
THE EMERGING USE
OF APPLICATION TEMPLATES

John F. Rockart
J. Debra Hofman

December 1992

CISR WP No. 250
Sloan WP No. 3523-93

©1992 J.F. Rockart, J.D. Hofman

Center for Information Systems Research
Sloan School of Management

Massachusetts Institute of Technology

THE EMERGING USE OF APPLICATION TEMPLATES

John F. Rockart and J. Debra Hofman

ABSTRACT

The process by which systems are delivered today has not kept pace with the

demands of the business environment. While there have been advances in speeding up the

existing process, systems still take too long to build, cost more than expected, often do not

meet the business need once they are delivered, and cannot be easily changed to meet

continual change in the business. Further, for many organizations, significant resources are

still tied up in maintenance rather than in the development of the new systems that are

needed. We believe that the use of application templates -- where a "template" is a system

that has been built with a CASE tool and reused -- represents a very significant attempt to

address these issues. This paper describes our definition of templates, as well as the trends

we see in the emerging template market. The majority of use to date has involved one

company purchasing a CASE-built system from another company and customizing it to its

own needs. The concept of reusing models, however, can also be applied within multi-

divisional companies and across companies within an industry. While the market for

templates is currently in its infancy, we believe that this is a major trend and that templates

are the software packages of the future. Further, effective use of a template approach has

major implications for the systems development process, and offers opportunities for

changes in managing the business.

1

I. THE PROBLEM

A rapid pace of business change, increasing global competition, time as a competitive

differentiator, and a customer focus are all attributes of the current business environment.

This external environment has required major change in the way that organizations compete,

and in how they are structured, managed, and operated. In the information systems arena,

changes are required both in the types of systems that are needed and in the way in which

they are delivered.

The process by which systems are delivered, however, has not kept pace. It remains

as labor intensive and time consuming today as it was 25 years ago, and is increasingly

deficient in meeting the demands of the business environment. While there have been

advances in speeding up the existing process (e.g., rapid application development, or RAD,

and prototyping), systems still take too long to build, cost more than expected, often do not

meet the business need once they are delivered, and cannot be easily changed to meet

continual change in the business. For many organizations, significant resources are still tied

up in maintenance, rather than in the development of the new systems that are needed.

The current trend toward outsourcing can be seen as evidence of a growing dissatisfaction

with current internal IS capability (Loh and Venkatraman, 1992).

II. THE ALTERNATwES

To improve the organization's systems delivery capability, we see four major options

facing IS executives: CASE tools, an object-oriented approach, software packages, and

templates.'

CASE Tools: Computer-Aided Software Engineering (CASE) tools, which
help to automate the process of developing systems, first emerged in the mid-

While there are certainly other changes in systems delivery that are being made (e.g., process changes
such as RAD), we believe the four noted above are the current major alternatives.

2

1_1__1_ __�_�____�____

III

1980s. These tools have not proved to be the long awaited "silver bullet" in
the development area, for a variety of reasons, both technical and
organizational. 2 However, there have been some success stories. And, while
the market has been characterized to date by a proliferation of independent
tools, it is beginning to coalesce into a smaller number of full life-cycle (I-
CASE) tools.3 In addition, studies of some of the early experimenters have
yielded useful insights into better ways to introduce and leverage these tools
(Orlikowski, 1991; Orlikowski and Friesen, 1989; and Orlikowski, 1989).

Object-Orientation: A second software development innovation which has
gained much attention in the press is the object-oriented approach.4 While
this approach has proven extremely valuable for some types of systems (multi-
media, simulation, real time), there are very few business systems to date
which have been developed using it. And, while it clearly has the potential
to yield significant benefits and improvements in systems delivery, it also
requires some radical changes relative to traditional methods of software
analysis and design (Fichman and Kemerer, 1991), and is not likely to be
quickly adopted by most IS groups (Fichman and Kemerer, 1992).

Software packages: Where CASE and object-orientation are alternatives that
seek to improve the development of a system, another alternative is to decide
not to build at all. There is a wide variety of application software packages
available for purchase. These range from packages that perform specific
functions -- companies purchasing these then have to build the bridges among
them themselves -- to integrated suites of packages.

Templates: Templates -- CASE-based software packages -- are a relatively
new, hybrid alternative. As we note below, they combine the pre-built
advantages of packages with the maintainability afforded by CASE tools.

2 Most companies that have adopted CASE tools have realized that the introduction of these tools --
and the methodologies on which they are based -- represent major change for the IS organization, and that
effective use of the tools is associated with a significant learning curve (Kemerer, 1991). Also, the benefits
have generally been realized not in development productivity, but in quality and maintenance productivity.

3 I-CASE, or integrated-CASE, refers to those tools which automate the full systems development life
cycle; upper-CASE refers to those tools which help automate systems analysis and design efforts; and lower-
CASE generally refers to code generators.

4 Where a traditional system is composed of programs that define procedures and use data, an object-
oriented system is composed of self-contained objects, containing both procedures and data, that send
messages to each other.

3

The software package option in particular is becoming increasingly popular. Software

package purchase presents an intuitively appealing option: why build a system from scratch

when you can buy a fully working system at lower cost and just change those portions not

exactly meeting your needs? In purchasing a package, one is, in effect, "reusing" an entire

system. And, reusing previously-developed components -- code, models, or entire systems

-- should save time and money and provide improved quality.

Purchasing a package should allow an organization to deliver a system faster and

cheaper than building it. However, this is often not the reality. In purchasing the software

package, the organization is also purchasing the business processes which are embedded in

it. These business processes may match those existing in the organization, but often do not.

The choice is then to either modify the package to fit the organization's business processes,

or modify the business processes to fit the package. Either choice is always more difficult,

more expensive, and more time consuming than anticipated; in fact, a total installation cost

of ten to twenty times the original purchase cost is not unheard of.

Moreover, the fact that the package is difficult to change does not disappear once

it is installed; similar to many internally-built systems, it remains difficult to change on an

ongoing basis as well. In today's business environment, the flexibility to change the

organization, its business processes, and the information systems which support those business

processes has become critical to an organization's success.

We believe, after discussions with several organizations as noted below, that

application templates offer the benefits of the traditional package approach while mitigating

the potential downside. Indeed, as we will discuss later, this alternative is essentially a

combination, or hybrid, of the others.

4

III. TEMPLATES

We are using the term "template" to describe a system that has been built with a

CASE tool and reused. That is, a template is a fully working system that is used as a model

for another fully working system. It can include any or all of the following: data models,

process models, screen models, and code. The organization using a template can reuse all

or any portion of the system. It can install and run the entire system as is, or it can

customize the models to meet its needs, and simply regenerate the code to get a new

system. The fact that a template is built in a CASE tool is key: it allows customization of

the models rather than the code. The critical point with a template is that, it is the design

that is reused, not the code.

In order to illustrate this approach, we turn now to a description of one company

that has experimented with it, followed by a brief discussion of a second company example.

Canadian Airlines

Headquartered in Calgary, Canadian Airlines (Canadian) was formed in the mid-

1980s through a merger of independent airlines. Slightly smaller than Air Canada, its major

competitor, it is the world's 19th largest airline, with approximately 16,000 employees and

almost $3 billion in revenues. To support its newly-formed business strategy, Canadian

developed an IT strategy which included, among other things, the decision to use the

Information Engineering methodology and Texas Instruments' CASE tool, IEF. One of the

first systems targeted for re-construction was the frequent flyer system, a highly visible and

mission-critical system. Transaction volumes had long surpassed the capabilities of the

existing system, which was inflexible and required constant and extensive maintenance.

More importantly, the system could not keep up with the speed with which the business

changed, since each new frequent flyer promotion required extensive changes to the code.

5

__ __

Ill

The first step was a three-month definition of the requirements of the new system,

using joint application design (JAD) sessions.5 Once Canadian knew what they needed,

they solicited bids for development of the system. The twelve proposals they received in

return ran the full gamut in terms of both cost and time to complete.

Canadian decided to purchase TWA's frequent flyer system, built using the IEF

CASE tool. While it was not the lowest cost option, they felt it could offer the best value

in terms of demonstrated quality and time to deliver. The purchase price included ten days

of on-site support from TWA and ten days of customer support from TI for the tool. What

exactly did they receive? They received a handful of floppy diskettes, which contained (in

Information Engineering parlance) a BAA and a BSD.6 They received no binders or

documents; the documentation was on the diskettes. While the code was included with the

system (it was a fully working system), they used it as a device solely to ensure that they had

in fact received the entire system; after the initial run, they never used it again. The on-site

support offered by TWA was originally contracted to cover any issues that Canadian might

have in understanding the functionality and/or business rules imbedded in the system. Of

the ten days of TWA support, Canadian used only one; Canadian was able to easily

understand the business functionality of the system through the template.

Canadian then went to work enhancing and customizing the system to its

requirements,7 with seven IS people and three users. The users were trained in key aspects

of the CASE tool and methodology. The system was considered to be extremely large and

5 In a joint application design session, "users and IS developers work together in a structured workshop
led by a trained facilitator to complete information systems delivery tasks and activities" (e.g., requirements
definition for a new system) (Davidson, 1992).

6 Business area analysis (BAA) and business system design (BSD) are stages two and three of the seven
stages of the information engineering methodology. During the BAA stage, analysts develop a conceptual
model of a business area. During the BSD stage, designers develop a high-level design of a business system
within a particular business area (Texas Instruments, 1990).

7 The changes they made were fairly extensive including, among other things, adding bilingual
capabilities.

6

high profile, serving their most valued customers, the frequent flyers. As they explained,

information goes "... direct from system to customer without any intervention ... if it's

incorrect, it hits the customer directly."

The development team completed the system within the ten months they had

promised to management, despite what could have been a major snag in the seventh month.

At that point, senior management made a business decision which required major changes

in the very structure of the system. The frequent flyer program -- and system -- had, in the

past, been separate from the lounge program and system.8 The customer qualified for each

program separately, carried separate cards, and changed privilege levels in each

independently of the other. Canadian realized that while this may have made sense from

an operational standpoint, it was inconvenient and complicated from the customers'

perspective. In month seven of development, the decision was made to go to one card, and

therefore to one system. The implications were enormous: all the business rules for

qualifying, measuring, and changing privilege levels changed dramatically, and therefore the

processes and data in the systems changed as well. According to Canadian, a conservative

estimate for how long this change would have taken in a traditional system was six to nine

months. They were able to do it in one month, and deliver the new, enhanced system in

the ten-month time frame they had promised for the frequent flyer system alone.

Benefits

In buying a template from TWA, Canadian bought two major benefits: 1) a system

model, and 2) a robust prototype. The model, which provides both the business rules and

the technical design approach, includes the data and process models, and the screens. As

Canadian explained it, in the past when you bought a package "you were always buying [a

business model], but I don't think you were aware of it; you thought you were buying the

code. [When you buy a CASE-based] model from another company, you're very aware that

8 The lounge program allows members to use Canadian's airport lounges.

7

__�_�__ ---rrrr*m*---*rr�

Ill

what you're buying is their business area analysis." More importantly, in buying another

company's business rules, Canadian found better ways of doing business, ways they had not

previously considered. In addition to this business information, Canadian acquired technical

information as well. Through the template, they bought a system design which was infinitely

better than any other they had seen, and that was easier to understand than if it were in a

traditional package. For example, in the TWA template system, the rules for frequent flyer

promotions were separated from the body of the system. This streamlined design enabled

users to implement new frequent flyer promotions themselves, rather than requiring IS to

make the changes for them. (According to Canadian, new promotions sometimes take place

weekly.)

At the same time, Canadian bought a working prototype. Instead of starting off with

the results of a requirements definition in three-ring binders, they started off with a working

system which the users could "see ... touch ... and feel..." Seeing a system that actually

worked and needed only to be adjusted to Canadian's requirements, it was "not as great a

leap of faith," as it had been in the past, for user personnel to believe that the system could

be delivered in the time frame promised. Furthermore, because the system was built in a

CASE tool and involved only the customization of the business rules and data to be used

(with little or no coding involved), the users could then immediately sit down and work with

the business model and make the necessary changes jointly with the IS team. That is, as

Canadian systems people note, this was not a case of "building a prototype first and then

building the system ... [this was a case of] developing the system using a prototyping iterative

approach." Because the burden of writing code is eliminated, the developer is not averse

to continual iteration. And, because the users can see that changing the system is easier

and faster than it had been in their past experience, they are more inclined to work with the

developers. It is through this iterative process that users and IS can begin to work together

to build the trust which is a critical component of the partnership needed to develop and

continually change systems in a business environment of continuous change.

8

It is important to note also that those factors that facilitate customization of the

system upon initial implementation also facilitate ongoing customization over time -- or

"maintenance." According to Canadian, they have two categories of maintenance: support

and enhancements. 9 With the new system, support has been dramatically reduced and

enhancements are significantly easier to implement, both because of a streamlined, more

modular design and because the system resides in a CASE tool.'" There is direct business

leverage to be gained from the ability to enrich the system. According to Canadian, the

business units are now leading the way in enhancing the system because their perception is

that it can be done in a reasonable time frame, at a reasonable cost and is therefore worth

the investment.

Placing this in the context of the traditional "build versus buy" decision: buying a

template is better than building from scratch, for all the reasons that buying a package is

such an attractive option: you start with a working system. But it is also better than a

traditional package because it can more easily be changed. In essence, a template is a

flexible package.

Midwest Savings and Loan

A second company, Midwest Savings and Loan (not its real name), found many of

the same benefits from templates that Canadian did. Midwest is a $1 billion savings and

loan with approximately sixty branches and an IS staff of forty, half of whom are

applications developers. Management's primary goal in purchasing CASE tools was to

reduce its maintenance backlog. After trying a few tools, they settled on Texas Instruments'

IEF CASE tool. Following the completion of a requirements analysis, they purchased TI's

9 Support includes: 1) "fixing it when it breaks;" 2) changing the system in order to implement new
frequent flyer promotions; and 3) changing the system to reflect regulatory changes.

' CA has allocated 1.5 maintenance personnel to this application; this compares to 7 individuals on a
system comparable in size, but residing in a different technology.

9

General Ledger template for their first IEF-based application. As they describe it, this

turned out to be an effective introduction to and training on the tool itself. More

significantly, they delivered the system in three months.

In addition to providing systems that one can "see and touch" (prototypes), Midwest

believes that templates serve to mitigate what they see as "the downside of CASE." That

is, using the Information Engineering methodology and CASE tool results in more time at

the front end in analysis and design than was typical in the past. In Midwest's view, one of

the problems with longer analysis and design phases is that IS has nothing to show the users

during those phases. With the template, they had something to show immediately. Further,

the users could try it out themselves and "tweak" it." Like Canadian, Midwest found

business features in the template which they had not previously considered, and saw this as

a benefit.

These are only two company examples, intended here to clarify the concept of

templates. Other companies are pursuing this delivery strategy as well, and we continue to

look at these and other tool-based templates. Vendors currently in the template market

include Andersen Consulting, Synon Corporation, Omnicase, and others.

IV. INTERNAL MODELS -- A TEMPLATE PRECURSOR

To date, the emphasis has been on the purchase of externally developed templates

or packages. We believe that templates can also be used within multi-divisional companies.

To illustrate this concept, we turn to MultiCo. MultiCo (not its real name) is a Fortune

100, multi-national industrial firm with approximately thirty business divisions. By the mid-

1980s, Division A had twelve manufacturing plants, each with its own systems. Realizing

that they could reduce costs if the plants shared inventory, management decided to shift

" Of course, as with other prototypes, they had to explain to some users why they had to wait three
months rather than being able to have the system immediately!

10

toward a data-oriented approach and begin to build common systems across the various

plants. They built a central data dictionary and defined common data definitions, instituting

a policy that all new development should use the common data dictionary. Convinced of

the usefulness of data-oriented approaches, the IS group in Division A initiated a strategic

data planning effort that produced both data and process models.

Approximately one year later, Division B decided to embark on the development of

a strategic systems plan. After considering a number of different options, including the use

of consultants to build the plan, they decided to look at the strategic plan developed by

Division A. After much consideration, Division B decided that instead of "reinventing the

wheel," they would use the data and process models developed by Division A as the basis

for their own plan. Division B proceeded to analyze Division A's models, looking for

commonalities. Of the 112 business processes defined by Division A's model, Division B

added 2, deleted 2, modified' 2 60, and accepted 50 without modification. That is, 110 of

the 112 business processes were viewed as generic enough to be used by Division B. A

similar analysis was performed on the data entities included in Division A's model, with

similar results. In Division B's view, the Division A model provided a 95% fit with its own

model, and significantly reduced its own modeling efforts.

MultiCo's corporate data management group has since become the custodians of an

increasingly generic process/data model. At this point in time, the generic model is a

document that contains the following: data models; process models; information flows; and

maps of existing applications on top of the process model. Other divisions within the

company have used the generic model, or portions of it, as a starting point or "strawman"

for their own efforts. In this way, the generic model has been continually updated,

expanded, and utilized for the common good of many divisions.

12 In "modifying," they were generalizing the business process, rather than making it more specific.
A simple example of a generalization might be defining the entity "enterprise," rather than defining two
entities, "customer" and "vendor."

11

One division, for example, decided to rethink its purchase order process. A review

yielded a current purchase order process which had 40 tasks, took 10 days, and cost $240

per purchase order. They then compared this to the generic model which showed 15 tasks.

Simplifying their purchase order process with no addition of automation allowed them to

reduce the time to 6 days per purchase order. Further analysis showed that, with the use

of some automation, they could reduce the processing time to one day at a cost of $30 per

purchase order.

There are certainly differences between what MultiCo is doing with its generic model

and what Canadian and Midwest have done in purchasing templates. First, MultiCo's

current goals in using the generic model are to help rethink business processes, and

determine what systems will be needed to support those business processes. While it is true

that the components of the generic model can eventually be used to define particular

systems, the immediate goal in using the model is not to necessarily build a system. In

contrast, the immediate goals for both Canadian and Midwest were to deliver particular

systems. A second difference is the storage medium: MultiCo's generic model is on paper;

it is not built in a CASE tool.

However, while the goals and technology may be different, the underlying concept

is much the same. All three companies are, in effect, reusing models. Canadian and

Midwest are taking a set of process and data models developed externally by another

company for a particular function and applying it to that same function within their own

companies. At MultiCo, a set of process and data models developed internally in one part

of the company is being used in other parts of the company. The generic model allows one

business area to leverage the work performed in other business areas, offering in essence

a "template" which can be modified. According to MultiCo, this approach saves time,

increases the quality of the end product and provides a common frame of reference and

language.

12

#2 ______ _ _

There is another common theme underlying the two, seemingly dissimilar, approaches

discussed here: in order to effectively reuse system components, whether they are externally

or internally developed, it is essential to understand the similarities and differences between

a target business process and the existing process model. In using its generic model for a

particular process in a new division, MultiCo must determine where the areas of

commonality lie between that process and those documented in the generic model, and what

parts are unique. The same holds true for Canadian and Midwest. In both of these cases,

there was some core functionality which could be used unchanged, representing those parts

of the process that were similar, and other parts of their process which were unique and

which therefore required changes in the system. The tendency in most companies is for

each business area to believe that its business processes are unique; this tendency arises

from multiple factors including the culture and age of a given company, as well as

independent and autonomous business groups. In fact, there is more commonality than is

typically understood or admitted.

As noted earlier, MultiCo's generic model is not built using a CASE tool. Building

the model using a full life-cycle CASE tool would clearly offer several important benefits.

In effect, each division would have the two major benefits offered by a template, as

discussed above: a business model and a working prototype. The tool would facilitate the

customization of the generic model, as well as the delivery of the systems defined by it. We

are currently tracking a number of organizations who might be taking this approach.

V. PACKAGES OF THE FUTURE -- THE NEW BREED

Current Market

The market for templates is currently in its infancy, in terms of the types of

companies that are buying and selling them, the types of templates being offered, and the

environments (hardware, operating software, and CASE tools) in which they can be run.

To date, the types of companies that have been involved in this market include:

13

CASE tool vendors: Some of the CASE tool vendors are beginning to enter
this market in a "broker" capacity. For example, Texas Instruments will offer
for sale a template built by one of its customers to other customers;

Software package vendors: Some of the software package vendors are
beginning to offer templates, although this appears to be limited at this time
to the smaller vendors and/or those vendors who service a specific niche of
the market;

Industry consortiums: In certain industries (for example, airline, electric, and
retail) consortiums are emerging, in which templates will be built and
exchanged among a group of companies with similar needs and interests;

Companies who sell their CASE-based systems to other companies: There is
some direct interaction between companies, as between TWA and Canadian;
and

Template vendors: New companies are entering the market specifically to sell
templates, as well as to offer other template services and cross-CASE tool
bridges.

The types of templates which are currently offered vary across a wide range of

business applications as well as technology models. Business applications include, for

example, financial services, manufacturing and distribution, hospital systems, utilities, and

general financial applications such as general ledger, accounts receivable, accounts payable,

etc. There are also templates available specifically for technical functions, e.g., data access

and screen and report templates.

In terms of environments in which these templates will operate: a number of

suppliers offer templates for the AS400 market with the remainder emphasizing IBM

mainframe as well as some VAX and PC environments. Finally, there are a number of

CASE tools within which templates are currently offered, both I-CASE as well as lower

case.1 3

13 For a discussion of current vendors and their templates, see for example: CASE Strategies (1992) and
Yankee Watch (1992).

14

�I__���_�______

Market Perspectives

As noted earlier, there are a number of current and potential players in this market,

each with a different perspective. This section briefly examines these varying

perspectives.l4

Company buyers -- From the perspective of a company buyer, it is clear that templates

should be a critical component of a systems delivery strategy. Combining the advantages

of a traditional package and that of a prototype, a template:

* allows a user to see a fully working system on day one;
* includes models of both the business and the technical design with ideas and

an approach which may not have been previously considered;
serves as a base from which to start;

* offers relative flexibility and ease of expansion and enhancement;
* can be less expensive than development; and
* improves time to market.

In short, templates offer the ability to significantly improve productivity and quality of

"development"' and "maintenance."

At the same time, there are some issues to consider. A template is a system built

in a CASE tool. In order to take full advantage of this fact, a company that purchases a

template and wants to customize it should be making changes to the models, not to the code

itself. This means that the company must have -- and know how to use -- not only the

template but also the underlying CASE tool. For some companies, such as Midwest, this

can be a very useful means by which to introduce the tool. For other companies it may not

be as useful, particularly if a company has already chosen another tool.15 In any case, the

'4 In addition to the two companies who have bought templates (one of whom has also sold its
template), we spoke with four software package vendors, two CASE tool vendors, and one custom software
vendor.

15 That is, the goal is not to have multiple CASE tools which are redundant in functionality, or tools
which do not overlap in functionality but which also are not connected to each other. This would only
increase complexity. This will become less of an issue when and if cross-CASE bridges become available.

15

decision to purchase a template implies a decision regarding CASE which should be made

in the context of the specific business and development environment. This can have major

implications (Rockart and Hofman, 1992).

Some of these implications have to do with CASE tools themselves and are not new.

For example, training costs, both in terms of time and money, can be high for these tools.

In addition, the use of CASE tools can require major changes in the IS organization in

terms of skills, roles, and responsibilities, user involvement, management and measurement

processes, etc.'6

Software package vendors -- Some of the issues faced by software package vendors

considering the template market might include:

Intellectual property rights: As discussed earlier, both the
business rules and the technical model are more obvious in a
template than in a traditional software package. For some
software package vendors, the technical model is considered
proprietary product information with which they are reluctant
to part. For other software package vendors, however, this is
not perceived to be a barrier to entry. They believe that those
competitors who truly want to understand the technical design
are able to do so with a traditional package as well.

Maintenance: Similar to traditional packages, customers will
have to "recustomize" their systems whenever they acquire a
new release of the template system, but this should be easier
than was the case with traditional packages. A practical
approach might be for the vendor to design the template system
in such a way that there are two segments: a core that cannot
be changed by customers, and a second portion that can be
changed.

Other: Another issue from the perspective of the software
package vendors is the choice of CASE tool(s) in which to
build their systems. Vendors who sell packages for specific

'6 For discussion of the change associated with the introduction of CASE tools, see for example:
Orlikowski (1991), Orlikowski and Friesen (1989), Orlikowski (1989), Rockart and Hofman (1992), and Chen
and Norman (1992).

16

industries can target the CASE tool which is most in use in that
industry, if possible. For horizontal applications, the decision
is not as clear cut.

According to one of the software package vendors with whom we spoke, the reasons

to get into the template market are greater than the reasons not to. In producing a

traditional package, the package vendor first produces a beta version of a new system, which

is tested by a select group of customers. These customers suggest changes, providing

feedback considered critical to the ability of a vendor to provide a good product. The

vendor evaluates the suggested changes, and incorporates only those perceived to be useful

to a wide customer base. In contrast to a traditional package, a template allows the vendor

to satisfy a greater portion of customer needs. The vendor can still incorporate into the

product that feedback which is useful to the wider customer base, but can also provide each

customer with the ability to more easily add functionality unique to its own business

operation. That is, the use of templates allows the vendor to keep more customers happy

and, in the words of this package vendor, "Happy customers buy more software!"

Custom software vendors -- For most of the large custom software vendors, the current

products are primarily custom built systems -- i.e., systems built from scratch -- as well as

some package installation. A market in which there is a significant demand for templates

represents a major shift in focus for these vendors.

CASE tool vendors -- From the perspective of the CASE tool vendors, the analogy to

the early PC market is striking. It is clearly very important to them to have as many

templates as possible available for their CASE tool. It is not clear, however, that

developing these templates is in their best interests. First, building application software is

not their core business; and second, some of their customers are package vendors, with

whom they are reluctant to compete. Alternatively, they can foster and encourage the

development of templates by other entities. The major issue for the CASE tool vendors is

17

the time it will take to build strategic alliances and encourage the availability of templates

on the market for their CASE tools.

Companies who sell their CASE-based systems to other companies -- The benefits for

these sellers are relatively straightforward: they can recover some, if not all or more, of the

costs of building the system. Selling the template indirectly through a third-party mitigates

the potential cost of sales (packaging, support, 17 etc.). The issues faced by these companies

are similar to that of the package vendors: they may be reluctant to give away business

rules which they consider to be a source of competitive advantage. Clearly, this applies to

some systems more than others; for example, depending on the company, this may be more

of an issue for a marketing system than for an accounting system. However, even for

"strategic" systems, this may not be as much of an issue as it appears to be at first glance.

In the view of Canadian, for example, the true advantage lies not in the system itself but

in the way in which it is used. Moreover, in Canadian's view, the advantages of recovering

some of the cost of the system far outweigh the disadvantages, since their "competition will

eventually catch up anyway."

Implications and Future Market

As discussed above, adopting a template approach implies some significant changes

for the systems delivery process. Both Canadian and Midwest cited increased user

involvement, ability to spend more time on the business process and less time on the

technical aspects, and improved time to market. The template approach illustrated in the

MultiCo example -- i.e., using templates as "internal packages" -- also has major implications

for the systems development process. The ability to reuse models and/or systems across

divisions within an organization is something which must be built into the design of those

models; it requires a different analysis and design process than that used by the majority of

companies today. A system which has been designed for reuse is a modular, streamlined,

7 Although it should be noted that in the examples provided above, the support needed was minimal.

18

�L_ __ ____��

111

well-engineered system which leverages the commonalities across its composite functions.' 8

Further, the use of such a system for multiple instances -- that is, the reuse of the system

-- requires a significant shift in the mindset and reward system of many developers today.

Templates represent a major transformation in the software application market,

blurring the boundaries among package vendors, custom development vendors, and CASE

tool vendors. It is unclear exactly what form this transformation will take. However, two

things are clear: the software business will change dramatically, and the template market will

pave the way for new companies to emerge on the scene.

Returning for a moment to the multiple alternatives discussed in Section II -- CASE,

object-orientation, packages, and templates. In effect, we are seeing these alternatives

merge into one: templates, as they currently exist, are a hybrid of packages and CASE

tools. Over the next 5-10 years, we will have template-based packages relying on CASE

tools with object-oriented components. Templates, it may be suggested, are the packages

of the future.

18 For a discussion of this, see, for example: Hess (1990).

19

.. . _ , _ , , ... A _I-- -- ·-

REFERENCES

CASE Strategies newsletter (4:1), Arlington, MA, January 1992.

Chen, M. and Norman, R.J. "Integrated Computer-Aided Software Engineering (CASE): Adoption,
Implementations, and Impacts" IEEE, 1992, 0073-1129, January 1992, pp. 362-373.

Davidson, EJ. "An Exploratory Study of Joint Application Design in Information Systems Delivery," MIT
Sloan School of Management unpublished manuscript, October 1992, p. 2.

Fichman, R.G. and Kemerer, C.F. "Adoption of Software Engineering Process Innovations: The Case of
Object-Orientation," MIT Sloan School of Management, Center for Information Systems Research,
Working Paper No. 242, Cambridge, MA, June 1992.

Fichman, R.G. and Kemerer, C.F. "Object-Oriented and Conventional Analysis and Design Methodologies:
Comparison and Critique," MIT Sloan School of Management, Center for Information Systems
Research, Working Paper No. 230, Cambridge, MA, June 1991.

Friesen, M.E. and Orlikowski, WJ. "Assimilating CASE Tools in Organizations: An Empirical Study of the
Process and Context of CASE Tools," MIT Sloan School of Management, Center for Information
Systems Research, Working Paper No. 199, Cambridge, MA, October 1989.

Hess, Milton S. "Information Systems Design in Industrial Practice," in Concise Encyclopedia of Information
Processing in Systems and Organizations, ed. AP. Sage, Pergamon Press, May 1990, pp. 1-12.

Information Engineering Facility Methodology Overview, TI Part Number 2739900-8024, Texas Instruments,
January 1990, p. 3.

Kemerer, C.F. "Learning Curve Models for Integrated CASE Tool Management," MIT Sloan School of
Management, Center for Information Systems Research, Working Paper No. 231, Cambridge, MA,
November 1991.

Loh, L. and Venkatraman, N. "Diffusion of Information Technology Outsourcing: Influence Sources and The
Kodak Effect," MIT Sloan School of Management, Center for Information Systems Research, Working
Paper No. 245, Cambridge, MA, October 1992.

Orlikowski, WJ. "Division Among the Ranks: The Social Implications of CASE Tools for System
Developers," MIT Sloan School of Management, Center for Information Systems Research, Working
Paper No. 194, Cambridge, MA, July 1989.

Orlikowski, WJ. "Radical and Incremental Innovations in Systems Development: An Empirical Investigation
of CASE Tools," MIT Sloan School of Management, Center for Information Systems Research,
Working Paper No. 221, Cambridge, MA, April 1991.

Rockart, J.F. and Hofman, J.D. "Systems Delivery: Evolving New Strategies," Sloan Management Review
(33:4), September 1992, pp. 21-31.

"The CASE is Not Closed," Yankee Watch Management Strategies: Outsourcing white paper (2:7), The Yankee
Group, Boston, June 1992.

20

