
How "Learning by Doing" is Done:
Problem Identification

in Novel Process Equipment

Eric von Hippel and Marcie Tyre

January, 1993 SSM WP# BPS 3521-93

We would like to express our gratitude to Professors Anne Carter and Shmuel
Ellis, and to Dietmar Harhoff and Stefan Thomke for their very helpful
comments and advice on the ideas embodied in this paper.



2

Abstract

The costs of producing goods and services has been shown to

decline over time as a result of "learning by doing." In this paper

we explore how learning by doing is done at the micro level via

empirical study of a sample of problems affecting two novel process

machines. These problems were created and/or identified by "doing"

in the factories where the machines were used. Analysis shows two

forms of learning by doing. The first enables the identification of

problems through field use, and the second involves the creation of

problems and related needs for improvement by problem solving in

the field.

Examination of the role of doing in these two types of learning

by doing allows one to understand why it would be very difficult to

eliminate doing and still learn the same (important) things. It also

suggests that, typically, one can't "get it right the first time" when

introducing a new product or process to the field, and that it would

be valuable to adapt the innovation process accordingly.



3

How "Learning by Doing" is Done:
Problem Identification

in Novel Process Equipment

1. Introduction

Beginning with Wright (1936) a number of studies have shown that the unit

cost of producing manufactured goods tends to decline significantly as more are

produced. It has been argued that this effect is the result of the development of

increasing skill in production attained by what Arrow (1962) has termed

"learning by doing." More recently, Rosenberg (1982) has shown that similar

gains can accrue to the end users of a product as their skill in using grows

through "learning by using." (For example (ibid p.131), after a given jet engine

has been in use for a decade, the cost of maintenance may have declined to only

30% of the initial level due to learning by using.)

Although the economic significance of learning by doing and using has

been made clear, the process by which these gains are achieved is still very

unclear (Adler and Clark 1991). That is, we do not know the mechanisms by

which such learning is achieved, nor do we know whether or why "doing" is

actually essential to learning what is learned. In this paper we will explore these

matters by means of an empirical study of a particular kind of doing - the

identification through field use, of problems affecting novel process machines.

The sample of problems we studied were not anticipated prior to actual use of the

machines in the field, and so their discovery did represent instances of learning

by doing.

We find that two different types of learning by doing are involved in the

identification and, in some instances the creation of the field problems. In the

first type, the use environment serves as a stable arena in which a product or



4

process or service is applied and tested. The arena might be complex, containing

both things and people but, if users are present they are not actively problem-

solving with respect to the test being conducted. (For example, the Tacoma

Narrows bridge failed shortly after its completion in 1940 due to an unanticipated

instability encountered in the use environment (Petroski 1992, 164). Bridge

users were certainly part of that use environment, but they were not engaged in

problem-solving with respect to the stability of the bridge.) The second type of

learning by using differs from the first in that the use environment is changed by

users or others who are actively problem-solving and changing the use

environment - sometimes in ways that create unanticipated problems for products

or processes or services that operate within it. In our sample, this second type of

learning by doing was typically carried out by users of the process machines

under study. As a result of their experience, they changed their views as to how

the machine should best perform - and asked for changes. In such cases the use

environment is much more than a passive test bed, and users were central to the

learning process observed. In our study, the outcome of the former type of

learning by doing was to identify problems that prevented the machine from

functioning according to its original specification. The outcome of the latter type

of learning by doing was to identify ways to make the machine or some other

part of the use environment different and better than it was originally planned to

be.

After we have characterized learning by doing in terms of the two types or

mechanisms just described, we are able to apply tests of reason as to whether

actual doing (application of the machines in their actual use environment) is

necessary to achieve the learning that we observed taking place. We conclude

that doing is sometimes the only practical way to succeed.

Innovation developers may be interested to note an implication of this

finding: To the extent that learning by doing is necessary, one often cannot "get



5

it right the first time" when developing new products and services. This suggests,

in turn, that it might be desirable to change from methods of managing the

innovation process that involve a "once through" design, to methods that

explicitly incorporate learning by doing as part of the innovation process. Extant

methods that have this attribute include the "rapid prototyping" process

sometimes used by software developers, and the "put a product on the market,

learn from what happens, and then put out something better" approach that has

been attributed to some Japanese consumer electronics firms.

2. Learning by Doing as Problem Solving

Learning by doing is simply a form of problem-solving that involves

application of a production process (or product, service or technique) in its

intended use environment. In order to understand this learning process better, a

brief digression into the general nature of problem-solving will be useful.

Research into problem-solving in general shows it to consist of trial and

error, directed by some amount of insight as to the direction in which a solution

might lie (Barron 1988, pp. 43-7.).1 This finding is supported by empirical

studies of problem-solving in the specific arena of product and process

development (Marples 1961, Allen 1966). Such studies do show trial and error

(or, more precisely, trial, failure, learning, revision and re-trial) as a prominent

feature.

Trial and error procedures guarantee a problem solution only in the

instance of "well structured" problems - which are defined as those for which one

can precisely specify a process of trial and error that will lead to a desired

solution in a practical amount of time (Reitman 1965, Simon 1973, Pople 1982).

1 Some level of insight is necessary to problem-solve effectively. Imagine the cost if one
used truly random trial and error: In order to discover how to exit a room, one would be as likely
to try meditation or eye blinking as to try walking through a door.



6

For example, a traveling salesman problem can be well structured, because one

can precisely specify a generator of alternative solutions and a solution testing

procedure that are guaranteed to eventually identify the best solution. However,

"In general, the problems presented to problem solvers by the world are best

regarded as ill structured problems. They become well structured problems only

in the process of being prepared for the problem-solvers. It is not exaggerating

much to say that there are no well structured problems, only ill structured

problems that have been formalized for problem-solvers." (Simon 1973 p. 186).

Ill structured problems may involve an unknown "solution space" (a

precisely specifiable domain(s) in which the solution is known to lie). They may

also involve unknown or uncertain alternative solution pathways, inexact or

unknown connections between means and ends and/or other difficulties. Ill-

structured problems are solved by a process of first generating one or more

(typically several) alternative solutions. These may or may not be the best

possible - one has no way of knowing. These alternatives are then tested against a

whole array of requirements and constraints (Marples 1961, Simon 1969 p.149).

Test outcomes are then used to revise and refine the solutions under development,

and - generally - progress is made in this way towards an acceptable result.

In sum, learning by doing almost always addresses ill-structured problems.

We can therefore anticipate that the problem-solving process associated with it

will have the general characteristics described for this class of problems, plus

some more particular attributes associated with "doing."

3. A Study of Unanticipated Field Problems

The particular kind of learning by doing that we decided to explore

empirically was the identification in the field of unanticipated problems affecting

novel process machines. Our sample was derived from field problems

encountered by two specialized new process machines recently developed for use



7

in the factories of a large electronics manufacturer. Both of these machines, a

solder paste profiler and a component placer, are used in the process of attaching

surface-mounted integrated circuits to large, complex circuit boards.2 Although

carried out within a single firm, the development of each of the two machines

was an independent event. Each was designed and built by different equipment

development groups, and was first applied in a different factory of the firm by

different process engineers and plant-based users. Both machines were

(eventually) described as successful by users and developers. Both have been

replicated for use in other factories, with later installations encompassing

modifications developed during early field application.

Research into the introduction of new process equipment (e.g. Hayes and

Clark 1985; Tyre and Hauptman 1992) has shown that problems continue to arise

and get resolved for two years or more following first use. Therefore it was

useful for our study purposes that the solder paste profiler had been placed into

service 18 months before data collection began, and the component placer 2 years

before data collection began. This meant that a relatively large number of

unanticipated problems had surfaced in each machine.

2Brief Description of Solder Paste Profiling and Component Placing Machines
The board assembly process begins with the application of a tiny dab of "solder paste" - a

form of solder which has the consistency of toothpaste at room temperature - to each location on a
circuit board where an electrical connection must be made between the board and an attached
component. (The spacing between dabs can be as small as 25 thousands of an inch today, and
each dab may be as small as the period at the end of this sentence.) Next is inspection (or
profiling) of the solder paste -- this is where the first machine that we studied (the "paste profiler")
plays its role. The machine scans the board surface with a laser-based vision system and
determines whether the location, amount and configuration of each dab of solder paste applied to
the board is as specified. If all is correct, the board is then passed on to the next operation, where
components are placed on the boards.

The next machine we studied was designed to automate the placement of complex
components. It uses a vision system and a robot arm to pick up integrated circuits (which look like
small plastic boxes with two or more rows of tiny metal legs protruding from the bottom) and place
them on the circuit board at precisely the right locations - with each metal leg of each component
resting exactly on one of the dabs of solder paste previously applied to the board. When this step
is completed, the board is passed through an oven that heats the solder paste and converts it into
liquid solder. When the board cools, the solder hardens into solid metal and the "placed"
components have been permanently soldered onto the board.



8

3.1: Methods

After introduction into the factory use environment, each of the two

machines that we studied was judged by users to have experienced several

problems in the field. We began the process of selecting the sample for our study

by identifying all such problems that were first discovered after factory use

began and that had been diagnosed as to cause at the time of the study. We did

this by first asking engineers involved in using and engineers involved in

designing the novel equipment for an exhaustive list of all "significant" problems

observed after factory use of each machine began that had subsequently been

diagnosed. (Note that under this procedure factory machine users determine both

what constitutes a problem and what constitutes a solution. Thus, a problem can

entail a machine failure to perform as designed, or significant user dissatisfaction

with a machine that is functioning as intended by its designers.)

Next, we took the list of observed-and-diagnosed problems to the machine

developers and asked them to separate these into two categories: (1) problems the

developers had not anticipated prior to field use of the machines; (2) problems

that they had known about prior to field introduction, but had not yet fixed for

some reason. The results were as shown in table 1.



9

Table 1: When were problems affecting the machines first recognized?

# of problems affecting
Profiler Placer Total

(1) Only after machine was first installed in field 9 13 22
- Example: After the componentplacing machine was installed
infield, users noticed that it was unable to pick up parts that had
"tilted" heat sinks on top. This problem was a surprise to
developers. They had not known that such parts existed, and
had not designed the machine to handle them.

(2) Before machine was first installed in field . 3 2 5
- Example: Specifications calledfor machine to handle all boards
to be processed without needing extra setup. Developers couldn't
find a way to do this during the development time frame; users
and developers agreed that this problem would be resolved after
machine introduction.

Total 12 15 27

As can be seen in table 1, of a total of 27 machine problems fixed after the

machines had been installed in a plant, 22 had first been identified via field use.

The distribution of our sample with respect to this matter is similar for the two

machines studied (p< 0.27, Fisher exact test).

Data on machine problems and related problem-solving activities were

collected through interviews with both the users of each machine (the process

engineers at the factories where they were installed) and developers (key people

in the process equipment development teams). Most interviewees had been with

the projects studied from their inception to the present. Initial interviews were

conducted on-site where respondents could refer to contemporary logbooks and

could demonstrate the problems they described on the actual equipment.

Interviews lasted from three to six hours, including plant tours. Respondents

were interviewed both separately and, to the extent possible, together. Follow-up

questions were discussed in additional face-to-face meetings, and by telephone and

electronic mail.



10

3.2: Patterns in Unanticipated Field Problems

When a problem in machine performance is observed and deemed worth

correcting, a diagnostic process is conducted by plant or laboratory personnel to

trace the failure symptom back to an underlying cause so that the problem can be

fixed. (Patterns in the diagnostic procedures used are explored in Tyre and von

Hippel (1993).) Since our study of problems first recognized in field use was

retrospective in nature, we had the luxury of knowing both the initial symptom

and the cause eventually diagnosed for each case in our sample.

In our analysis, we used these diagnoses to identify information that would

have allowed engineers to eliminate the cause of each problem prior to field use -

if only that information had been incorporated into the machine as originally

designed. (Problems can be understood and "solved" at many levels. For

example, if machine operators find they must make frequent machine adjustments

and find this troublesome, one level of solution would involve making the

adjustment process easier. A solution at a deeper level would involve reducing or

eliminating the need for adjustment. In our analyses we focused on the level of

diagnosis and solution actually selected and implemented by the problem solvers

studied.) Next, rather than attempting to test pre-established hypotheses, we used

a grounded research approach (Glaser and Strauss 1967) to examine the

information that had been identified by using, to identify patterns in the learning

by doing process. The most important patterns we found had to do with the

"state" of problem-related information, and table 2 summarizes what we found on

this matter.



11

Table 2: At the time the machine was designed, what was the "state" of the
information which could have been used to avoid an unanticipated
field problem?

"State" of problem-related information # of problems affecting
Profiler Placer Total

(1) Problem-related information existed in use
environment when machine was designed, but:

- (a) was not known to machine designers. 2 3 5

- (b) was known but not used by designers 5 5 10

(2) Problem-related information was created
after machine was introduced to field by
problem solvers outside of the design lab
who were:

- (a) users working directly with machine 1 4 5

- (b) problem solvers working on other 1 1 2
aspects of the production process

Totals 9 13 22

We next describe each category in table 2 in a little more detail, and

provide examples that will help to convey the flavor.

In cases tabulated under 1(a) in table 2, the information needed to

understand or predict problems did exist in the intended use environment during

the development of the machine, but lab personnel did not obtain that

information, and so did not identify the related problem until the machine was

actually placed into use in the factory. In each of the instances in this category,

interviewees told us that the information could easily have been provided to the

lab - had the developers thought to ask and/or had users thought to volunteer it.

The following will illustrate:



12

Example: Yellow Circuit Board Problem

The component-placing machine uses a small vision system
incorporating a TV camera to locate specific metalized patterns on the
surface of each circuit board being processed. To function, the system
must be able to "see" these metalized patterns clearly against the
background color of the board surface itself.

The vision system developed by the machine development group
functioned properly in the lab when tested with sample boards from the
user plant. However, when it was introduced into the factory it sometimes
failed. Field investigation by development engineers showed that the
failures were occurring when boards that were light yellow in color were
being processed.

The fact that boards being processed were sometimes light yellow
was a surprise to lab personnel. While factory personnel knew that the
boards they processed varied in color, they had not volunteered the
information to the lab because they did not know that the designers would
be interested. Early in the machine development process, factory
personnel had simply provided samples of boards used in the factory to the
lab. And, as it happened, these samples were green in color. On the basis
of the samples, developers had then (implicitly) assumed that all boards
processed in the field were green. It had not occurred to them to ask users,
"how much variation in board color do you generally experience?" Thus,
they had designed the vision system to work successfully with boards that
were green.

In cases coded under l(b) in table 2, the lab had in its possession all

information needed to anticipate and avoid a field problem - but nonetheless

failed to identify it prior to field use. Consider the following example.

Example: Component Slippage Problem

Just before the component placing machine places components on a
board, little dabs of solder-containing paste are applied to the board - one



13

at each spot where an electrical connection is to be made between a
component leg (a wire protruding from the base of the component) and the
board. The machine designers knew about this, but chose to use adhesive
tape instead of solder in their laboratory simulation of the use
environment. (Use of solder would have required setting up the lab to
comply with rules regarding the handling of hazardous materials - a costly
matter).

When the component placer was installed in the field, it was noticed
that components unexpectedly slipped sideways to an unacceptable degree
when the robot arm was pressing them onto the board. Investigation
showed that the mound-shaped dabs of solder paste were firm enough to
push the component sideways if the legs touched down on their sides
instead of directly on their tops. This effect did not occur in the lab
because the lab had not used solder in its tests.

Three of the cases coded under lb deserve special mention. In these,

unanticipated field problems were caused by the premature failure of machine

parts due to design error (for example, an inappropriately small bearing was

designed into the machine - and quickly failed). It seems to us reasonable to

classify these under "information known by lab but not used" because the

problems could have been anticipated and avoided prior to field use by either

following generally known principles of good design or subjecting the machine to
longer life tests in the lab. (The intended field operating life of the machine was

known to the lab.) If the attributes of the use situation causing the failure had not

been known to the lab in cases of premature parts failure (e.g.. "We didn't know

that you were going to process such heavy parts"), we would have coded the cases

under category la in table 2.

In the second category of table 2, the information that might have allowed

designers to anticipate and forestall a field problem was created after field

introduction of the machine by problem solvers outside of the development lab.

In most instances (category 2a) these problem solvers were machine users who, as

a result of their field experience with the machine, had decided that he or she



14

wanted something different from or better than the original specification.

Consider the following example.

Example: Location Adjustment Problem

Each time a new board design was processed by the component
placing machine, operators had to tell the machine where to put each of the
components to be placed on the new board. They did this by entering the
X and Y coordinates of each part location in the machine's computer
memory. In case these coordinates required later adjustment, operators
and machine designers both assumed that the operators would re-enter new
X and Y coordinates.

After the machine was installed in the plant, users discovered that
they had to adjust X and Y coordinates very frequently. They also found
that it was very cumbersome to do this by reentering new coordinates.
Instead, they learned to make the needed adjustments via an obscure "move
it over by X amount" command that was buried several layers down in a
software menu on the machine's control panel. The problem that users
then brought to the attention of machine designers was: The "move it over
by X amount command" is very hard to reach and use. Make a more
convenient one!

In two instances (category 2b), the problem solvers that changed the use

environment in ways that caused machine problems were outside of the use

environment most immediately surrounding that machine, working on other

aspects of the printed circuit board production process. Consider the following

example:

Example: Solder Mask Problem

Some months after the solder paste profiling machine was introduced
to the field, engineers working on the printed circuit board production
process decided to slightly reduce the thickness of the plastic film (called a
solder mask) which served as the topmost coating of the printed circuit



15

boards being processed. This was done to solve a problem unrelated to the
profiler - the engineers wanted to improve the uniformity with which
solder flux was being applied to the board. However, as an unanticipated
side effect, the profiling machine's measurements suddenly became
unreliable.

When engineers responsible for the profiling machine investigated
the sudden rash of failures, they eventually found that the thinner solder
mask was the root cause. The profiler was designed to identify the top
surface of the board to be measured by reflecting a laser beam from that
surface. Introduction of the thinner solder mask resulted in greater
amounts of laser light passing through the film and reflecting off layers of
metal located inside the circuit board. As a consequence, the machine
sometimes judged these lower layers to represent the surface of the solder
mask film - which in turn led to incorrect measurements.

4. Mechanisms Underlying Learning by Doing
From our table 2 data, we can see that all of the problems in our sample

were identified after field use began, and that some were created after field use

began. We now propose that problem identification while doing, and problem

creation while doing involve two different types of learning by doing. We will

explore each in turn.

4.1: Problem Identification by Doing

How was field experience or "doing" involved in the identification of the

problems in our sample? We propose that the learning mechanism at work is a

form of pattern matching which we term "interference finding." A pattern is a

set of features or characteristics that describes an object (or event, stimulus, etc.).

In the most basic form of pattern matching, one looks for similarities between

patterns. In "subtractive pattern matching" one looks for differences between

patterns. (For example, astronomers may compare two star maps of the same

area of sky taken at two different times in order to "subtract" everything that is

the same and highlight only what is changing, such as rapidly moving comets.)



16

When one introduces a machine into the field for the first time, one can also think

of the machine and the use environment as patterns - with failures being the

means of identifying problematic interferences between them.

Alexander (1964, 19) describes a basic version of interference finding in

his discussion of a means for characterizing the fit between form and context:

"It is common practice in engineering, if we wish to make a metal
face perfectly smooth and level, to fit it against the surface of a standard
steel block, which is level within finer limits than those we are aiming at,
by inking the surface of this standard block and rubbing our metal face
against the inked surface. If our metal face is not quite level, ink marks
appear on it at those points which are higher than the rest. We grind away
these high spots, and try to fit it against the block again. The face is level
when it fits the block perfectly, so that there are no high spots which stand
out any more."

In the case described by Alexander, the link between the observed

symptom of interference - a black mark on the metal face being smoothed - and

the cause - a physical location at which the two metal plates are making contact -

is simple and direct. Also in this case the fault for ink marks observed is clearly

assigned to only one of the two objects placed into contact: the "standard steel

block" serves as a template, and the other metal surface is the one to undergo any

needed correction. In the instance of a machine and its use environment the

patterns being juxtaposed are much more complex; both or either are potential

candidates for adjustment; and the link between the symptom of interference and

the underlying cause may be obscure and difficult to diagnose. The principle,

however, remains the same.

In problem identification by doing, therefore, the unique contribution of

the field environment is precisely the precipitation of the failures. By means of

interference finding, a formerly obscure interaction between machine and use

environment is flagged by a very visible symptom: unacceptable performance in



17

the field. This mechanism operates in all our cases - whether the aspect of the

user environment involved in the interference is pre-existing or newly created.

Thus, in the case of the "yellow board" problem described earlier, interference

finding pointed out the obscure matter of variation in the color of circuit boards

used in the factory by associating that fact with a very salient failure of the

component placing machine in the field. Similarly, in instance of the "location

adjustment" problem, an interference between newly created user expectations

and actual machine performance lead to a request for an improved "move it over

by X command."

Who is learning by doing in the case of identifying unanticipated field

failures by interference finding? As just noted, the field environment itself is

only serving as a complex pattern that precipitates failures in these instances. The

failure can be sensed and diagnosed by anyone (or any thing, in the case of self-

monitoring machines) who is interested in and in a position to do so. In our

sample, all of the failures were first sensed by users, and the follow-on diagnostic

work was conducted by users and/or machine designers depending on the nature

of the information and skills required (Tyre and von Hippel, 1992).

4.2: Improvement Creation by Doing

The problems coded in the second category of table 2 were created by a

change in the use environment that occurred after the machine was installed in the

field. The learning by doing mechanism at work in such instances was problem-

solving affecting the use environment that was carried out by users (category 2a)

or others associated with the production process (category 2b) rather than by

machine designers.

The possibility that the use environment might change makes a very

significant difference from the point of view of the designer's problem-solving

task. When the designer is the only problem-solver active on a problem, he or



18

she is in the same position as a scientist or engineer asking a question of "nature."

These problem solvers know that the answer they seek may be complex and hard

to puzzle out. But they also know that it is not being changed as they work due to

the actions of other problems solvers. For example, engineers building the first

supersonic plane did not know all they needed to know about the stresses the

airplane would encounter is supersonic flight. But they knew that nature would
remain stable as they learned more, and that the correct answer would not change

half way through the project. In contrast, a use environment populated by and/or

affected by autonomous problem solvers offers no such assurance. Under such
conditions the environment and thus the answer that the designer is seeking may

change.

Who does the learning in this second type of learning by doing? In our
sample, it was engineers and operators working on the process - process "users" -

who created the improvements that changed the use environment in the ways we

observed. In principle, one might argue that either the user or the developer
could do this second type of learning by doing, but responsibility for overall

process improvement was assigned to users in the situation we studied, and so it is

logical that they were the innovators here.

4.3: Time Sequence in Learning by Doing

We have seen that two types of learning by doing, interference finding and

improvement creation, are initiated at the time a machine (or product or service)

is first introduced to the use environment. On the face of it, it seems reasonable

that users or others will generally discover interferences with the existing use
environment sooner than they will engage in devising improvements and, as table

3 shows, we do see a significant tendency in this direction in our data. (P< 0.02,

Fisher exact test, that existing interferences are noticed more quickly (within one

month of machine introduction) than those due to improvement creation.)



19

Table 3: How soon after machine was introduced to the field was the problem
symptom noticed?

# of Months after machine installed
"State" of problem-related information that problem symptom first noticed

<=1 1-2 >2 NA Total

(1) Problem-related information existed in use 11 1 3 0 15
environment when machine was designed:

(2) Problem-related information was created 0 2 2 1 5a
after machine was introduced to field by
problem solvers outside of the design laba:

a The sample in table 3 is the same as in table 2 except that the two cases in table 2's category 2b
are excluded from category 2 in table 3. The reason: In category 2b, the creation of problem-
related information was independent of the machine under study. (Inclusion of these cases would
have strengthened rather than weakened the statistical finding reported here.)

The pattern that we show in table 3 may be commonly seen in learning by

doing, but it cannot be taken as an iron rule. After all, improvements might

sometimes be devised very rapidly, and/or the symptom of an existing

interference between a machine and a use environment might not occur

immediately when the machine (or product or service) is introduced. With

respect to the latter, consider that the machine and/or the environment might not

be immediately configured in a way that would cause an existing interference to

be expressed. (For example, if an interference was associated with the "annual

report" section of a software package, the user might not see a related symptom

until that section of the package was activated.) Also, the symptom of an

interference may not be manifested immediately, as in the case of premature wear

failures in a machine. (We had three such cases in our problem sample, and two

of these took many months to emerge.)



20

5. The Utility of Doing in Learning by Doing

Earlier investigators have shown that learning by doing can have

significant effects on reducing costs of production. We have now identified two

mechanisms that are involved in such learning. With these in mind, we can now

think about how and whether the same learning might be achieved without the

necessity of "doing" -that is, applying the innovation in the actual use

environment.

Engineers who wish to avoid interference finding in the use environment

face a difficult task. First, consider that the use environment and the machine

contain a myriad of highly specific items of information that could potentially

interfere. Second, which items among these are problem-related is contingent on
the solution path taken by the engineer designing the product. We can illustrate

both of these matters via the yellow circuit board problem described earlier.

With respect to the first point, note that the property of the board at issue
in the yellow board case was problematic in a very narrow and specific way.

That is, the problem with the board was not that it had "physical properties," nor

that it had a color. The problem was precisely that the boards were yellow, and a
particular shade of yellow at that. If one cannot radically simplify the problem

by making general assumptions (e.g., we assume that the chemical composition of
the board will not cause field problems - and so we will ignore it), one can see

that problem solvers must analyze a very large number of potentially problematic

items and interactions between items if they wish to avoid field failures.

With respect to the second point, note that the problem caused by the

yellow color of the board was contingent on the design solution to the component

placing problem selected by the engineer, and this was only done during the

development process. That is, the color of printed circuit boards in the user

factory became relevant only when engineers, during the course of their



21

development of the component placer, decided to use a vision system in the

component-placing machine they were designing, and the fact that the boards

were yellow only became relevant when the engineers chose a video camera and

lighting that could not distinguish the metalized patterns on the board against a

yellow background. Since engineers often change the alternatives they are

developing during the course of their development work (Marples 1961, Allen
1961), the relevance of any particular item of information to potential field

problems can also change frequently during the development process.

Of course, we do not intend to suggest by this litany of difficulties that one
cannot anticipate and avoid a field failure when use environments are stable with

respect to that problem's cause. It simply says that to do so can be complex 3 and

costly. Methods for reducing the likelihood of unanticipated field problems

include simulating the use environment in the lab more completely: If the

simulation is totally complete and accurate, one can cause all unanticipated

failures to occur in the test lab instead of in the field. (This is the approach taken

by airlines which seek to train pilots in simulators that are so accurate that

simulator time is counted as the equivalent of actual flight time.). And/or, one

can use various analytical procedures such as "fault trees" (Henley and Kumamoto
1981) which can help make the search for possible causes of failure more

systematic. And/or, one can hire very experienced engineers who have prior

experience with failure modes on existing products, and so are more likely to

anticipate them when designing similar new products (Larkin et al. 1980). One

3 We do not use quantitative measures of complexity in this discussion because, in the
instance of ill-structured problems with poorly specified and explored solution spaces, one does
not have the data such measures call for. (For example, Steinmann (1976) specified seven sources
of task complexity that involve the 'absolute amount of information involved in a task, the internal
consistency of this information, and the variability and diversity of the information'.) An
additional complication in measuring the complexity of problems is raised by researchers (e.g.,
Larkin et al 1980) who suggest that task complexity involves both the attributes of a task or
problem and the capabilities of the person attempting it. Campbell (1988) offers a good overview
of the research on task complexity.



22

can also try to incorporate subsystems in one's design which have already been
tested under field conditions. And/or, one can try to make some of the subtasks
in a design project well-structured so as to reduce the possibility of unanticipated
field failure in these. 4 And/or, one can lessen the likelihood of failure by

making the solution more robust - less dependent on possible variations in the use
environment and/or more redundant. (The practice of incorporating safety
margins into the design of bridges and buildings is an example of the first
approach; the design of fault-tolerant computers an example of the latter.)

Both the costs and the benefits of identifying potential field failure prior to
using differ from project to project. Since learning by doing is the default

strategy - one is attempting to anticipate and prevent problems that will otherwise
make themselves known through interference finding - one can expect that
designers will invest more or less in some of the fault anticipation or fault
mitigation strategies just listed depending upon the costs and benefits that they
expect. For example, one would expect designers of nuclear power plants to
invest a lot in attempting to anticipate and avoid potential field failures, and they

do (Nuclear Regulatory Commission 1975).
Problem creation was associated with the second learning by doing

mechanism identified, and here designers are very unlikely to be able to generate
the same information by other means, thus avoiding related field failures and
requests for improvement. This mechanism involves problem-solving by an
autonomous group - here, users - who are both posing hard-to-anticipate

problems, and are generating an unpredictable set of proposed alternative

4Despite the restrictiveness of the criteria for well-structured problems, designers can often
partition an overall design task in such a way as to create some well-structured subproblems. For
example, Smith and Eppinger (1991) studied a sub-problem in the design of automobile brakes that
seems to us so tightly constrained as to meet the criteria of a well-structured problem. The goal
was that "the brakes on car model X should not squeal under these conditions when test A is
applied". To achieve this goal, it was permissable to manipulate only three well-understood
variables, such as the composition of the brake lining material, in precisely specified ways.



23

solutions - some of which involve changes in the machine (or product or service)

provided by a particular manufacturer.

Neither game theorists' models of cooperative games (e.g., Axelrod 1984)

nor psychologists' models of "mutual adaptation" (Lave and March 1975, p 248)

offer us much help in predicting the path or the outcomes of this type of multi-

party problem-solving. Although both developer and user are presumably

motivated towards mutual adaptation (or, at least, the machine developers are

motivated to adapt to their user-customers), the problems that machine users are

framing and partially solving are, as noted earlier, ill structured. Therefore, as

our section 2 discussion of ill structured problems indicates, the problem-solving

path that will be taken by user problem solvers cannot be predicted by the

designers with certainty.

Of course, field problems caused by this type of learning by doing can be

stopped if one prevents users and others from engaging in the problem-solving

that may create them. Thus, for example, the military or some other innovation

using organizations might demand that the users under its control do everything

"by the book." However, innovation users typically cannot be constrained in this

way by innovation designers - they are, after all, the customer. And even if this

were possible, there would likely be a heavy cost to pay for relief from some

field problems. After all, learning by doing by users and others can be a

significant source of innovations and innovation improvements (von Hippel

1988).

6. Discussion

The approach we have taken to studying learning by doing involved

selecting multiple instances of a single type of learning by doing event, the

identification of an unanticipated problem in the field. We found two learning by

doing mechanisms associated with this type of event: Interference finding in the



24

instance of problem recognition, and user problem-solving in the creation of

some of the problems studied. These two mechanisms seem quite general, and we

suspect that they will be found to be associated with learning by doing in a range

of contexts. Interference finding may be a useful way to characterize all
instances of problem identification in learning by doing, and a use environment

affected by problem-solvers who are autonomous from the point of view of the

designer of a particular process component are likely to be found in any but the

simplest and most constrained circumstances.

Of course, we do not argue that these are the only two mechanisms for
learning by doing: research conducted on additional types of learning by doing

events might reveal additional ones. Examination of contexts in which learning

by using (Rosenberg 1982) rather than learning by doing is going on may also be
fruitful in this regard, although our own expectation is that these two phenomena

will be found to be identical with respect to underlying mechanisms.

The level of analysis we have performed here would probably not allow us
to determine the shape of an overall learning curve for a given production

process. Such curves generally integrate the effects of learning by doing

associated with many changes that are introduced to a process over time.

However, the mechanisms we have identified for learning by doing may be

exploited to allow us to suggest a particular shape for a learning curve that will

be induced by the introduction of a particular change into a use environment.

For example, we found that most pre-existing interferences between the new

machines we studied and the use environment were flagged within one month of

the machines' installation, while improvements derived from learning by doing
followed somewhat later. If a large proportion of the total problems flagged as

worth working on were due to the identification and resolution of existing

interferences, and if these were diligently diagnosed and solved - and they

certainly would be if they caused grossly unacceptable performance - one would



25

then find a relatively high rate of learning by doing immediately after the

introduction of the novel element, that would drop to a low level over time.

(This fits the pattern shown by Tyre and Orlikowski (1993) in their study of the

pattern over time of changes introduced to a new process machine, and is the

conventional wisdom with respect to the "debugging" of new products such as a

computer software packages.)

On a different matter, our assessment of possible substitutes for the "doing"

of learning by doing mechanisms we have identified here suggests that it may be

very costly to substitute for in the instance of interference finding failures, and

that it is probably impossible to do so in the instance of problems created by users

or others learning by doing in the field. Therefore, it is very likely that the

innovation process will involve learning by doing, and that those who develop
new products and services will have to deal with it.

The need for learning by doing indicates that the innovation process will

often be iterative - and that developers typically can't "get it right the first time."

For managers, this suggests the value of shifting from product and service

development methods that assume that one can specify a user need and use

environment accurately at the start of a project to methods that expect user trial
and error and incorporate it into the development process. Rapid prototyping is

an example of such a method. Used in software development, this method is

explicitly designed to shuttle repeatedly between manufacturer and user in order

to better determine the "real need" for a given software package. First, key

functions of proposed software products are simulated (prototyped) and provided

to users for trial. Users then experiment with these prototypes, and ask
manufacturers for improvements based upon what they have learned. This back

and forth process continues until users are satisfied. This approach has been

found to be better at creating a good fit between need and solution than method

that rely upon the accuracy of an initial statement of need by users (Gomaa 1983,



26

Boehm, Gray, and Seewaldt 1984).

References

Adler, Paul S. and Kim B. Clark (1991), "Behind the Learning Curve: A Sketch of the Learning
Process" Management Science V37, No. 3

Alexander, Christopher (1964), Notes on the Synthesis of Form, Cambridge, MA: Harvard
University Press.

Allen, Thomas J. (1966) "Studies of the Problem-Solving Process in Engineering Design." IEEE
Transactions on Engineering Management EM-13, no.2 :72-83.

Arrow, Kenneth J. (1962) "The Economic Implications of Learning by Doing." Review of
Economic Studies 29 :155-73.

Axelrod, Robert. (1984) The Evolution of Cooperation. New York: Basic Books.

Baron, Jonathan. (1988) Thinking and Deciding. New York: Cambridge University Press.

Boehm, Barry W., Terence E. Gray, and Thomas Seewaldt. "Prototyping Versus Specifying: A
Multiproject Experiment." IEEE Transactions on Software Engineering SE-10, no. 3 (May 1984):
290-303.

Campbell, Donald J. (1988), "Task Complexity: A Review and Analysis," Academy of
Management Review, V. 13, No. 1, 40-52.

Glaser, Barney G, and Anselem L. Strauss (1967) The Discovery of Grounded Theory: Strategies
for Oualitative Research New York Aldine De Gruyter.

Gomaa, Hassan. (1983) "The Impact of Rapid Prototyping on Specifying User Requirements."
ACM Sigsoft Software Engineering Notes 8, no.2 :17-28.

Habermeier, K. F. (1989) "Product use and product improvement" Research Policy 19, 271-283

Henley, Ernest J. and Hiromitsu Kumamoto (1981) Reliability Engineering and Risk Assessment.
Englewood Cliffs, New Jersey: Prentice Hall Chapters 2,3 and 7.

Larkin, Jill, John McDermott, Dorothea P. Simon, Herbert A. Simon (1980) "Expert and Novice
Performance in Solving Physics Problems," Science vol 208, 20, pp 1335-1342.

Lave, Charles A. and James G. March (1975) An Introduction to Models in the Social Sciences,
New York Harper and Row



27

Marples, David L. (1961) "The Decisions of Engineering Design." IRE Transactions on
Engineering Management :55-71.

Newell, Allen, and Herbert A. Simon.(1972) Human Problem Solving. Englewood Cliffs, N.J.:
Prentice-Hall, Inc.

Nuclear Regulatory Commission (1975) Report # 75/014, October

Petroski, Henry (1992) To Engineer is Human: The Role of Failure in Successful Design New
York: Vintage

Pople, Harry E. Jr. (1982) "Heurisitic Methods for Imposing Structure on Ill-Structured Problems:
The Structuring of Medical Diagnostics," Chapter 5 in Peter Szolovits, ed: Artificial Intelligence in
Medicine Westview Press, Boulder, Colorado

Reitman, W. R. (1965) Cognition and Thought Wiley, New York

Rosenberg, Nathan.(1982) Inside the Black Box: Technology and Economics. New York:
Cambridge University Press.

Schroder, H, Driver, M., & Streufert, S. (1967), Human Information Processing, New York:
Holt, Rinehart & Winston.

Simon, H. A. (1973) "The Structure of Ill Structured Problems," Artificial Intelligence 4, 181-201

Simon, Herbert A.(1981) The Sciences of the Artificial, Second Edition. Cambridge: MIT Press,
1969.

Smith, Robert P. and Steven D. Eppinger (1991) "Identifying Controlling Features of Engineering
Design Iteration," Sloan School of Management Working Paper # 3348-91-MS, December.

Steinman, D (1976) "The effects of cognitive feedback and task complexity in multiple-cue
probability learning," Organizational Behavior and Human Performance, 15, 168-179.

Tyre, Marcie J. (1991a), "Managing the Introduction of New Process Technology:International
Differences in a Multi-Plant Network, "Research Policy, 20, 1-21.

Tyre, Marcie and Oscar Hauptman, Oscar (1992), "Effectiveness of Organizational Response
Mechanisms to Technological Change in the Production Process." Organization Science 3, 301-
321.

Tyre, Marcie and Wanda Orlikowski (1993) "Windows of Opportunity: Temporal Patterns of
Technological Adaptation" Organization Science, forthcoming.

Tyre, Marcie and Eric von Hippel (1993) "Situated Trial and Error Learning in Organizations"
Sloan School of Management Working Paper, January.

von Hippel (1988) The Sources of Innovation New York: Oxford University Press.

Wright, T. P. (1936) "Factors Affecting the Cost of Airplanes," J. Aeronautical Science, 3,
February 122-128.


