 1, i.e.,

7; bi = 1.
(ij)ET(G)

Let s denote the (unknown) secondary cost of the optinmal Steiner tree spanning all
the primary nodes. Note that, since the spanning tree T(G) is a feasible solution to the

-21-

Steiner network problem with primary nodes as terminals, its secondary cost must be an
upper bound on the secondary cost of the optimal Steiner tree, i.e., s 1.

To evaluate the worst-case performance of the spanning and Steiner tree-based
heuristics, we develop some lower bounds (in terms of the Steiner tree cost s, the cost ratio
r, and the normalized secondary cost of the minimum spanning tree T(G)) on the optimal
value, say Z*, of the TLND problem. We then derive upper bounds for each heuristic
separately, and for a composite heuristic that applies all four methods and selects the best

heuristic solution.

4.2.1 Lower Bounds on Z*
Our first lower bound follows from the S-ST formulation described in Section 2.

Suppose we relax this formulation by removing the linking constraints (2.4). The problem

then decomposes into two subproblems: (i) a Steiner tree subproblem (involving the u
variables) with primary nodes as terminals and with the incremental costs eij as arc lengths;

and (ii) a minimum spanning tree subproblem (the w-subproblem) over the original graph,
with the secondary costs as arc lengths. Since we have relaxed the original formulation,
adding the optimal values for these two subproblems provides a valid lower bound Z 1 =

(r-1) s + 1 on the optimal value Z*. Note that deleting the linking constraints (2.4)
corresponds to dualizing these constraints using multipliers Lij = 0; thus, Z 1 is the optimal

value of the Lagrangian subproblem for this special set of multipliers. We, therefore, refer
to Z 1 as the Lagrangian lower bound.

The second lower bound follows from a different relaxation of the S-ST formulation.

Suppose we delete the spanning tree constraints (2.3) from formulation [S-STI. Since all
the secondary edge costs are nonnegative, this relaxed problem must have an optimal
solution with wij = uij. Thus, we can eliminate the w-variables by substituting uij for wij

in the objective function, and removing constraints (2.4); observe that, after we make this
substitution, ui has the primary cost aij = eij + bij as its objective function coefficient.

Consequently, the residual problem seeks the optimal Steiner tree (with primary nodes as

terminals) using the primary costs. Since we have relaxed the original formulation, the
primary cost (= r s) of the optimal Steiner tree is a valid lower bound for Z*. We denote
this Steiner tree lower bound as Z 2 .

Note that Z 1 Z2 since s • 1. We can obtain a third lower bound by omitting the

Steiner tree constraint (2.2) in formulation [S-STI. The optimal solution to this relaxation

- 22 -

II

is the secondary minimum spanning tree T(G), with cost Z3 = 1. Again, Z1 dominates this

lower bound. Therefore, we use only the lower bound Z 1 in all our subsequent

discussions.

4.2.2 Upper bounds on heuristic solutions
We now determine upper bounds on the cost of the heuristic solutions produced by the

four methods-one spanning tree method (EMST) and three Steiner tree-based methods
(FST, IST, and OST)-described in Section 4.1. Let ZH denote the cost of the solution

produced by the heuristic method H. We begin by analyzing the forward heuristics.

The basic MST heuristic installs a primary facility on every edge of the minimum

spanning tree of the original graph. With the constant primary-to-secondary cost ratio r,

and our cost scaling assumption (i.e., the secondary minimum spanning tree has unit cost),

the cost of the MST heuristic solution is r. Since the EMST heuristic improves the MST

solution,

ZEMST • r.

To analyze the worst-case performance of the Steiner tree-based heuristic methods, we
will assume that the embedded Steiner network solution method has a known worst-case
performance ratio p. Consequently, in the FST heuristic solution, the primary subtree is

no more than p times the primary cost (= rs) of the optimal Steiner tree solution.

Furthermore, the optimal secondary completion of this primary subtree must cost no more

than the secondary minimum spanning tree for the original graph G. Therefore,

ZFST rs + 1.

Let us now consider the reverse heuristics. The IST heuristic incurs a secondary cost
of at most 1 unit in the first step, and a maximum primary cost of prs in the second step

(for the approximate Steiner tree connecting the primary nodes). Therefore,

ZIsT prs+ 1.

The OST heuristic incurs a cost of 1 in the first step, and an incremental cost of at most prs

in the second step (since the incremental Steiner tree must cost less than the primary Steiner

tree cost s). Consequently,
ZOST prs+l.

Note that all three Steiner tree-based heuristics (FST, IST, and OST) have worst-case
values of (prs + 1).

- 23 -

4.2.3 Worst-case performance ratio
Let Span and CoSteiner represent, respectively, the worst-case performance ratios (i.e.,

ratio of heuristic solution cost to optimal TLND value) of the spanning tree and Steiner tree-
based heuristics. Based on our observations in Sections 4.2.1 and 4.2.2, these two ratios

have the following upper bounds:

(OSpan < ZEMST1' = r/((r-1)S+1),and
Osteine r < ZFST 1 = {prs + 1} / (r-)s + 1}.

For any given value of r > 1, the upper bound on the performance ratio oSpan is decreasing

in s; as s -+ O0, this upper bound tends to r. On the other hand, for the Steiner tree-based
heuristics, the upper bound on the worst-case ratio CoSteiner increases with s. Since s < 1,

OSteiner has an upper bound of (p + 1/r).

Since the two upper bounds on the performance ratio respectively decrease and increase

with s, we consider a Composite heuristic that selects the best among all the spanning and
A

Steiner tree-based heuristic solutions for a given problem instance. Let Z = min {ZEMST,

ZFST, ZIST, ZOST) be the value of the composite heuristic solution, and let (o denote its

worst-case performance ratio. Note that
A

Z < min (r,prs + 1}.

Therefore, the composite heuristic's worst-case performance ratio o satisfies

o S min (r, prs + 1)/ (r-1)s+ l}). (4.1)

For fixed r, the right-hand side of (4.1) achieves its maximum value when s = (r-1)/pr.

Substituting this value of s in the right-hand side of inequality (4.1) gives the following

result.

Theorem 2:
If di ratio ofprimary-to-secondary costs is constantfor all edges, then

o < p / (1 + (p-2)/r + /r 2). (4.2)

Note that this result gives a worst-case bound on the performance of the composite

heuristic as a function of the primary-to-secondary cost ratio r. For example, if r = 1, then

as we might expect, the worst-case ratio is 1. In order to obtain a worst-case bound that

applies simultaneously to all values of r, we consider two cases: p > 2 and p < 2. If p > 2,

the right-hand side of inequality (4.2) is less than equal to p since r > 1 (by definition).

- 24-

III

Now consider the case with p < 2. For fixed p, the expression on the right-hand side of
inequality (4.2) achieves its maximum value of 4/(-p) at r* = 2 /(2-p). Since p > 1 (by

definition) and p < 2 (by assumption), r* > 1 as required. These arguments establish the

following corollary to Theorem 2.

Corollary:
For TLND problems with proportional costs,

ow < p if p 2
< 4/4-p if p < 2.

Observe that, if the FST heuristic uses an exact Steiner tree solution method (with
p = 1), this corollary implies a worst-case bound of 4/3. In particular, for the HND

problem (with only two primary nodes) the SP heuristic produces a solution that is at most
133% more expensive than the optimal solution. Since we use the Lagrangian lower bound

for characterizing the composite heuristic's worst-case performance, the analysis leading to
Theorem 2 also provides bounds on the linear programming relaxation of the model [S-

ST]. In a subsequent paper, we will develop these results in a more general problem

setting than the two level network design problem.

4.2.4 Worst-case Examples
We now present worst-case examples to show that the bounds of Theorem 2 are tight.

We separately consider the HND problem and the general TLND problem. For the HND
problem, p = 1 since the shortest path algorithm solves the Steiner tree subproblems

exactly. For the general TLND problem, we will assume a particular approximate method
to solve the Steiner tree subproblems with worst-case ratio p = 2. To prove the tightness

of bounds in Theorem 2, we show that the upper bound (4.2) on o is achievable for

arbitrary values of r. In particular, for the HND problem, we show an example with
Co = r2/(-r+l) that satisfies (4.1) as an equality, and for the general TLND problem our

worst-case example achieves co - 2r2/(r 2+1). In all our examples, the enhancement to the

MST, IST and OST heuristics, i.e., applying optimal secondary completion with respect to

the primary subtree in the final solution does not improve the solution.

Worst-case example for the HND problem:
Figure 3(a) shows the HND worst-case example. This network has two primary nodes

(shown as solid circles), and q secondary nodes (the hollow circles). The parameter E has

- 25-

a small, positive value, and q is sufficiently large. We select a sufficiently integer large

value for the parameter d so that d > q/(r-1). The number on each edge denotes its

secondary cost; the primary cost is r times this value. For this example,

(i) the EMST heuristic (Figure 3(b)) selects the primary edges on the lower path

(selecting a large value of d ensures this MST configuration), with a total cost of

ZEMST = r{q[r-l]/q + 1} = r2;

(ii) the SP heuristic (Figure 3(c)) installs a primary facility on the direct edge

between the primary nodes; the optimal secondary completion installs secondary

facilities on the lower path (excluding the last edge incident to the primary node

on the right). This solution costs

ZSP = r(r-l-e) + 1 + (q-l)(r-l)/q = r2 - (r-l)/q- re.

Note that ZSP - (r2 - re) as q -> -o;

(iii) the IST heuristic first selects the lower path as the minimum tree spanning the

secondary nodes (and node 1, the primary node on the left-hand side); the

method then installs a primary facility on the direct edge connecting the two

primary nodes. This solution is the same as the SP solution (Figure 3(c));

(iv) the OST heuristic first installs secondary facilities on the lower path connecting

the two primary nodes (this is the minimum spanning tree), then installs a

primary facility (with incremental cost r(r-1)) on the direct edge connecting the

primary nodes, and finally deletes one of the (secondary) edges in the lower path

during the drop phase. This procedure also gives the SP solution (Figure 3(c));

(v) the optimal solution (Figure 3(d)) consists of primary edges on the lower path,

and the pendant secondary edge. This solution has cost

Z* = rq(r-l)/q + 1 = (r 2 -r+l).

As e - 0, a) = min(ZEMsT, ZSP)/Z* approaches r2/(r 2-r+l } as desired. Note that if r =

2/(2-p) = 2, we achieve the bound of 4/3 implied by Theorem 2 for the composite

heuristic.

- 26-

II

Worst-case example for the TLND problem:
For the general TLND problem, we will assume that the FST, IST, and OST methods

use the following Terminal Tree heuristic to solve the Steiner subproblems: select the
minimum tree spanning only the terminal (primary) nodes. If the edge costs do not satisfy
the triangle inequality, we set the length of edge (ij), for every pair of nodes i and j, equal
to the shortest path distance from i to j in the original graph. The cost of this solution is at
most twice the cost of the optimal (undirected) Steiner tree (Takahashi and Matsuyama
[1980], Lou, Markowsky and Berman [1981]), i.e., p = 2 for the Terminal Tree heuristic.

As Sullivan [1982] has noted, adapting this heuristic to solve the directed Steiner tree
problem increases its worst-case performance ratio to w, the number of terminal nodes;

thus, although we can transform the TLND problem into a directed Steiner tree problem
(Duin and Volgenant [1989]), this transformation does not provide effective heuristic
worst-case bounds.

Figure 4(a) shows the TLND worst-case example. This example has q primary nodes

(solid circles) on the circumference; the edges connecting each primary node to its
neighbors have a secondary cost of (r-l)/q. Each primary node is connected to a central
secondary node via a "direct" path containing t edges (and t-1 intermediate secondary
nodes), each with a secondary cost of (r-1)/2qt. Every pair of adjacent nodes i and j on
this path is also connected by a string of (d+1) edges (with d intermediate secondary
nodes). The first edge on this string has a secondary cost of (r-l)/2qt; all remaining edges
have secondary costs of (r+1)/2dqt. Thus, the cost of the string from i to j is r/qt. In all,

the network contains qt such strings. If we use only these strings to connect each primary

node to the central secondary node, we incur a total secondary cost of r.

Figure 4(b) shows the EMST solution for this example. Its total cost is
ZEMST = r.

The FST, IST, and OST heuristics generate the solution shown in Figure 4(c). This
solution has cost

ZS.r = r(q-l)(r-1)/q + q(t-l)(r+l)/2qt + (r-l)/2qt + (r+l)/2,

which approches 2 as q and t - oo. Finally, the cost of the optimal solution (Figure 4(d))

approaches
Z* = rqt(r-l)/2qt + (r+l)2 = (r2+1)/2.

Therefore, for this example, the performance ratio for the composite heuristic is
c = 2r2/(r 2+1).

- 27 -

Again, as r -, o, o -- 2 as indicated in Theorem 2. To ensure unique solutions we can

perturb the costs by some small e > 0.

4.3 Worst-case analysis for the Nonproportional Costs case
We now analyze the composite heuristic's worst-case performance when the ratio of

primary to secondary costs varies by edge.

Theorem 3:
For TLND problems with nonproportional costs, the composite heuristic has a
worst-case performance ratio oof at most (p + 1), where p is the worst-case ratio

of the embedded Steiner tree heuristic.

Proof:
Let Z*, ZST and ZT(G) denote, respectively, the optimal values of the TLND, the Steiner

network spanning the primary nodes, and the minimum spanning tree T(G) of the original
graph G using secondary costs. Since both the Steiner tree and secondary minimum
spanning tree problems are relaxations of the TLND problem (see Section 4.2.1),

ZST < Z*, and
ZT(G) Z*.

But, the Forward Steiner Tree heuristic finds a primary subtree with a cost that is at most p

times the optimal Steiner tree cost; and applying secondary completion to this subtree
increases the total cost by at most the cost of the secondary minimum spanning tree. Thus,

Zcomposite ZFST < P ZST + ZT(G)-
From the previous inequalities,

Zcomposite P Z* + Z*.
Therefore,

O = ZcompositeZ*
< (p + 1).

Corollary:
For TLND problems with nonproportional costs, using an exact solution methodfor
the Steiner network subproblem produces a heuristic solution that is no more than

twice as expensive as the optimal solution.

- 28 -

II

4.3.1 Worst-case examples
This section presents examples with varying primary-to-secondary cost ratios that

achieve the worst-case heuristic performance bound of (p+1). Again, we separately

consider the HND problem and the general TLND problem. The worst-case examples have
the same network configuration as before (i.e., same as Figures 3 and 4 for the HND and

TLND problems, respectively), but have different (nonproportional) costs. Again,

enhancing the MST, IST, and OST heuristics by applying optimal secondary completion as
a final step does not improve the solutions.

Figure 5 shows the worst-case example for the HND problem. The primary and
secondary costs are equal for all edges except the edge connecting nodes A and B, and the
edges on the path connecting nodes B and C; these edges have a primary cost of 1 and a
secondary cost of 0. The direct edge from A to D has primary and secondary cost equal to
q - e. For this example, the EMST, SP (and IST, OST) and optimal solutions have the

same configurations as before (Figures 3(b), 3(c), and 3(d)). The cost of the EMST

solution (Figure 3(b)) is
ZEMST = 2q.

The SP solution (Figure 3(c)), obtained by first finding the shortest path between the two

primary nodes, has cost

ZSp = 2q-1-E.

The optimal solution, shown in Figure 3(d), has a cost of q. Thus, the performance ratio
for the composite heuristic is arbitrarily close to 2 = p + 1.

Now consider the general TLND problem with more than 2 primary nodes and
nonproportional costs. Figure 6 shows the TLND worst-case example. The optimal and

heuristic (EMST and FST, IST, OST) solutions to this problem instance have the same

structure as our previous example (Figure 4). The cost of the EMST solution (Figure 4(b))
is

ZEMST = 3q.

The cost of the FST (and IST, OST) solution using the Terminal Tree heuristic to construct

the approximate Stein tree is
ZFST = 2(q-1) +q(t-l)/t + l/t,

which is arbitrarily close to 3q for large values of q and t. The optimal solution, on the

other hand, has cost
Z* = qt/t = q.

Thus, the performance ratio o is arbitrarily close to 3 = (p +).

- 29 -

4.5 Summary of Worst-case Results
This section has described several heuristic methods for the TLND problem, developed

worst-case performance bounds for two cost structures, and proved that these bounds are

tight. We note that the analysis for the proportional cost case might extend to problems
whose the primary-to-secondary cost ratios for different edges belong to a prespecified
range [r/, ru] instead of a single value r. In this case, the worst-case bound would depend

on the values of the upper and lower limits rl and ru. This bound is likely to be superior to

the bound of (p+l) for the general cost structure. The following table summarizes the

worst-case performance bounds for the different heuristics under various problem

scenarios.

Worst-case Performance Ratios for TLND heuristics

The results in this table show the power of combining two classes of heuristics, one

whose perfamance ratio decreases and one whose performance ratio increases as a

function of some underlying problem parameter, in our analysis, this balancing parameter is

s, the cost of the optimal Steiner tree. By balancing the effects of these two trends, the

composite procedure is able to achieve a better performance ratio than each heuristic alone.

The bound of 4/3 for the Shortest Path heuristic is one example. Our analysis has the

added novelty that the balancing parameter s, which is the optimal objective value (using

- 30-

Heuristic Method Proportional Nonproportional
costs costs

FORWARD heuristics:
EMST heuristic r 0
FST heuristic p + 1/r p + 1

REVERSE heuristics:
IST heuristic p + l/r p + 1

OST heuristic p + /r p + 1

COMPOSITE heuristic:
(i) p < 2 4/(4 -p) p + 1

(ii) p>2 P p +

III

secondary costs) of the Steiner tree problem with the primary nodes as terminals, is
unknown.

5. Conclusion

This paper has examined modeling issues and analyzed the worst-case performance of
heuristics for a new class of multi-level network design problems. The model has
applications in telecommunication, transportation, and electric distribution network
planning. We showed that the basic flow-based formulation for the undirected problem is
relatively weak (in terms of its LP value), and the additional bidirectional commodity-pair

forcing constraints considerably strengthen the linear programming relaxation. When all

the commodities originate at a single node (or have a single destination) this enhanced

formulation is LP-equivalent to a more compact directed formulation. To analyze heuristic
worst-case performance, we considered a composite heuristic that selects the best among
several heuristic solutions based upon minimal Steiner and spanning trees. For the HND
special case with only two primary nodes, this heuristic gives a solution that is guaranteed
to be no more than 33-% more expensive than the optimal solution. For the general case3

(with more than two primary nodes, and arbitrary primary and secondary costs), the
composite heuristic's worst-case performance ratio of p+l depends on the worst-case

performance ratio p of any Steiner network heuristic.

In a companion paper (Balakrishnan et al. [1992]), we develop and test an

optimization-based heuristic methodology for solving the multi-level network design

problem. This method first applies certain preprocessing tests to reduce the problem by

eliminating or installing primary or secondary facilities before solving the problem. The

core of the method consists of a dual ascent algorithm to generate good linear

programming-based lower bounds and heuristic upper bounds. Computational experience

on large-scale problems (containing up to 500 nodes and 5000 edges) shows that the

method provides very good heuristic solutions that are within 0.9% of optimality.

Acknowledgments: We appreciate the helpful comments from the referee and Mr. S.
Raghavan, and thank a referee for bringing the work of Iwainsky and Duin and Volgenant
to our attention. We are indebted to Professor James Orlin for illuminating discussions
about HND heuristics. Our results concerning the relationship between directed and
undirected formulations are rooted in many discussions about network design with Dr.
Richard Wong.

- 31 -

Appendix 1

Proof of Claim in Section 3.2

Claim: The linear programming relaxation [LDF] of the directedformulation has an
optimal solution satisfying the conditions:

xi + Xji < , and

Yij + Yji < 1 for all edges {ij} E E.

Proof:
To establish this claim, we use the flow decomposition property (see, for example,

Ahuja, Magnanti, and Orlin [1992]). Let {i,j) be any edge for which

Xij + xji > 1
in the given optimal solution to the linear programming relaxation [LDF] of the directed
formulation.

We will construct an alternate solution to [LDF] that has equal (or lesser) cost but less
flow in the j-to-i direction, and hence a lower value of xji. First, if a flow pattern for any
commodity contains a cycle, we can eliminate this cycle by reducing the flow on all of its
arcs; since the costs are nonnegative, the new directed design solution derived from
equations (3.6) has equal or lower cost. Therefore, we will assume that the given flow
solution routes all commodities on simple paths. Let h and k be the indices of the
"bottleneck" primary commodities in the i-to-j and j-to-i directions, respectively, i.e.,

fj = F1j = xij,and

fk = FjP = xji.

Note that, since i + • i 1 (since commodity k has unit demand and its flow pattern does

not contain cycles) and + > 1 (by assumption), commodity k cannot be a bottleneck

flow in the i-to-j direction, i.e.,

Let li denote the set of feasible flow paths from the root node 1 to node i not

containing nodej defined by arcs with x-variables greater than zero. Similarly, let Il
denote the set of paths froa node 1 to node j not containing node i. We will maintain
commodity k's current flow into node i by increasing its flow on paths i by = (f + . i -

1) units, and correspondingly decreasing its flow on paths j and arc (j,i). Observe that

< f. We next argue that we can perform this rerouting without increasing the cost
of the [LDF] solution.

-Al -

III

Since commodity h's flow paths do not contain cycles, its i-to-j flow must enter node i
solely on paths r i. Consequently, the values of the design variables in the given [LDF]
solution must create a total capacity of at least fij units on the paths i. We can, therefore,
increase commodity k's flow on these paths by E = (f -) > O. Since tj < 1 - ji, we
have e 2 (fhij + Hi - 1) = . Thus, we can increase commodity k's flow on paths fi by ,
units and correspondingly decrease its flow on paths flj and arc (j,i) by units without
increasing the values of the design variables xij and ij (and hence without increasing the
cost of the [LDF] solution). Let f4iji = - 0 denote the new value of commodity k's
flow on arc (j,i) after the rerouting step. We also update the values of the design variable
xji using equation (3.6); let x'ji denote the new design value. Note that commodity k's
new flow value from node j to node i satisfies the condition:

-iy 1.

If commodity k continues to be the bottleneck commodity in the j-to-i direction, then the
previous inequality implies xij + x'ji 5 1, as required. Otherwise, we successively
perform the rerouting step for each new bottleneck commoxdity in the j-to-i direction until
the sum of the design variables values in the i-to-j and j-to-i directions is less than or equal
to 1.

A similar constructive argument proves that [LDF] must have an optimal solution
satisfying Yij +Yji 1.

-A2-

_ --. I I___IPI_______I__II_.-------I�__

Primary node

Secondary node

Figure 1: 6-node TLND example

(22,

(primary cos

t, 19)

0

III

(a) Basic undirecte formulation [BUFI

1/2 ~ optimal LP value
of u variable

· optimal LP value
of v variable

(b) Basic+ P-P Forcing
constraints

(c) Basic+ integer u

1

(d) Basic + P-P and S-S
Forcing constraints

(e) Basic + P-P, S-S, and P-S
Forcing constraints

1 Cost
= 106

primary node
0 secondary node

primary edge

secondary edge

Nodes amre numbered clockwise from the top (root) node.

Figure 2: LP solutions for 6-node example

Cost =
78.5

Cost =
88.5

Cost
= 91

Cost
= 101

����"���'���ull���"-�^I�" �I-^�� �� .�1"�'�1-'1^1-1�-�-���.�----�-�-

S I
I I

I

3

!iI

I
'I

I

1 I

o
,

N ~~~~
a
U
a

· b~~~

.o
0 a

a

a 0CatZC
I

w am

ho c
0 oQtcf

I's c
* a

20;U.

*

.
m1

ARC 1. 0 I
· ts s h

F i

* 0

I
I
I

i

Ut

-0

0 0h .

a.n °
Z'o
J 0
_ 0
0

0

o ix E
IL

L.

2
[-

A

M

aI
ILa.
0

i
U

I
L.a
Aa

0

*1
F-

La
p;

Drimary cost = secondary cost = a - e

primary cost = 1
secondary cost =

primary cost =
secondary cost

Primary node

Secondary node

Figure 5: Worst-case example for HND problem
with nonproportional costs

0
0

II]

DA

W

primary=secondary=2

primary=secor

primary=secon

primarysec

primary=2/td;------ 1 edgs---- g
secondary-O

ondary=lt I

_ - - - 0
1.' t I

ee" construction

* Primary node

0 Secondary node

Figure 6: Worst-case example for TLND problem
with nonproportional costs

References

AHUJA, R. K., T. L. MAGNANTI, and J. B. ORLIN. 1993. Networks Flows: Theory,
Algorithms and Applications. Prentice Hall, New Jersey.

ANEJA, Y. P. 1980. An Integer Linear Programming Approach to the Steiner Problem in
Graphs. Networks 10, 167-178.

BALAKRISHNAN, A., T. L. MAGNANTI, and P. MIRCHANDANI. 1992. A Dual-
based Algorithm for Multi-level Network Design. Working Paper, Operations Research
Center, Massachusetts Institute of Technology, Cambridge.

BALAKRISHNAN, A., T. L. MAGNANTI, and R. T. WONG. 1989. A Dual-Ascent
Procedure for Large-Scale Uncapacitated Network Design. Opns. Res. 37, 716-740.

BEASLEY, J. E. 1984. An Algorithm for the Steiner Problem in Graphs. Networks 14,
147-159.

BEASLEY, J. E. 1989. An SST-based Algorithm for the Steiner Problem in Graphs.
Networks 19, 1-16.

CHOPRA, S., and M. R. RAO. 1988a. The Steiner Tree Problem I: Formulations,
Compositions and Extensions of Facets. Working Paper, Graduate School of Business
Administration, New York University, New York.

CHOPRA, S., and M. R. RAO. 1988b. The Steiner Tree Problem II: Properties and
Classes of Facets. Working Paper, Graduate School of Business Administration, New
York University, New York.

CURRENT, J. R., C. S. REVELLE, and J. L. COHON. 1986. The Hierarchical Network
Design Problem. Eur. J. Oper. Res. 27, 57-66.

DREYFUS, S. E., and R. A. WAGNER. 1972. The Steiner Problem in Graphs.
Networks 1, 195-207.

DUIN, C. and A. VOLGENANT. 1989. Reducing the Hierarchical Network Design
Problem. Eur. J. Oper. Res., 39, 332-344.

DUIN, C. and T. VOLGENANT. 1991. The Multi-Weighted Steiner Tree Problem.
Annals of Operations Research, 33, 451-469.

GAREY, M. R., and D. S. JOHNSON. 1979. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company, San Francisco.

GOEMANS, M. X. 1992. Personal communication

GOEMANS, M. X., and D. J. BERTSIMAS. 1990. Survivable Networks, Linear
Programming Relaxations and the Parsimonious Property. Working Paper OR 225-90,
Operations Research Center, Massachusetts Institute of Technology, Cambridge.

GOEMANS, M. X., and MYUNG, Y. 1991. A Catalog of Steiner Tree Formulations.
Working Paper, Operations Research Center, Massachusetts Institute of Technology,
Cambridge.

-R1 -

II

IWAINSKY, A. 1985. Optimal Trees-A Short Overview on Problem Formulations. In
Optimization of Connection Structures in Graphs, Central Institute of Cybernetics and
Information Processes, Berlin.

KOU, L., G. MARKOWSKY, and L. BERMAN. 1981. A Fast Algorithm for Steiner
Trees. Acta fnformatica, 15, 141-145.

MAGNANTI, T. L. and R. T. WONG. 1981. Network Design and Combinatorial
Optimization. National Science Foundation Proposal.

MARTIN, R. K. 1986. A Sharp Polynomial Size Linear Programming Formulation of the
Minimum Spanning Tree Problem. Working paper, University of Chicago, Chicago.

ORLIN, J. B. 1991. Personal communication.

PATEL, N. R. 1979. Locating Rural Social Service Centers in India. Mgmt. Sci. 25, 22-
30.

PIRKUL, H., J. CURRENT, and V. NAGARAJAN. 1991. The Hierarchical Network
Design Problem: A New Formulation and Solution Procedures. Trans. Sci. 25, 175-
182.

PREPARATA, F. P., and M. I. SHAMOS. 1985. Computational Geometry: An
Introduction, Springer-Verlag, New York.

PRODON, A., T. M. LIEBLING, and H. GROFLIN. 1985. Steiner's Problem on 2-trees.
Research Report RO 850315, Ecole Polytechnique de Lausanne, Lausanne, Switzerland.

SHIER, D. 1991. A Heuristic for the Two-level Network Design Problem. Presented at
the TIMS/ORSA Annual Meeting, Nashville.

SULLIVAN, G. F. 1982. Approximation Algorithms for Steiner Tree Problems. Technical
Report 249, Yale University, Department of Computer Science, New Haven, CT.

TAKAHASHI, H., and A. MATSUYAMA. 1980. An Approximate Solution for the
Steiner Problem in Graphs. Math. Japonica 24, 573-577.

WINTER, P. 1987. Steiner Problem in Networks: A Survey. Networks 17, 129-167.

WONG, R. T. 1984. Dual Ascent Approach for Steiner Tree Problems on a Directed
Graph. Math. Prog. 28, 271-287.

-R2-

